Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Kadovar (Papua New Guinea) An ash plume and weak thermal anomaly during May 2023

San Miguel (El Salvador) Small gas-and-ash explosions during March and May 2023

Ebeko (Russia) Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Home Reef (Tonga) Discolored plumes continued during November 2022-April 2023

Semisopochnoi (United States) Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Ambae (Vanuatu) New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ibu (Indonesia) Daily ash explosions continue, along with thermal anomalies in the crater, October 2022-May 2023

Dukono (Indonesia) Continuing ash emissions, SO2 plumes, and thermal signals during October 2022-May 2023

Sabancaya (Peru) Explosions, gas-and-ash plumes, and thermal activity persist during November 2022-April 2023

Sheveluch (Russia) Significant explosions destroyed part of the lava-dome complex during April 2023

Bezymianny (Russia) Explosions, ash plumes, lava flows, and avalanches during November 2022-April 2023

Chikurachki (Russia) New explosive eruption during late January-early February 2023



Kadovar (Papua New Guinea) — June 2023 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


An ash plume and weak thermal anomaly during May 2023

Kadovar is a 2-km-wide island that is the emergent summit of a Bismarck Sea stratovolcano. It lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the volcano, filling an arcuate landslide scarp open to the S. Submarine debris-avalanche deposits occur to the S of the island. The current eruption began in January 2018 and has comprised lava effusion from vents at the summit and at the E coast; more recent activity has consisted of ash plumes, weak thermal activity, and gas-and-steam plumes (BGVN 48:02). This report covers activity during February through May 2023 using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.

Activity during the reporting period was relatively low and mainly consisted of white gas-and-steam plumes that were visible in natural color satellite images on clear weather days (figure 67). According to a Darwin VAAC report, at 2040 on 6 May an ash plume rose to 4.6 km altitude and drifted W; by 2300 the plume had dissipated. MODIS satellite instruments using the MODVOLC thermal algorithm detected a single thermal hotspot on the SE side of the island on 7 May. Weak thermal activity was also detected in a satellite image on the E side of the island on 14 May, accompanied by a white gas-and-steam plume that drifted SE (figure 68).

Figure (see Caption) Figure 67. True color satellite images showing a white gas-and-steam plume rising from Kadovar on 28 February 2023 (left) and 30 March 2023 (right) and drifting SE and S, respectively. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 68. Infrared (bands B12, B11, B4) image showing weak thermal activity on the E side of the island, accompanied by a gas-and-steam plume that drifted SE from Kadovar on 14 May 2023. Courtesy of Copernicus Browser.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


San Miguel (El Salvador) — June 2023 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Small gas-and-ash explosions during March and May 2023

San Miguel in El Salvador is a broad, deep crater complex that has been frequently modified by eruptions recorded since the early 16th century and consists of the summit known locally as Chaparrastique. Flank eruptions have produced lava flows that extended to the N, NE, and SE during the 17-19th centuries. The most recent activity has consisted of minor ash eruptions from the summit crater. The current eruption period began in November 2022 and has been characterized by frequent phreatic explosions, gas-and-ash emissions, and sulfur dioxide plumes (BGVN 47:12). This report describes small gas-and-ash explosions during December 2022 through May 2023 based on special reports from the Ministero de Medio Ambiente y Recursos Naturales (MARN).

Activity has been relatively low since the last recorded explosions on 29 November 2022. Seismicity recorded by the San Miguel Volcano Station (VSM) located on the N flank at 1.7 km elevation had decreased by 7 December. Sulfur dioxide gas measurements taken with DOAS (Differential Optical Absorption Spectroscopy) mobile equipment were below typical previously recorded values: 300 tons per day (t/d). During December, small explosions were recorded by the seismic network and manifested as gas-and-steam emissions.

Gas-and-ash explosions in the crater occurred during January 2023, which were recorded by the seismic network. Sulfur dioxide values remained low, between 300-400 t/d through 10 March. At 0817 on 14 January a gas-and-ash emission was visible in webcam images, rising just above the crater rim. Some mornings during February, small gas-and-steam plumes were visible in the crater. On 7 March at 2252 MARN noted an increase in degassing from the central crater; gas emissions were constantly observed through the early morning hours on 8 March. During the early morning of 8 March through the afternoon on 9 March, 12 emissions were registered, some accompanied by ash. The last gas-and-ash emission was recorded at 1210 on 9 March; very fine ashfall was reported in El Tránsito (10 km S), La Morita (6 km W), and La Piedrita (3 km W). The smell of sulfur was reported in Piedra Azul (5 km SW). On 16 March MARN reported that gas-and-steam emissions decreased.

Low degassing and very low seismicity were reported during April; no explosions have been detected between 9 March and 27 May. The sulfur dioxide emissions remained between 350-400 t/d; during 13-20 April sulfur dioxide values fluctuated between 30-300 t/d. Activity remained low through most of May; on 23 May seismicity increased. An explosion was detected at 1647 on 27 May generated a gas-and-ash plume that rose 700 m high (figure 32); a decrease in seismicity and gas emissions followed. The DOAS station installed on the W flank recorded sulfur dioxide values that reached 400 t/d on 27 May; subsequent measurements showed a decrease to 268 t/d on 28 May and 100 t/d on 29 May.

Figure (see Caption) Figure 32. Webcam image of a gas-and-ash plume rising 700 m above San Miguel at 1652 on 27 May 2023. Courtesy of MARN.

Geologic Background. The symmetrical cone of San Miguel, one of the most active volcanoes in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. A broad, deep, crater complex that has been frequently modified by eruptions recorded since the early 16th century caps the truncated unvegetated summit, also known locally as Chaparrastique. Flanks eruptions of the basaltic-andesitic volcano have produced many lava flows, including several during the 17th-19th centuries that extended to the N, NE, and SE. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. Flank vent locations have migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Ministero de Medio Ambiente y Recursos Naturales (MARN), Km. 5½ Carretera a Nueva San Salvador, Avenida las Mercedes, San Salvador, El Salvador (URL: http://www.snet.gob.sv/ver/vulcanologia).


Ebeko (Russia) — June 2023 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Ebeko, located on the N end of Paramushir Island in the Kuril Islands, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruption period began in June 2022 and has recently consisted of frequent explosions, ash plumes, and thermal activity (BGVN 47:10). This report covers similar activity during October 2022 through May 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during October consisted of explosive activity, ash plumes, and occasional thermal anomalies. Visual data by volcanologists from Severo-Kurilsk showed explosions producing ash clouds up to 2.1-3 km altitude which drifted E, N, NE, and SE during 1-8, 10, 16, and 18 October. KVERT issued several Volcano Observatory Notices for Aviation (VONA) on 7, 13-15, and 27 October 2022, stating that explosions generated ash plumes that rose to 2.3-4 km altitude and drifted 5 km E, NE, and SE. Ashfall was reported in Severo-Kurilsk (Paramushir Island, about 7 km E) on 7 and 13 October. Satellite data showed a thermal anomaly over the volcano on 15-16 October. Visual data showed ash plumes rising to 2.5-3.6 km altitude on 22, 25-29, and 31 October and moving NE due to constant explosions.

Similar activity continued during November, with explosions, ash plumes, and ashfall occurring. KVERT issued VONAs on 1-2, 4, 6-7, 9, 13, and 16 November that reported explosions and resulting ash plumes that rose to 1.7-3.6 km altitude and drifted 3-5 km SE, ESE, E, and NE. On 1 November ash plumes extended as far as 110 km SE. On 5, 8, 12, and 24-25 November explosions and ash plumes rose to 2-3.1 km altitude and drifted N and E. Ashfall was observed in Severo-Kurilsk on 7 and 16 November. A thermal anomaly was visible during 1-4, 16, and 20 November. Explosions during 26 November rose as high as 2.7 km altitude and drifted NE (figure 45).

Figure (see Caption) Figure 45. Photo of an ash plume rising to 2.7 km altitude above Ebeko on 26 November 2022. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

Explosions and ash plumes continued to occur in December. During 1-2 and 4 December volcanologists from Severo-Kurilsk observed explosions that sent ash to 1.9-2.5 km altitude and drifted NE and SE (figure 46). VONAs were issued on 5, 9, and 16 December reporting that explosions generated ash plumes rising to 1.9 km, 2.6 km, and 2.4 km altitude and drifted 5 km SE, E, and NE, respectively. A thermal anomaly was visible in satellite imagery on 16 December. On 18 and 27-28 December explosions produced ash plumes that rose to 2.5 km altitude and drifted NE and SE. On 31 December an ash plume rose to 2 km altitude and drifted NE.

Figure (see Caption) Figure 46. Photo of an explosive event at Ebeko at 1109 on 2 December 2022. Photo has been color corrected. Photo by S. Lakomov, IVS FEB RAS.

Explosions continued during January 2023, based on visual observations by volcanologists from Severo-Kurilsk. During 1-7 January explosions generated ash plumes that rose to 4 km altitude and drifted NE, E, W, and SE. According to VONAs issued by KVERT on 2, 4, 10, and 23 January, explosions produced ash plumes that rose to 2-4 km altitude and drifted 5 km N, NE, E, and ENE; the ash plume that rose to 4 km altitude occurred on 10 January (figure 47). Satellite data showed a thermal anomaly during 3-4, 10, 13, 16, 21, 22, and 31 January. KVERT reported that an ash cloud on 4 January moved 12 km NE. On 6 and 9-11 January explosions sent ash plumes to 4.5 km altitude and drifted W and ESE. On 13 January an ash plume rose to 3 km altitude and drifted SE. During 20-24 January ash plumes from explosions rose to 3.7 km altitude and drifted SE, N, and NE. On 21 January the ash plume drifted as far as 40 km NE. During 28-29 and 31 January and 1 February ash plumes rose to 4 km altitude and drifted NE.

Figure (see Caption) Figure 47. Photo of a strong ash plume rising to 4 km altitude from an explosive event on 10 January 2023 (local time). Photo by L. Kotenko, IVS FEB RAS.

During February, explosions, ash plumes, and ashfall were reported. During 1, 4-5 and 7-8 February explosions generated ash plumes that rose to 4.5 km altitude and drifted E and NE; ashfall was observed on 5 and 8 February. On 6 February an explosion produced an ash plume that rose to 3 km altitude and drifted 7 km E, causing ashfall in Severo-Kurilsk. A thermal anomaly was visible in satellite data on 8, 9, 13, and 21 February. Explosions on 9 and 12-13 February produced ash plumes that rose to 4 km altitude and drifted E and NE; the ash cloud on 12 February extended as far as 45 km E. On 22 February explosions sent ash to 3 km altitude that drifted E. During 24 and 26-27 February ash plumes rose to 4 km altitude and drifted E. On 28 February an explosion sent ash to 2.5-3 km altitude and drifted 5 km E; ashfall was observed in Severo-Kurilsk.

Activity continued during March; visual observations showed that explosions generated ash plumes that rose to 3.6 km altitude on 3, 5-7, and 9-12 March and drifted E, NE, and NW. Thermal anomalies were visible on 10, 13, and 29-30 March in satellite imagery. On 18, 21-23, 26, and 29-30 March explosions produced ash plumes that rose to 2.8 km altitude and drifted NE and E; the ash plumes during 22-23 March extended up to 76 km E. A VONA issued on 21 March reported an explosion that produced an ash plume that rose to 2.8 km altitude and drifted 5 km E. Another VONA issued on 23 March reported that satellite data showed an ash plume rising to 3 km altitude and drifted 14 km E.

Explosions during April continued to generate ash plumes. On 1 and 4 April an ash plume rose to 2.8-3.5 km altitude and drifted SE and NE. A thermal anomaly was visible in satellite imagery during 1-6 April. Satellite data showed ash plumes and clouds rising to 2-3 km altitude and drifting up to 12 km SW and E on 3 and 6 April (figure 48). KVERT issued VONAs on 3, 5, 14, 16 April describing explosions that produced ash plumes rising to 3 km, 3.5 km, 3.5 km, and 3 km altitude and drifting 5 km S, 5 km NE and SE, 72 km NNE, and 5 km NE, respectively. According to satellite data, the resulting ash cloud from the explosion on 14 April was 25 x 7 km in size and drifted 72-104 km NNE during 14-15 April. According to visual data by volcanologists from Severo-Kurilsk explosions sent ash up to 3.5 km altitude that drifted NE and E during 15-16, 22, 25-26, and 29 April.

Figure (see Caption) Figure 48. Photo of an ash cloud rising to 3.5 km altitude at Ebeko on 6 April 2023. The cloud extended up to 12 km SW and E. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

The explosive eruption continued during May. Explosions during 3-4, 6-7, and 9-10 May generated ash plumes that rose to 4 km altitude and drifted SW and E. Satellite data showed a thermal anomaly on 3, 9, 13-14, and 24 May. During 12-16, 23-25, and 27-28 May ash plumes rose to 3.5 km altitude and drifted in different directions due to explosions. Two VONA notices were issued on 16 and 25 May, describing explosions that generated ash plumes rising to 3 km and 3.5 km altitude, respectively and extending 5 km E. The ash cloud on 25 May drifted 75 km SE.

Thermal activity in the summit crater, occasionally accompanied by ash plumes and ash deposits on the SE and E flanks due to frequent explosions, were visible in infrared and true color satellite images (figure 49).

Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) and true color satellite images of Ebeko showing occasional small thermal anomalies at the summit crater on 4 October 2022 (top left), 30 April 2023 (bottom left), and 27 May 2023 (bottom right). On 1 November (top right) ash deposits (light-to-dark gray) were visible on the SE flank. An ash plume drifted NE on 30 April, and ash deposits were also visible to the E on both 30 April and 27 May. Courtesy of Copernicus Browser.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Home Reef (Tonga) — June 2023 Citation iconCite this Report

Home Reef

Tonga

18.992°S, 174.775°W; summit elev. -10 m

All times are local (unless otherwise noted)


Discolored plumes continued during November 2022-April 2023

Home Reef is a submarine volcano located in the central Tonga islands between Lateiki (Metis Shoal) and Late Island. The first recorded eruption occurred in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, a large volume of floating pumice, and an ephemeral island 500 x 1,500 m wide, with cliffs 30-50 m high that enclosed a water-filled crater. Another island-forming eruption in 2006 produced widespread pumice rafts that drifted as far as Australia; by 2008 the island had eroded below sea level. The previous eruption occurred during October 2022 and was characterized by a new island-forming eruption, lava effusion, ash plumes, discolored water, and gas-and-steam plumes (BGVN 47:11). This report covers discolored water plumes during November 2022 through April 2023 using satellite data.

Discolored plumes continued during the reporting period and were observed in true color satellite images on clear weather days. Satellite images show light green-yellow discolored water extending W on 8 and 28 November 2022 (figure 31), and SW on 18 November. Light green-yellow plumes extended W on 3 December, S on 13 December, SW on 18 December, and W and S on 23 December (figure 31). On 12 January 2023 discolored green-yellow plumes extended to the NE, E, SE, and N. The plume moved SE on 17 January and NW on 22 January. Faint discolored water in February was visible moving NE on 1 February. A discolored plume extended NW on 8 and 28 March and NW on 13 March (figure 31). During April, clear weather showed green-blue discolored plumes moving S on 2 April, W on 7 April, and NE and S on 12 April. A strong green-yellow discolored plume extended E and NE on 22 April for several kilometers (figure 31).

Figure (see Caption) Figure 31. Visual (true color) satellite images showing continued green-yellow discolored plumes at Home Reef (black circle) that extended W on 28 November 2022 (top left), W and S on 23 December 2022 (top right), NW on 13 March 2023 (bottom left), and E and NE on 22 April 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. Home Reef, a submarine volcano midway between Metis Shoal and Late Island in the central Tonga islands, was first reported active in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, large amounts of floating pumice, and an ephemeral 500 x 1,500 m island, with cliffs 30-50 m high that enclosed a water-filled crater. In 2006 an island-forming eruption produced widespread dacitic pumice rafts that drifted as far as Australia. Another island was built during a September-October 2022 eruption.

Information Contacts: Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Semisopochnoi (United States) — June 2023 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Semisopochnoi is located in the western Aleutians, is 20-km-wide at sea level, and contains an 8-km-wide caldera. The three-peaked Mount Young (formerly Cerberus) was constructed within the caldera during the Holocene. Each of these peaks contains a summit crater; the lava flows on the N flank appear younger than those on the S side. The current eruption period began in early February 2021 and has more recently consisted of intermittent explosions and ash emissions (BGVN 47:12). This report updates activity during December 2022 through May 2023 using daily, weekly, and special reports from the Alaska Volcano Observatory (AVO). AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

Activity during most of December 2022 was relatively quiet; according to AVO no eruptive or explosive activity was observed since 7 November 2022. Intermittent tremor and occasional small earthquakes were observed in geophysical data. Continuous gas-and-steam emissions were observed from the N crater of Mount Young in webcam images on clear weather days (figure 25). On 24 December, there was a slight increase in earthquake activity and several small possible explosion signals were detected in infrasound data. Eruptive activity resumed on 27 December at the N crater of Mount Young; AVO issued a Volcano Activity Notice (VAN) that reported minor ash deposits on the flanks of Mount Young that extended as far as 1 km from the vent, according to webcam images taken during 27-28 December (figure 26). No ash plumes were observed in webcam or satellite imagery, but a persistent gas-and-steam plume that might have contained some ash rose to 1.5 km altitude. As a result, AVO raised the Aviation Color Code (ACC) to Orange (the second highest level on a four-color scale) and the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale). Possible explosions were detected during 21 December 2022 through 1 January 2023 and seismic tremor was recorded during 30-31 December.

Figure (see Caption) Figure 25. Webcam image of a gas-and-steam plume rising above Semisopochnoi from Mount Young on 21 December 2022. Courtesy of AVO.
Figure (see Caption) Figure 26. Webcam image showing fresh ash deposits (black color) at the summit and on the flanks of Mount Young at Semisopochnoi, extending up to 1 km from the N crater. Image was taken on 27 December 2022. Image has been color corrected. Courtesy of AVO.

During January 2023 eruptive activity continued at the active N crater of Mount Young. Minor ash deposits were observed on the flanks, extending about 2 km SSW, based on webcam images from 1 and 3 January. A possible explosion occurred during 1-2 January based on elevated seismicity recorded on local seismometers and an infrasound signal recorded minutes later by an array at Adak. Though no ash plumes were observed in webcam or satellite imagery, a persistent gas-and-steam plume rose to 1.5 km altitude that might have carried minor traces of ash. Ash deposits were accompanied by periods of elevated seismicity and infrasound signals from the local geophysical network, which AVO reported were likely due to weak explosive activity. Low-level explosive activity was also detected during 2-3 January, with minor gas-and-steam emissions and a new ash deposit that was visible in webcam images. Low-level explosive activity was detected in geophysical data during 4-5 January, with elevated seismicity and infrasound signals observed on local stations. Volcanic tremor was detected during 7-9 January and very weak explosive activity was detected in seismic and infrasound data on 9 January. Weak seismic and infrasound signals were recorded on 17 January, which indicated minor explosive activity, but no ash emissions were observed in clear webcam images; a gas-and-steam plume continued to rise to 1.5 km altitude. During 29-30 January, ash deposits near the summit were observed on fresh snow, according to webcam images.

The active N cone at Mount Young continued to produce a gas-and-steam plume during February, but no ash emissions or explosive events were detected. Seismicity remained elevated with faint tremor during early February. Gas-and-steam emissions from the N crater were observed in clear webcam images on 11-13 and 16 February; no explosive activity was detected in seismic, infrasound, or satellite data. Seismicity has also decreased, with no significant seismic tremor observed since 25 January. Therefore, the ACC was lowered to Yellow (the second lowest level on a four-color scale) and the VAL was lowered to Advisory (the second lowest level on a four-color scale) on 22 February.

Gas-and-steam emissions persisted during March from the N cone of Mount Young, based on clear webcam images. A few brief episodes of weak tremor were detected in seismic data, although seismicity decreased over the month. A gas-and-steam plume detected in satellite data extended 150 km on 18 March. Low-level ash emissions from the N cone at Mount Young were observed in several webcam images during 18-19 March, in addition to small explosions and volcanic tremor. The ACC was raised to Orange and the VAL increased to Watch on 19 March. A small explosion was detected in seismic and infrasound data on 21 March.

Low-level unrest continued during April, although cloudy weather often obscured views of the summit; periods of seismic tremor and local earthquakes were recorded. During 3-4 April a gas-and-steam plume was visible traveling more than 200 km overnight; no ash was evident in the plume, according to AVO. A gas-and-steam plume was observed during 4-6 April that extended 400 km but did not seem to contain ash. Small explosions were detected in seismic and infrasound data on 5 April. Occasional clear webcam images showed continuing gas-and-steam emissions rose from Mount Young, but no ash deposits were observed on the snow. On 19 April small explosions and tremor were detected in seismic and infrasound data. A period of seismic tremor was detected during 22-25 April, with possible weak explosions on 25 April. Ash deposits were visible near the crater rim, but it was unclear if these deposits were recent or due to older deposits.

Occasional small earthquakes were recorded during May, but there were no signs of explosive activity seen in geophysical data. Gas-and-steam emissions continued from the N crater of Mount Young, based on webcam images, and seismicity remained slightly elevated. A new, light ash deposit was visible during the morning of 5 May on fresh snow on the NW flank of Mount Young. During 10 May periods of volcanic tremor were observed. The ACC was lowered to Yellow and the VAL to Advisory on 17 May due to no additional evidence of activity.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus (renamed Mount Young in 2023) was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Young, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ambae (Vanuatu) — June 2023 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ambae, also known as Aoba, is a large basaltic shield volcano in Vanuatu. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas. Periodic phreatic and pyroclastic explosions have been reported since the 16th century. A large eruption more than 400 years ago resulted in a volcanic cone within the summit crater that is now filled by Lake Voui; the similarly sized Lake Manaro fills the western third of the caldera. The previous eruption ended in August 2022 that was characterized by gas-and-steam and ash emissions and explosions of wet tephra (BGVN 47:10). This report covers a new eruption during February through May 2023 that consisted of a new lava flow, ash plumes, and sulfur dioxide emissions, using information from the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data.

During the reporting period, the Alert Level remained at a 2 (on a scale of 0-5), which has been in place since December 2021. Activity during October 2022 through March 2023 remained relatively low and mostly consisted of gas-and-steam emissions in Lake Voui. VMGD reported that at 1300 on 15 November a satellite image captured a strong amount of sulfur dioxide rising above the volcano (figure 99), and that seismicity slightly increased. The southern and northern part of the island reported a strong sulfur dioxide smell and heard explosions. On 20 February 2023 a gas-and-ash plume rose 1.3 km above the summit and drifted SSW, according to a webcam image (figure 100). Gas-and-steam and possibly ash emissions continued on 23 February and volcanic earthquakes were recorded by the seismic network.

Figure (see Caption) Figure 99. Satellite image of the strong sulfur dioxide plume above Ambae taken on 15 November 2022. The Dobson Units (DU) exceeded 12. Courtesy of VMGD.
Figure (see Caption) Figure 100. Webcam image of a gas-and-ash plume rising above Ambae at 1745 on 20 February 2023. The plume drifted SSW. Courtesy of VMGD.

During April, volcanic earthquakes and gas-and-steam and ash emissions were reported from the cone in Lake Voui. VMGD reported that activity increased during 5-7 April; high gas-and-steam and ash plumes were visible, accompanied by nighttime incandescence. According to a Wellington VAAC report, a low-level ash plume rose as high as 2.5 km above the summit and drifted W and SW on 5 April, based on satellite imagery. Reports in Saratamata stated that a dark ash plume drifted to the WSW, but no loud explosion was heard. Webcam images from 2100 showed incandescence above the crater and reflected in the clouds. According to an aerial survey, field observations, and satellite data, water was no longer present in the lake. A lava flow was reported effusing from the vent and traveling N into the dry Lake Voui, which lasted three days. The next morning at 0745 on 6 April a gas-and-steam and ash plume rose 5.4 km above the summit and drifted ESE, based on information from VMGD (figure 101). The Wellington VAAC also reported that light ashfall was observed on the island. Intermittent gas-and-steam and ash emissions were visible on 7 April, some of which rose to an estimated 3 km above the summit and drifted E. Webcam images during 0107-0730 on 7 April showed continuing ash emissions. A gas-and-steam and ash plume rose 695 m above the summit crater at 0730 on 19 April and drifted ESE, based on a webcam image (figure 102).

Figure (see Caption) Figure 101. Webcam image showing a gas-and-ash plume rising 5.4 km above the summit of Ambae at 0745 on 6 April 2023. Courtesy of VMGD.
Figure (see Caption) Figure 102. Webcam image showing a gas-and-ash plume rising 695 m above the summit of Ambae at 0730 on 19 April 2023. Courtesy of VMGD.

According to visual and infrared satellite data, water was visible in Lake Voui as late as 24 March 2023 (figure 103). The vent in the caldera showed a gas-and-steam plume drifted SE. On 3 April thermal activity was first detected, accompanied by a gas-and-ash plume that drifted W (figure 103). The lava flow moved N within the dry lake and was shown cooling by 8 April. By 23 April much of the water in the lake had returned. Occasional sulfur dioxide plumes were detected by the TROPOMI instrument on the Sentinel-5P satellite that exceeded 2 Dobson Units (DU) and drifted in different directions (figure 104).

Figure (see Caption) Figure 103. Satellite images showing both visual (true color) and infrared (bands B12, B11, B4) views on 24 March 2023 (top left), 3 April 2023 (top left), 8 April 2023 (bottom left), and 23 April 2023 (bottom right). In the image on 24 March, water filled Lake Voui around the small northern lake. A gas-and-steam plume drifted SE. Thermal activity (bright yellow-orange) was first detected in infrared data on 3 April 2023, accompanied by a gas-and-ash plume that drifted W. The lava flow slowly filled the northern part of the then-dry lake and remained hot on 8 April. By 23 April, the water in Lake Voui had returned. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 104. Images showing sulfur dioxide plumes rising from Ambae on 26 December 2022 (top left), 25 February 2023 (top right), 23 March 2023 (bottom left), and 5 April 2023 (bottom right), as detected by the TROPOMI instrument on the Sentinel-5P satellite. These plumes exceeded at least 2 Dobson Units (DU) and drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2,500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone with numerous scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ibu (Indonesia) — June 2023 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Daily ash explosions continue, along with thermal anomalies in the crater, October 2022-May 2023

Persistent eruptive activity since April 2008 at Ibu, a stratovolcano on Indonesian’s Halmahera Island, has consisted of daily explosive ash emissions and plumes, along with observations of thermal anomalies (BGVN 47:04). The current eruption continued during October 2022-May 2023, described below, based on advisories issued by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), daily reports by MAGMA Indonesia (a PVMBG platform), and the Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite data. The Alert Level during the reporting period remained at 2 (on a scale of 1-4), except raised briefly to 3 on 27 May, and the public was warned to stay at least 2 km away from the active crater and 3.5 km away on the N side of the volcano.

According to MAGMA Indonesia, during October 2022-May 2023, daily gray-and-white ash plumes of variable densities rose 200-1,000 m above the summit and drifted in multiple directions. On 30 October and 11 November, plumes rose a maximum of 2 km and 1.5 km above the summit, respectively (figures 42 and 43). According to the Darwin VAAC, discrete ash emissions on 13 November rose to 2.1 km altitude, or 800 m above the summit, and drifted W, and multiple ash emissions on 15 November rose 1.4 km above the summit and drifted NE. Occasional larger ash explosions through May 2023 prompted PVMBG to issue Volcano Observatory Notice for Aviation (VONA) alerts (table 6); the Aviation Color Code remained at Orange throughout this period.

Figure (see Caption) Figure 42. Larger explosion from Ibu’s summit crater on 30 October 2022 that generated a plume that rose 2 km above the summit. Photo has been color corrected. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 43. Larger explosion from Ibu’s summit crater on 11 November 2022 that generated a plume that rose 1.5 km above the summit. Courtesy of MAGMA Indonesia.

Table 6. Volcano Observatory Notice for Aviation (VONA) ash plume alerts for Ibu issued by PVMBG during October 2022-May 2023. Maximum height above the summit was estimated by a ground observer. VONAs in January-May 2023 all described the ash plumes as dense.

Date Time (local) Max height above summit Direction
17 Oct 2022 0858 800 m SW
18 Oct 2022 1425 800 m S
19 Oct 2022 2017 600 m SW
21 Oct 2022 0916 800 m NW
16 Jan 2023 1959 600 m NE
22 Jan 2023 0942 1,000 m E
29 Jan 2023 2138 1,000 m E
10 May 2023 0940 800 m NW
10 May 2023 2035 600 m E
21 May 2023 2021 600 m W
21 May 2023 2140 1,000 m W
29 May 2023 1342 800 m N
31 May 2023 1011 1,000 m SW

Sentinel-2 L1C satellite images throughout the reporting period show two, sometimes three persistent thermal anomalies in the summit crater, with the most prominent hotspot from the top of a cone within the crater. Clear views were more common during March-April 2023, when a vent and lava flows on the NE flank of the intra-crater cone could be distinguished (figure 44). White-to-grayish emissions were also observed during brief periods when weather clouds allowed clear views.

Figure (see Caption) Figure 44. Sentinel-2 L2A satellite images of Ibu on 10 April 2023. The central cone within the summit crater (1.3 km diameter) and lava flows (gray) can be seen in the true color image (left, bands 4, 3, 2). Thermal anomalies from the small crater of the intra-crater cone, a NE-flank vent, and the end of the lava flow are apparent in the infrared image (right, bands 12, 11, 8A). Courtesy of Copernicus Browser.

The MIROVA space-based volcano hotspot detection system recorded almost daily thermal anomalies throughout the reporting period, though cloud cover often interfered with detections. Data from imaging spectroradiometers aboard NASA’s Aqua and Terra satellites and processed using the MODVOLC algorithm (MODIS-MODVOLC) recorded hotspots on one day during October 2022 and December 2022, two days in April 2023, three days in November 2022 and May 2023, and four days in March 2023.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, has contained several small crater lakes. The 1.2-km-wide outer crater is breached on the N, creating a steep-walled valley. A large cone grew ENE of the summit, and a smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. The first observed and recorded eruption was a small explosion from the summit crater in 1911. Eruptive activity began again in December 1998, producing a lava dome that eventually covered much of the floor of the inner summit crater along with ongoing explosive ash emissions.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia (Multiplatform Application for Geohazard Mitigation and Assessment in Indonesia), Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Dukono (Indonesia) — June 2023 Citation iconCite this Report

Dukono

Indonesia

1.6992°N, 127.8783°E; summit elev. 1273 m

All times are local (unless otherwise noted)


Continuing ash emissions, SO2 plumes, and thermal signals during October 2022-May 2023

Dukono, a remote volcano on Indonesia’s Halmahera Island, has been erupting continuously since 1933, with frequent ash explosions and sulfur dioxide plumes (BGVN 46:11, 47:10). This activity continued during October 2022 through May 2023, based on reports from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG; also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data. During this period, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone. The highest reported plume of the period reached 9.4 km above the summit on 14 November 2022.

According to MAGMA Indonesia (a platform developed by PVMBG), white, gray, or dark plumes of variable densities were observed almost every day during the reporting period, except when fog obscured the volcano (figure 33). Plumes generally rose 25-450 m above the summit, but rose as high as 700-800 m on several days, somewhat lower than the maximum heights reached earlier in 2022 when plumes reached as high as 1 km. However, the Darwin VAAC reported that on 14 November 2022, a discrete ash plume rose 9.4 km above the summit (10.7 km altitude), accompanied by a strong hotspot and a sulfur dioxide signal observed in satellite imagery; a continuous ash plume that day and through the 15th rose to 2.1-2.4 km altitude and drifted NE.

Figure (see Caption) Figure 33. Webcam photo of a gas-and-steam plume rising from Dukono on the morning of 28 January 2023. Courtesy of MAGMA Indonesia.

Sentinel-2 images were obscured by weather clouds almost every viewing day during the reporting period. However, the few reasonably clear images showed a hotspot and white or gray emissions and plumes. Strong SO2 plumes from Dukono were present on many days during October 2022-May 2023, as detected using the TROPOMI instrument on the Sentinel-5P satellite (figure 34).

Figure (see Caption) Figure 34. A strong SO2 signal from Dukono on 23 April 2023 was the most extensive plume detected during the reporting period. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, have occurred since 1933. During a major eruption in 1550 CE, a lava flow filled in the strait between Halmahera and the N-flank Gunung Mamuya cone. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia (Multiplatform Application for Geohazard Mitigation and Assessment in Indonesia), Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — May 2023 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, gas-and-ash plumes, and thermal activity persist during November 2022-April 2023

Sabancaya is located in Peru, NE of Ampato and SE of Hualca Hualca. Eruptions date back to 1750 and have been characterized by explosions, phreatic activity, ash plumes, and ashfall. The current eruption period began in November 2016 and has more recently consisted of daily explosions, gas-and-ash plumes, and thermal activity (BGVN 47:11). This report updates activity during November 2022 through April 2023 using information from Instituto Geophysico del Peru (IGP) that use weekly activity reports and various satellite data.

Intermittent low-to-moderate power thermal anomalies were reported by the MIROVA project during November 2022 through April 2023 (figure 119). There were few short gaps in thermal activity during mid-December 2022, late December-to-early January 2023, late January to mid-February, and late February. According to data recorded by the MODVOLC thermal algorithm, there were a total of eight thermal hotspots: three in November 2022, three in February 2023, one in March, and one in April. On clear weather days, some of this thermal anomaly was visible in infrared satellite imagery showing the active lava dome in the summit crater (figure 120). Almost daily moderate-to-strong sulfur dioxide plumes were recorded during the reporting period by the TROPOMI instrument on the Sentinel-5P satellite (figure 121). Many of these plumes exceeded 2 Dobson Units (DU) and drifted in multiple directions.

Figure (see Caption) Figure 119. Intermittent low-to-moderate thermal anomalies were detected during November 2022 through April 2023 at Sabancaya, as shown in this MIROVA graph (Log Radiative Power). There were brief gaps in thermal activity during mid-December 2022, late December-to-early January 2023, late January to mid-February, and late February. Courtesy of MIROVA.
Figure (see Caption) Figure 120. Infrared (bands 12, 11, 8A) satellite images showed a constant thermal anomaly in the summit crater of Sabancaya on 14 January 2023 (top left), 28 February 2023 (top right), 5 March 2023 (bottom left), and 19 April 2023 (bottom right), represented by the active lava dome. Sometimes gas-and-steam and ash emissions also accompanied this activity. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 121. Moderate-to-strong sulfur dioxide plumes were detected almost every day, rising from Sabancaya by the TROPOMI instrument on the Sentinel-5P satellite throughout the reporting period; the DU (Dobson Unit) density values were often greater than 2. Plumes from 23 November 2022 (top left), 26 December 2022 (top middle), 10 January 2023 (top right), 15 February 2023 (bottom left), 13 March 2023 (bottom middle), and 21 April 2023 (bottom right) that drifted SW, SW, W, SE, W, and SW, respectively. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

IGP reported that moderate activity during November and December 2022 continued; during November, an average number of explosions were reported each week: 30, 33, 36, and 35, and during December, it was 32, 40, 47, 52, and 67. Gas-and-ash plumes in November rose 3-3.5 km above the summit and drifted E, NE, SE, S, N, W, and SW. During December the gas-and-ash plumes rose 2-4 km above the summit and drifted in different directions. There were 1,259 volcanic earthquakes recorded during November and 1,693 during December. Seismicity also included volcano-tectonic-type events that indicate rock fracturing events. Slight inflation was observed in the N part of the volcano near Hualca Hualca (4 km N). Thermal activity was frequently reported in the crater at the active lava dome (figure 120).

Explosive activity continued during January and February 2023. The average number of explosions were reported each week during January (51, 50, 60, and 59) and February (43, 54, 51, and 50). Gas-and-ash plumes rose 1.6-2.9 km above the summit and drifted NW, SW, and W during January and rose 1.4-2.8 above the summit and drifted W, SW, E, SE, N, S, NW, and NE during February. IGP also detected 1,881 volcanic earthquakes during January and 1,661 during February. VT-type earthquakes were also reported. Minor inflation persisted near Hualca Hualca. Satellite imagery showed continuous thermal activity in the crater at the lava dome (figure 120).

During March, the average number of explosions each week was 46, 48, 31, 35, and 22 and during April, it was 29, 41, 31, and 27. Accompanying gas-and-ash plumes rose 1.7-2.6 km above the summit crater and drifted W, SW, NW, S, and SE during March. According to a Buenos Aires Volcano Ash Advisory Center (VAAC) notice, on 22 March at 1800 through 23 March an ash plume rose to 7 km altitude and drifted NW. By 0430 an ash plume rose to 7.6 km altitude and drifted W. On 24 and 26 March continuous ash emissions rose to 7.3 km altitude and drifted SW and on 28 March ash emissions rose to 7.6 km altitude. During April, gas-and-ash plumes rose 1.6-2.5 km above the summit and drifted W, SW, S, NW, NE, and E. Frequent volcanic earthquakes were recorded, with 1,828 in March and 1,077 in April, in addition to VT-type events. Thermal activity continued to be reported in the summit crater at the lava dome (figure 120).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Centro Vulcanológico Nacional (CENVUL), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.igp.gob.pe/servicios/centro-vulcanologico-nacional/inicio); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Sheveluch (Russia) — May 2023 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Significant explosions destroyed part of the lava-dome complex during April 2023

Sheveluch (also spelled Shiveluch) in Kamchatka, has had at least 60 large eruptions during the last 10,000 years. The summit is truncated by a broad 9-km-wide caldera that is breached to the S, and many lava domes occur on the outer flanks. The lava dome complex was constructed within the large open caldera. Frequent collapses of the dome complex have produced debris avalanches; the resulting deposits cover much of the caldera floor. A major south-flank collapse during a 1964 Plinian explosion produced a scarp in which a “Young Sheveluch” dome began to form in 1980. Repeated episodes of dome formation and destruction since then have produced major and minor ash plumes, pyroclastic flows, block-and-ash flows, and “whaleback domes” of spine-like extrusions in 1993 and 2020 (BGVN 45:11). The current eruption period began in August 1999 and has more recently consisted of lava dome growth, explosions, ash plumes, and avalanches (BGVN 48:01). This report covers a significant explosive eruption during early-to-mid-April 2023 that generated a 20 km altitude ash plume, produced a strong sulfur dioxide plume, and destroyed part of the lava-dome complex; activity described during January through April 2023 use information primarily from the Kamchatka Volcanic Eruptions Response Team (KVERT) and various satellite data.

Satellite data. Activity during the majority of this reporting period was characterized by continued lava dome growth, strong fumarole activity, explosions, and hot avalanches. According to the MODVOLC Thermal Alerts System, 140 hotspots were detected through the reporting period, with 33 recorded in January 2023, 29 in February, 44 in March, and 34 in April. Frequent strong thermal activity was recorded during January 2023 through April, according to the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph and resulted from the continuously growing lava dome (figure 94). A slightly stronger pulse in thermal activity was detected in early-to-mid-April, which represented the significant eruption that destroyed part of the lava-dome complex. Thermal anomalies were also visible in infrared satellite imagery at the summit crater (figure 95).

Figure (see Caption) Figure 94. Strong and frequent thermal activity was detected at Sheveluch during January through April 2023, according to this MIROVA graph (Log Radiative Power). These thermal anomalies represented the continuously growing lava dome and frequent hot avalanches that affected the flanks. During early-to-mid-April a slightly stronger pulse represented the notable explosive eruption. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Infrared (bands B12, B11, B4) satellite imagery showed persistent thermal anomalies at the lava dome of Sheveluch on 14 January 2023 (top left), 26 February 2023 (top right), and 15 March 2023 (bottom left). The true color image on 12 April 2023 (bottom right) showed a strong ash plume that drifted SW; this activity was a result of the strong explosive eruption during 11-12 April 2023. Courtesy of Copernicus Browser.

During January 2023 KVERT reported continued growth of the lava dome, accompanied by strong fumarolic activity, incandescence from the lava dome, explosions, ash plumes, and avalanches. Satellite data showed a daily thermal anomaly over the volcano. Video data showed ash plumes associated with collapses at the dome that generated avalanches that in turn produced ash plumes rising to 3.5 km altitude and drifting 40 km W on 4 January and rising to 7-7.5 km altitude and drifting 15 km SW on 5 January. A gas-and-steam plume containing some ash that was associated with avalanches rose to 5-6 km altitude and extended 52-92 km W on 7 January. Explosions that same day produced ash plumes that rose to 7-7.5 km altitude and drifted 10 km W. According to a Volcano Observatory Notice for Aviation (VONA) issued at 1344 on 19 January, explosions produced an ash cloud that was 15 x 25 km in size and rose to 9.6-10 km altitude, drifting 21-25 km W; as a result, the Aviation Color Code (ACC) was raised to Red (the highest level on a four-color scale). Another VONA issued at 1635 reported that no more ash plumes were observed, and the ACC was lowered to Orange (the second highest level on a four-color scale). On 22 January an ash plume from collapses and avalanches rose to 5 km altitude and drifted 25 km NE and SW; ash plumes associated with collapses extended 70 km NE on 27 and 31 January.

Lava dome growth, fumarolic activity, dome incandescence, and occasional explosions and avalanches continued during February and March. A daily thermal anomaly was visible in satellite data. Explosions on 1 February generated ash plumes that rose to 6.3-6.5 km altitude and extended 15 km NE. Video data showed an ash cloud from avalanches rising to 5.5 km altitude and drifting 5 km SE on 2 February. Satellite data showed gas-and-steam plumes containing some ash rose to 5-5.5 km altitude and drifted 68-110 km ENE and NE on 6 February, to 4.5-5 km altitude and drifted 35 km WNW on 22 February, and to 3.7-4 km altitude and drifted 47 km NE on 28 February. Scientists from the Kamchatka Volcanological Station (KVS) went on a field excursion on 25 February to document the growing lava dome, and although it was cloudy most of the day, nighttime incandescence was visible. Satellite data showed an ash plume extending up to 118 km E during 4-5 March. Video data from 1150 showed an ash cloud from avalanches rose to 3.7-5.5 km altitude and drifted 5-10 km ENE and E on 5 March. On 11 March an ash plume drifted 62 km E. On 27 March ash plumes rose to 3.5 km altitude and drifted 100 km E. Avalanches and constant incandescence at the lava dome was focused on the E and NE slopes on 28 March. A gas-and-steam plume containing some ash rose to 3.5 km altitude and moved 40 km E on 29 March. Ash plumes on 30 March rose to 3.5-3.7 km altitude and drifted 70 km NE.

Similar activity continued during April, with lava dome growth, strong fumarolic activity, incandescence in the dome, occasional explosions, and avalanches. A thermal anomaly persisted throughout the month. During 1-4 April weak ash plumes rose to 2.5-3 km altitude and extended 13-65 km SE and E.

Activity during 11 April 2023. The Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS) reported a significant increase in seismicity around 0054 on 11 April, as reported by strong explosions detected on 11 April beginning at 0110 that sent ash plumes up to 7-10 km altitude and extended 100-435 km W, WNW, NNW, WSW, and SW. According to a Tokyo VAAC report the ash plume rose to 15.8 km altitude. By 0158 the plume extended over a 75 x 100 km area. According to an IVS FEB RAS report, the eruptive column was not vertical: the initial plume at 0120 on 11 April deviated to the NNE, at 0000 on 12 April, it drifted NW, and by 1900 it drifted SW. KVS reported that significant pulses of activity occurred at around 0200, 0320, and then a stronger phase around 0600. Levin Dmitry took a video from near Békés (3 km away) at around 0600 showing a rising plume; he also reported that a pyroclastic flow traveled across the road behind him as he left the area. According to IVS FEB RAS, the pyroclastic flow traveled several kilometers SSE, stopping a few hundred meters from a bridge on the road between Klyuchi and Petropavlovsk-Kamchatsky.

Ashfall was first observed in Klyuchi (45 km SW) at 0630, and a large, black ash plume blocked light by 0700. At 0729 KVERT issued a Volcano Observatory Notice for Aviation (VONA) raising the Aviation Color Code to Red (the highest level on a four-color scale). It also stated that a large ash plume had risen to 10 km altitude and drifted 100 km W. Near-constant lightning strikes were reported in the plume and sounds like thunderclaps were heard until about 1000. According to IVS FEB RAS the cloud was 200 km long and 76 km wide by 0830, and was spreading W at altitudes of 6-12 km. In the Klyuchi Village, the layer of both ash and snow reached 8.5 cm (figure 96); ashfall was also reported in Kozyrevsk (112 km SW) at 0930, Mayskoye, Anavgay, Atlasovo, Lazo, and Esso. Residents in Klyuchi reported continued darkness and ashfall at 1100. In some areas, ashfall was 6 cm deep and some residents reported dirty water coming from their plumbing. According to IVS FEB RAS, an ash cloud at 1150 rose to 5-20 km altitude and was 400 km long and 250 km wide, extending W. A VONA issued at 1155 reported that ash had risen to 10 km and drifted 340 km NNW and 240 km WSW. According to Simon Carn (Michigan Technological University), about 0.2 Tg of sulfur dioxide in the plume was measured in a satellite image from the TROPOMI instrument on the Sentinel-5P satellite acquired at 1343 that covered an area of about 189,000 km2 (figure 97). Satellite data at 1748 showed an ash plume that rose to 8 km altitude and drifted 430 km WSW and S, according to a VONA.

Figure (see Caption) Figure 96. Photo of ash deposited in Klyuchi village on 11 April 2023 by the eruption of Sheveluch. About 8.5 cm of ash was measured. Courtesy of Kam 24 News Agency.
Figure (see Caption) Figure 97. A strong sulfur dioxide plume from the 11 April 2023 eruption at Sheveluch was visible in satellite data from the TROPOMI instrument on the Sentinel-5P satellite. Courtesy of Simon Carn, MTU.

Activity during 12-15 April 2023. On 12 April at 0730 satellite images showed ash plumes rose to 7-8 km altitude and extended 600 km SW, 1,050 km ESE, and 1,300-3,000 km E. By 1710 that day, the explosions weakened. According to news sources, the ash-and-gas plumes drifted E toward the Aleutian Islands and reached the Gulf of Alaska by 13 April, causing flight disruptions. More than 100 flights involving Alaska airspace were cancelled due to the plume. Satellite data showed ash plumes rising to 4-5.5 km altitude and drifted 400-415 km SE and ESE on 13 April. KVS volcanologists observed the pyroclastic flow deposits and noted that steam rose from downed, smoldering trees. They also noted that the deposits were thin with very few large fragments, which differed from previous flows. The ash clouds traveled across the Pacific Ocean. Flight cancellations were also reported in NW Canada (British Columbia) during 13-14 April. During 14-15 April ash plumes rose to 6 km altitude and drifted 700 km NW.

Alaskan flight schedules were mostly back to normal by 15 April, with only minor delays and far less cancellations; a few cancellations continued to be reported in Canada. Clear weather on 15 April showed that most of the previous lava-dome complex was gone and a new crater roughly 1 km in diameter was observed (figure 98); gas-and-steam emissions were rising from this crater. Evidence suggested that there had been a directed blast to the SE, and pyroclastic flows traveled more than 20 km. An ash plume rose to 4.5-5.2 km altitude and drifted 93-870 km NW on 15 April.

Figure (see Caption) Figure 98. A comparison of the crater at Sheveluch showing the previous lava dome (top) taken on 29 November 2022 and a large crater in place of the dome (bottom) due to strong explosions during 10-13 April 2023, accompanied by gas-and-ash plumes. The bottom photo was taken on 15 April 2023. Photos has been color corrected. Both photos are courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Activity during 16-30 April 2023. Resuspended ash was lifted by the wind from the slopes and rose to 4 km altitude and drifted 224 km NW on 17 April. KVERT reported a plume of resuspended ash from the activity during 10-13 April on 19 April that rose to 3.5-4 km altitude and drifted 146-204 km WNW. During 21-22 April a plume stretched over the Scandinavian Peninsula. A gas-and-steam plume containing some ash rose to 3-3.5 km altitude and drifted 60 km SE on 30 April. A possible new lava dome was visible on the W slope of the volcano on 29-30 April (figure 99); satellite data showed two thermal anomalies, a bright one over the existing lava dome and a weaker one over the possible new one.

Figure (see Caption) Figure 99. Photo showing new lava dome growth at Sheveluch after a previous explosion destroyed much of the complex, accompanied by a white gas-and-steam plume. Photo has been color corrected. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

References. Girina, O., Loupian, E., Horvath, A., Melnikov, D., Manevich, A., Nuzhdaev, A., Bril, A., Ozerov, A., Kramareva, L., Sorokin, A., 2023, Analysis of the development of the paroxysmal eruption of Sheveluch volcano on April 10–13, 2023, based on data from various satellite systems, ??????????? ???????? ??? ?? ???????, 20(2).

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1,300 km3 andesitic volcano is one of Kamchatka's largest and most active volcanic structures, with at least 60 large eruptions during the Holocene. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes occur on its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large open caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Kam 24 News Agency, 683032, Kamchatka Territory, Petropavlovsk-Kamchatsky, Vysotnaya St., 2A (URL: https://kam24.ru/news/main/20230411/96657.html#.Cj5Jrky6.dpuf); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn).


Bezymianny (Russia) — May 2023 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Explosions, ash plumes, lava flows, and avalanches during November 2022-April 2023

Bezymianny is located on the Kamchatka Peninsula of Russia as part of the Klyuchevskoy volcano group. Historic eruptions began in 1955 and have been characterized by dome growth, explosions, pyroclastic flows, ash plumes, and ashfall. During the 1955-56 eruption a large open crater was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater. The current eruption period began in December 2016 and more recent activity has consisted of strong explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers activity during November 2022 through April 2023, based on weekly and daily reports from the Kamchatka Volcano Eruptions Response Team (KVERT) and satellite data.

Activity during November and March 2023 was relatively low and mostly consisted of gas-and-steam emissions, occasional small collapses that generated avalanches along the lava dome slopes, and a persistent thermal anomaly over the volcano that was observed in satellite data on clear weather days. According to the Tokyo VAAC and KVERT, an explosion produced an ash plume that rose to 6 km altitude and drifted 25 km NE at 1825 on 29 March.

Gas-and-steam emissions, collapses generating avalanches, and thermal activity continued during April. According to two Volcano Observatory Notice for Aviation (VONA) issued on 2 and 6 April (local time) ash plumes rose to 3 km and 3.5-3.8 km altitude and drifted 35 km E and 140 km E, respectively. Satellite data from KVERT showed weak ash plumes extending up to 550 km E on 2 and 5-6 April.

A VONA issued at 0843 on 7 April described an ash plume that rose to 4.5-5 km altitude and drifted 250 km ESE. Later that day at 1326 satellite data showed an ash plume that rose to 5.5-6 km altitude and drifted 150 km ESE. A satellite image from 1600 showed an ash plume extending as far as 230 km ESE; KVERT noted that ash emissions were intensifying, likely due to avalanches from the growing lava dome. The Aviation Color Code (ACC) was raised to Red (the highest level on a four-color scale). At 1520 satellite data showed an ash plume rising to 5-5.5 km altitude and drifting 230 km ESE. That same day, Kamchatka Volcanological Station (KVS) volcanologists traveled to Ambon to collect ash; they reported that a notable eruption began at 1730, and within 20 minutes a large ash plume rose to 10 km altitude and drifted NW. KVERT reported that the strong explosive phase began at 1738. Video and satellite data taken at 1738 showed an ash plume that rose to 10-12 km altitude and drifted up to 2,800 km SE and E. Explosions were clearly audible 20 km away for 90 minutes, according to KVS. Significant amounts of ash fell at the Apakhonchich station, which turned the snow gray; ash continued to fall until the morning of 8 April. In a VONA issued at 0906 on 8 April, KVERT stated that the explosive eruption had ended; ash plumes had drifted 2,000 km E. The ACC was lowered to Orange (the third highest level on a four-color scale). The KVS team saw a lava flow on the active dome once the conditions were clear that same day (figure 53). On 20 April lava dome extrusion was reported; lava flows were noted on the flanks of the dome, and according to KVERT satellite data, a thermal anomaly was observed in the area. The ACC was lowered to Yellow (the second lowest on a four-color scale).

Figure (see Caption) Figure 53. Photo showing an active lava flow descending the SE flank of Bezymianny from the lava dome on 8 April 2023. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Satellite data showed an increase in thermal activity beginning in early April 2023. A total of 31 thermal hotspots were detected by the MODVOLC thermal algorithm on 4, 5, 7, and 12 April 2023. The elevated thermal activity resulted from an increase in explosive activity and the start of an active lava flow. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system based on the analysis of MODIS data also showed a pulse in thermal activity during the same time (figure 54). Infrared satellite imagery captured a continuous thermal anomaly at the summit crater, often accompanied by white gas-and-steam emissions (figure 55). On 4 April 2023 an active lava flow was observed descending the SE flank.

Figure (see Caption) Figure 54. Intermittent and low-power thermal anomalies were detected at Bezymianny during December 2022 through mid-March 2023, according to this MIROVA graph (Log Radiative Power). In early April 2023, an increase in explosive activity and eruption of a lava flow resulted in a marked increase in thermal activity. Courtesy of MIROVA.
Figure (see Caption) Figure 55. Infrared satellite images of Bezymianny showed a persistent thermal anomaly over the lava dome on 18 November 2022 (top left), 28 December 2022 (top right), 15 March 2023 (bottom left), and 4 April 2023 (bottom right), often accompanied by white gas-and-steam plumes. On 4 April a lava flow was active and descending the SE flank. Images using infrared (bands 12, 11, 8a). Courtesy of Copernicus Browser.

Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Chikurachki (Russia) — May 2023 Citation iconCite this Report

Chikurachki

Russia

50.324°N, 155.461°E; summit elev. 1781 m

All times are local (unless otherwise noted)


New explosive eruption during late January-early February 2023

Chikurachki, located on Paramushir Island in the northern Kuriles, has had Plinian eruptions during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. Reported eruptions date back to 1690, with the most recent eruption period occurring during January through October 2022, characterized by occasional explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers a new eruptive period during January through February 2023 that consisted of ash explosions and ash plumes, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

According to reports from KVERT, an explosive eruption began around 0630 on 29 January. Explosions generated ash plumes that rose to 3-3.5 km altitude and drifted 6-75 km SE and E, based on satellite data. As a result, the Aviation Color Code (ACC) was raised to Orange (the second highest level on a four-color scale). At 1406 and 1720 ash plumes were identified in satellite images that rose to 4.3 km altitude and extended 70 km E. By 2320 the ash plume had dissipated. A thermal anomaly was visible at the volcano on 31 January, according to a satellite image, and an ash plume was observed drifting 66 km NE.

Occasional explosions and ash plumes continued during early February. At 0850 on 1 February an ash plume rose to 3.5 km altitude and drifted 35 km NE. Satellite data showed an ash plume that rose to 3.2-3.5 km altitude and drifted 50 km NE at 1222 later that day (figure 22). A thermal anomaly was detected over the volcano during 5-6 February and ash plumes drifted as far as 125 km SE, E, and NE. Explosive events were reported at 0330 on 6 February that produced ash plumes rising to 4-4.5 km altitude and drifting 72-90 km N, NE, and ENE. KVERT noted that the last gas-and steam plume that contained some ash was observed on 8 February and drifted 55 km NE before the explosive eruption ended. The ACC was lowered to Yellow and then Green (the lowest level on a four-color scale) on 18 February.

Figure (see Caption) Figure 22. Satellite image showing a true color view of a strong ash plume rising above Chikurachki on 1 February 2023. The plume drifted NE and ash deposits (dark brown-to-gray) are visible on the NE flank due to explosive activity. Courtesy of Copernicus Browser.

Geologic Background. Chikurachki, the highest volcano on Paramushir Island in the northern Kuriles, is a relatively small cone constructed on a high Pleistocene edifice. Oxidized basaltic-to-andesitic scoria deposits covering the upper part of the young cone give it a distinctive red color. Frequent basaltic Plinian eruptions have occurred during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. The Tatarinov group of six volcanic centers is located immediately to the south, and the Lomonosov cinder cone group, the source of an early Holocene lava flow that reached the saddle between it and Fuss Peak to the west, lies at the southern end of the N-S-trending Chikurachki-Tatarinov complex. In contrast to the frequently active Chikurachki, the Tatarinov centers are extensively modified by erosion and have a more complex structure. Tephrochronology gives evidence of an eruption around 1690 CE from Tatarinov, although its southern cone contains a sulfur-encrusted crater with fumaroles that were active along the margin of a crater lake until 1959.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 22, Number 10 (October 1997)

Managing Editor: Richard Wunderman

Akita-Yakeyama (Japan)

Phreatic explosion on 16 August

Atmospheric Effects (1995-2001) (Unknown)

Lidar data from Germany

Langila (Papua New Guinea)

Ash and vapor emissions from Crater 2

Manam (Papua New Guinea)

Weak eruption on 26 October

Miravalles (Costa Rica)

Significant earthquake swarm under S flank

Pacaya (Guatemala)

Eruptions continue in August and November

Popocatepetl (Mexico)

Small and moderate emissions; low-level seismicity

Rabaul (Papua New Guinea)

Low level of activity but tilt readings reveal inflation

Ruapehu (New Zealand)

Seismic and volcanic activity decline in late October

Semeru (Indonesia)

Ash plumes during October and November

Soufriere Hills (United Kingdom)

Dome collapse and explosions

Tenorio (Costa Rica)

Small earthquake swarms near summit and SSW flank

Villarrica (Chile)

Earthquake swarm in late October



Akita-Yakeyama (Japan) — October 1997 Citation iconCite this Report

Akita-Yakeyama

Japan

39.964°N, 140.757°E; summit elev. 1366 m

All times are local (unless otherwise noted)


Phreatic explosion on 16 August

According to a Japan Meteorological Agency (JMA) volcanic advisory issued in the evening of 16 August, a tourist reported a small-scale phreatic explosion at the Karanuma ("Empty Pond") crater near the summit. The explosion occurred at about noon on 16 August. Seismometers at the volcano recorded volcanic tremors during 1053-1204; high numbers of volcanic earthquakes were recorded in the days following the explosion (table 1). JMA estimated that the epicenters were just below the summit.

Table 1. Seismic activity at Akita-Yake-yama during 16-25 August 1997. Reported on the Volcano Research Center's Current Eruptions in Japan website from JMA reports for 22 and 25 August.

Date Volcanic earthquakes Tremors
16 Aug 1997 62 2
17 Aug 1997 81 1
18 Aug 1997 71 0
19 Aug 1997 448 1
20 Aug 1997 226 0
21 Aug 1997 27 0
22 Aug 1997 14 0
23 Aug 1997 18 0
24 Aug 1997 14 0
25 Aug 1997 10 0 (by 1500)

A 17 August JMA report detailed the discovery of a new crater 20 m in diameter on the SE rim of Karanuma Crater. Eruptive material including fragments up to 20 cm in diameter were found around the new crater, and volcanic ash "pastes" had been sprayed ~300 m to the S. The report noted that the new crater no longer emitted an eruption cloud on 17 August.

T. Oba and T. Hasenaka, geologists at Tohoku University, conducted a field inspection on 17 August. They reported that the new crater was quiet, and that it had a depth of ~30 m. Fragments up to 30 cm across had been thrown ~25 m away from the crater, but no juvenile materials were included. Ash deposits on the ridge 20-30 m S of the new crater were 4-5 mm thick. The scientists suggested that the 16 August eruption may have created a "new" crater within an old crater formed in 1949, because the volume of recently erupted material was too small to account for the total volume of the crater.

Shintaro Hayashi, a geologist at Akita University, conducted a field inspection on 18 August; he estimated the volume of fallout from the new crater to be ~1,000 m3. He also reported that a mud flow was generated just before the 16 August explosion issued from small depressions just below the new crater (figure 1). The mud was deposited around the depressions, having flowed part of the way down to the crater floor. The total volume of the mud-flow deposit was estimated at ~20,000 m3.

Figure (see Caption) Figure 1. Map of Akita-Yake-yama showing recent craters. Craters A1-A3 were formed in 1949; craters A, B1, and B2 were formed in 1997. Heavy lines indicate ash isopachs; dots indicate ash sampling sites. Courtesy of Shintaro Hayashi, Akita University.

On 20-21 August, new seismometers were installed near the summit and N slope of the volcano; also installed were a microphone on the W foot and cameras (color, high resolution monochromatic, and infrared) on the E foot. Signals are telemetered to Sendai and Akita.

On 22 August, Tatsunori Soya, of the Geological Survey of Japan, drew attention to a document written by the late Prof. H. Tsuya. The document, which appeared in the Tamagawa Hot Spring Study Group's 10th Anniversary Report (1954), describes explosions in 1949, 1950, and 1951 at Akita-Yake-yama; the last two were not officially documented. According to the report, large explosion craters (C1-C4), including the Karanuma crater (C1), existed before the 1949 eruption. Eruptions in 1949 occurred on the E margin of the Karanuma crater, resulting in the formation of craters designated A1, A2, and A3. Although no one in the hot springs area 3 km E of the summit reported hearing an explosion or feeling earthquakes, the eruption products were ~1 m thick along the rim of the A1 crater and contained old lava blocks up to 1 m across. Another explosion occurred at the A1 crater in February 1951; as a result, A1 crater widened to become as much as 50 m across. In terms of volume, the 1951 explosion was smaller than the 1949 eruption. S. Hayashi proposed that the present explosion occurred in A2-A1, and mud spouted out from the A3 crater (figure 1).

Geologic Background. One of several Japanese volcanoes named Yakeyama ("Burning Mountain"), Akita-Yakeyama is the most recently active of a group of coalescing edifices in NW Honshu immediately west of Hachimantai volcano. The main volcano, Yakeyama, contains a small lava dome in its 600-m-wide summit crater. Tsugamori to the east is a stratovolcano of roughly the same height and has a 2-km-wide crater breached to the NE. The flat-topped lava dome of Kuroshimori lies 4 km S of Yakedake. One of several thermal areas, the Tamagawa Spa at the western foot has strongly acidic and slightly radioactive water. The last magmatic eruption formed the Onigajo lava dome in the summit crater about 5000 years ago. There have been somewhat uncertain reported 19th-century eruptions and mild phreatic eruptions in the 20th century.

Information Contacts: Shintaro Hayashi, Faculty of Education, Akita University, 1-1 Tegata-Gakuen-Cho, Akita 010, Japan; Noritake Nishide, Sendai District Meteorological Observatory, Japan Meteorological Agency, 1-3-5 Gorin, Miyagino-ku, Sendai 983 Japan; Volcano Research Center, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html); Tatsunori Soya, Volcanology Section, Environmental Geology Department, Geological Survey of Japan, 1-1-3, Higashi, Tsukuba, Ibaraki, 305 Japan; Tsukasa Ohba and Toshiaki Hasenaka, Institute of Mineralogy, Petrology, and Economic Geology, Faculty of Science, Tohoku University, Miyagi, Sendai 980-77, Japan.


Atmospheric Effects (1995-2001) (Unknown) — October 1997 Citation iconCite this Report

Atmospheric Effects (1995-2001)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Lidar data from Germany

The Pinatubo aerosol layer at Garmisch-Partenkirchen declined to a minimum in the summer of 1996 (Bulletin v. 21, no. 12, and v. 22, no. 5). Since then no further decay has been observed. The backscattering ratio during June-October 1997 was consistently in the 1.05-1.08 range (Nd-YAG) with the peak layer altitude at 16.4-19.2 km (table 12).

Table 12. Lidar data from Germany (June-October 1997) showing altitudes of aerosol layers. Backscattering ratios are for the Nd-YAG wavelength of 0.53 µm with equivalent ruby values in parentheses. The integrated value shows total backscatter, expressed in steradians-1, integrated over 300-m intervals from the tropopause to 30 km. The "ci" stands for cirrus clouds; their presence in the tropopause region usually obscures the lower boundary of the aerosol layer. Courtesy of Horst Jager.

DATE LAYER ALTITUDE (km) (peak) BACKSCATTERING RATIO BACKSCATTERING INTEGRATED
Garmisch-Partenkirchen, Germany (47.5°N, 11.0°E)
04 Jun 1997 ci-25 (19.9) 1.08 (1.16) --
29 Jun 1997 9-26 (16.8) 1.08 (1.15) --
11 Jul 1997 13-27 (17.9) 1.06 (1.12) --
15 Jul 1997 12-27 (17.7) 1.07 (1.14) --
20 Jul 1997 10-27 (18.5) 1.07 (1.14) --
30 Jul 1997 13-24 (18.2) 1.05 (1.10) --
04 Aug 1997 12-25 (18.8) 1.06 (1.12) --
18 Aug 1997 12-25 (17.7) 1.05 (1.10) --
08 Sep 1997 14-25 (18.3) 1.08 (1.15) --
26 Sep 1997 14-28 (16.5) 1.08 (1.16) --
06 Oct 1997 13-28 (16.4) 1.07 (1.14) --
17 Oct 1997 14-26 (17.7) 1.06 (1.13) --
28 Oct 1997 11-28 (19.2) 1.08 (1.16) --

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico''s El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin thorugh 1989. Lidar data and other atmospheric observations were again published intermittently between 1995 and 2001; those reports are included here.

Information Contacts: Horst Jager, Fraunhofer-Institut fur Atmospharische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, Germany.


Langila (Papua New Guinea) — October 1997 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Ash and vapor emissions from Crater 2

Crater 2 released white and blue vapors during 1-18 October; from 6 to 9 October the emissions were accompanied by weak rumbling noises. On 19 October, mild Vulcanian activity resumed at Crater 2, but Crater 3 remained quiet throughout the month. Emissions from Crater 2 during 19-31 October consisted of thin white to thick gray vapor and ash clouds that rose a few hundred meters above the crater rim; low rumbling noises were observed during the ash emissions.

A 25 October explosion produced a thick dark gray ash cloud that rose ~2,000 m above the summit and resulted in light ashfall NW of the volcano. Weak steady night glow was visible on 24 and 29 October.

Seismic recording resumed on 25 October; due to problems with the equipment, recording had not occurred since May 1996. Seismic activity was low during 25-31 October.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: B. Talai and H. Patia, RVO.


Manam (Papua New Guinea) — October 1997 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Weak eruption on 26 October

After several weeks of weak-to-moderate vapor emission, South Crater produced a small eruption on 26 October, sending thick white-gray ash clouds ~500-600 m above the summit. Roaring and rumbling noises accompanied the ash emissions. Weak projection of incandescent lava fragments was visible at the crater area. The activity persisted until 28 October but at a slightly reduced level. During 29-31 October activity diminished, releasing only white vapor at weak-to-moderate rates. Summit crater glow was visible throughout October.

Main Crater remained quiet during October, releasing gentle emissions of white vapor. No noises were heard and no night glow was visible at the crater. Seismic activity was moderate throughout October, with ~1,100-1,400 low-frequency earthquakes/day.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: B. Talai and H. Patia, RVO.


Miravalles (Costa Rica) — October 1997 Citation iconCite this Report

Miravalles

Costa Rica

10.748°N, 85.153°W; summit elev. 2028 m

All times are local (unless otherwise noted)


Significant earthquake swarm under S flank

The most significant earthquake swarm at Miravalles in several years occurred on the S flank during 5-27 October (figure 2). The swarm, consisting of 146 located events, was centered around 10.7°N, 85.15°W. No pattern was found correlating the seismity with known local faults.

Figure (see Caption) Figure 2. Major faults in the Guanacaste Range of Costa Rica and October earthquake locations around Miravalles and Tenorio volcanoes. During 5-27 October, 620 earthquakes were recorded, but only 187 could be located. Courtesy of ICE.

Approximately 88% of the earthquakes were M5.0 are not rare near Miravalles; however, the occurrence of two unrelated swarms nearby at Tenorio (~16 km ESE) during October was unusual.

Geologic Background. Miravalles is an andesitic stratovolcano that is one of five post-caldera cones along a NE-trending line within the broad 15 x 20 km Guayabo (Miravalles) caldera. The caldera was formed during several major explosive eruptions that produced voluminous dacitic-rhyolitic pyroclastic flows between ~1.5 and 0.6 million years ago. Growth of post-caldera volcanoes in the eastern part of the caldera that overtopped much of the eastern and southern caldera rims was interrupted by edifice collapse which produced a major debris avalanche to the SW. Morphologically youthful lava flows cover the W and SW flanks of the post-caldera Miravalles complex, which rises above the town of Guayabo on the flat western caldera floor. A small steam explosion on the SW flank was reported in 1946. High heat flow remains, and it is the site of a large developed geothermal field.

Information Contacts: Gerardo J. Soto and Waldo Taylor, Oficina de Sismología y Vulcanología, Departamento de Geología, Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica.


Pacaya (Guatemala) — October 1997 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Eruptions continue in August and November

While visiting Guatemala City, Kent Johnson observed small explosions at Pacaya's summit on three hazy nights between 30 July and 4 August from vantage points ~40 km N of the volcano. The explosions sent lava clots into the air and lava flows down the side of the volcano; orange streaks of lava were observed traveling a short distance down the volcano's W slope. Through binoculars, the summit appeared orange with bright orange- yellow bursts occurring at ~5 minute intervals. During the day on 4 August, puffs of steam or ash were emitted from the summit. Hazy conditions made it difficult to photograph the emissions.

According to an 11 August aviation notice, Pacaya erupted around2100 on 9 August. Surface observations in Guatemala City indicated that the volcano was in eruption although no ash plumes were discerned in GOES-8 imagery during 11 August due to thunderstorms. Another aviation notice from Guatemala City reported an eruption at 0800 on 14 November. Although an ash cloud was reported by observers, the ash was not visible in GOES-8 visible or infrared imagery due to cloud cover.

Geologic Background. Eruptions from Pacaya are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the older Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1,500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate scarp inside which the modern Pacaya volcano (Mackenney cone) grew. The NW-flank Cerro Chino crater was last active in the 19th century. During the past several decades, activity has consisted of frequent Strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and covered the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit.

Information Contacts: Satellite Analysis Branch, NOAA/NESDIS, Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA; Kent Johnson, 7141 Jennifer Way, Sykesville, MD 21784 USA.


Popocatepetl (Mexico) — October 1997 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Small and moderate emissions; low-level seismicity

Popocatépetl continued to generate small and moderate emissions and low-level seismic activity following the large ash emission of 30 June (BGVN 22:07). The volcanic alert status remained yellow through August, September, and October. The following, taken from CENAPRED daily summaries, outlines the characteristic emissions and seismic activity from mid-August to the end of October. Also during this period, a small lava dome grew in the crater, and scientists installed additional monitoring equipment.

Moderate to large emissions were frequently observed during 12 August-31 October (figure 21). Characteristic low-level venting of gas and steam were an ongoing background activity. The large ash column of 12 August, considered the most significant since 30 June, was succeeded by a week of frequent, small emissions of gas and steam occasionally bearing ash, although poor visibility impaired observation of the summit. On the 18th a column of ash rose 500 m above the summit. Fumarolic plumes persisted during 20-24 August and on the 26th an ash column rose to 1 km. Frequent moderate emissions of gas and steam prevailed from 27 August to 2 September. The climax occurred on 30 August coincident with seven harmonic tremors in an 8-hour period. Observed emissions decreased thereafter, generally remaining stable at diminished levels until the end of September. A persistent gas-and-steam plume was the only activity observed during 20-24 September; observation was hindered by bad weather on the 25th. Starting on 28 September activity began to increase, but again observation was limited by bad weather. In early October small amounts of light ash may have been produced.

Figure (see Caption) Figure 21. Daily number of observed emissions at Popocatépetl, 12 August-31 October 1997. Data courtesy of CENAPRED.

Beginning on 4 October moderate emissions included light ash; these increased steadily for a week. Steam plumes from a crater fumarole were seen on 8 and 10 October, but no important changes to the summit or glacier were observed. Activity was variable on the 9th as a hurricane passed by on the Pacific coast, obscuring the mountain, and on the 12th a plume rising to 1 km was dispersed NE. Activity declined steadily after the 12th to the end of October, except for a few isolated increases. Gas emissions can be gauged by the measurement on 20 October of 9,000 metric tons/day of SO2. On both the 22nd and 27th short increases in the number of emissions were followed by harmonic tremor. Ash plumes were seen on the 24th and 26th.

Almost daily tremors lasted a few seconds to many minutes. Several A-type earthquakes were distributed through the period (figure 22). The thirty-five events recorded ranged from M 1.75 to 2.70 at depths of 3-8 km, mostly under the summit or in the direction of the SE flank. Several A-type earthquakes, other disturbances, or both occurred on 19 and 20 August, 8, 10, 26, and 28 September, and 24-26 October. On 20 October four A-type events were followed by 15 minutes of harmonic tremor.

Figure (see Caption) Figure 22. Popocatépetl earthquake magnitudes and depths, 12 August-31 October 1997. Data courtesy of CENAPRED.

Aerial photos of the crater had revealed a small growing lava dome possibly related to harmonic tremor episodes on 17 and 18 August. During a helicopter flight on the morning of 3 September, scientists noted an increase in the lava dome, although it still filled

Slight tilt changes recorded by inclinometers on 14 October possibly indicated a small deflation of the E flank. The next day tilt remained stable or in some cases returned to previous levels, but shifted again on the 16th and continued until the 21st. Tilts again shifted on 24 and 30 October.

As a joint project involving experts from CENAPRED and the Cascades Volcano Observatory, an automatic flow detection system (see table 8) was installed on the N flank of the volcano beginning 9 October. Due to bad weather and high seismicity only the repeater station, which will receive local signals and transmit them to CENAPRED, could be installed. Work continued on 14-15 October when the PFM3 and PFM1 stations were installed; PFM2 was installed on 7 November. Each station consists of a seismic flow detector, a rain gauge, conditioning circuits, and a data transmitter.

Table 8. Recently installed monitoring equipment at Popocatéptl. Courtesy of CENAPRED.

Station Location Sensor Elev Latitude Longitude Equipment
CENAPRED National Center for Disaster Prevention, Mexico PCR 2,365 m 19.3151 N 99.1747 W Central information recording and processing station
CANARIO Canario shelter, Tenenepanco ravine, N slope PFM1 4,170 m 19.0412 N 98.628 W Seismic flow detector and rain gauge
ESPINERA Espinera ravine, N slope PFM2 4,294 m 19.0383 N 98.6255 W Seismic flow detector and rain gauge
UNION Junction of Espinera and Tenenepanco ravines PFM3 3,693 m 19.0681 N 98.6122 W Seismic flow detector and rain gauge
TLAMACAS Microwave site, Tlamacas hill PFM4 3,980 m 19.0663 N 98.6278 W Repeater station

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Roberto Quaas Weppen, Centro Nacional de Prevencion de Desastres (CENAPRED), Delfin Madrigal 665, Col. Pedregal de Santo Domingo, Coyoacan, 04360 Mexico D.F., Mexico (URL: https://www.gob.mx/cenapred/).


Rabaul (Papua New Guinea) — October 1997 Citation iconCite this Report

Rabaul

Papua New Guinea

4.2459°S, 152.1937°E; summit elev. 688 m

All times are local (unless otherwise noted)


Low level of activity but tilt readings reveal inflation

Activity at Tavurvur crater was at a low level during October 1997 despite a slow re-inflation of the shallow caldera reservoir. Weak fumarolic activity composed of white and blue vapor emissions occurred at the summit area; during mid-October the emission rate increased and roaring noises were heard. Output of SO2 from the crater peaked at ~960 metric tons/day during mid-October; during the following week, the emission rate returned to a normal level of 400 tons/day. A similar peak occurred towards the end of the month.

Seismic activity remained low throughout October. Two high-frequency events, on 15 and 21 October, were recorded; however, neither was large enough to be located.

The water-tube tiltmeter at Sulphur Creek (3.5 km from Tavurvur) indicated an additional 8 µrad inflation of the central magma reservoir area during October. Inflation since the 17 August eruption (BGVN 22:08) totaled 15 µrad. Dry-tilt measurements around Greet Harbour showed an inflation of 2-5 µrad radial to the central magma reservoir. Leveling results confirmed the inflationary trend with a 3-cm uplift since March at the end of Matupit Island and a 3-5-cm uplift measured by sea shore survey since June. No changes in tilt were recorded on the Vulcan side.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: B. Talai and H. Patia, Rabaul Volcano Observatory (RVO), P. O. Box 386, Rabaul, Papua New Guinea.


Ruapehu (New Zealand) — October 1997 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Seismic and volcanic activity decline in late October

The increased seismic and volcanic activity that began on 2 October (BGVN 22:09) had returned to low levels early on 14 October after sporadic small eruptions of mud and rocks on the 12th. Activity continued to decline during the second half of the month. By 31 October the volcanic alert status had been reduced from Level 2 (minor eruptive activity) to Level 1 (signs of volcano unrest) with volcanic tremor remaining above typical background level. The last small eruption, accompanied by a volcanic earthquake, occurred at 2120 on 18 October. There was no geysering or big disturbances on the crater lake surface during the last week of October. The lake temperature in late October was 52-55°C and the water color was light gray. Scientists observed small radial wave patterns on the surface, indicating fluctuating water levels. The N portion of the crater floor was dry and a prominent area of gas and steam vents (fumaroles) had developed in the NW part.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the NW-flank Murimoto debris-avalanche deposit. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. The broad summait area and flank contain at least six vents active during the Holocene. Frequent mild-to-moderate explosive eruptions have been recorded from the Te Wai a-Moe (Crater Lake) vent, and tephra characteristics suggest that the crater lake may have formed as recently as 3,000 years ago. Lahars resulting from phreatic eruptions at the summit crater lake are a hazard to a ski area on the upper flanks and lower river valleys.

Information Contacts: Brad Scott, Wairakei Research Center, Institute of Geological and Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand (URL: https://www.gns.cri.nz/).


Semeru (Indonesia) — October 1997 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Ash plumes during October and November

Satellite imagery revealed an ash cloud at a height of ~8.5 km near Semeru on 16 October. Winds at the level of the ash cloud were from the W to NW at 27-37 km/hour. On 22 October another small ash signature originating from Semeru was observed on satellite imagery. The plume was ~46 km long, ~18.5 km wide, and extended to the WNW. The height of the plume was below 7.3 km. On 9 November a volcanic cloud with a top at 4,200 m was reported; the cloud was drifting SW.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Bureau of Meteorology, Northern Territory Regional Office, P.O. Box 735, Darwin NT 0801, Australia.


Soufriere Hills (United Kingdom) — October 1997 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Dome collapse and explosions

The following condenses Scientific Reports of the Montserrat Volcano Observatory (MVO) for 14 September-12 October. The volcano maintained an extremely high level of activity during this period. During the first week, rockfall and pyroclastic flow activity was concentrated in Tuitt's Ghaut. The flows typically traveled ~3 km and filled the upper reaches of the ghaut. Seismic activity was dominated by pyroclastic-flow and rockfall signals; however, a hybrid swarm preceded a 14 September flow, and there were a large number of long-period events. A major dome collapse on the morning of 21 September generated pyroclastic flows and surges over the NE flank. A phase of explosive activity began on 22 September during which Vulcanian explosions occurred every several hours. The explosions produced vertical eruption columns and collapsed fountains of material that fed pyroclastic flows. The pumice-rich flows traveled down all the ghauts around the volcano, reaching the sea at Tar River valley (figure 32), White River valley, and Spanish Point. After a large explosion on 11 October, a pyroclastic flow in White River valley destroyed a bridge and the Radio Antilles installation. Ash and pumice fall affected N and W Montserrat; Antigua also received occasional light ashfall.

Figure (see Caption) Figure 32. Map of Montserrat showing selected towns and features.

Visual observations. Activity was very high during 14-21 September with moderate-sized pyroclastic flows moving down Tuitt's Ghaut and over Farrell's plain. In the upper reaches of Mosquito Ghaut, material overflowed into Tuitt's Ghaut and created a small debris fan . The largest individual pyroclastic flow in Tuitt's Ghaut occurred on the morning of 17 September, depositing material 200 m beyond the confluence of Tuitt's and Mosquito Ghaut. The dome's SE side continued to degrade, generating rockfall debris and small pyroclastic flows in Tar River.

At 0354 on 21 September a large collapse occurred on the NE flank of the dome. Pyroclastic flows down Tuitt's Ghaut devastated the area from Trant's Yard to White's Yard. The airport terminal building was destroyed as well as most properties in Spanish Point, Bramble, and Tuitt's; in addition, Bethel village was buried. Small fans developed at the mouths of Farm River and White's Ghaut.

Most deposition from the 21 September flows occurred around Trant's Yard and Farm Estate and greatly extended the fan formed on 25 June (BGVN 22:06). A lobe detached from the main Tuitt's Ghaut flow (500 m S of the Mosquito Ghaut confluence) and spread ENE across Bramble village. The deposit was similar to that of the Bethel lobe emplaced on 25 June, consisting of a thin, ashy unit with abundant large blocks sized from one to several meters. Material also spilled from Tuitt's Ghaut into White's Ghaut at a low point in the valley wall. Pyroclastic flows that reached the sea were generated in White's Ghaut; extensive surges traveled over Tuitt's Estate, Bethel Estate, and White's Yard. The collapse generated ~8 x 106 m3 of deposits, a considerably larger volume than on 25 June.

Following the 21 September collapse, a series of Vulcanian explosions began at 0055 on 22 September. During 22-28 September, 15 explosions occurred with an average periodicity of 9.7 hours. The explosions were similar to those of early August (BGVN 22:08); they began with dark-gray explosion clouds comprised of radiating spears. The clouds quickly rose 600-1,000 m above the dome and developed into convecting columns. A rapidly building roar was heard and ballistics were projected up to 1.5 km from the dome during the explosions. Pyroclastic flows were generated during most explosions and traveled down all the six major ghauts (Tar River, Tuitt's, Mosquito, Tyre's, Gages, and White River). The explosion columns rose up to 7,600 m; after each explosion, vigorous pulses of ash venting were observed for up to 1 hour and low rumbling sounds were heard for up to 30 minutes. At night the explosions resembled a large fireball above the volcano; showers of incandescent ballistics occurred over Farrell's plain, Gages Mountain, and Chances Peak. Incandescent surges were seen on several occasions traveling over Farrell's plain and down Tuitt's Ghaut. At the onset of one explosion, observers at Jack Boy Hill saw high levels of gas venting from fumaroles on the dome's E flank.

Thin, pumiceous pyroclastic-flow deposits were generated by the explosions during 22-28 September. They were generated by fountain collapse; a veneer of pumice was left over the area between Gages and Peak 'C', over Chances Peak, over the Galways area, and over much of the dome's surface. The flows were generated soon after the onset of the explosions. Maximum runout distances were ~4.5 km in Tuitt's Ghaut, 2.25 km in Tyre's Ghaut, 4 km in White River, 2.6 km down Gages Valley, and 2.5 km down Farrell's Plain; flows reached the sea at Tar River. In unconfined areas such as the Tar River Fan, the Farrell's Plain, and the Trant's Farm Fan, the flows left long, thin, tongue-like deposits and rarely spread into thin sheets. Flows confined to narrow ghauts were thicker, narrower, and had steeper termini.

Fallout from the 22-28 September explosions varied. Most of N and W Montserrat had moderate ash falls including pumice fragments. Pumice fragments were recorded at the Observatory on Mango Hill and at Little Bay (2 cm), at Cudjoehead and Olveston (3 cm), and on Davy Hill (5 cm). A 6-cm pumice was reported in Woodlands.

During 14-28 September, observations of the dome showed that the scar above Tuitt's Ghaut extended 300 m into the dome; it opened into an explosion crater ~300 m diameter. A bank of pumice and talus separated the crater and the scar; depth of the crater below the bank was ~150 m. Much of the dome's surface and the upper area of Chances Peak were covered by fresh pumice deposits. Two of the three peaks on the northern crater wall (Peaks 'B' and 'C') had severely eroded; they were nearly covered by the dome talus and pumice deposits.

A total of 32 explosions occurred during 28 September-12 October with an average periodicity of ~10 hours, although the intervals varied in duration from 4.9 to 33.7 hours. Explosions after shorter intervals were weaker, produced paler, less vigorous plumes, and were accompanied by smaller pyroclastic flows.

Pyroclastic flows during 28 September-12 October were concentrated in Tuitt's Ghaut and the Tar River Valley, although regular activity also occurred in the White River, Fort Ghaut, and over the Farrell's Plain. Many of the Tuitt's Ghaut flows traveled 4-4.5 km, building a 300-m-wide fan around the Farms and Trants area. The flows over-spilled the ghaut walls in several locations and spread over a wide area, traveling ENE and passing through Spanish Point where they reached the sea. Many pyroclastic flows in the Tar River area reached the sea by traveling down the S side of the valley and down two chutes on the dome's E face. The surface of the fan was almost entirely covered by new pyroclastic-flow deposits; a pronounced hump along the fan's central axis developed. Pyroclastic flow activity in White's River was more limited with only a few flows reaching the area where Great Alps Falls had been. However, pyroclastic flows from an explosion at 0105 on 2 October covered the bridge at O'Garra's, reaching the sea at the mouth of the White River.

A large explosion at 1757 on 11 October covered the field at O'Garra's with pyroclastic-flow deposits, destroyed the Radio Antilles installation, and completely buried a bridge. Incandescent blocks and a glowing cloud were seen from Antigua during the event. Flows in Fort Ghaut spread NW around the Gages fan, W around Upper Amersham and into Plymouth. The Plymouth flows spread through Dagenham and reached within 300 m of the sea. Occasional pyroclastic flows have occurred in Tyer's Ghaut, although the longest runouts were only ~2 km.

Plume heights from the 28 September-12 October explosions varied from 3.6 to 7.6 km. Pumice fallout in inhabited areas only occurred on 1 and 2 October, although heavy ashfall occurred many times on the rest of the island. Antigua received light ashfall on three occasions.

Very good views of the dome were obtained during 28 September-12 October. At the base of the scar above Tuitt's Ghaut, the bank of pumice and talus was steep and appeared consolidated. The lowest point on the bank was 860 m above sea level; behind it was the circular explosion crater, 300 m in diameter. The crater rim had a fairly constant elevation of ~950 m. The highest point on the dome was a spine on the rim above Galways with an elevation of 975 m. Glimpses down into the explosion crater suggested its base was 100-150 m below the level of the pumice and talus bank, probably close to the level of the original English's Crater basement. The crater and scar have both been enlarged slightly by rockfalls from the inner walls, by erosion, and by shaking during the explosions. Chutes were developing along both sides of a large consolidated area of the dome above Galways and the SE flank in the Tar River Valley was degrading slowly.

Much erosion occurred around the margins of the dome on the old crater wall. Peak B on the N crater wall was lowered by 30 m due to the passage of pyroclastic flows this summer. A 90-m-wide chute was cut down the Gages Valley face of the dome immediately S of the original Gages Wall against Chances Peak. This chute was up to 50 m deep and cut at least 30 m into the original basement in places.

Seismicity. During 14-20 September, seismicity was dominated by rockfall and pyroclastic-flow signals. There were few earthquakes, although the pyroclastic flow on 14 September was preceded by a hybrid swarm that included some large events. The hybrids had amplitudes as high as any recorded since the installation of the broadband network in October 1996 at the Windy Hill station. An unusually high number of long-period earthquakes occurred before, rather than after, pyroclastic flows. On 16 September, a "bang" related to a long-period earthquake was heard.

The night of 20-21 September showed a marked change in seismicity. A hybrid swarm occurred before a big pyroclastic flow at 0354, but the hybrids did not decrease very much after the event. Then at 0055 on 22 September, the first in a sequence of explosive events took place that occurred at intervals of 6-10 hours during 22-28 September. As in August, each explosion was recorded on seismometers as a pyroclastic-flow signal preceded by a ~1 Hz signal whose amplitude varied with the associated pyroclastic-flow amplitude. The long- period energy continued throughout the pyroclastic-flow signal and afterwards as low-amplitude tremor. A few explosions were preceded by hybrid swarms, but most had very little precursory seismicity. When swarms occurred, they continued for a short time after the explosion. All of the explosions were followed by between 20 minutes and 3 hours of tremor. The tremor was less harmonic than in August but had two or three well-defined spectral peaks. As in August there was good visual confirmation that the tremor correlated with ash venting. Volcano-tectonic earthquakes during 22-28 September were centered 2-4 km below the dome.

Seismicity was low during 28 September-12 October, except during explosions and subsequent tremor, which on occasion lasted several hours. The explosions, as in August (BGVN 22:08), had a distinctive seismic signal, with an initial low-frequency phase followed by a high-frequency phase and low- frequency tremor. The high-frequency phases are assumed to be caused by pyroclastic flows observed after each explosion. Low-frequency tremor at the start of the signals preceded observed activity in the crater by several seconds. It is assumed to continue throughout the pyroclastic flow signal and become the post-explosion tremor. Both the low frequency phase and the tremor have the same peaked spectrum with the main peaks at 1.2 and 1.7 Hz.

Ground deformation. On 20 September, GPS observations taken at Harris, White's, Long Ground, and Hermitage confirmed the shortening noted in recent reports on the Harris-White's and Harris-Long Ground lines. The length of shortening was ~3.5 cm on these lines due to N movement of White's and Long Ground. The movement did not appear to be accelerating. The Hermitage site was not occupied due to the activity on the NE side since 21 May. The line to Harris showed a further 1-cm shortening (NE movement of Hermitage) consistent with its movement in May. The White's site was affected the following morning by pyroclastic surges. The activity also damaged the permanent GPS site at White's.

No EDM measurements were made during 14-28 September. Ash from pyroclastic flows and explosions obscured the target at Lee's Yard and it was unsafe to enter the area to clean the reflector. No GPS observations were made during 28 September-12 October. The amount of ash on the N, E, and W flanks prevented the helicopter from landing at all but two sites. The O'Garra's GPS site (M46) was destroyed by pyroclastic flows on 11 October. EDM measurements to the Lees reflector were not possible due to ash cover and airborne ash.

Volume measurements. No dome or deposit volume measurements were made during 14- 28 September; however, photographs were obtained from the ground at Whites and from a hover position close to Windy Hill.

A series of accuracy tests were carried out with GPS-laser binoculars from a helicopter to assess their suitability for dome mapping. The working range for this instrument has typically been 400 m.

Several clear days during early October allowed a detailed survey and map of the dome to be completed. Theodolite measurements were made from Jack Boy Hill, Flemings, Garibaldi Hill, and the old observatory in Old Towne. Photographs were taken from White's, Harris, and Jack Boy Hill. A series of photographs at different angles around the dome were taken from the helicopter; the position of the camera was determined with the GPS.

The dome volume was 68 x 106 m3 during early October. The volume has decreased since the last measurement on 28 August when it was 78.1 x 106 m3, at which time the extrusion rate was 8.7 m3/s (average 17 July-28 August). The difference in these volumes represents the volume of the 21 September collapse as well as a substantial amount of pyroclastic flow activity over Farrell's plain and in Tuitt's Ghaut prior to the collapse.

Environmental monitoring. Dust Trak sampling carried out at several sites around the island to evaluate the atmospheric particulate load showed comparatively high values in the N and E area and high values in the Salem area. The central area also showed elevated values. The high levels were the result of fallout from explosive activity.

On 12 September, sulfur dioxide diffusion tubes were collected from four sites to the N of the volcano, at MVO (south), Lawyers, Fogarthy, and Geralds. The diffusion tubes measured the average background level of SO2 during the exposure period. As in previous sampling periods, SO2 gas was not present in measurable quantities. On 4 October, sulfur diffusion tubes were left at Weekes and at St George's Hill in the evacuated zone to be collected after two weeks. Under normal prevailing wind conditions (to the W or NW) the sites lie under the plume. Sulfur diffusion tubes at four sites in the inhabited area of the island were being left for four weeks. Until early October there was no detectable SO2 in the inhabited area.

A mini-COSPEC was deployed on 20 September from a police launch. A series of traverses were made under the plume at different distances from the volcano. The average SO2 flux was 600 metric tons/day. The launch broke down the next day and was out of action for over a month.

Rainwater collected at three sites on 21 September showed low pH. One site also showed substantially elevated chloride content. High acidity levels persisted during late September.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat (URL: http://www.mvo.ms/).


Tenorio (Costa Rica) — October 1997 Citation iconCite this Report

Tenorio

Costa Rica

10.673°N, 85.015°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Small earthquake swarms near summit and SSW flank

During 5-27 October, 14 earthquakes were located on a 5-km-long SE-NW trend from the summit of Tenorio (figure 1). The swarm, centered around 10.7°N, 85.03°W, was possibly associated with known faults. The earthquakes had depths of 5-10 km and magnitudes of 0.6-2.1.

Figure (see Caption) Figure 1. Major faults in the Guanacaste Range of Costa Rica and October earthquake locations around Miravalles and Tenorio volcanoes. During 5-27 October, 620 earthquakes were recorded, but only 187 could be located. Courtesy of ICE.

An unrelated swarm consisting of 27 events occurred during the same period near the village of Tierras Morenas at the SSW foot of Tenorio. The swarm was centered at 10.6°N, 85.0°W and was aligned along a 7-km NE-SW trend, possibly correlating to known faults. The earthquakes had depths of 7-12 km and magnitudes of 0.4-3.3.

Geologic Background. The 225 km2 dominantly andesitic Tenorio volcanic massif anchors the SE end of the Guanacaste Range and consists of a cluster of densely forested NNW-SSE-trending volcanic cones. Overlapping lava flows from the principal peak, Tenorio, cover the NW-to-SW flanks and descend the NE flank. The NW-most of three craters on the central cone is sparsely vegetated and appears to be the most recently active. Volcán Montezuma to the north has two craters, the northern of which was the source of a lava flow to the NE. Additional pyroclastic cones are found to the NE and SW of the central complex, and the Bijagua lava domes were constructed on the N flank. A major debris avalanche covered about 100 km2 below the S flank. A legend exists of an eruption in 1816 CE, but the volcano was densely forested at the time of an 1864 visit by Seebach and no documented eruptions are known. Fumarolic activity is present on the NE flank.

Information Contacts: Gerardo J. Soto and Waldo Taylor, Oficina de Sismología y Vulcanología, Departamento de Geología, Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica.


Villarrica (Chile) — October 1997 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Earthquake swarm in late October

During March-August 1997 seismic activity at Villarrica included 1.5-2.7 Hz tremor and isolated long- period (LP) events associated with phreatic explosions. The latter are common occurrences that have taken place in previous years. Such intervals of elevated seismicity correspond with increased volcanic activity and often include larger amplitude LP earthquake swarms. Although during several days in mid- to late-May 1997 the amplitudes rose to about 20 Real-time Seismic Amplitude Measurement (RSAM) units, around 7 September they reached up to 40 RSAM units and on many days of the month peaks were above 20 RSAM units. Strombolian explosions and night glow were observed between April and August (BGVN 22:08).

Lasting at least eight days, an earthquake swarm during 20-28 October produced RSAM amplitudes an order of magnitude larger than previous months, to >200 units (figure 8). Researchers proposed that October- December swarms may have some seasonal influence associated with higher temperatures in the summer.

Figure (see Caption) Figure 8. Seismic activity at Villarrica during October 1997. The system at the observatory is triaxial with a 1-second period; it was inoperative during mid-October. Courtesy of the Seismological Team, Observatorio Volcanológico de los Andes del Sur (OVDAS).

Geologic Background. The glacier-covered Villarrica stratovolcano, in the northern Lakes District of central Chile, is ~15 km south of the city of Pucon. A 2-km-wide caldera that formed about 3,500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesite cone at the NW margin of a 6-km-wide Pleistocene caldera. More than 30 scoria cones and fissure vents are present on the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Eruptions documented since 1558 CE have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Gustavo Fuentealba C. and Paola Peña S., Seismological Team, Programa Riesgo Volcánico de Chile (PRV), Observatorio Volcanológico de los Andes del Sur, Departamento Ciencias Fisicas, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports