Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Karangetang (Indonesia) Activity at two craters with the N crater producing ash plumes, avalanches, pyroclastic flows, and lava flows that reached the ocean in February 2019

Erta Ale (Ethiopia) Continued summit activity and lava flow to the E during April 2018-March 2019

Etna (Italy) Lava flows from NSEC scoria cone and SE flank fissure in December 2018; ash emissions through March 2019

Manam (Papua New Guinea) Ash plumes reaching 15 km altitude in August and December 2018

Merapi (Indonesia) Dome appears at summit on 12 August 2018; grows to 447,000 m3 by late March 2019

Bagana (Papua New Guinea) Intermittent ash plumes; thermal anomalies continue through January 2019

Fuego (Guatemala) Frequent explosive activity with ash plumes, avalanches, lava flows, and lahars from July 2018 through March 2019

Stromboli (Italy) Constant explosions from both crater areas during November 2018-February 2019

Krakatau (Indonesia) Ash plumes, ballistic ejecta, and lava extrusion during October-December; partial collapse and tsunami in late December; Surtseyan activity in December-January 2019

Masaya (Nicaragua) Lava lake persists with decreased thermal output, November 2018-February 2019

Santa Maria (Guatemala) Daily explosions cause steam-and-ash plumes and block avalanches, November 2018-February 2019

Reventador (Ecuador) Multiple daily explosions with ash plumes and incandescent blocks rolling down the flanks, October 2018-January 2019



Karangetang (Indonesia) — May 2019 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Activity at two craters with the N crater producing ash plumes, avalanches, pyroclastic flows, and lava flows that reached the ocean in February 2019

Karangetang (also referred to as Api Siau) is an active volcano on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia. It produces frequent small eruptions that include gas-and-steam plumes, ash plumes, avalanches, lava flows, incandescent ballistic ejecta, and pyroclastic flows. This report covers May 2018-May 2019 and summarizes reports by Indonesia's Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), and the Darwin VAAC (Volcanic Ash Advisory Center), and satellite data. During this time, increased activity resulted in a lava flow that reached the ocean and cut road access to communities.

No activity was reported during May through October 2018. During this time, Sentinel-2 thermal images showed elevated temperatures in the main active crater and gas-and-steam plumes dispersing in different directions (figure 17). On 4 July, the Darwin VAAC reported a "weak" ash plume to an altitude of 3 km that drifted NE, only based on satellite imagery. There were few thermal signatures detected by the MIROVA algorithm from May through November (figure 18).

Figure (see Caption) Figure 17. Incandescence and weak steam-and-gas plumes at the southern crater of Karangetang on 9 May and 17 August 2018. This was common in cloud-free images acquired during this time. Sentinel-2 false color (bands 12, 11, 4) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. MIROVA log radiative power plot of MODIS infrared data for June 2018 through April 2019. There was little thermal energy detected before December, after which levels remained high until they began declining in March 2019. Courtesy of MIROVA.

Steam plumes were observed from two craters during November 2018 (figures 19 and 20). There was a significant increase in seismicity on 22 to 23 November, followed by a sharp decline on the 24th. The first MODVOLC thermal alert was issued on 25 November. At 1314 on 25 November an ash plume rose to at least 500 m above the N crater and the Aviation Color Code was raised to Orange. A Sentinel-2 thermal image acquired on this day showed elevated temperatures at both south and north craters, with accompanying gas-and-steam plumes. After the increase in seismicity and detected thermal energy, activity progressed to lava flow extrusion, avalanches, and pyroclastic flows triggered from the lava flow. The lava flow originated from the north crater (Kawah Dua) and moved towards the NNW. Avalanches accompanied the flow from the crater and down the lava flow surface. The Volcano Alert level was increased from II to III on 20 December at 1800 (on a scale of I to IV).

Figure (see Caption) Figure 19. White gas-and-steam plumes emanating from two craters at Karangetang at 0630 on 16 November 2018. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.
Figure (see Caption) Figure 20. An ash plume from the N crater (left) and a gas-and-steam plume from the S crater (right) of Karangetang at 0703 on 26 November 2018. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

Throughout January 2019 activity consisted of small ash plumes up to 600 m above the N crater (figure 21) and continued lava flow activity. On 17 January Kompas TV reported that heavy ashfall impacted several villages. Lava and avalanches traveled as far as 0.7-1 km W towards the Sumpihi River and 1-2 km NE down the Kali Batuare throughout the month.

Figure (see Caption) Figure 21. A small ash plume on 31 January 2019 at Karangetang. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

Video taken on 3 February 2019 shows the lava flow covering the road and continuing down the steep slope with multi-meter-scale incandescent blocky lava fragments on the surface dislodging and triggering small avalanches. By 5 February the lava flow reached over 3.5 km down the Malebuhe River drainage on the NW flank and into the ocean where a lava delta was growing with dense steam plume rising above by the 11th (figures 22-26). Drone footage from 9 February shows the lava flow across the section of road had a width of about 160 m and a width of about 140 m at the coast. Gas-and-steam and ash plumes were noted most days, reaching up to 600 m above the crater and dominantly dispersing to the E (figure 27). By 11 February there had been 190 people evacuated.

Figure (see Caption) Figure 22. The lava flow front at Karangetang nearing the ocean on 5 February 2019. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 23. The lava flow entering the ocean at Karangetang in early February 2019. Photos posted on 11 February; courtesy of BNPB.
Figure (see Caption) Figure 24. Locations of activity observations at Karangetang in November 2018 and February 2019. 27 November 2018: the descent of lava from the Kawah Dua crater (N crater) to about 700-1000 m away, towards the Sumpihi River and Kinali Village. 2 February 2019: the descent of lava 2.5 km NW, 500 m from the highway. 5 February 2019: the lava flow reached the sea. Courtesy of BNPB.
Figure (see Caption) Figure 25. Sentinel-2 thermal satellite images of Karangetang during November 2018 through February 2019 showing elevated temperatures at two craters, gas-and-steam plumes, and a lava flow moving to the NW (bright yellow-orange). Sentinel-2 false color (bands 12, 11, 4) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 26. View of the active lava flow on Karangetang at the ocean entry in early February 2019. Photo posted on 12 February; taken by Ungke Pepotoh, courtesy of Agence France-Presse.
Figure (see Caption) Figure 27. Ashfall from Karangetang on Siau Island as seen from Pehe port on 7 February 2019. Photo courtesy of The New Indian Express, AFP / Ungke Pepotoh.

On 13 February 2019 avalanches continued from the northern crater to 700-1000 m W towards the Sumpihi River and 1-2 km NE towards Kali Batuare. KOMPAS TV reported a statement by PVMBG describing a decrease in activity, including lava avalanches, but with elevated seismicity on the 12 February. Throughout this period of elevated activity both seismicity (figure 28), along with plume heights and directions (figure 29), were variable. On 22 February the Darwin VAAC reported an ash plume, due to a pyroclastic flow, rising to an altitude of 3.7 km.

Figure (see Caption) Figure 28. Graph showing the variable seismicity at Karangetang during 1 November 2018 to 8 February 2019. Courtesy of PVMBG.
Figure (see Caption) Figure 29. Graph showing gas-and-steam plume heights in meters above the crater from 1 November 2018 to 8 February 2019, with the plume dispersal directions indicated in the box. Modified from data courtesy of PVMBG.

Throughout March 2019 PVMBG reported the continuation of a low rate of lava effusion at the north crater, avalanches, and gas-and-steam plumes rising up to 500 m above the crater. The Darwin VAAC reported an ash plume on 7 March that rose to an altitude of 2.7 km that dispersed to the SW. Minor ash emissions were reported by the Darwin VAAC on 6 April that rose to 2.1 km altitude and drifted SE. In mid-April, activity increased in the southern crater and on 15 April a pyroclastic flow traveled 2 km towards the Kahetang and Batuawang rivers. Another ash advisory was issued for an ash plume up to 2.4 km altitude on 16 April. Small gas-and-steam plumes continued through the month.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Agence France-Presse (URL: http://www.afp.com/); Kompas TV, Menara Kompas Lt. 6, Jl. Palmerah Selatan No.21, Jakarta Pusat 10270 Indonesia (URL: https://www.kompas.tv/article/39190/abu-gunung-karangetang-tutup-permukiman-warga); The New Indian Express (URL: http://www.newindianexpress.com/world/2019/feb/08/emergency-declared-on-indonesian-island-after-volcanic-eruption-1936173.html); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com).


Erta Ale (Ethiopia) — April 2019 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Continued summit activity and lava flow to the E during April 2018-March 2019

Erta Ale is the most active volcano in Ethiopia, containing multiple active pit craters within both the summit and southeast calderas. Multiple recent lava flows are visible as darker-colored areas on the broad flanks. A new fissure eruption began in January 2017, forming a lava lake and multiple large lava flow fields during January 2017-March 2018. This report summarizes activity during April 2018 through March 2019 and is based on satellite data.

During April 2018 through March 2019 minor activity continued in the calderas and along the active lava flow to the E. Several persistent thermal anomalies were present in both the summit and southeast calderas (figure 88). A small lava outbreak was detected in Sentinel-2 thermal data on 25 December 2018 located approximately 6 km from the vent. Numerous small outbreak flows at the distal end of the lava flow located around 10-15 km away from the vent (figure 89).

Figure (see Caption) Figure 88. Sentinel-2 thermal satellite images showing Erta Ale activity in November and December 2018 with persistent thermal anomalies (bright orange-yellow) in the summit and southeast calderas (circled) and an active lava flow to the E. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 89. Sentinel-2 thermal images showing small lava flow outbreaks (bright orange) in the distal part of the latest Erta Ale flow. Courtesy of Sentinel Hub Playground.

Thermal activity using MODIS detected by the MIROVA system has been stable with a slight decrease in energy since January 2019 (figure 90). The number of thermal alerts identified by the MODVOLC system was typically below 20/month (figure 91), but with notably lower numbers in April, August, September, and November 2018, and February-March 2019. There were 30 alerts noted in December 2018.

Figure (see Caption) Figure 90. Plot showing log radiative power of MODIS infrared data at Erta Ale using the MIROVA algorithm for the year ending 9 April 2019. Black lines indicate that the location of the thermal anomaly is over 5 km from the vent while blue lines indicate that the thermal anomaly is within 5 km of the vent. Courtesy of MIROVA.
Figure (see Caption) Figure 91. Graph showing the number of MODIS thermal alerts in the MODVOLC system for Erta Ale during April 2018-March 2019 (top) and the locations of the thermal alerts (bottom). Data courtesy of HIGP - MODVOLC Thermal Alerts System.

Sentinel-1 imagery analyzed by Christopher Moore, University of Leeds (Moore et al., in prep, 2019), show a lowering of the lava lake level down to 70-90 m below the rim in October 2018, consistent with broader recent trends. Lava lake activity since late 2014 can be broken down into four stages: the pre-eruption stage during October 2014-January 2017 when the level was stable at less than 20 m below the rim; the initial fissure eruption during 11-28 January 2017 when there was a rapid drop from a state of overflowing down to 80-100 m below the rim; the early stage of the eruption period during January 2017 through mid-2017 when there was a gradual rise up to 50-70 m below the rim; and the late eruption stage during mid-2017 through October 2018 when there was a gradual drop down to 70-90 m below the rim.

Reference: Moore, C., Wright, T., Hooper, A., and Biggs, J., In Prep. Insights into the Shallow Plumbing System of Erta 'Ale Volcano, Ethiopia, from the Long-Lived 2017 Eruption.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Christopher Moore, Institute of Geophysics and Tectonics, School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom (URL: https://environment.leeds.ac.uk/see/pgr/2207/chris-moore).


Etna (Italy) — April 2019 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Lava flows from NSEC scoria cone and SE flank fissure in December 2018; ash emissions through March 2019

Italy's Mount Etna on the island of Sicily has had historically recorded eruptions for the past 3,500 years and has been erupting continuously since September 2013 through at least March 2019. Lava flows, explosive eruptions with ash plumes, and Strombolian lava fountains commonly occur from its summit areas that include the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). A new crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC and has become the highest part of the SEC-NSEC complex. After several months of low-level activity in early 2018, increases in Strombolian activity at several vents began in mid-July (BGVN 43:08). This was followed by new lava flows emerging from the saddle cone and the E vent of the NSEC complex in late August and discontinuous Strombolian activity and intermittent ash emissions through November 2018 (BGVN 43:12). An eruption from a new fissure produced a lava flow into the Valle del Bove in late December 2018 and is covered in this report along with activity through March 2019 that included frequent ash emissions. Information is provided primarily by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

For the first three weeks of December 2018, Strombolian activity and ash emissions continued from the summit vents. A series of small flows from multiple vents near the scoria cone inside NSEC formed a small flow field on the E flank mid-month. A lateral eruption from a fissure on the SE flank of NSEC opened on 24 December and produced a series of flows that traveled E into the Valle del Bove for three days. Sporadic ash emissions, some with dense plumes and significant SO2 emissions, were typical throughout January and February 2019. Activity declined significantly during March 2019 to minor ash emissions and ongoing outgassing from the summit vents. The MIROVA plot of thermal energy recorded the increased heat from the lava flows during December 2018, along with minor pulses from the ash emissions and Strombolian activity in January and February (figure 240).

Figure (see Caption) Figure 240. The Etna MIROVA thermal anomaly data for 5 July 2018 through March 2019 showed a spike in thermal activity from lava flows and increased Strombolian activity in late August and during December 2018. Courtesy of MIROVA.

Activity during December 2018. Strombolian activity, with modest ash emissions, continued from the Bocca Nuova, NSEC, and NEC during the first three weeks of December. Lava flowed from the scoria cone located within the E vent of NSEC and was associated with incandescent blocks rolling down the E flank of NSEC. Variable Strombolian activity at the scoria cone beginning on 4 December produced continuous overlapping small flows from several vents near the scoria cone for two weeks (figure 241). Intermittent explosions lasted 5-10 minutes with similar length pauses; activity increased on 16 December with near-continuous lava effusion. Several small flows traveled NE, E, and SE down the E flank of NSEC during the second and third weeks of the month (figure 242). A few flows reached the base of the cone at 2,900 m elevation and were almost a kilometer in length. Small collapses of portions of the lava field also produced minor plumes of ash.

Figure (see Caption) Figure 241. Map of the summit crater area at Etna (DEM 2014). Black hatch lines outline the edge of the summit craters: BN = Bocca Nuova, with the north-western depression (BN-1) and the south-eastern depression (BN-2); VOR = Voragine; NEC = Northeast Crater; SEC = Southeast Crater; NSEC = New Southeast Crater. Yellow circles are degassing vents, and red circles are vents with Strombolian activity and/or ash emissions. The cooling lava field from the E vent scoria cone at NSEC is shown in yellow; the red flows were active on 17 December 2018. Courtesy of INGV (Report 51/2018, ETNA, Bollettino Settimanale, 10/12/2018 - 16/12/2018, data emissione 18/12/2018).
Figure (see Caption) Figure 242. The scoria cone inside the E vent of NSEC at Etna produced multiple small lava flows and Strombolian explosions for most of the first half of December 2018. (a) Strombolian activity at the scoria cone inside the E vent of the New Southeast Crater, seen from Milo (on Etna's eastern slope) on 11 December 2018. (b) Summit area of Etna seen from the south on 11 December 2018. (c) Eastern flank of the New South-East Crater seen from Fornazzo (eastern slope of Etna), with Strombolian activity and lava flows on 16 December 2018. (d) Active lava flows seen from Zafferana (eastern slope of Etna) on 16 December 2018. Courtesy of INGV (Report 51/2018, ETNA, Bollettino Settimanale, 10/12/2018 - 16/12/2018, data emissione 18/12/2018).

A lateral eruption and intense seismic swarm began on 24 December 2018 from a nearly 2-km-long fissure trending NNW-SSE on the SE flank of NSEC; it produced a flow into the Valle del Bove and covered about 1 km2 (figures 243). The other summit craters produced intense Strombolian activity and abundant ash emissions during 24-27 December. Beginning around 0800 local time on 24 December, degassing intensity from the summit craters increased significantly. In the following hours, intermittent reddish-gray ash emissions rose from Bocca Nuova and NEC becoming continuous by late morning. Shortly after noon, an eruptive fissure opened up at the southeastern base of NSEC, releasing intense Strombolian activity which rapidly formed a dense plume of dark ash. A second smaller fissure located between NSEC and NEC also opened at the same time and produced weaker Strombolian activity that lasted a few tens of minutes. Over the following two hours, the main fissure spread SE, crossing over the western edge of the Valle del Bove and reaching down to 2,400 m elevation. Continuous Strombolian activity of variable intensity occurred at NEC and Bocca Nuova. The ash cloud created by the multiple eruptive vents generated a dense plume that drifted SE, producing ashfall mainly in the area around Zafferana Etnea and Santa Venerina (figure 244).

Figure (see Caption) Figure 243. Preliminary map of the lava flows and scoria cones at Etna active during the eruption of 24-27 December 2018. The topographic base used was provided by TECNOLAB of the INGV Catania Section Observatory Etneo, Laboratory for Technological Advances in Volcano Geophysics. The abbreviations at the top left identify the various summit craters (NEC = North-East Crater, VOR = Voragine, BN = Bocca Nuova, SEC = South-East Crater, NSEC = New South-East Crater). Courtesy of INGV (Report 01/2019, ETNA, Bollettino Settimanale, 24/12/2018 - 30/12/2018, data emissione 01/01/2019).
Figure (see Caption) Figure 244. Eruptive activity from the fissure at Etna that opened on 24 December 2018 included multiple flows, Strombolian explosions, and a significant ash plume that caused ashfall in nearby communities. Top left: The eruptive fissure opened near the edge of the western wall of the Valle del Bove. Top right: An ash and steam plume produced by the opening of the fissure, taken from the south. Bottom left: Ash fall on a sidewalk in Zafferana Etnea. Bottom right: Multiple lava flows were fed by an eruptive fissure that opened along the western wall of the Valle del Bove. Images taken on 24 December by B. Behncke. Courtesy of INGV (25 dicembre 2018, Redazione INGV Vulcani, L'eruzione laterale etnea iniziata il 24 dicembre 2018).

As the fissure opened it fed several flows that descended the W face of the Valle del Bove (figure 245), past Serra Giannicola Grande, merged into a single flow at the base of the wall, and continued E across the valley floor. Ash emissions decreased significantly from Bocca Nuova and NEC after 1430 on 24 December. By 1800 the fissure was active mainly at the lower end where it continued to feed the flow in the Valle del Bove with strong Strombolian activity and abundant ash emissions. Around 1830 intense Strombolian activity resumed at Bocca Nuova along with abundant ash emissions which gradually decreased overnight. Effusive activity from the fissure continued through 26 December when it decreased significantly; new lava feeding the flow ended on 27 December, but the flow front continued to move slowly (figure 246). Degassing continued at Bocca Nuova, forming a dilute ash plume that drifted hundreds of km S before dissipating. A persistent SO2 plume was measured with satellite instruments drifting SSE during 25-30 December while the eruptive fissure was active (figure 247).

Figure (see Caption) Figure 245. Visual and thermal images of the 24-27 December 2018 fissure vent at Etna taken on 26 December 2018. (a) The eruptive fissure (yellow arrows) opened on 24 December 2018 along the W wall of the Valle del Bove and sent fresh lava down the wall (black areas), the yellow dashed rectangles indicate the areas shown with thermal images in c and d. (b) The crew that carried out the overflight on 26 December, using the helicopter of the 2nd Coast Guard Air Force in Catania. (c) and (d) are thermal camera images of the eruptive fissure that highlight the flows moving down the W wall of Valle del Bove. Visible image photo by Marco Neri. Thermal images by Stefano Branca. Courtesy of INGV (Report 01/2019, ETNA, Bollettino Settimanale, 24/12/2018 - 30/12/2018, data emissione 01/01/2019).
Figure (see Caption) Figure 246. The flow from the fissure eruption at Etna traveled past Serra Giannicola Grande and E into the Valle del Bove during 24-27 December 2018. By the time of this image at 1600 on 27 December, the lava flows were no longer being fed with new material and were almost stationary within the Valle del Bove. Photo by Marco Neri, courtesy of INGV (Report 01/2019, ETNA, Bollettino Settimanale, 24/12/2018 - 30/12/2018, data emissione 01/01/2019).
Figure (see Caption) Figure 247. The OMPS instrument on the Suomi NPP satellite measured significant SO2 plumes from Etna during the December eruptive episode, shown here by data on (clockwise from top left) 25, 27, 29, and 30 December 2018. The SO2 plumes on these days all drifted SSE from Etna. Courtesy of NASA Goddard Space Flight Center.

A significant increase in the release of seismic strain and frequency of earthquakes began around 0830 on 24 December 2018. Around 300 events occurred during the first three hours of increased seismicity which continued throughout the week, with over 2,000 events recorded in different areas around Etna. The initial swarm was located in the summit area near the fissure with events located 0-3 km below sea level; subsequent seismicity was located in the Valle del Bove and included multiple earthquakes with magnitudes greater than M 4.0. The E and SW slopes of the volcano were also affected by seismic events. The largest earthquake (M 4.8) was recorded on 26 December at 0319 local time, located about 1 km below sea level between the towns of Fleri and Pennisi on the Faglia Fiandaca fault. It was widely felt in many urban centers and caused damage in some areas. INGV noted that it was likely not generated by movement of magmatic material in the epicentral area.

Activity during January 2019. No lava flow activity was reported in January, but sporadic ash emissions and weak Strombolian activity persisted at NEC and Bocca Nuova (figure 248); occasional nighttime incandescent bursts were seen from Voragine. During one of these ash-emission episodes, on the evening of 18 January, fine ashfall was reported on the SE flank in the towns of Zafferana Etnea and Santa Venerina. Slight increases in volcanic tremor amplitude accompanied incandescent flashes from Voragine crater on the evenings of 16 and 18 January and in the early morning of 21 January (figure 249). On 19 January gas emissions and explosions were reported from a new vent near the NE edge of VOR, about 40 m NW from the 7 August 2016 vent (figure 250).

Figure (see Caption) Figure 248. Strong degassing from the summit craters at Etna was accompanied by ash emissions from NEC on 16 (a) and 19 January 2019 (b). The images were taken with the high-resolution webcam at Monte Cagliato (located E of Etna). Courtesy of INGV (Report 04/2019, ETNA, Bollettino Settimanale, 14/01/2019 - 20/01/2019, data emissione 22/01/2019).
Figure (see Caption) Figure 249. Episodes of strong incandescence appeared at Etna's Voragine crater at 1710 UTC on 16 January (a), at 1143 UTC on 18 January (b), and at 0307 on 21 January (c). Photo (a) was taken from Tremestieri Etneo (south side of Etna), (b) and (c) were recorded by the high resolution camera in Monte Cagliato (eastern slope of Etna). Courtesy of INGV (Report 04/2019, ETNA, Bollettino Settimanale, 14/01/2019 - 20/01/2019, data emissione 22/01/2019).
Figure (see Caption) Figure 250. A newly opened vent under the NE rim of the Voragine crater at Etna was observed on 19 January 2019. Behind it on the right, about 40 m SE, is the 7 August 2016 vent. Video taken by Prof. Carmelo Ferlito, Department of Biological, Geological and Environmental Sciences of the University of Catania. Courtesy of INGV (Report 04/2019, ETNA, Bollettino Settimanale, 14/01/2019 - 20/01/2019, data emissione 22/01/2019).

Newly available higher resolution SO2 data from the TROPOMI Tropospheric Monitoring Instrument on board the Copernicus Sentinel-5 Precursor (S5P) satellite showed persistent SO2 plumes from Etna that drifted significant distances in multiple directions before dissipating for much of the month. The strongest plumes were recorded during 16-22 January 2019 (figure 251).

Figure (see Caption) Figure 251. Sulfur dioxide plumes were recorded from Etna during most days in January 2019 from the TROPOMI Tropospheric Monitoring Instrument on the Copernicus S5P satellite. The densest plumes were recorded during 16-22 January; plumes from 18, 19, 20 and 21 January 2019 are shown here. Courtesy of NASA Goddard Space Flight Center.

Ash emissions intensified during the last week of January. During the morning of 23 January 2019 a dense ash plume drifted ENE from NEC, producing ashfall on the E flank of the volcano as far as the coast, including in Giarre (figure 252). Discontinuous ash emissions were reported from Bocca Nuova on 25 January; the following morning ash emissions intensified again from NEC and drifted S, producing ashfall in the S flank as far as Catania (figure 253). Emissions persisted until sometime during the night of 26-27 January. The ashfall from 22-23 and 26 January were analyzed by INGV personnel; the components were 95-97% lithic fragments and crystals with only 3-5% juvenile material. An ash plume from Bocca Nuova on 28 January drifted E and produced ashfall in the Valle del Bove. Ash emission decreased from Bocca Nuova on 29-30 January; only dilute ash was observed from NEC during the last few days of the month.

Figure (see Caption) Figure 252. Dense ash emissions during the morning of 23 January 2019 at Etna were observed (a) from the Catania camera CUAD (ECV), (b) from the Catania CUAD high resolution camera (ECVH), (c) from the area stop at Linera on the A18 Messina-Catania motorway (photo B. Behncke), and (d) from the hamlet of Pisano, near Zafferana Etnea, on the SE slope of the volcano (photo B. Behncke). Courtesy of INGV (Report 05/2019; ETNA, Bollettino Settimanale, 21/01/2019 - 27/01/2019, data emissione 29/01/2019).
Figure (see Caption) Figure 253. Ash emissions covered the snow on the S flank of Etna on 26 January 2019. Photo was taken from the SS 121 at the Adrano junction, on the SW flank of the volcano. Photo by R. Corsaro, courtesy of INGV (Report 05/2019; ETNA, Bollettino Settimanale, 21/01/2019 - 27/01/2019 ,data emissione 29/01/2019).

Activity during February 2019. Typical degassing and discontinuous explosive activity from the summit characterized Etna during February. An explosion was observed at NEC at 0230 UTC on 2 February which initially produced a dense ash plume that drifted NE, producing ashfall in the summit area and the Piano Provenzana. Ash emission decreased throughout the day. Repeated ash emissions were visible beginning in the afternoon of 6 February from NEC after several days of cloudy weather. Continuous ash emissions were observed overnight on 7-8 February, producing a dilute plume that drifted S then SE. A similar dilute ash emission was observed on 9 February; the plume drifted SW. Analysis of the ash by INGV indicated a similar composition to the samples measured two weeks prior. Webcams captured numerous pulsating ash emissions from NEC in mid-February, many of which produced substantial SO2 plumes (figure 254). Emissions increased in intensity and frequency and were nearly continuous during most of the third week, with plumes drifting W, S, and SE resulting in ashfall in those directions, and also led to temporary air space closures in Catania and Comiso (figures 255 and 256). Also during the third week, Strombolian activity took place at BN-1, while pulsating degassing was observed at BN-2. Incandescent degassing continued at the vent located on the N edge of Voragine. Irregular ash emissions that rapidly dispersed near the summit were produced by BN on 26 and 27 February.

Figure (see Caption) Figure 254. Substantial SO2 plumes accompanied ash emissions from Etna during many days in February 2019. The largest plumes were captured with the TROPOMI instrument on the Sentinel-5P satellite on 19, 20, 21, and 22 February. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 255. Ash emission from Etna's North-East Crater (NEC) on the morning of 18 February 2019 was captured by the INGV-OE webcam in Milo. The different colored lines roughly indicate the topographic profiles observable from that position of the various summit craters of Etna: NSEC = New South-East Crater; BN = Bocca Nuova; VOR = Voragine. Courtesy of INGV (Report 09/2019, ETNA, Bollettino Settimanale, 18/02/2019 - 24/02/2019, data emissione 26/02/2019).
Figure (see Caption) Figure 256. An ash emission drifted W from Etna's NEC on 19 February 2019 as viewed from Tremestieri Etneo, located 20 km S of the volcano. Photo by Boris Behncke, courtesy of INGV-OE (Report 09/2019, ETNA, Bollettino Settimanale, 18/02/2019 - 24/02/2019, data emissione 26/02/2019).

Activity during March 2019. Discontinuous and moderate outgassing characterized activity at all the summit vents of Etna throughout March 2018 after an ash plume from Bocca Nuova on 2 March reached 4 km above the crater. The ash plume was accompanied by seismic activity that INGV concluded was likely related to an intra-crater collapse. The discontinuous degassing was interrupted on 16 March by a single small emission of brown ash from Bocca Nuova which rapidly dissipated (figure 257). During a site visit on 30 March, INGV personnel noted pulsating degassing with apparent temperatures above 250°C from the new vent formed in mid-January at the E rim of Voragine (figure 258). At NEC, low-temperature pulsating degassing was occurring at the vent at the bottom of the crater and from fumaroles along the inner walls (figure 259).

Figure (see Caption) Figure 257. A small ash emission from the BN crater on 16 March 2019 was recorded by the high-resolution webcams in Monte Cagliato, on the eastern slope of Etna (a) and in Bronte, on the west side (b). Courtesy of INGV (Report 12/2019, ETNA, Bollettino Settimanale, 11/03/2019 - 17/03/2019, data emissione 19/03/2019).
Figure (see Caption) Figure 258. Degassing continued at the vents along the E edge of Voragine crater at Etna on 30 March 2019, producing temperatures in excess of 250°C. In the background is the NE Crater (NEC) whose southern edge was affected by modest collapses in March 2019. Courtesy of INGV (Report 14/2019, ETNA, Bollettino Settimanale, 25/03/2019 - 31/03/2019, data emissione 02/04/2019).
Figure (see Caption) Figure 259. Degassing continued from the vents located on the bottom of the NE Crater at Etna on 30 March 2019 as seen from the eastern edge with visual and thermal images. Courtesy of INGV (Report 14/2019, ETNA, Bollettino Settimanale, 25/03/2019 - 31/03/2019, (data emissione 02/04/2019).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/ ); Blog INGVvulcani, Istituto Nazionale di Geofisica e Vulcanologia (INGV); (URL: http://ingvvulcani.wordpress.com); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Manam (Papua New Guinea) — February 2019 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Ash plumes reaching 15 km altitude in August and December 2018

Manam is a basaltic-andesitic stratovolcano that lies 13 km off the northern coast of mainland Papua New Guinea; it has a 400-year history of recorded evidence for recurring low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes. Activity during 2017 included a strong surge in thermal anomalies beginning in mid-February that lasted through mid-June; low levels of intermittent thermal activity continued for the rest of the year (BGVN 43:03). Activity during 2018, discussed below, included two ash explosions that rose higher than 15 km altitude, in August and December, resulting in significant ashfall and evacuations of several villages. Information about Manam is primarily provided by Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM). This information is supplemented with aviation alerts from the Darwin Volcanic Ash Advisory Center (VAAC). MODIS thermal anomaly satellite data is recorded by the University of Hawai'i's MODVOLC thermal alert recording system, and the Italian MIROVA project; sulfur dioxide monitoring is done by instruments on satellites managed by NASA's Goddard Space Flight Center. Satellite imagery provided by the Sentinel Hub Playground is also a valuable resource for information about this remote location.

Satellite imagery confirmed thermal activity in December 2017, February-April 2018, and June-December 2018. Explosive activity with ash plumes was reported in June, August-October, and December 2018. Ash plumes from explosions in late August and early December rose to over 15 km altitude and caused heavy ashfall on the island. Lava flows were reported in late August, late September to early October, and December; a pyroclastic flow on the NE flank occurred during the late August explosive episode. MODVOLC thermal alerts were issued during the same periods when lava flows were reported on the NE flank. The MIROVA Log Radiative Power graph for 2018 showed intermittent pulses of thermal activity throughout the year; levels of increased activity were apparent in late December 2017-early January 2018, mid-May, August, late September-early October, and early December 2018 (figure 42). Many of these thermal events could be confirmed with either satellite or ground-based information.

Figure (see Caption) Figure 42. The MIROVA Log Radiative Power graph for Manam during 2018 showed intermittent pulses of thermal activity throughout the year, many of which could be confirmed with satellite imagery or ground observations. Levels of increased activity were apparent in late December 2017-early January 2018, mid-May, August, late September to early October, and the first half of December 2018. Courtesy of MIROVA.

Activity during December 2017-July 2018. Both Sentinel-2 satellite imagery, and MIROVA data thermal evidence, indicated continued thermal activity at both of Manam's summit craters (Main and Southern) during December 2017-April 2018. Satellite imagery on 11, 26, and 31 December showed two thermal hotspots on each date, with a gas plume drifting E on 26 December 2017. One strong thermal anomaly was visible in satellite imagery on 19 February 2018 along with a SE-drifting gas plume (figure 43). A single anomaly was visible through atmospheric clouds on 1 March 2017 with a thin gas plume drifting NNE. On 10 April two hotspots were clearly visible, the one at Southern Crater was larger than the one at Main Crater, both with ESE drifting gas plumes. Though there was diffuse atmospheric cloud cover on 15 April, both anomalies were visible with SW-drifting gas plumes. On 25 April clouds covered the likely thermal anomalies, but a dense gas plume drifted N from the summit (figure 44).

Figure (see Caption) Figure 43. Sentinel-2 images (bands 12, 14, 2) of Manam on 11, 26, and 31 December 2017 and 19 February 2018 all showed evidence of either one or two thermal anomalies at the summit craters and gas plumes drifting in multiple directions. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 44. Thermal anomalies and/or gas plumes were visible at Manam's Main and Southern Craters on 1 March and 10, 15, and 25 April 2018 in Sentinel-2 imagery (bands 12, 14, 2), confirming continued activity at the volcano. Courtesy of Sentinel Hub Playground.

Although no satellite images confirmed thermal activity in May 2018, several anomalies were recorded by the MIROVA project (figure 42). Sentinel-2 imagery on 9 June confirmed two hotspots at the summit with Southern Crater's signal larger than the weak Main Crater signal; the first VAAC report of 2018 was issued on 10 June based on a pilot report of ash at 1.8 km altitude, but it did not appear in satellite imagery. Two thermal anomalies were both more clearly visible on 29 July, with NNE drifting gas plumes (figure 45).

Figure (see Caption) Figure 45. Two thermal anomalies with steam and gas plumes were visible in Sentinel-2 imagery (bands 12,4, 2) at the summit of Manam on 9 June and 29 July 2018. Courtesy of Sentinel Hub Playground.

Activity during August 2018.Thermal activity began increasing in early August 2018, as seen in the MIROVA data, but satellite imagery also indicated a growing hotspot at Main Crater on 13 August. The thermal source appeared to be some type of incandescent flow on the upper NE flank that was visible in 23 August imagery along with the second anomaly at Southern Crater (figure 46).

Figure (see Caption) Figure 46. Growing hotspots were visible at the summit of Manam in Sentinel-2 imagery (bands 12,4, 2) on 13 August 2018 compared with the June and July imagery (figure 45). By 23 August a much larger thermal anomaly was visible beneath cloud cover originating from Main Crater. Courtesy of Sentinel Hub Playground.

The Rabaul Volcano Observatory (RVO) issued an information bulletin early on 25 August indicating a new eruption from Main Crater (figure 47). Residents on the island reported increased activity around 0500 local time. The Darwin VAAC also issued a report a few hours later (24 August 2019 UTC) where they increased the Aviation Color code to Red, and indicated a high-impact eruption with an ash plume visible in satellite imagery that rose to 15.2 km altitude and drifted WSW after initially moving N (figure 48). Reports received at RVO indicated that ash, scoria, and mud fell in areas between the communities of Dangale on the NNE and Jogari on the SW part of the island. They also indicated that the most affected areas were Baliau and Kuluguma where wet, heavy, ashfall broke tree branches and reduced visibility (figure 49). A lava flow was observed in the NE valley slowly moving downhill, and there was evidence of a pyroclastic flow that reached the ocean in the same valley (figure 50).

Figure (see Caption) Figure 47. A large explosion at Manam on 25 August 2018 (local time) produced an ash plume that rose to over 15 km altitude. Islanders reported that ash and other debris from the eruption was so thick that sunlight was totally blocked for hours. Photo taken from the New Guinea mainland by members of the Police force. Courtesy of Scott Waide.
Figure (see Caption) Figure 48. A substantial ash plume from an explosion at Manam on 25 August 2018 (local time) rose to 15.2 km altitude and drifted WSW for about five hours. Photo by Sean Richards, courtesy of Scott Waide.
Figure (see Caption) Figure 49. Vegetation on Manam was covered and damaged by heavy, wet, ash after an explosion on 25 August 2018. Photo by Anisah Isimel, courtesy of Scott Waide.
Figure (see Caption) Figure 50. A fresh lava flow was visible in the major drainage on the NE flank at Manam a few days after a large explosion on 25 August 2018. Pyroclastic flows scorched trees and left behind debris. Posted online on 28 August 2018 by journalist Scott Waide from an article by journalist Martha Louis, EMTV.

The eruption ceased around 1030 local time and was followed by dense steam plumes rising from the summit. RVO reported the following day that six houses in Boakure village on the NE side of the island were buried by debris from the pyroclastic flow. The occupants of the houses had escaped earlier to nearby Abaria village and no casualties were reported. The OMI instrument on NASA's Aura satellite captured a significant SO2 plume drifting WSW a few hours after reports of the 25 August eruption (figure 51). The Darwin VAAC reported a possible ash eruption on 28 August that was drifting WNW at 3.4 km altitude for a brief period before dissipating. According to RVO, several mudflows were reported in areas between the NW and SW parts of the island after the 25 August 2018 eruption, triggered by the heavy rainfall that followed.

Figure (see Caption) Figure 51. The OMI instrument on NASA's Aura satellite captured a significant SO2 plume drifting WSW from Manam a few hours after reports of the 25 August 2018 eruption. Courtesy of NASA Goddard Space Flight Center.

Activity during September-November 2018. Satellite evidence during September 2018 confirmed the ongoing activity at the summit where a thermal anomaly was visible at Southern Crater on 7 September. On 12 September a gas plume drifted NW from the thermal anomaly at Southern crater while an incandescent lava flow was visible on the NE flank below Main Crater. (figure 52). RVO reported increased activity at Southern Crater during 20-24 September that included variable amounts of steam and gray to brown ash plumes. The Darwin VAAC reported a short-lived ash plume visible in satellite imagery on 23 September that rose to 8.5 km altitude and drifted NW. A small ash emission seen in visible imagery on 25 September rose to 2.4 km altitude and extended SE briefly before dissipating. Although partially obscured by clouds, the lava flow was still visible on the upper NE flank on 27 September (figure 52).

Figure (see Caption) Figure 52. Satellite evidence (Sentinel-2, bands 12, 4, 2) during September 2018 at Manam confirmed the ongoing activity at the summit where a thermal anomaly was visible at Southern Crater on 7 September. On 12 September a gas plume drifted NW from Southern Crater while an incandescent flow traveled down the NE flank from Main Crater. Although partially obscured by clouds, the flow was still visible on the upper NE flank on 27 September. A nearly clear satellite image on 2 October showed incandescent lava reaching almost to the ocean in two lobes on the NE flank of the island. Courtesy of Sentinel Hub playground.

Continuous ash emissions from a new explosion were first reported based on satellite imagery by the Darwin VAAC on 30 September (UTC) at 4.3 km altitude extending SW, and also at 3.0 km altitude drifting W. The emissions at 4.3 km altitude dissipated the following day, but lower level emissions continued at 2.1 km altitude drifting NW through 3 October. On 1 October residents reported hearing continuous loud roaring, rumbling, and banging noises, and reports from Tabele on the SW side of the island indicated very bright incandescence at the summit area. The incandescence was also visible from the Bogia Government Station on the mainland. Small amounts of fine ash and scoria were reported at Jogari and surrounding villages to the N on 1 October. Field observations on 1 October confirmed the presence of a two-lobed lava flow into the NE valley. The smaller lobe traveled towards Kolang village on the N side of the valley and the larger lobe went to the S towards Boakure village. Both flows stopped before reaching inhabited areas. A nearly clear satellite image on 2 October showed the incandescent lava reaching almost to the ocean in the two lobes on the NE flank of the island (figure 52). An SO2 plume drifting SW from Manam was captured by the OMI instrument on the Aura satellite on 1 October 2018 (figure 53).

Figure (see Caption) Figure 53. The OMI instrument on NASA's Aura satellite captured an SO2 plume drifting SW from Manam on 1 October 2018. Courtesy of NASA Goddard Space Flight Center.

RVO reported that during 2-12 October Southern Crater produced variable amounts of brown, gray-brown and dark gray ash clouds that rose between a few hundred meters and a kilometer above the summit craters before drifting NW. The Darwin VAAC reported an ash emission to 10.4 km altitude on 5 October that extended 25 km W before dissipating within a few hours. Continuous emissions to 2.4 km altitude extending WNW began a few hours later and were intermittently visible in satellite imagery through 12 October. Incandescent lava was visible in satellite imagery on the NE flank on 12 October (figure 54). Activity decreased significantly during the rest of October and most of November 2018, with no ground reports, VAAC reports, or satellite imagery indicating thermal activity; only the MIROVA data showed low-level thermal anomalies (figure 42). A satellite image on 26 November 2018 indicated that thermal activity continued at one of the summit craters (figure 54).

Figure (see Caption) Figure 54. Incandescent lava was visible on the NE flank of Manam on 12 October 2018 in this Sentinel-2 satellite image (bands 12, 4, 2). A single hotspot appeared through meteoric clouds on 26 November. Courtesy of Sentinel Hub Playground.

Activity during December 2018. The Darwin VAAC reported a minor ash emission on 6 December 2018 that rose to 5.2 km altitude and drifted SE for a few hours before dissipating. A much larger ash emission on 8 December was clearly observed in satellite imagery and reported by a pilot, as well as by ground and ocean-based observers. It was initially reported at 12.2 km altitude but rose to 15.2 km a few hours later, drifting E for about 10 hours before dissipating (figure 55). This was followed later in the day by an ongoing ash emission at 8.2 km altitude that drifted E before dissipating on 9 December. According to the UNHCR news organization Relief Web, the eruption started around 1300 local time on 8 December and lasted until about 1000 on 9 December. Based on reports from the ground, the eruption affected the NE part of the island. In particular, a lava flow affected Bokure (Bokuri) and Kolang (NE Manam). Communities in both localities were evacuated. The Loop PNG reported that RVO noted that the flow stopped before reaching Bokure. Ash and scoria fall was described as being moderate in downwind areas, including Warisi village on the SE side of the island. An SO2 plume was also identified by satellite instruments. Hotspots were visible from both craters on 11 December and from one of the craters on 16 December (figure 56).

Figure (see Caption) Figure 55. This image of an eruption at Manam on 8 December 2018 (local time) was likely taken from a Papua New Guinea government ship, and made available via Jhay Mawengu of the Royal Papua New Guinea Constabulary.
Figure (see Caption) Figure 56. Sentinel-2 satellite images indicated thermal activity continuing as hotspots at the summit of Manam on 11 and 16 December 2018. Courtesy of Sentinel Hub Playground.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Scott Waide (URL: https://mylandmycountry.wordpress.com/2018/08/, Twitter: @Scott_Waide); Jhay Mawengu, Royal Papua New Guinea Constabulary (URL: https://www.facebook.com/mawengu.jeremy.7); Relief Web, United Nations Office for the Coordination of Humanitarian Affairs, Resident Coordinator's Office, 380 Madison Avenue, 7th floor, New York, NY 10017-2528, USA (URL: https://reliefweb.int/); LOOP Pacific (URL: http://www.looppng.com/).


Merapi (Indonesia) — April 2019 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Dome appears at summit on 12 August 2018; grows to 447,000 m3 by late March 2019

Merapi volcano in central Java, Indonesia (figure 69), has a lengthy history of major eruptive episodes. Activity has included lava flows, pyroclastic flows, lahars, Plinian explosions with heavy ashfall, incandescent block avalanches, and dome growth and destruction. Fatalities from these events were reported in 1994, 2006, and during a major event in 2010 (BGVN 36:01) where hundreds were killed and hundreds of thousands of people were evacuated. Renewed phreatic explosions in May 2018 cancelled airline fights and generated significant SO2 plumes in the atmosphere. The volcano then remained quiet until an explosion on 11 August 2018 marked the beginning of the growth of a new lava dome. The period June 2018 through March 2019 is covered in this report with information provided primarily by Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG, which monitors activity specifically at Merapi.

Figure (see Caption) Figure 69. A drone aerial photo of Merapi taken on 11 November 2018 shows the Gendol river drainage in the foreground and the upper part that is often referred to as Bebeng. Pyroclastic flows descended through this drainage in both 2006 and 2010. Courtesy of Øystein Lund Andersen.

The first sign of renewed activity at Merapi came with an explosion and the appearance of a lava dome at the summit on 12 August 2018. The growth rate of the dome fluctuated between August 2018 and January 2019, with a low rate of 1,000 m3/day in late September to a high of 6,200 m3/day in mid-October. By mid-December the dome was large enough to send block avalanches down the Kali Gendol ravine on the SSE flank. The rate of dome growth declined rapidly during January 2019, when most of the new lava moved down the ravine in numerous block avalanches. By late March 2019 the dome had reached 472,000 m3 in volume and block avalanches were occurring every few days.

After the eruptive events between 11 May and 1 June 2018, seismicity fluctuated at levels slightly above normal during June and July, with the highest levels recorded on 18 and 29 July. A VONA on 3 June reported a plume of steam that rose 800 m above the summit; for the rest of June the plume heights gradually decreased to a maximum of 400 m by the third week. During July steam plume heights varied from 30 to 350 m above the summit.

On 1 August 2018 an explosion was heard at the Babadan Post. An explosion on 11 August was heard by residents of Deles on the SE flank. Photos taken in a survey by drone the following day indicated the presence of new material in the middle of the 2010 dome fracture (figure 70). The presence of a new lava dome was confirmed with a site visit on 18 August 2018. The dome was 55 m long and 25 m wide, and about 5 m below the 2010 dome surface (figure 71). As of 23 August, the volume of the dome was 23,000 m3, growing at an average rate of 2,700 m3/day. By the end of the month the volume was estimated to be 54,000 m3 with a growth rate of 4,000 m3/day (figure 72). Throughout the month, persistent steam plumes rose 50-200 m above the summit.

Figure (see Caption) Figure 70. The first sign of new dome growth at Merapi appeared in this drone photo taken on 12 August 2018. Courtesy of BPPTKG (Siaran Pers 18 Agustus 2018 Pukul 17:00 WIB, Press Release 18 August 2018, 1700 local time).
Figure (see Caption) Figure 71. The new dome at the summit of Merapi on 18 August 2018. Courtesy of BPPTKG (Siaran Pers 18 Agustus 2018 Pukul 17:00 WIB, Press Release 18 August 2018, 1700 local time).
Figure (see Caption) Figure 72. A comparison of the dome on 18 (top) and 28 (bottom) August 2018 at Merapi taken from the Puncak webcam on the N flank. By the end of August 2018, the dome size was about 54,000 m3. Courtesy of BPPTKG (posted via Twitter on 27 August 2018).

During September-November 2018 the summit dome grew at varying rates from 1,000 to 6,200 m3/day (table 22). At the beginning of September its volume was 54,000 m3; it had reached 329,000 m3 by the end of November (figure 73). Steam plumes in September rose from 100 to 450 m above the summit. They were lower in October, rising only 50-100 m high. During November they rose 100 to400 m above the summit. Intermittent seismic activity remained above background levels. By mid-November, the growth of the dome was clearly visible from the ground 4.5 km S of the summit (figure 74).

Table 22. The volume and growth rate of the lava dome at Merapi was measured weekly from late August 2018 through January 2019. Data courtesy of BPPTKG Merapi weekly reports.

Date Size (m3) Rate (m3 / day)
23 Aug 2018 23,000 2,700
30 Aug 2018 54,000 4,000
06 Sep 2018 82,000 3,900
13 Sep 2018 103,000 3,000
20 Sep 2018 122,000 3,000
27 Sep 2018 129,000 1,000
04 Oct 2018 135,000 1,000
11 Oct 2018 160,000 3,100
18 Oct 2018 201,000 6,200
21 Oct 2018 219,000 6,100
31 Oct 2018 248,000 2,900
07 Nov 2018 273,000 3,500
14 Nov 2018 290,000 2,400
21 Nov 2018 308,000 2,600
29 Nov 2018 329,000 2,500
06 Dec 2018 344,000 2,200
13 Dec 2018 359,000 2,200
19 Dec 2018 370,000 2,000
27 Dec 2018 389,000 2,300
03 Jan 2019 415,000 3,800
10 Jan 2019 439,000 3,400
16 Jan 2019 453,000 2,300
22 Jan 2019 461,000 1,300
29 Jan 2019 461,000 --
07 Feb 2019 461,000 --
14 Feb 2019 461,000 --
21 Feb 2019 466,000 --
05 Mar 2019 470,000 --
21 Mar 2019 472,000 --
Figure (see Caption) Figure 73. Images from September-November 2018 show the growth of the lava dome at the summit of Merapi. In each pair the left image is from the Deles webcam, and the right image is from the Puncak webcam on the same date. Top: 26 September 2018, left growth lines show change from 8 to 27 September, from 18 to 26 September on right; Middle: 22 October 2018, both sets of growth lines are from 13 September to 22 October; Bottom: 22 November 2018, left growth lines are from mid-September to 21 November and right growth lines are 15 and 22 November. In each Puncak image the red outline at the center is the dome outline on 18 August 2018. Courtesy of BPPTKG, from weekly reports of Merapi activity, 21-27 September, 19-25 October, and 16-22 November 2018.
Figure (see Caption) Figure 74. A comparison of the crater area of Merapi on 2 June 2018 (left) and 11 November 2018 (right). The new dome is clearly visible in the later photo. The images were taken about 4.5 km S of the summit. Persistent gas emissions rose from both the new dome and around the summit crater. Courtesy of Øystein Lund Andersen.

The lava dome continued to grow during December 2018, producing steam plumes that rose 50-200 m. As the height of the dome increased, block avalanches began descending into the upper reaches of Kali Gendol ravine on the SSE flank. Avalanches on 16 and 19 December reached 300 m down the drainage; on 21 December a larger avalanche lasted for 129 seconds and traveled 1 km based on the duration of the seismic data (figure 75). By the end of December BPPTKG measured the volume of the dome as 389,000 m3.

Figure (see Caption) Figure 75. Steam and gas from a recent block avalanche rose from the edge of the new dome at Merapi on 21 December 2018 (top). By the end of December BPPTKG measured the volume of the dome as 389,000 m3. Top image from BPPTKG press release of 21 December 2018; bottom images from the weekly Merapi Mountain activities report of 21-27 December. Courtesy of BPPTKG.

The rate of dome growth declined steadily during January 2019, and by the third week most of the lava extrusion was collapsing as block avalanches into the upper part of Kali Gendol, and dome growth had slowed. Steam plumes rose 50-450 m during the month. In spite of slowing growth, a comparison of the dome size between 11 November 2018 and 13 January 2019 indicated an increase in volume of over 150,000 m3 of material (figure 76). Incandescence at the dome and in the block avalanches was visible at night when the summit was clear (figures 77 and 78). Three block avalanches occurred during the evening of 29 January; the first traveled 1.4 km, the second 1.35 km, and the third 1.1 km down the ravine; each one lasted for about two minutes. By the end of January the size of the dome was reported by BPPTKG to be about 461,000 m3.

Figure (see Caption) Figure 76. A comparison of the dome growth at Merapi from 11 November 2018 to 13 January 2019 showed an increase in volume of over 150,000 m3 according to Indonesian authorities (BPPTKG), as well as the accumulation of debris as material fell down the ravine. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 77. Incandescence appeared at the growing dome at the summit of Merapi late on 13 January 2019. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 78. Incandescent blocks from the growing dome at Merapi traveled several hundred meters down Kali Gendol on 14 January 2019. Courtesy of Øystein Lund Andersen.

Numerous block avalanches were observed during February 2019 as almost all of the lava extrusion was moving down the slope. Multiple avalanches were reported on 7, 11, 18, 25, and 27 February, with traveling distances ranging from 200 to 2,000 m. Steam plumes did not rise more than 375 m during the month. By the end of February, the dome had only grown slightly to 466,000 m3. Seventeen block avalanches were reported during March 2019; they traveled distances ranging from 500 to 1,900 m down the Kali Gendol ravine. A drone measurement on 5 March determined the volume of the dome to be 470,000 m3; it was only 2,000 m3 larger when measured again on 21 March.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com/).


Bagana (Papua New Guinea) — February 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Intermittent ash plumes; thermal anomalies continue through January 2019

The relatively remote Bagana volcano, located on Bougainville Island, Papua New Guinea, is poorly monitored and most of the available data is obtained by satellites (figure 30). The most recent eruptive phase began on or before early 2000 with intermittent ash plumes and detected thermal anomalies (BGVN 41:04, 41:07, 42:08, 43:05). The Darwin Volcanic Ash Advisory Centre (VAAC) monitors satellite imagery for ash plumes that could impact aviation.

Figure (see Caption) Figure 30. Sentinel-2 satellite image (natural color, bands 4, 3, 2) of Bagana on 28 May 2018. Courtesy of Sentinel Hub Playground.

Cloud cover obscured the volcano during much of the reporting period, but significant ash plumes were identified five times by the Darwin Volcanic Ash Advisory Centre (VAAC), in May, July, and December 2018 (table 6). Infrared satellite imagery from Sentinel-2 frequently showed thermal anomalies, both at the summit and caused by hot material moving down the flanks (figure 31).

Table 6. Summary of ash plumes from Bagana reported during May 2018 through January 2019. Courtesy of the Darwin Volcanic Ash Advisory Centre (VAAC).

Date Max Plume Altitude (km) Plume Drift
08 May 2018 2.1 W
11 May 2018 2.1 SW
22 Jul 2018 2.4 W
29-30 Jul 2018 1.8-2.1 SW
01 Dec 2018 3-6.1 SE
Figure (see Caption) Figure 31. Infrared satellite images from Sentinel-2 (atmospheric penetration, bands 12, 11, 8A) showing hot areas at the summit and on the flanks on 7 July (top left), 31 August (top right), 14 November (bottom left) and 14 December (bottom right) 2018. Courtesy of Sentinel Hub Playground.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, recorded a large number of thermal alerts within 5 km of the summit throughout this reporting period (figure 32). Thermal alerts increased in number and intensity beginning mid-July 2018. This pattern is also consistent with the MODVOLC data (also based on MODIS satellite data). A total of 76 thermal anomaly pixels were recorded during the reporting period; of these, greater than 40 pixels were observed during July 2018 alone with 13 pixels reported in December 2018 (figure 33).

Figure (see Caption) Figure 32. Thermal anomalies identified at Bagana by the MIROVA system (log radiative power) for the year ending 8 February 2019. Courtesy of MIROVA.

Small sulfur dioxide (SO2) anomalies were detected by the AuraOMI instrument during this period, the highest being in the range of 1.5-1.8 Dobson Units (DU). Emissions in this range occurred during July 7, 21, and 28 July, and 3-5 and 19 December 2018.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA, a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) – MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Fuego (Guatemala) — April 2019 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Frequent explosive activity with ash plumes, avalanches, lava flows, and lahars from July 2018 through March 2019

Fuego is one of Guatemala's most active volcanoes, regularly producing ash plumes and incandescent ballistic ejecta, along with lava flows, avalanches, pyroclastic flows, and lahars down the ravines (barrancas) and rivers (figure 104). Frequent ash plumes have been recorded in recent years (figure 105). A major eruptive event occurred on 3-5 June that resulted in fatalities. Thermal data show an increase in activity from November 2018, that continued through the reporting period (figure 106). This report summarizes activity from July 2018 through March 2019 based on reports by Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH) and the National Office of Disaster Management (CONRED), Washington Volcanic Ash Advisory Center (VAAC), satellite data.

Figure (see Caption) Figure 104. Map of Fuego showing the ravines, rivers, and communities. Map created in 2005 (see BGVN 30:08).
Figure (see Caption) Figure 105. Ash plume altitudes from 1999 through 2019 for Fuego as reported by the Washington VAAC. The gray vertical lines represent paroxysmal eruptions. Courtesy of Rudiger Escobar Wolf, Michigan Technological University.
Figure (see Caption) Figure 106. Log radiative power MIROVA plot of MODIS infrared data at Fuego for the year ending April 2019 showing increased activity since November 2018. Courtesy of MIROVA.

Gas emissions and avalanches characterized activity in early July 2018; an increase was reported on the 4th. Avalanches descended through the Cenizas, Las Lajas, and Santa Teresa ravines on the 6th. One explosion every two hours on 8 July produced ash plumes up to 4.3 km altitude (500 m above the crater) that dispersed towards the SW. Avalanches down the flanks accompanied this activity. On 10 July ash plumes rose to 4.2 and 5 km altitude dispersing to the SW, and ashfall was reported in Morelia and Panimache (figure 107). Avalanches continued on the 19-20 and 23-24 July and weak explosions on the 23-24 produced low ash plumes that dispersed to the N. Hot lahars containing blocks 2-3 m in diameter and tree trunks and branches were generated in the Taniluyá, Ceniza, El Jute, and Las Lajas ravines on 30 and 31 July, and 2 and 9 August.

Figure (see Caption) Figure 107. A moderate explosion produced an ash plume at Fuego on 10 July 2018. Photo courtesy of CONRED.

During August and September, weak to moderate explosions produced ash plumes that rose to 4.7 km altitude and incandescent material was ejected to 150 m above the crater, producing avalanches down the ravines. Additional hot lahars carrying boulders and tree branches occurred on 29 August-2 September and 21-27 September down the Honda (E), El Jute (SE), Las Lajas (SE), Cenizas (SSW), Taniluyá (SW), Seca (W), Santa Teresa (W), Niagara (W), Mineral, and Pantaleón (W) drainages.

An increase in activity occurred on 29 September with degassing pulses lasting 3-4 hours recorded and heard. Avalanches occurred on the flanks and weak-moderate explosions occurred at a rate of 10-15 per hour with ash plumes rising up to 4.7 km. Hot lahars traveled down the Seca, Santa Teresa, and Mineral ravines, transporting blocks up to 3 m in diameter along with tree trunks and branches. Similar lahars were generated in the Las Lajas ravine on 5, 8, and 9 October (figure 108). The lahars were hot and smelled of sulfur, and they carried blocks 1-3 m in diameter.

On 12 October activity increased and produced incandescent ejecta up to 100-200 m above the crater and out to 300 m away from the crater, avalanches in the ravines, and a lava flow with a length of 800-1,000 m, that had reached 1,500 m by the 13th. Ash plumes reached 4.8 km altitude and dispersed up to 12 km towards the S and SE. Explosions occurred at a rate of 8-10 per hour with shockwaves that were reported near the volcano. At 1640 a pyroclastic flow was generated down the Seca ravine (figure 109). Similar activity continued through the 13th, with ash plumes reaching 5 km and ashfall reported in communities including Panimache I, Morelia, Santa Sofia, Sangre de Cristo, El Porvenir, and Palo Verde Estate. This episode of increased activity continued for 32 hours. Lahars traveled down the Ceniza and Seca ravines, the Achiguate River, and the Mineral and Taniluyá ravines (both tributaries of the Pantaleón river). A 30-m-wide lahar with a depth of 2 m was reported on 16 October that carried blocks up to 2 m in diameter, tree trunks, and branches. More lahars descended the Las Lajas ravine on the 17-18, and 20 October. Explosions continued through to the end of October, with increased activity on 31 October.

Figure (see Caption) Figure 108. Seismograms and RSAM (Real-time Seismic Amplitude Measurement) graphs of activity at Fuego showing a change in signal indicative of lahars in the Las Lajas ravine on 8 and 9 October 2018 (red boxes and arrows). The change in seismic signal correlates with an increase in RSAM values. Courtesy of INSIVUMEH.
Figure (see Caption) Figure 109. A pyroclastic flow at Fuego traveling down the Seca ravine on 12 October 2018. Courtesy of CONRED.

Frequent activity continued into November with elevated activity reported on the 2 and 4-6 November. On 6 November ash plumes rose to 4.8 km altitude and traveled 20 km W and SW resulted in ashfall on communities including Panimache, El Porvenir, Morelia, Santa Sofia, Sangre de Cristo, Palo Verde Estate, and San Pedro Yepocapa. Constant explosions ejected incandescent material to 300 m above the crater. A lava flow 1-1.2 km long observed in the Ceniza ravine generated avalanches from the front of the flow, which continued through the 9th.

Activity increased again on 17 November, initiating the fifth eruptive phase of 2018. There were 10-15 explosions recorded per hour along with ash plumes up to 4.7 km that dispersed 10-15 km to the W and SW. Incandescent material was ejected up to 200-300 m above the crater, and avalanches were generated. A new lava flow reached 800 m down the Ceniza ravine. Ashfall was reported in Panimaché I, Morelia, Santa Sofia, El Porvenir, Sangre de Cristo, Palo Verde Estate, Yepocapa, and other communities.

The elevated activity continued through 18 November with 12-17 explosions per hour and a constant ash plume to 5 km altitude, dispersing to the W and SW for 20-25 km. Moderate avalanches traveled down the Ceniza, Taniluyá, and Seca ravines out to the vegetation line. Incandescent blocks were ejected up to 400 m above the crater. Ashfall was reported in communities including Panimaché I, Morelia, Santa Sofia, Sangre de Cristo, and Palo Verde Estate. Avalanches from the front of the lava flow traveled down the Taniluyá and Seca ravines.

Ash plumes rose to 7 km altitude on the 19th and dispersed 50-60 km towards the W, SW, and NE (figure 110). Incandescent ballistic ejecta reached 1 km above the crater and scattered to over 1 km from the crater (figure 111), with the explosions shaking houses over 15 km away to the W and SW, and avalanches moved down the Seca, Ceniza, Taniluyá, Las Lajas, and Honda ravines reaching the vegetation. Two new lava flows formed, extending to 300 m down the Seca and Santa Teresa ravines. Pyroclastic flows traveled down the Seca, Las Lajas, and Honda ravines. Ashfall due to the generation of pyroclastic flows was reported in Panimaché I and II, Santa Sofía, Sangre de Cristo, Palo Verde Estate, and in Alotenango and Antigua, Guatemala, to the NE. CONRED reported the evacuation of 3,925 people. INSIVUMEH reported that the eruption phase was over at 1800 on 19 November after 32 hours of increased activity.

Figure (see Caption) Figure 110. Eruption at Fuego on 19 November 2018 producing ash plumes and incandescent ejecta. Courtesy of European Pressphoto Agency via BBC News.
Figure (see Caption) Figure 111. Explosions at Fuego on 19 November 2018 generated ash plumes to 5.2 km altitude, incandescent blocks up to 1 km above the crater, and avalanches. Courtesy of CONRED.

Explosions continued through 20 November at a rate of 8-13 per hour, ejecting incandescent material up to 200 m above the crater and ash plumes to at least 4.6 km that drifted 20-25 km NW, W, and SW. Avalanches continued with some reaching the vegetation. Ashfall was reported in communities including Panimaché, El Porvenir, Morelia, Santa Sofia, Sangre de Cristo, Palo Verde Estate, and San Pedro Yepocapa.

Similar activity continued through to the end of November with explosions producing shockwaves felt out to 25 km; some explosions were heard in Guatemala City, 40 km ENE. Ash plumes rose to 5 km (figures 112 and 113) and dispersed 20 km W, S, and SW, and ash fell in communities including Panimaché, El Porvenir, Morelia, Santa Sofia, Sangre de Cristo, Palo Verde Estate, San Pedro Yepocapa, Alotenango, and San Miguel Dueñas. Explosions were recorded 10 to 18 per hour. Incandescent ejecta rose to 200 m above the crater and resulted in avalanches in the Las Lajas, Ceniza, El jute, Honda, Taniluyá, Trinidad, and Seca ravines with some reaching the vegetation line. Some avalanches entrained large blocks up to 3 m in diameter that produced ash plumes as they traveled down the ravines. Hot lahars were generated in the Seca, Santa Maria, and Mineral ravines, carrying blocks up to 3 m in diameter (figure 114).

Figure (see Caption) Figure 112. Explosions at Fuego generated ash plumes and caused avalanches in the Las Lajas, Trinidad, and Ceniza ravines on 22 November 2018. Courtesy of CONRED.
Figure (see Caption) Figure 113. Ash plume up to 5.5 km altitude at Fuego on 28 November 2018. Courtesy of CONRED.
Figure (see Caption) Figure 114. A lahar from Fuego traveling down the Mineral River in November 2018. Courtesy of CONRED.

During December white to light gray fumarolic plumes rose to a maximum height of 4.5 km. Ash plumes reached up to 5.2 km and dispersed to a maximum of 25 km S, SW, and W. There were 3-15 explosions recorded per hour with shockwaves, incandescent ejecta reaching 300 m above the crater, and avalanches down the Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, and Honda ravines. Ashfall was reported in communities including Panimaché I and II, Morelia, Santa Sofia, El Porvenir, Palo Verde Estate, Sangre de Cristo, Yepocapa, La Rochela, San Andrés Osuna, Ceylon, Alotenango, and San Pedro.

Similar activity continued through January 2019 with fumarolic plumes rising to a maximum of 4.4 km altitude, ash plumes reaching 4.8 km and dispersing over 15 km to the NE, WSW, and NW; 3-25 explosions per hour sent shockwaves and avalanches in multiple directions. Ashfall was reported in Panimaché, Morelia, Santa Sofia, Sangre de Cristo, Palo Verde Estate, and San Pedro Yepocapa. Also in Alotenango, La Reunion, and El Porvenir, Alotenango.

An increase in activity began on 21 January with moderate to strong explosions producing ash plumes up to 5 km altitude that dispersed 12 km W and SW. The explosions were heard over 15 km away and shook windows and roofs out to 12 km away. Avalanches were triggered in multiple ravines. On 22 January there were 15-25 recorded explosions per hour, each lasting 2-3 minutes and producing ash plumes to 4.8 km and incandescent ejecta up to 300 m above the crater (figure 115).

Figure (see Caption) Figure 115. An ash plume rising during an explosive event at Fuego on 22 January 2019. Courtesy of CONRED.

Frequent explosions continued during February through to late-March, with a range of 8-18 per hour, producing ash plumes rising to 4.8 km (figure 116), and dispersing out to 15 km in multiple directions. Incandescent ejecta rose to 350 m above the crater and resulted in avalanches down multiple ravines. Ashfall was reported in communities including El Rodeo, El Zapote, Ceylon, La Roche-la, Panimache, Morelia, Santa Sofia, Sangre de Cristo, San Miguel Dueñas, Ciudad Vieja, and Alotenango, Verde Estate, San Pedro Yepocapa, La Rochelle, and San Andrés Osuna.

On 22 March there was an increase in the number and energy of explosions with 15-20 per hour. Accompanying ash plumes rose to 5 km altitude and dispersed 25-30 km S, W, SW, E, and SE, depositing ash in La Rochela, Ceylon, Osuna, Las Palmas, Siquinalá, and Santa Lucia Cotzumalguapa. Explosions were heard over 20 km from the volcano. Incandescent ejecta rose to 300 m above the crater and moderate to strong avalanches flowed down the Seca, Taniluyá, Ceniza, Trinidad, Las Lajas and Honda ravines. Explosions increased to 14-32 events per hour by 31 March, continuing to produce ash plumes up to 5 km and depositing ash on nearby communities and causing avalanches down the flanks. A new lava flow reached 800 m down the Seca ravine.

Figure (see Caption) Figure 116. Examples of small ash plumes at Fuego on 21 February and 12 March 2019. Courtesy of William Chigna, CONRED (top) and CONRED (bottom).

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Rudiger Escobar Wolf, Michigan Technologicla University, 630 Dow Environmental Sciences, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: https://www.mtu.edu/geo/department/staff/wolf.html); William Chigna, CONRED (URL: https://twitter.com/william_chigna); BBC News (URL: https://www.bbc.com; https://www.bbc.com/news/world-latin-america-46261168?intlink_from_url=https://www.bbc.com/news/topics/c4n0j0d82l0t/guatemala-volcano&link_location=live-reporting-story); European Pressphoto Agency (URL: http://www.epa.eu/); Agence France-Presse (URL: http://www.afp.com/).


Stromboli (Italy) — March 2019 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Constant explosions from both crater areas during November 2018-February 2019

Nearly constant fountains of lava at Stromboli have served as a natural beacon in the Tyrrhenian Sea for at least 2,000 years. Eruptive activity at the summit consistently occurs from multiple vents at both a north crater area (N Area) and a southern crater group (CS Area) on the Terrazza Craterica at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the island. Thermal and visual cameras that monitor activity at the vents are located on the nearby Pizzo Sopra La Fossa, above the Terrazza Craterica, and at a location closer to the summit craters.

Eruptive activity from November 2018 to February 2019 was consistent in terms of explosion intensities and rates from both crater areas at the summit, and similar to activity of the past few years (table 5). In the North Crater area, both vents N1 and N2 emitted a mixture of coarse (lapilli and bombs) and fine (ash) ejecta; most explosions rose less than 80 m above the vents, some reached 150 m. Average explosion rates ranged from 4 to 21 per hour. In the CS crater area continuous degassing and occasional intense spattering were typical at vent C, vent S1 was a low-intensity incandescent jet throughout the period. Explosions from vent S2 produced 80-150 m high ejecta of ash, lapilli and bombs at average rates of 3-16 per hour. Thermal activity at Stromboli was actually higher during November 2018-February 2019 than it had been in previous months as recorded in the MIROVA Log Radiative Power data from MODIS infrared satellite information (figure 139).

Table 5. Summary of activity levels at Stromboli, November 2018-February 2019. Low intensity activity indicates ejecta rising less than 80 m and medium intensity is ejecta rising less than 150 m. Data courtesy of INGV.

Month N Area Activity CS Area Activity
Nov 2018 Low- to medium-intensity explosions at both N1 and N2, lapilli and bombs mixed with ash, explosion rates of 6-16 per hour. Continuous degassing at C; intense spattering on 26 Nov. Low- to medium-intensity incandescent jetting at S1. Low- to medium-intensity explosions at S2 with a mix of coarse and fine ejecta and explosion rates of 3-18 per hour.
Dec 2018 Low- to medium-intensity explosions at both N1 and N2, coarse and fine ejecta, explosion rates of 4-21 per hour. Three days of intense spattering at N2. Continuous degassing at C; intense spattering 1-2 Dec. Low- to medium-intensity incandescent jets at S1, low and medium-intensity explosions of coarse and fine material at S2. Average explosion raters were 10-18 per hour at the beginning of the month, 3-4 per hour during last week.
Jan 2019 Low- to medium-intensity explosions at N1, coarse ejecta. Low- to medium-intensity and spattering at N2, coarse and fine ejecta. Explosion rates of 9-16 per hour. Continuous degassing and low-intensity explosions of coarse ejecta at C. Low-intensity incandescent jets at S1. Low- and medium-intensity explosions of coarse and fine ejecta at S2.
Feb 2019 Medium-intensity explosions with coarse ejecta at N1. Low-intensity explosions with fine ash at N2. Explosion rates of 4-11 per hour. Continuous degassing and low-intensity explosions with coarse and fine ejecta at C and S2. Low intensity incandescent jets at S1. Explosion rates of 2-13 per hour.
Figure (see Caption) Figure 139.Thermal activity at Stromboli increased during November 2018-February 2019 compared with the preceding several months as recorded in the MIROVA project log radiative power data taken from MODIS thermal satellite information. Courtesy of MIROVA.

Activity at the N area was very consistent during November 2018 (figure 140). Explosions of low-intensity (less than 80 m high) to medium-intensity (less than 150 m high) occurred at both the N1 and N2 vents and produced coarse material (lapilli and bombs) mixed with ash, at rates averaging 6-16 explosions per hour. In the SC area continuous degassing was reported from vent C with a brief period of intense spattering on 26 November. At vent S1 low- to medium-intensity incandescent jetting was reported. At vent S2, low- and medium-intensity explosive activity produced a mixture of coarse and fine (ash) material at a frequency of 3-18 events per hour.

Figure (see Caption) Figure 140. The Terrazza Craterica at Stromboli on 12 November 2018 as viewed by the thermal camera placed on the Pizzo sopra la Fossa, showing the two main crater areas and the active vents within each area that are discussed in the text. Heights above the crater terrace, as indicators of intensity of the explosions, are shown divided into three intervals of low (basso), medium (media), and high (alta). Courtesy of INGV (Report 46/2018, Stromboli, Bollettino Settimanale 05/11/2018 - 11/11/2018, data emissione 13/11/2018).

Similar activity continued during December at both crater areas, although there were brief periods of more intense activity. Low- to medium-intensity explosions at both N area vents produced a mixture of coarse and fine-grained material at rates averaging 4-21 per hour. During 6-7 December ejecta from the N vents fell onto the upper part of the Sciara del Fuoco and rolled down the gullies to the coast, producing tongues of debris (figure 141). An explosion at N1 on 12 December produced a change in the structure of the crater area. During 10-16 December the ejecta from the N area landed outside the crater on the Sciara del Fuoco. Intense spattering was observed from N2 on 18, 22, and 31 December. In the CS area, continuous degassing took place at vent C, along with a brief period of intense spattering on 1-2 December. Low to medium intensity incandescent jets persisted at S1 along with low-and medium-intensity explosions of coarse and fine-grained material at vent S2. Rates of explosion at the CS area were higher at the beginning of December (10-18 per hour) and lower during the last week of the month (3-4 per hour).

Figure (see Caption) Figure 141. Images from the Q 400 thermal camera at Stromboli taken on 6 December 2018 showed the accumulation of pyroclastic material in several gullies on the upper part of the Sciara del Fuoco following an explosion at vent N2 at 1520 UTC. The images illustrate the rapid cooling of the pyroclastic material in the subsequent two hours. Courtesy of INGV (Report 50/2018, Stromboli, Bollettino Settimanale, 03/12/2018 - 09/12/2018, data emissione 11/12/2018).

Explosive intensity was low (ejecta less than 80 m high) at vent N1 at the beginning of January 2019 and increased to medium (ejecta less than 150 m high) during the second half of the month, producing coarse ejecta of lapilli and bombs. Intensity at vent N2 was low to medium throughout the month with both coarse- and fine-grained material ejected. Explosions from N2 sent large blocks onto the Sciara del Fuoco several times throughout the month and usually was accompanied by intense spattering. Explosion rates varied, with averages of 9 to 16 per hour, throughout the month in the N area. In the CS area continuous degassing occurred at vent C, and low-intensity explosions of coarse-grained material were reported during the second half of the month. Low-intensity incandescent jets at S1 along with low- and medium-intensity explosions of coarse and fine-grained material at S2 persisted throughout the month.

A helicopter overflight of Stromboli on 8 January 2019 allowed for detailed visual and thermal observations of activity and of the morphology of the vents at the summit (figure 142). Vent C had two small hornitos, and a small scoria cone was present in vent S1, while a larger crater was apparent at S2. In the N crater area vent N2 had a large scoria cone that faced the Sciara del Fuoco to the north; three narrow gullies were visible at the base of the cone (figure 143). Vent S1 was a large crater containing three small vents aligned in a NW-SE trend; INGV scientists concluded the vents formed as a result of the 12 December 2018 explosion. Thermal images showed relatively low temperatures at all fumaroles compared with earlier visits.

Figure (see Caption) Figure 142. Thermal images from Stromboli taken during the overflight of 8 January 2019 showed the morphological structure of the individual vents of the N and CS crater areas. Courtesy of INGV (Report 03/2019, Stromboli, Bollettino Settimanale, 07/01/2019 - 13/01/2019, (data emissione 15/01/2019).
Figure (see Caption) Figure 143. An image taken at Stromboli during the overflight of 8 January 2019 shows the morphological structure of the summit Terrazza Craterica with three gullies at the base of the scoria cone of vent N2. The top thermal image (inset a) shows that the fumaroles in the upper part of the Sciara del Fuoco have low temperatures. Courtesy of INGV (Report 03/2019, Stromboli, Bollettino Settimanale, 07/01/2019 - 13/01/2019, data emissione 15/01/2019).

Activity during February 2019 declined slightly from the previous few months. Explosions at vent N1 were of medium-intensity and produced coarse material (lapilli and bombs). At N2, low-intensity explosions produced fine ash. Average explosion rates in the N area ranged from 4-11 per hour. At the CS area, continuous degassing and low-intensity explosions produced coarse and fine-grained material from vents C and S2 while low-intensity incandescent jets were active at S1. The explosion rates at the CS area averaged 2-13 per hour.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Krakatau (Indonesia) — March 2019 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 813 m

All times are local (unless otherwise noted)


Ash plumes, ballistic ejecta, and lava extrusion during October-December; partial collapse and tsunami in late December; Surtseyan activity in December-January 2019

Krakatau volcano, between Java in Sumatra in the Sunda Straight of Indonesia, is known for its catastrophic collapse in 1883 that produce far-reaching pyroclastic flows, ashfall, and tsunami. The pre-1883 edifice had grown within an even older collapse caldera that formed around 535 CE, resulting in a 7-km-wide caldera and the three surrounding islands of Verlaten, Lang, and Rakata (figure 55). Eruptions that began in late December 1927 (figures 56 and 57) built the Anak Krakatau cone above sea level (Sudradjat, 1982; Simkin and Fiske, 1983). Frequent smaller eruptions since that time, over 40 short episodes consisting of ash plumes, incandescent blocks and bombs, and lava flows, constructed an island reaching 338 m elevation.

Figure (see Caption) Figure 55. The three islands of Verlaten, Lang, and Rakata formed during a collapse event around 535 CE. Another collapse event occurred in 1883, producing widespread ashfall, pyroclastic flows, and triggering a tsunami. Through many smaller eruptions since then, Anak Krakatau has since grown in the center of the caldera. Sentinel-2 natural color (bands 4, 3, 2) satellite image acquired on 16 November 2018, courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Photo sequence (made from a film) at 6-second intervals from the early phase of activity on 24 January 1928 that built the active Anak Krakatau cone above the ocean surface. Plume height reached about 1 km. View is from about 4.5 km away at a beach on Verlaten Island looking SE towards Rakata Island in the right background. Photos by Charles E. Stehn (Netherlands Indies Volcanological Survey) from the E.G. Zies Collection, Smithsonian Institution.
Figure (see Caption) Figure 57. Submarine explosions in January 1928 built the active Anak Krakatau cone above the ocean surface. View is from about 600 m away looking E towards Lang Island in the background. Photos by Charles E. Stehn (Netherlands Indies Volcanological Survey) from the E.G. Zies Collection, Smithsonian Institution.

Historically there has been a lot of confusion about the name and preferred spelling of this volcano. Some have incorrectly made a distinction between the pre-1883 edifice being called "Krakatoa" and then using "Krakatau" for the current volcano. Anak Krakatau is the name of the active cone, but the overall volcano name is simply Krakatau. Simkin and Fiske (1983) explained as follows: "Krakatau was the accepted spelling for the volcano in 1883 and remains the accepted spelling in modern Indonesia. In the original manuscript copy submitted to the printers of the 1888 Royal Society Report, now in the archives of the Royal Society, this spelling has been systematically changed by a neat red line through the final 'au' and the replacement 'oa' entered above; a late policy change that, from some of the archived correspondence, saddened several contributors to the volume."

After 15 months of quiescence Krakatau began a new eruption phase on 21 June 2018, characterized by ash plumes, ballistic ejecta, Strombolian activity, and lava flows. Ash plumes reached 4.9 km and a lava flow traveled down the SE flank and entered the ocean. This report summarizes the activity from October 2018 to January 2019 based on reports by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM), MAGMA Indonesia, the National Board for Disaster Management - Badan Nasional Penanggulangan Bencana (BNPB), the Darwin Volcanic Ash Advisory Center (VAAC), satellite data, and eye witness accounts.

Activity during October-21 December 2018. The eruption continued to eject incandescent ballistic ejecta, ash plumes, and lava flows in October through December 2018. On 22 December a partial collapse of Anak Krakatau began, dramatically changing the morphology of the island and triggering a deadly tsunami that impacted coastlines around the Sunda Straight. Following the collapse the vent was located below sea level and Surtseyan activity produced steam plumes, ash plumes, and volcanic lightning.

Sentinel-2 satellite images acquired through October show incandescence in the crater, lava flows on the SW flank, and incandescent material to the S to SE of the crater (figure 58). This correlates with eyewitness accounts of explosions ejecting incandescent ballistic ejecta, and Volcano Observatory Notice for Aviation (VONA) ash plume reports. The Darwin VAAC reported ash plumes to 1.5-2.4 km altitude that drifted in multiple directions during 17-19 October, but throughout most of October visual observations were limited due to fog. A video shared by Sutopo on 24 October shows ash emission and lava fountaining producing a lava flow that entered the ocean, resulting in a white plume. Video by Richard Roscoe of Photovolcanica shows explosions ejecting incandescent blocks onto the flanks and ash plumes accompanied by volcanic lightning on 25 October.

Figure (see Caption) Figure 58. Sentinel-2 thermal satellite images showing lava flows, incandescent avalanche deposits, and incandescence in the crater of Anak Krakatau during October 2018. Courtesy of Sentinel-2 hub playground.

Throughout November frequent ash plumes rose to 0.3-1.3 km altitude, with explosion durations spanning 29-212 seconds (figure 59). Observations by Øystein Lund Andersen describe explosions ejecting incandescent material with ash plumes and some associated lightning on 17 November (figure 60).

Figure (see Caption) Figure 59. Sentinel-2 satellite images showing ash plumes at Krakatau during 6-16 November 2018. Natural color (Bands 4, 3, 2) Sentinel-2 images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 60. Krakatau erupting an ash plume and incandescent material on 17 November 2018. Courtesy of Øystein Lund Andersen.

During 1-21 December intermittent explosions lasting 46-776 seconds produced ash plumes that rose up to 1 km altitude. Thermal signatures were sporadically detected by various satellite thermal infrared sensors during this time. On 22 December ash plumes reached 0.3-1.5 km through the day and continuous tremor was recorded.

Activity and events during 22-28 December 2018. The following events during the evening of the 22nd were recorded by Øystein Lund Andersen, who was photographing the eruption from the Anyer-Carita area in Java, approximately 47 km from Anak Krakatau. Starting at 1429 local time, incandescence and ash plumes were observed and the eruption could be heard as intermittent 'cannon-fire' sounds, sometimes shaking walls and windows. An increase in intensity was noted at around 1700, when the ash column increased in height and was accompanied by volcanic lightning, and eruption sounds became more frequent (figure 61). A white steam plume began to rise from the shore of the southern flank. After sunset incandescent ballistic blocks were observed impacting the flanks, with activity intensity peaking around 1830 with louder eruption sounds and a higher steam plume from the ocean (figure 62).

Figure (see Caption) Figure 61. Ash plumes at Krakatau from 1429 to 1739 on 22 December 2018. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 62. Krakatau ejecting incandescent blocks and ash during 1823-1859 on 22 December 2018. The top and middle images show the steam plume at the shore of the southern flank. Courtesy of Øystein Lund Andersen.

PVMBG recorded an eruption at 2103. When viewed at 2105 by Øystein Lund Andersen, a dark plume across the area blocked observations of Anak Krakatau and any incandescence (figure 63). At 2127-2128 the first tsunami wave hit the shore and traveled approximately 15 m inland (matching the BNPB determined time of 2127). At approximately 2131 the sound of the ocean ceased and was soon replaced by a rumbling sound and the second, larger tsunami wave impacted the area and traveled further inland, where it reached significant depths and caused extensive damage (figures 64 and 65). After the tsunami, eruption activity remained high and the eruption was heard again during intervals from 0300 through to early afternoon.

Figure (see Caption) Figure 63. Krakatau is no longer visible at 2116 on 22 December 2018, minutes before the first tsunami wave arrived at west Java. A dark ash plume takes up much of the view. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 64. The second tsunami wave arriving at Anyer-Carita area of Java after the Krakatau collapse. This photo was taken at 2133 on 22 December 2018, courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 65. Photographs showing damage caused in the Anyer-Carita area of Java by the tsunami that was triggered by the partial collapse of Krakatau. From top to bottom, these images were taken approximately 40 m, 20 m, and 20 m from the shore on 23 December 2018. Courtesy of Øystein Lund Andersen.

Observations on 23 December reveal steam-rich ash plumes and base surge traveling along the water, indicative of the shallow-water Surtseyan eruption (figure 66). Ashfall was reported on the 26th in several regions including Cilegon, Anyer, and Serang. The first radar observations of Krakatau were on 24 December and showed a significant removal of material from the island (figure 67). At 0600 on the 27th the volcanic alert level was increased from II to III (on a scale of I-IV) and a VONA with Aviation Color Code Red reported an ash plume to approximately 7 km altitude that dispersed to the NE. When Anak Krakatau was visible, Surtseyan activity and plumes were observed through the end of December. On 28 December, plumes reached 200-3000 m. At 0418 the eruption paused and the first observation of the post-collapse edifice was made. The estimated removed volume (above sea level) was 150-180 million m3, leaving a remaining volume of 40-70 million m3. The summit of the pre-collapse cone was 338 m, while the highest point post-collapse was reduced to 110 m. Hundreds of thousands of lightning strokes were detected during 22-28 December with varying intensity (figure 68).

Figure (see Caption) Figure 66. Steam-rich plumes and underlying dark ash plumes from Surtseyan activity at Krakatau on 23 December 2018. Photos by Instagram user @didikh017 at Grand Cava Susi Air, via Sutopo.
Figure (see Caption) Figure 67. ALOS-2 satellite radar images showing Krakatau on 20 August 2018 and 24 December 2018. The later image shows that a large part of the cone of Anak Krakatau had collapsed. Courtesy of Geospatial Information Authority of Japan (GSI) via Sutopo.
Figure (see Caption) Figure 68. Lightning strokes during the eruption of Krakatau within a 20 km radius of the volcano for 30 minute intervals on 23, 25, 26, and 28 December 2018. Courtesy of Chris Vagasky.

Damage resulting from the 22 December tsunami. On the 29 December the damage reported by BNPB was 1,527 heavily damaged housing units, 70 with moderate damage, 181 with light damage, 78 damaged lodging and warung units, 434 damaged boats and ships and some damage to public facilities. Damage was recorded in the five regencies of Pandenglang, Serang, South Lampung, Pesawaran and Tanggamus. A BNPB report on 14 January gave the following figures: 437 fatalities, 10 people missing, 31,943 people injured, and 16,198 people evacuated (figure 69). The eruption and tsunami resulted in damage to the surrounding islands, with scouring on the Anak-Krakatau-facing slope of Rakata and damage to vegetation on Kecil island (figure 70 and 71).

Figure (see Caption) Figure 69. The impacts of the tsunami that was triggered by a partial collapse of Anak Krakatau from an update given on 14 January 2019. Translations are as follows. Korban Meninggal: victims; Korban hilang: missing; Korban luka-luka: injured; Mengungsi: evacuated. The color scale from green to red along the coastline indicates the breakdown of the human impacts by area. Courtesy of BNPB.
Figure (see Caption) Figure 70. Damage on Rakata Island from the Krakatau tsunami. This part of the island is facing Anak Krakatau and the scoured area was estimated to be 25 m high. Photographs taken on 10 January 2019 by James Reynolds.
Figure (see Caption) Figure 71. Damage to vegetation on Kecil island to the East of Krakatau, from the Krakatau December 2018 eruption. Photographs taken on 10 January 2019 by James Reynolds.

Activity during January 2019. Surtseyan activity continued into January 2019. Øystein Lund Andersen observed the eruption on 4-5 January. Activity on 4 January was near-continuous. The photographs show black cock's-tail jets that rose a few hundred meters before collapsing (figure 72), accompanied by white lateral base surge that spread from the vent across the ocean (figure 73), and white steam plumes that were visible from Anyer-Carita, West Java. In the evening the ash-and-steam plume was much higher (figure 74). It was also noted that older pumice had washed ashore at this location and a coating of sulfur was present along the beach and some of the water surface. Activity decreased again on the 5th (figure 75) with a VONA reporting an ash plume to 1.5 km towards the WSW. SO2 plumes were dispersed to the NE, E, and S during this time (figure 76).

Figure (see Caption) Figure 72. Black ash plumes and white steam plumes from the Surtseyan eruption at Krakatau on 4 January 2019. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 73. An expanding base surge at Krakatau on 4 January 2019 at 0911. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 74. Ash-and-steam plumes at Krakatau at 1702-2250 on 4 January 2018. Lightning is illuminating the plume in the bottom image. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 75. Ash plumes at Krakatau on 5 January 2019 at 0935. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 76. Sulfur dioxide (SO2) emissions produced by Krakatau and drifting to the NE, E, and SE on 3-6 January 2018. Dates and times of the periods represented are listed at the top of each image. Courtesy of the NASA Space Goddard Flight Center.

During 5-9 January intermittent explosions lasting 20 seconds to 13 minutes produced ash plumes rising up to 1.2 km and dispersing E. From 11 to 19 January white plumes were observed up to 500 m. Observations were prevented due to fog during 20-31 January. MIROVA thermal data show elevated thermal anomalies from July through January, with a decrease in energy in November through January (figure 77). The radiative power detected in December-January was the lowest since June 2018.

Figure (see Caption) Figure 77. Log radiative power MIROVA plot of MODIS thermal infrared data for June 2018-January 2019. The peaks in energy correlate with observed lava flows. Courtesy of MIROVA.

Morphological changes to Anak Krakatau. Images taken before and after the collapse event show changes in the shoreline, destruction of vegetation, and removal of the cone (figure 78). A TerraSAR-X image acquired on 29 January shows that in the location where the cone and active vent was, a bay had formed, opening to the W (figure 79). These changes are also visible in Sentinel-2 satellite images, with the open bay visible through light cloud cover on 29 December (figure 80).

By 9 January a rim had formed, closing off the bay to the ocean and forming a circular crater lake. Photos by James Reynolds on 11 January show a new crater rim to the W of the vent, which was filled with water (figure 81). Steam and/or gas emissions were emanating from the surface in that area. The southern lava delta surface was covered with tephra, and part of the lava delta had been removed, leaving a smooth coastline. By the time these images were taken there was already extensive erosion of the fresh deposits around the island. Fresh material extended the coast in places and filled in bays to produce a more even shoreline.

Figure (see Caption) Figure 78. Krakatau on 5 August 2018 (top) and on 11 January 2019 showing the edifice after the collapse event. The two drone photographs show approximately the same area. Courtesy of Øystein Lund Andersen (top) and James Reynolds (bottom).
Figure (see Caption) Figure 79. TerraSAR-X radar images showing the morphological changes to Krakatau with the changes outlined in the bottom right image as follows. Red: 30 August 2018 (upper left image); blue: 29 December 2018 (upper right image); yellow: 9 January 2019 (lower left image). Part of the southern lava delta was removed and material was added to the SE and NE to N shoreline. In the 29 December image the cone has collapsed and in its place is an open bay, which had been closed by a new rim by the 9 January. Courtesy of BNPB, JAXA Japan Aerospace Exploration Agency, and Badan Informasi Geospasial (BIG).
Figure (see Caption) Figure 80. Sentinel-2 satellite images showing the changing morphology of Krakatau. The SW section is where the cone previously sat and collapsed in December 2018. In the upper right image the cone and southern lava delta are gone and there are changes to the coastline of the entire island. Natural color (bands 4, 3, 2) Sentinel-2 satellite images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 81. Drone footage of the Krakatau crater and new crater rim taken on 11 January 2019. The island is coated in fresh tephra from the eruption and the orange is discolored water due to the eruption. The land between the crater lake and the ocean built up since the collapse and the hot deposits are still producing steam/gas. Courtesy of James Reynolds.
Figure (see Caption) Figure 82. An aerial view of Krakatau with the new crater on 13 January 2019. Courtesy of BNPB.

References. Simkin, T., and Fiske, R.S., 1983, Krakatau 1883: the volcanic eruption and its effects: Smithsonian Institution Press, Washington DC, 464 p. ISBN 0-87474-841-0.

Sudradjat (Sumartadipura), A., 1982. The morphological development of Anak Krakatau Volcano, Sunda Straight. Geologi Indonesia, 9(1):1-11.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN ); Geospatial Information Authority of Japan (GSI), 1 Kitasato, Tsukuba, Ibaraki 305-0811, Japan. (URL: http://www.gsi.go.jp/ENGLISH/index.html); Badan Informasi Geospasial (BIG), Jl. Raya Jakarta - Bogor KM. 46 Cibinong 16911, Indonesia. (URL: http://www.big.go.id/atlas-administrasi/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); JAXA | Japan Aerospace Exploration Agency, 7-44-1 Jindaiji Higashi-machi, Chofu-shi, Tokyo 182-8522 (URL: https://global.jaxa.jp/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com/krakatau-volcano-witnessing-the-eruption-tsunami-22december2018/); James Reynolds, Earth Uncut TV (Twitter: @EarthUncutTV, URL: https://www.earthuncut.tv/, YouTube: https://www.youtube.com/channel/UCLKYsEXfI0PGXeKYL1KV7qA); Chris Vagasky, Vaisala Inc., Louisville, Colorado (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman).


Masaya (Nicaragua) — March 2019 Citation iconCite this Report

Masaya

Nicaragua

11.984°N, 86.161°W; summit elev. 635 m

All times are local (unless otherwise noted)


Lava lake persists with decreased thermal output, November 2018-February 2019

Nicaragua's Volcan Masaya has an intermittent lava lake that has attracted visitors since the time of the Spanish Conquistadores; tephrochronology has dated eruptions back several thousand years. The unusual basaltic caldera has had historical explosive eruptions in addition to lava flows and an actively circulating lava lake. An explosion in 2012 ejected ash to several hundred meters above the volcano, bombs as large as 60 cm fell around the crater, and ash fell to a thickness of 2 mm in some areas of the park. The reemergence of the lava lake inside Santiago crater was reported in December 2015. By late March 2016 the lava lake had grown and intensified enough to generate a significant thermal anomaly signature which has varied in strength but continued at a moderate level into early 2019. Information for this report, which covers the period from November 2018 through February 2019, is provided by the Instituto Nicareguense de Estudios Territoriales (INETER) and satellite -based imagery and thermal data.

The lava lake in Santiago Crater remained visible and active throughout November 2018 to February 2019 with little change from the previous few months (figure 70). Seismic amplitude RSAM values remained steady, oscillating between 10 and 40 RSAM units during the period.

Figure (see Caption) Figure 70. A small area of the lava lake inside Santiago Crater at Masaya was visible from the rim on 25 November 2018 (left) and 17 January 2019 (right). Left image courtesy of INETER webcam; right image courtesy of Alun Ebenezer.

Every few months INETER carries out SO2 measurements by making a transect using a mobile DOAS spectrometer that samples for gases downwind of the volcano. Transects were done on 9-10 October 2018, 21-24 January 2019, and 18-21 February 2019 (figure 71). Average values during the October transect were 1,454 tons per day, in January they were 1,007 tons per day, and in February they averaged 1,318 tons per day, all within a typical range of values for the last several months.

Figure (see Caption) Figure 71. INETER carries out periodic transects to measure SO2 from Masaya with a mobile DOAS spectrometer. Transects taken along the Ticuantepe-La Concepcion highway on 9-10 October 2018 (left) and 21-24 January 2019 (right) showed modest levels of SO2 emissions downwind of the summit. Courtesy of INETER (Boletín Sismos y Volcanes de Nicaragua. Octubre 2018 and Enero 2019).

During a visit by INETER technicians in early November 2018, the lens of the Mirador 1 webcam, that had water inside it and had been damaged by gases, was cleaned and repaired. During 21-24 January 2019 INETER made a site visit with scientists from the University of Johannes Gutenberg in Mainz, Germany, to measure halogen species in gas plumes, and to test different sampling techniques for volcanic gases, including through spectroscopic observations with DOAS equipment, in-situ gas sampling (MultiGAS, denuders, alkaline traps), and using a Quadcopter UAV (drone) sampling system.

Periodic measurements of CO2 from the El Comalito crater have been taken by INETER for many years. The most recent observations on 19 February 2019 indicated an emission rate of 46 +/- 3 tons per day of CO2, only slightly higher than the average value over 16 measurements between 2008 and 2019 (figure 72).

Figure (see Caption) Figure 72. CO2 measurements taken at Masaya on 19 February 2019 were very close to the average value measured during 2008-2019. Courtesy of INETER (Boletín Sismos y Volcanes de Nicaragua, Febrero 2019).

Satellite imagery (figure 73) and in-situ thermal measurements during November 2018-February 2019 indicated constant activity at the lava lake and no significant changes during the period. On 14 January 2019 temperatures were measured with the FLIR SC620 thermal camera, along with visual observations of the crater; abundant gas was noted, and no explosions from the lake were heard. The temperature at the lava lake was measured at 107°C, much cooler than the 340°C measured in September 2018 (figure 74).

Figure (see Caption) Figure 73. Sentinel-2 satellite imagery (geology, bands 12, 4, and 2) clearly indicated the presence of the active lava lake inside Santiago crater at Masaya during November 2018-February 2019. North is to the top, and the Santigo crater is just under 1 km in diameter for scale. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 74. Thermal measurements were made at Masaya on 14 January 2019 with a FLIR SC620 thermal camera that indicated temperatures over 200°C cooler than similar measurements made in September 2018.

Thermal anomaly data from satellite instruments also confirmed moderate levels of ongoing thermal activity. The MIROVA project plot indicated activity throughout the period (figure 75), and a plot of the number of MODVOLC thermal alerts by month since the lava lake first appeared in December 2015 suggests constant activity at a reduced thermal output level from the higher values in early 2017 (figure 76).

Figure (see Caption) Figure 75. Thermal anomalies remained constant at Masaya during November 2018-February 2019 as recorded by the MIROVA project. Courtesy of MIROVA.
Figure (see Caption) Figure 76. The number of MODVOLC thermal alerts each month at Masaya since the lava lake first reappeared in late 2015 reached its peak in early 2017 and declined to low but persistent levels by early 2018 where they have remained for a year. Data courtesy of MODVOLC.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras pyroclastic shield volcano and is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The twin volcanoes of Nindirí and Masaya, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6500 years ago. Historical lava flows cover much of the caldera floor and have confined a lake to the far eastern end of the caldera. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals cause health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Alun Ebenezer (Twitter: @AlunEbenezer, URL: https://twitter.com/AlunEbenezer).


Santa Maria (Guatemala) — March 2019 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Daily explosions cause steam-and-ash plumes and block avalanches, November 2018-February 2019

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing and actively erupting since 1922. The youngest of the four vents in the complex, Caliente, has been erupting with ash explosions, pyroclastic, and lava flows for more than 40 years. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Daily explosions of steam and ash also continued during November 2018-February 2019, the period covered in this report, with information primarily from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center).

Activity at Santa Maria continued with little variation from previous months during November 2018-February 2019. Plumes of steam with minor magmatic gases rose continuously from the Caliente crater 100-500 m above the summit, generally drifting SW or SE before dissipating. In addition, daily explosions with varying amounts of ash rose to altitudes of around 2.8-3.5 km and usually extended 20-30 km before dissipating. Most of the plumes drifted SW or SE; minor ashfall occurred in the adjacent hills almost daily and was reported at the fincas located within 15 km in those directions several times each month. Continued growth of the Caliente lava dome resulted in daily block avalanches descending its flanks. The MIROVA plot of thermal energy during this time shows a consistent level of heat flow with minor variations throughout the period (figure 89).

Figure (see Caption) Figure 89. Persistent thermal activity was recorded at Santa Maria from 6 June 2018 through February 2019 as seen in the MIROVA plot of thermal energy derived from satellite thermal data. Daily explosions produced ash plumes and block avalanches that were responsible for the continued heat flow at the volcano. Courtesy of MIROVA.

During November 2018 steam plumes rose to altitudes of 2.8-3.2 km from Caliente summit, usually drifting SW, sometimes SE. Several ash-bearing explosions were reported daily, rising to 3-3.2 km altitude and also drifting SW or SE. The highest plume reported by INSIVUMEH rose to 3.4 km on 25 November and drifted SW. The Washington VAAC reported an ash emission on 9 November that rose to 4.3 km altitude and drifted W; it dissipated within a few hours about 35 km from the summit. On 11 November another plume rose to 4.9 km altitude and drifted NW. INSIVUMEH issued a special report on 2 November noting an increase in block avalanches on the S and SE flanks, many of which traveled from the crater dome to the base of the volcano. Nearly constant avalanche blocks descended the SE flank of the dome and occasionally traveled down the other flanks as well throughout the month. They reached the bottom of the cone again on 29 November. Ashfall was reported around the flanks more than once every week and at Finca Florida on 12 November. Finca San Jose reported ashfall on 11, 13, and 23 November, and Parcelamiento Monte Claro reported ashfall on 15, 24, 25, and 27 November.

Constant degassing from the Caliente dome during December 2018 formed white plumes of mostly steam that rose to 2.6-3.0 km altitude during the month. Weak explosions averaging 9-13 per day produced gray ash plumes that rose to 2.8-3.4 km altitude. The Washington VAAC reported an ash emission on 4 December that extended 25 km SW of the summit at 3.0 km altitude and dissipated quickly. Small ash plumes were visible in satellite imagery a few kilometers WNW on 8, 12, 30, and 31 December at 4.3 km altitude; they each dissipated within a few hours. Ashfall was reported in Finca Monte Claro on 1 and 4 December, and in San Marcos Palajunoj on 26 and 30 December along with Loma Linda. On 28 December ashfall on the E flank affected the communities of Las Marías, Calahuache, and El Nuevo Palmar. Block avalanches occurred daily, sending large blocks to the base of the volcano that often stirred up small plumes of ash in the vicinity (figure 90).

Figure (see Caption) Figure 90. Activity during December 2018 at Santa Maria included constant degassing of steam plumes, weak explosions with ash plumes, and block avalanches rolling down the flanks to the base of the cone. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Diciembre 2018).

Multiple explosions daily during January 2019 produced steam-and-ash plumes (figure 91). Constant degassing rising 10-500 m emerged from the SSE part of the Caliente dome, and ashfall, mainly on the W and SW rim of the cone, was a daily feature. Seismic station STG-3 detected 10-18 explosions per day that produced ash plumes, which rose to between 2.7 and 3.5 km altitude. The Washington VAAC noted a faint ash emission in satellite imagery on 1 January that was about 25 km W of the summit at 4.3 km altitude. A new emission appeared at the same altitude on 4 January about 15 km NW of the summit. A low-density emission around midday on 5 January produced an ash plume that drifted NNE at 4.6 km altitude. Ash plumes drifted W at 4.3 km altitude on 11 and 14 January for short periods of time before dissipating.

Figure (see Caption) Figure 91. Explosions during January produced numerous steam-and-ash plumes at the Santiaguito complex of Santa Maria. A moderate explosion on 31 January 2019 produced an ash plume that rose to about 3.1 km altitude (top). A thermal image and seismograph show another moderate explosion on 18 January 2019 that also rose nearly vertically from the summit of Caliente. Courtesy of INSIVUMEH (Informe mensual de actividad Volcanica enero 2019, Volcan Santiaguito).

Ash drifted mainly towards the W, SW, and S, causing ashfall in the villages of San Marcos Palajunoj, Loma Linda, Monte Bello, El Patrocinio, La Florida, El Faro, Patzulín and a few others several times during the month. The main places where daily ashfall was reported were near the complex, in the hilly crop areas of the El Faro and San José Patzulín farms (figure 92). Blocks up to 3 m in diameter reached the base of the complex, stirring up ash plumes that settled on the immediate flanks. Juvenile material continued to appear at the summit of the dome during January; the dome had risen above the edge of the crater created by the explosions of 2016. Changes in the size and shape of the dome between 23 November 2018 and 13 January 2019 showed the addition of material on the E and SE side of the dome, as well as a new effusive flow that travelled 200-300 m down the E flank (figure 93).

Figure (see Caption) Figure 92. Near-daily ashfall affected the coffee plants at the El Faro and San José Patzulín farms (left) at Santiaguito during January 2019. Large avalanche blocks descending the flanks, seen here on 23 January 2018, often stirred up smaller ash plumes that settled out next to the cone. Courtesy of INSIVUMEH (Informe mensual de actividad Volcanica enero 2019, Volcan Santiaguito).
Figure (see Caption) Figure 93. A comparison of the growth at the Caliente dome of the Santiaguito complex at Santa Maria between 23 November 2018 (top) and 13 January 2019 (bottom) shows the emergence of juvenile material and a 200-300 m long effusive flow that has moved slowly down the E flank. Courtesy of INSIVUMEH (Informe mensual de actividad Volcanica enero 2019, Volcan Santiaguito).

Persistent steam rising 50-150 m above the crater was typical during February 2019 and accompanied weak and moderate explosions that averaged 12 per day throughout the month. White and gray ash plumes from the explosions rose to 2.8-3.3 km altitude; daily block avalanches usually reached the base of the dome (figure 94). Ashfall occurred around the complex, mainly on the W, SW, and NE flanks on a daily basis, but communities farther away were affected as well. The Washington VAAC reported an ash plume on 7 February in visible satellite imagery moving SW from the summit at 4.9 km altitude. The next day a new ash plume was located about 20 km W of the summit, dissipating rapidly, at 4.3 km altitude. Ashfall drifting SW affected Palajuno Monte Claro on 5, 9, 15, and 16 February. Ash drifting E and SE affected Calaguache, Las Marías and surrounding farms on 14 and 17 February, and fine-grained ash drifting SE was reported at finca San José on 21 February.

Figure (see Caption) Figure 94. Activity at the Caliente dome of the Santiaguito complex at Santa Maria included daily ash-and-steam explosions and block avalanches descending the sides of the dome in February 2019. A typical explosion on 2 February 2019 produced an ash plume that rose to about 3 km altitude and drifted SW (left). A block avalanche on 14 February descended the SE flank and stirred up small plumes of ash in the vicinity (right, top); the avalanche lasted for 88 seconds and registered with seismic frequencies between 3.46 and 7.64 Hz (right bottom). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 01 al 08 de febrero de 2019).

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Reventador (Ecuador) — March 2019 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Multiple daily explosions with ash plumes and incandescent blocks rolling down the flanks, October 2018-January 2019

The andesitic Volcán El Reventador lies well east of the main volcanic axis of the Cordillera Real in Ecuador and has historical eruptions with numerous lava flows and explosive events going back to the 16th century. The eruption in November 2002 generated a 17-km-high eruption cloud, pyroclastic flows that traveled 8 km, and several lava flows. Eruptive activity has been continuous since 2008. Daily explosions with ash emissions and ejecta of incandescent blocks rolling hundreds of meters down the flanks have been typical for many years. Activity continued during October 2018-January 2019, the period covered in this report, with information provided by Ecuador's Instituto Geofisico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and infrared satellite data.

Multiple daily reports were issued from the Washington VAAC throughout the entire October 2018-January 2019 period. Plumes of ash and gas usually rose to altitudes of 4.3-6.1 km and drifted about 20 km in prevailing wind directions before either dissipating or being obscured by meteoric clouds. The average number of daily explosions reported by IG-EPN for the second half of 2018 was more than 20 per day (figure 104). The many explosions during the period originated from multiple vents within a large scarp that formed on the W flank in mid-April (BGVN 43:11, figure 95) (figure 105). Incandescent blocks were observed often in the IG webcams; they traveled 400-1,000 m down the flanks.

Figure (see Caption) Figure 104. The number of daily seismic events at El Reventador for 2018 indicated high activity during the first and last thirds of the year; more than 20 explosions per day were recorded many times during October-December 2018, the period covered in this report. LP seismic events are shown in orange, seismic tremor in pink, and seismic explosions with ash are shown in green. Courtesy of IG-EPN (Informe Anual del Volcán El Reventador – 2018, Quito, 29 de marzo del 2019).
Figure (see Caption) Figure 105. Images from IG's REBECA thermal camera showed the thermal activity from multiple different vents at different times during the year (see BGVN 43:11, figure 95 for vent locations). Courtesy if IG (Informe Anual del Volcán El Reventador – 2018, Quito, 29 de marzo del 2019).

Activity during October 2018-January 2019. During most days of October 2018 plumes of gas, steam, and ash rose over 1,000 m above the summit of Reventador, and most commonly drifted W or NW. Incandescence was observed on all nights that were not cloudy; incandescent blocks rolled 400-800 m down the flanks during half of the nights. During episodes of increased activity, ash plumes rose over 1,200 m (8, 10-11, 18-19 October) and incandescent blocks rolled down multiple flanks (figure 106).

Figure (see Caption) Figure 106. Ash emissions rose over 1,000 m above the summit of Reventador numerous times during October 2018, and large incandescent blocks traveled hundreds of meters down multiple flanks. The IG-EPN COPETE webcam that captured these images is located on the S caldera rim. Courtesy of IG Daily Reports (Informe diario del estado del Volcan Reventador, numbers 2018-282, 292, 295, 297).

Similar activity continued during November. IG reported 17 days of the month with steam, gas, and ash emissions rising more than 1,000 m above the summit. The other days were either cloudy or had emissions rising between 500 and 1,000 m. Incandescent blocks were usually observed on the S or SE flanks, generally travelling 400-600 m down the flanks. The Washington VAAC reported a discrete ash plume at 6.1 km altitude drifting WNW about 35 km from the summit on 15 November. The next day, intermittent puffs were noted moving W, and a bright hotspot at the summit was visible in satellite imagery. During the most intense activity of the month, incandescent blocks traveled 800 m down all the flanks (17-19 November) and ash plumes rose over 1,200 m (23 November) (figure 107).

Figure (see Caption) Figure 107. Ash plumes rose over 1,000 m above the summit on 17 days during November 2018 at Reventador, and incandescent blocks traveled 400-800 m down the flanks on many nights. Courtesy of IG Daily Reports (Informe diario del estado del Volcan Reventador, numbers 2018-306, 314, 318, 324).

Steam, gas, and ash plumes rose over 1,200 m above the summit on 1 December. The next day, there were reports of ashfall in San Rafael and Hosteria El Hotelito, where they reported an ash layer about 1 mm thick was deposited on vehicles during the night. Ash emissions exceeded 1,200 m above the summit on 5 and 6 December as well. Incandescent blocks traveled 800 m down all the flanks on 11, 22, 24, and 26 December, and reached 900 m on 21 December. Ash emissions rising 500 to over 1,000 m above the summit were a daily occurrence, and incandescent blocks descended 500 m or more down the flanks most days during the second half of the month (figure 108).

Figure (see Caption) Figure 108. Ash plumes that rose 500 to over 1,000 m were a daily occurrence at Reventador during December 2018. Incandescent blocks traveled as far as 900 m down the flanks as well. Courtesy of IG Daily Reports (Informe diario del estado del Volcan Reventador, numbers 2018-340, 351, 353, 354, 358, 359).

During the first few days of January 2019 the ash and steam plumes did not rise over 800 m, and incandescent blocks were noted 300-500 m down the S flank. An increase in activity on 6 January sent ash-and-gas plumes over 1,000 m, drifting W, and incandescent blocks 1,000 m down many flanks. For multiple days in the middle of the month the volcano was completely obscured by clouds; only occasional observations of plumes of ash and steam were made, incandescence seen at night through the clouds confirmed ongoing activity. The Washington VAAC reported continuous ash emissions moving SE extending more than 100 km on 12 January. A significant explosion late on 20 January sent incandescent blocks 800 m down the S flank; although it was mostly cloudy for much of the second half of January, brief glimpses of ash plumes rising over 1,000 m and incandescent blocks traveling up to 800 m down numerous flanks were made almost daily (figure 109).

Figure (see Caption) Figure 109. Even during the numerous cloudy days of January 2019, evidence of ash emissions and significant explosions at Reventador was captured in the Copete webcam located on the S rim of the caldera. Courtesy of IG Daily Reports (Informe diario del estado del Volcan Reventador, number 2019-6, 21, 26, 27).

Visual evidence from the webcams supports significant thermal activity at Reventador. Atmospheric conditions are often cloudy and thus the thermal signature recorded by satellite instruments is frequently diminished. In spite of this, the MODVOLC thermal alert system recorded seven thermal alerts on three days in October, four alerts on two days in November, six alerts on two days in December and three alerts on three days in January 2019. In addition, the MIROVA system measured moderate levels of radiative power intermittently throughout the period; the most intense anomalies of 2018 were recorded on 15 October and 6 December (figure 110).

Figure (see Caption) Figure 110. Persistent thermal activity at Reventador was recorded by satellite instruments for the MIROVA system from 5 April 2018 through January 2019 in spite of frequent cloud cover over the volcano. The most intense anomalies of 2018 were recorded on 15 October and 6 December. Courtesy of MIROVA.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 23, Number 03 (March 1998)

Managing Editor: Richard Wunderman

Arenal (Costa Rica)

Relatively quiet in December but lavas still venting in March

Atmospheric Effects (1995-2001) (Unknown)

Lidar data from Germany and Virginia

Bezymianny (Russia)

Fumarolic plumes observed often

Chiginagak (United States)

Gray clouds and sulfur smell indicate vigorous fumarolic activity

Fournaise, Piton de la (France)

Geophysical portrayal of the March fissure eruptions

Guagua Pichincha (Ecuador)

Series of phreatic explosions during 1997

Irazu (Costa Rica)

The 26-27 December seismic swarm 20 km from summit (220 earthquakes)

Karymsky (Russia)

Gas-and-steam explosions and above-background seismicity

Kilauea (United States)

Steady eruption but low seismicity, sparse surface flows

Klyuchevskoy (Russia)

Earthquakes and frequent fumarolic plumes

Llaima (Chile)

Small explosions, seismicity, and ash output increased during early April 1998

Momotombo (Nicaragua)

Higher-than-normal fumarole temperatures

Negro, Cerro (Nicaragua)

February observations show decreasing fumarole temperatures

Poas (Costa Rica)

Fumarolic vigor, tremor, and earthquakes high during February

Rabaul (Papua New Guinea)

Ash emissions, pyroclastic flows, and inflation during March

Rincon de la Vieja (Costa Rica)

Phreatic eruptions on 15-17 February thrust steam to 2 km

Sheveluch (Russia)

Several gas-and-steam plumes seen during March

Soufriere Hills (United Kingdom)

Heavy ashfalls and rapid dome growth in February

Spurr (United States)

Unusual plume observed from Anchorage

Telica (Nicaragua)

February visit reveals slight increase in fumarolic activity and collapse zone

Turrialba (Costa Rica)

Fumarolic condensate data and monthly earthquakes to March 1998

Villarrica (Chile)

Escalating seismic amplitudes in March prelude to more explosions and ash



Arenal (Costa Rica) — March 1998 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Relatively quiet in December but lavas still venting in March

During December [1997], lavas emitted beginning in September continued to flow down Arenal's W flank. They reached 1,400 m elevation and mass wasting carried some material to as low as 1,000 m elevation. December eruptive rates and intensities were low; also, the number of earthquakes and hours of tremor were both at or near the minimum values seen during the course of the year. This pattern continued into January 1998. Still, on infrequent occasions the active crater (Crater C) discharged plumes reaching at least 1 km in height above the crater.

Lavas vented in late January continued to flow in February, descending to 1,100 m elevation, and branching near 1,300 m elevation to form a new arm directed to the NW down the Tabacón river valley. During March, this new arm flowed down to reach 1,200 m elevation; the main channel extended to 1,000 m elevation; another arm branched off to the W at 1,400 m elevation and descended about 100 m.

Observers noted two pyroclastic flows during January-February. The first reached 1,100 m elevation on the SE flank. The second followed a similar path and reached 900 m elevation.

The number of low-frequency earthquakes (<4.0 Hz) during January and February, while still low, rose more than 25% over the number during December. The hours of tremor during January-February also remained low; during the latter month the dedicated seismic station (VACR) registered only 58 hours, the lowest monthly record in at least two years. During March, seismicity appeared to rise again, but the seismic system only functioned 18 days of the month. During this time the system recorded 80 hours of tremor.

OVSICORI-UNA scientists noted fumarolic activity in crater D as well as acid rain on the volcano's leeward flanks (towards the NW, W, and SE). In these sectors, some species of plants sustained visible leaf damage.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernandez, V. Barboza, R. Van der Laat, R. Saenz, E. Duarte, E. Malavassi, T. Marino, M. Martinez, and E. Hernandez, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Mauricio Mora Fernandez, Sección de Sismologia, Vulcanologia y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, P.O. Box 35-2060, San José, Costa Rica.


Atmospheric Effects (1995-2001) (Unknown) — March 1998 Citation iconCite this Report

Atmospheric Effects (1995-2001)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Lidar data from Germany and Virginia

Table 13 lists atmospheric lidar data from Hampton, Virginia for 8 April 1997 through 26 February 1998, and from Garmisch-Partenkirchen, Germany for 3 November 1997 to 14 April 1998. The aerosol backscatter measured at Hampton on 26 February 1998 shows a typical winter increase in stratospheric aerosol compared to measurements made the previous summer. The increase from summer to winter is generally a function of the difference in tropopause height between the two seasons. In this case there is a significant decrease in integrated stratospheric aerosol compared to measurements obtained during the winter of 1997 (Bulletin v. 22, nos. 1, 3).

Table 13. Lidar data collected for Virginia (April 1997-February 1998) and Germany (November 1997-April 1998) showing altitudes of aerosol layers. Backscattering rations from Hampton are for the ruby wavelength of 0.69 µm; those from Garmisch-Partenkirchen are for the Nd-YAG wavelength of 0.53 µm, with equivalent ruby values in parentheses. The integrated value shows total backscatter, expressed in steradians-1, integrated over 300-m intervals from the tropopause to 30 km for both Virginia and Germany. Courtesy of Mary Osborne and Horst Jäger.

DATE LAYER ALTITUDE (km) (peak) BACKSCATTERING RATIO BACKSCATTERING INTEGRATED
Hampton, Virginia (37.1°N, 76.3°W)
08 Apr 1997 17-27 (20.5) 1.12 5.02 x 10-5
16 Apr 1997 17-27 (19.6) 1.17 6.90 x 10-5
07 May 1997 17-27 (20.3) 1.14 4.90 x 10-5
22 May 1997 15-28 (20.5) 1.13 4.76 x 10-5
11 Jun 1997 15-25 (20.6) 1.12 3.01 x 10-5
15 Jul 1997 15-27 (18.1) 1.14 3.73 x 10-5
01 Aug 1997 15-28 (23.6) 1.11 3.53 x 10-5
05 Sep 1997 14-30 (21.7) 1.11 4.06 x 10-5
26 Feb 1998 12-28 (16.4) 1.10 4.28 x 10-5
Garmisch-Partenkirchen, Germany (47.5°N, 11.0°E)
03 Nov 1997 13-26 (17.4) 1.07 (1.13) --
08 Nov 1997 10-26 (19.9) 1.06 (1.13) --
10 Nov 1997 9-25 (18.9) 1.08 (1.15) --
19 Nov 1997 10-24 (20.3) 1.06 (1.12) --
27 Nov 1997 10-23 (16.0) 1.07 (1.13) --
09 Jan 1998 10-26 (21.9) 1.08 (1.15) --
30 Jan 1998 11-28 (14.7) 1.07 (1.13) --
13 Feb 1998 12-30 (18.1) 1.08 (1.16) --
18 Feb 1998 12-27 (18.3) 1.09 (1.18) --
10 Mar 1998 11-33 (17.3) 1.10 (1.20) --
25 Mar 1998 10-28 (17.0) 1.05 (1.09) --
14 Apr 1998 11-32 (16.3) 1.07 (1.13) --

A graph of integral stratospheric aerosol backscatter (figure 5) shows how the stratospheric aerosol load had declined by the end of 1997 to pre-Pinatubo values. More observations are needed to decide whether a new background level has been reached or will be reached in the near future.

Figure with caption Figure 5. Graph showing the log of the lidar backscatter versus time at Garmisch-Partenkirchen, Germany for the latter two-thirds of 1991 through end-1997. The plotted data are preliminary 532 nm integral values of stratospheric aerosol backscatter (integrated from the tropopause or cirrus to the top of the aerosol layer) versus time. Labeled arrows indicate the eruptions of Pinatubo and Kliuchevskoi. Courtesy of Horst Jäger.

Information Contacts: Mary Osborn, NASA Langley Research Center (LaRC), Hampton, VA 23665 USA; Horst Jäger, Fraunhofer -- Institut für Atmosphärische Umweltforschung, Kreuzeckbahnstrasse 19, D-82467 Garmisch-Partenkirchen, Germany.


Bezymianny (Russia) — March 1998 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Fumarolic plumes observed often

No seismicity registered under the volcano during 2 March-5 April. On 5-7, 10, and 12-14 March, fumarolic plumes rose 50-300 m above the volcano. Fumarolic plumes on 16-20 and 22 March rose 50-200 m above the volcano and moved 5-10 km SSE. On 30-31 March and 1-4 April fumarolic plumes rose 100-500 m above the volcano.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Vladimir Kirianov, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Chiginagak (United States) — March 1998 Citation iconCite this Report

Chiginagak

United States

57.135°N, 156.99°W; summit elev. 2221 m

All times are local (unless otherwise noted)


Gray clouds and sulfur smell indicate vigorous fumarolic activity

When scientists from the Alaska Volcano Observatory (AVO) conducted an overflight to Chiginagak on 11 March, the summit was visible but a thin cloud layer at about 1,700-1,900 m altitude obscured the fumarolic areas. Above the fumaroles, however, bulbous gray clouds penetrated through the thin cloud layer and extended to about 2,100 m altitude.

A strong sulfur smell was noticed 16-49 km downwind of the volcano. The gray clouds and sulfur smell supported observations from Pilot Point (60 km NW) that indicated continued vigorous fumarolic activity. Increased fumarolic activity has been reported at the volcano beginning as early as mid-1997 (BGVN 22:11 and 23:01). According to AVO, the increased activity did not imply an imminent eruption.

Geologic Background. The symmetrical, calc-alkaline Chiginagak stratovolcano located about 15 km NW of Chiginagak Bay contains a small summit crater, which is breached to the south, and one or more summit lava domes. Satellitic lava domes occur high on the NW and SE flanks of the glacier-mantled volcano. An unglaciated lava flow and an overlying pyroclastic-flow deposit extending east from the summit are the most recent products of Chiginagak. They most likely originated from a lava dome at 1687 m on the SE flank, 1 km from the summit of the volcano, which has variably been estimated to be from 2075 to 2221 m high. Brief ash eruptions were reported in July 1971 and August 1998. Fumarolic activity occurs at 1600 m elevation on the NE flank of the volcano, and two areas of hot-spring travertine deposition are located at the NW base of the volcano near Volcano Creek.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Piton de la Fournaise (France) — March 1998 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Geophysical portrayal of the March fissure eruptions

The following is a summary of observations from scientists at the Observatoire du Piton de la Fournaise and Observatoires Volcanologiques (OVPF), Institut de Physique du Globe de Paris, and the Laboratoire des Sciences de la Terre, Université de la Réunion.

Narrative. An eruption broke out on Piton de la Fournaise (PdF) at 1505 on 9 March 1998, after an unusually long period of 63 months rest. PdF (figure 41) had an average eruption rate of more than one per year in the last several decades. For a time three fissure vents were simultaneously active. The eruption continued at one fissure vent (Piton Kapor) at least as late as 20 April 1998.

Figure (see Caption) Figure 41. Schematic map of Piton de la Fournaise showing the 9 and 11-12 March vents, newly named scoria cones and related features, and the extent of lava flows as of 15 March. Courtesy of Thomas Staudacher, OVPF.

Following escalating seismicity seen over the past two years, a seismic swarm developed at 0338 on 9 March (figures 42, 43, 44, and 45). The swarm was under the edifice, centered slightly W of the small Bory crater, a feature that lies immediately W of the larger Dolomieu crater. In the first observation of its kind at PdF, hypocenters progressed towards the surface prior to the eruption (figure 44).

Figure (see Caption) Figure 42. The number of seismic events accumulated annually at Piton de la Fournaise during 1996, 1997, and early 1998 (three separate curves). The seismic swarm at the end of November 1996 was not followed by an eruption. A significant change in the earthquake rate started in July 1997 and accelerated in early 1998. Courtesy of OVPF.
Figure (see Caption) Figure 43. Located earthquakes at Piton de la Fournaise from 1957 on 6 March through 1857 on 10 March (top) and a vertical, E-W cross section showing hypocenters from 0000 on 8 March through 1200 on 9 March (bottom). Coordinates (labeled tic marks) for horizontal distances on the map and cross section are 5 km apart; this scale differs from the vertical scale on the cross section. Courtesy of OVPF.
Figure (see Caption) Figure 44. During the seismic crisis on PdF hypocenters migrated upward during the pre-eruptive 36-hour period shown (0000 on 6 March-1200 on 9 March). This was the first observation of its kind at PdF; pre-eruptive seismicity had usually remained diffusely distributed within the whole edifice. Courtesy of Jean Battaglia and Nelly Rousseau, OVPF.
Figure (see Caption) Figure 45. Pre-eruptive earthquake counts at Piton de la Fournaise and seismic moments for 8-9 March 1998 (times are GMT). Noteworthy points are labeled as follows: at A, focal depths of the volcano-tectonic events started at ~5 km below sea-level; at B they reached 3 km; at C, 2 km; and at D, 1 km. At E, there occurred the first long-period (near 1 Hz) event since 1993. Venting started at 1505 (1105 GMT). Courtesy of OVPF.

The summit deformed rapidly beginning around 1400. An example of clear and sudden inflation appears in figure 46, documenting changes in radial and tangential inflation at station "Bory." Another multi-component station ("Soufriere"; immediately N of Dolomieu crater) underwent similarly rapid, though larger amplitude, displacement beginning at 1410 and peaking at 1424 to 1429 (undergoing up to 200 µrad of tilt). Inflation at Soufriere station indicated migration of magma towards the N eruptive fissures. Surface venting started there at 1505.

Figure (see Caption) Figure 46. Ground deformation at the summit of Piton de la Fournaise on 9 March during 1200-1700 (0800-1300 GMT). Surface venting began at 1505 (1105 GMT). The Bory two-component inclinometer, ~200 m S of Bory crater, measures tilt aligned radial and tangential to the volcano. The rapid inflation at 1011 GMT was linked to near-surface dike emplacement. Contact the authors for collateral inclinometer and extensometer data at other summit stations. Courtesy of OVPF.

EDM and GPS measurements showed concordant displacements at points around the summit (figures 47 and 48). The time-sequence of EDM data indicated that essentially all deformation occurred at the time of eruption. Consistent with the deformation, eruptive fissures developed between the reflectors to the NE and NW of the summit.

Figure (see Caption) Figure 47. Automated electronic distance meter (EDM) measurements at Piton de la Fournaise taken from an instrument on the NW rim of the Enclos Fouqué caldera (star, labeled 1B10). The EDM computed distances and azimuths to 13 reflectors (triangles) on the flanks of the terminal cone. The numbers indicate centimeters of total displacement between 1000 and 1400 GMT on 9 March. Weather permitting, these measurements were made every hour and telemetered to the observatory in near real-time. Only reflectors E of the fissures underwent measurable relative motion, moving E up to 34 cm. Courtesy of OVPF.
Figure (see Caption) Figure 48. GPS measurements at Piton de la Fournaise showing horizontal displacements in centimeters from GPS positioning in November 1997 and 15 March 1998. Courtesy of OVPF.

At 1505 on 9 March tilt on the northern summit inclinometer reversed and seismic tremor commenced, indicating the final stages of dyke emplacement and the onset of venting. Although at the time, bad weather impaired visual observation, venting was recognized, starting on a 150-m-long N-S fissure around 2,450 m elevation on the N flank of the terminal cone (figure 41). The fissure system quickly developed in an en echelon pattern stretching downslope to approximately 2,100 m elevation. Major venting migrated to the fissure's lower stretches where lava fountaining up to 50 m high fed a flow that descended E (towards an area of the N caldera called the Plaine des Osmondes). Vigorous venting continued through the night of 9 March.

A few discrete seismic events were observed through the tremor during the next two days (10-11 March). The approximate locations of the events were SW of Bory crater. During 10-11 March venting continued in the N along two 100-m-long fissures. At the time, scientists lacked visual observations of the flow front due to cloud cover. Earthquakes at Piton de la Fournaise generally cease after an eruption has broken out, but in this case they continued, hence the impending opening of a new eruption fissure was forecast for the next few hours or days.

In accord with this forecast, during the night of 11 March until 0245 the next morning, a new, isolated eruptive fissure opened WSW of the Bory crater. The vent established itself S of the other erupting fissures, at ~2,200 m elevation (figure 41). Although lava escaped at a much lower rate here than along the northern vents, this southern fissure emitted lava along a zone ~100 m in length. Fountaining lava reached ~10 m high and fed a flow that by 0800 on 11 March had traveled 200-300 m downslope.

During the following days, eruptions continued at both the two northern fissures as well as the southern fissure. Estimated emission rates on the N were 30-50 m3/s and on the S at 5-10 m3/s. Issuing from the northern fissures, E-traveling lava descended to ~1,100 m elevation by 15 March. Here, ~4 km away from the vents, the flow front became stationary. Around the same time, lava issuing at the southern fissure reached an estimated length of 1,500 m. Maximum lava temperatures reached 1,167°C at the northern vents and 1,157°C at the southern vent.

Venting was progressively restricted to limited stretches of the three fissures where scoria cones started to grow. By 19 March the scoria cones were ~40 m high and 120 m long at the upper-elevation northern site, ~35 m high at the lower-elevation northern site, and 15 m high at the southwestern site.

Features at these cones were designated as the Maurice and Katia Krafft crater, Piton Kapor, and the Fred Hudson crater (figure 41). Activity at the three cones continued, but progressively decreased until venting was restricted to Piton Kapor by 31 March. Piton Kapor was still quite active as of 20 April 1998.

Preliminary petrography indicated that the lavas were mostly aphyric basalts carrying a small but variable number of millimeter-sized olivine crystals. Under the assumption that their composition lay close to the so-called "stationary basalts," modeling indicated that they vented at temperatures close to their liquidus.

Premonitory geophysical observations. Clear-cut long-term observations on the various surveillance networks that signaled an impending eruption were, as is customary at PdF, discrete and few. Increasing seismicity late in 1997 and accelerating in early 1998 were signs that an abnormal situation was developing. However, other crises, albeit of smaller intensities, occurred in November 1996 and July 1997 and did not result in an eruption. Small perturbations were seen on the deformation (inclinometry, geodesy, and extensometry) networks months before the present event but were not interpreted as premonitory. These signs most probably corresponded to magma intrusions within the edifice.

Surveillance network observations. It was only a few hours before the 9 March outbreak that short-term signs definitely signaled an impending eruption and civil authorities were warned of a maximum alert. Critical signs included seismic, tilt, and deformation data (summarized on figures 42 to 48). In addition, a total-field magnetometer network provided clear pre- and syn-eruptive signals that remain under interpretation. Measurements on about 50 of the approximately 100 microgravity-benchmark and GPS-array stations were repeated between 18 and 31 March with two Scintrex CG-3M gravimeters. The array was last surveyed in December 1997. A few stations showed variations of relatively small amplitude. Interpretations must await correction of the elevation changes and comparison with the recordings provided by the two permanent monitoring stations installed in December 1997. Radon stations did not show any unusual pattern either before or during the first stages of the outbreak as was hoped from previous behavior during intrusive events (BGVN 21:12).

The Observatoire Volcanologique du Piton de la Fournaise(OVPF) was built in 1979 after the devastation of the 1977 eruption owing to the financial help of the Institut National des Siences de l'Univers, France. The Observatory became operational in 1980; since then, tens of eruption have been closely observed and, most often, forecast sufficiently in advance to alleviate possible personal and material damages.

Besides the information contacts listed below, report contributors also included Kei Aki, Valérie Ferazzini, Louis-Philippe Ricard, Nelly Rousseau, Jean Battaglia, Nicolas Villeneuve, Philippe Kowalski, Philippe Catherine, Denis Wégerlé, Grégory Durand, Nadia Talibart, Jacques Lebreton, Maolidi Assoumani, Massimo Bonfiglio, Bernard Robineau, Jean-Lambert Join, Eric Delcher, Jean-Luc Folio, Jean-Luc Hoareau, Cécile Savin, Hamidou Nassor, Evelyn Maillot, Jean-Claude Lépine, Martine Hirn-Sapin, Christine Deplus, Pierre Briole, Sylvain Bonvalot, Jacques Zlotnicki, Germinal Gabalda, Philippe Labazuy, Alfred Hirn, Jean-Claude Delmond, Guy Aubert, Michel Diament, and Janine Gouin.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Thomas Staudacher, Observatoire Volcanologique du Piton de la Fournaise (OVPF), 14 RN3, le 27Km, 97418 La Plaine des Cafres, La Réunion, France; Patrick Bachèlery, Département des Sciences de la Terre, Université de la Réunion, BP 7151, 15 Avenue Rene Cassin, 97715 Saint Denis Cedex 9, La Réunion, France; Michel P. Semet and Jean-Louis Cheminée, Observatoires Volcanologiques, Institut de Physique du Globe de Paris, 4 Place Jussieu, 75252 Paris Cedex 05, France (URL: http://www.ipgp.jussieu.fr/).


Guagua Pichincha (Ecuador) — March 1998 Citation iconCite this Report

Guagua Pichincha

Ecuador

0.171°S, 78.598°W; summit elev. 4784 m

All times are local (unless otherwise noted)


Series of phreatic explosions during 1997

During March-October 1997 a series of phreatic explosions took place within Guagua Pichincha's caldera (figure 5). No precursory signals were detected prior to the activity. The intensity of these explosions peaked in May 1997; the last explosive signal was detected on 18 October 1997. This activity resembled phreatic explosions that occurred in 1981, 1990, and 1993.

Figure (see Caption) Figure 5. Monthly counts of explosion signals at Guagua Pichincha detected by Instituto Geofisico seismic stations during 1997. Courtesy of the Instituto Geofisico.

Larger explosions on 15, 16, 18, 20, and 22 May, 22 and 23 July, and 18 October were detected by four short-period seismic stations located around the volcano. Tremor signals following these explosions had reduced displacements of <5 cm2. The largest explosion occurred on 29 May at 0654; its signal was recorded at eight sites, including seismic stations at the volcanoes Cotopaxi (58 km away), Cotacachi (60 km away), and Cayambe (70 km away). The accompanying tremor signal had a reduced displacement of 8.9 cm2. An A-type fracture event located just outside the E caldera rim at 3 km depth preceded the explosion.

Following the 20 May explosion, volcanologists observed two new, white, 250-m-tall fumarolic plumes rising from the explosion crater. The crater showed evidence of recent collapses on its interior S and SW sides. Fine pulverized rock deposits covered more than 2 km2 in the N part of the caldera bottom. Blocks up to 50 cm across were scattered over the caldera floor as far as 1 km from the crater; impact craters up to 2 m in diameter were formed. No juvenile material was found.

During 1997, the number of events at stations close to the caldera remained at normal values except during September-October, when a large number of events were detected at stations 1.0-1.2 km from the crater. However, at stations over 10 km away, the number of events remained at normal values. Low seismicity preceded phreatic activity in 1990 and 1993. The hypocenter locations of high-frequency events were at depths <5 km beneath the caldera floor (figure 6).

Figure (see Caption) Figure 6. Epicenter map (top) and E-W cross-section (bottom) of high-frequency events at Guagua Pichincha during 1997. Courtesy of Instituto Geofisico.

A swarm of 26 local earthquakes (M <3) lasted less than 1 hour on 16 December 1997. This was the first such swarm detected at Guagua Pichincha since continuous seismic monitoring began in 1981. EDM deformation monitoring of the phreatic crater and outer flanks of the dome revealed no change with regard to the baseline established in 1988.

Thermocouple measurements of fumarole temperatures on the dome showed values of 120-120.7°C, the same as during prior measurements in 1995, but lower than those detected in February 1994 (138-139°C). Prior to 1994, fumarole temperatures were constant at 87°C. Analyses of spring water from the caldera and the surrounding area gave essentially the same results as in 1988.

Geologic Background. Guagua Pichincha and the older Pleistocene Rucu Pichincha stratovolcanoes form a broad volcanic massif that rises immediately to the W of Ecuador's capital city, Quito. A lava dome is located at the head of a 6-km-wide breached caldera that formed during a late-Pleistocene slope failure ~50,000 years ago. Subsequent late-Pleistocene and Holocene eruptions from the central vent in the breached caldera consisted of explosive activity with pyroclastic flows accompanied by periodic growth and destruction of the central lava dome. One of Ecuador's most active volcanoes, it is the site of many minor eruptions since the beginning of the Spanish era. The largest historical eruption took place in 1660, when ash fell over a 1000 km radius, accumulating to 30 cm depth in Quito. Pyroclastic flows and surges also occurred, primarily to then W, and affected agricultural activity, causing great economic losses.

Information Contacts: Mario Ruiz Romero, Instituto Geofísico de la Escuela Politécnica Nacional.


Irazu (Costa Rica) — March 1998 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


The 26-27 December seismic swarm 20 km from summit (220 earthquakes)

During 26-27 December a small seismic swarm at Irazú consisted of 220 earthquakes. At the swarm's peak 109 earthquakes occurred in 15 hours. The epicenters fell 20 km NNW of the summit, originating on a local fault. The largest earthquake, at 0154 on 27 December, was M 2.9. It had a focal depth of 5 km and an epicenter 20 km NW of the summit. For comparison, during the months of January, February, and March 1998, the respective counts consisted of 58, 59, and 70 local earthquakes.

During 20 and 22 February seven earthquakes took place, including one of M 2.3 and another of M 1.8. Both of these events had epicenters within 7 km of the summit; their respective focal depths were at 8 km and 1 km.

During January the lake in the active crater remained greenish yellow and lacked bubbling along its shores. These areas were not mentioned as active again during February-March, although the lake's color was later described as light green. The monthly fluctuations in lake level noted for December to March were under a meter. During early 1998 small landslides continued to occur along the crater's N, E, and W walls. During February, fumaroles remained active on the volcano's NW flanks; their visible outputs remained moderate and their temperatures measured 91°C.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: E. Fernandez, V. Barboza, R. Van der Laat, R. Saenz, E. Duarte, E. Malavassi, T. Marino, M. Martinez, and E. Hernandez, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Mauricio Mora Fernandez, Sección de Sismologia, Vulcanologia y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, P.O. Box 35-2060, San José, Costa Rica.


Karymsky (Russia) — March 1998 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Gas-and-steam explosions and above-background seismicity

Seismicity remained above background level during 2 March-5 April and low-level Strombolian activity continued. As many as 70-100 gas-and-ash or gas-and-steam explosions occurred daily. Ash and steam rose 300-400 m above the crater during the first week of March.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Vladimir Kirianov, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry; Tom Miller, Alaska Volcano Observatory.


Kilauea (United States) — March 1998 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Steady eruption but low seismicity, sparse surface flows

The E rift zone eruption at Kilauea remained steady during March. Seismicity was low, little inflation or deflation occurred at the summit, and magma moved through shallow conduits towards the E rift zone without disturbing the ground surface. The eruption has continued in this fashion since a brief surge in January (BGVN 22:12).

On 11 March glowing holes were observed in the Pu`u `O`o crater floor and in the crater vent; however, no lava escaped from the area. Researchers at the University of Hawaii also observed several large fissures and cracks within the cone edifice. Fumes issued from the cracks and surrounding area; during the last two weeks of March, profuse fumes obscured views of the crater vent. Skylights S of Pu`u `O`o cone revealed lava flowing toward the sea.

Although lava continued to travel in tubes from the Pu`u `O`o vent area to the ocean, surface flows have been sparse since early February (BGVN 23:02). Lava broke out of tubes on the Pulama Pali on 2 and 10 March, but both flows lasted less than a day. Small flows issued from weak points in the lava tubes on the coastal plain on 3-7, 10, and 14 March. Most of the breakouts were near the Waha`ula ocean entry.

Kilauea is one of five coalescing volcanoes that comprise the island of Hawaii. Historically its eruptions originated primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the summit caldera to the sea. This latest Kilauea eruption began in January 1983 along the E rift zone. The eruption's early phases, or episodes, occurred along a portion of the rift zone that extends from Napau Crater on the uprift end to ~8 km E on the downrift end. Activity eventually centered on what was later named Pu`u `O`o. More than 223 hectares of new land have been added to the island and local communities have suffered more than $100 million in damages since the beginning of the eruption.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawaii Volcanoes National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/); Ken Rubin and Mike Garcia, Hawaii Center for Volcanology, University of Hawaii, Dept. of Geology & Geophysics, 2525 Correa Rd., Honolulu, HI 96822 USA (URL: http://www.soest.hawaii.edu/GG/hcv.html).


Klyuchevskoy (Russia) — March 1998 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Earthquakes and frequent fumarolic plumes

During 2 March-5 April, seismicity under the volcano remained above background level and earthquakes at 25-30 km depth were recorded. Surface earthquakes were detected on 14 March from 0040-0105.

Fumarolic plumes rose 50-100 m above the volcano on 5, 7, 10, 13-15, 16, 18-20, and 22 March. On 30-31 March, and 1, 3, and 5 April the fumarolic plume rose 50-400 m above the volcano and moved 3-10 km SE. A gas-and-steam plume on 12 March rose 200-1,000 m and traveled more than 5 km ESE. On 17 March, a gas-and-steam plume rose 2-3 km above the volcano and drifted 5-10 km SE.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Vladimir Kirianov, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Llaima (Chile) — March 1998 Citation iconCite this Report

Llaima

Chile

38.692°S, 71.729°W; summit elev. 3125 m

All times are local (unless otherwise noted)


Small explosions, seismicity, and ash output increased during early April 1998

An 8 April 1998 report stated that during the past week Llaima increased its output of small explosions and ash emissions. The amplitude of seismic signals also increased, although the frequency of signals remained fixed at 1.5 Hz. Seismic amplitude (RSAM) values during March averaged about 25% above those of February. Daily RSAM estimates in March jumped to nearly 30 RSAM units on a few days but more frequently only reached about 10 RSAM units. A sample of the seismic record is shown on figure 9.

Figure (see Caption) Figure 10. Sample seismic record at Llaima (Meli station) on 22 April 1998 beginning at 0400. The tic marks are at 1-minute intervals. Courtesy of OVDAS.

Geologic Background. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other, Pichillaima, to the SE. The massive, dominantly basaltic-to-andesitic, stratovolcano has a volume of 400 km3. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following the eruption of the 24 km3 Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7200 years ago, construction of the present edifice began, characterized by Strombolian, Hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century.

Information Contacts: Gustavo Fuentealba1 and Paola Peña S., Observatorio Volcanológico de Los Andes del Sur (OVDAS), Manantial 1710-Carmino del Alba, Temuco, Chile; 1Universidad de La Frontera (UFRO), Departamento Ciencias Fisicas, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.


Momotombo (Nicaragua) — March 1998 Citation iconCite this Report

Momotombo

Nicaragua

12.423°N, 86.539°W; summit elev. 1270 m

All times are local (unless otherwise noted)


Higher-than-normal fumarole temperatures

Measurements during a 28 February visit revealed higher-than-normal fumarolic temperatures in the summit area. The high temperatures were associated with a recent period of aridity, during which time fumarolic activity increased. Temperatures ranged from 318-748°C (figure 7).

Figure (see Caption) Figure 7. Sketch of Momotombo's active crater showing fumarole temperatures on 28 February. Areas of fumarolic activity are gray. View is towards the S; the crater is ~150 m wide. Courtesy of A. Creusot.

Geologic Background. Momotombo is a young stratovolcano that rises prominently above the NW shore of Lake Managua, forming one of Nicaragua's most familiar landmarks. Momotombo began growing about 4500 years ago at the SE end of the Marrabios Range and consists of a somma from an older edifice that is surmounted by a symmetrical younger cone with a 150 x 250 m wide summit crater. Young lava flows extend down the NW flank into the 4-km-wide Monte Galán caldera. The youthful cone of Momotombito forms an island offshore in Lake Managua. Momotombo has a long record of Strombolian eruptions, punctuated by occasional stronger explosive activity. The latest eruption, in 1905, produced a lava flow that traveled from the summit to the lower NE base. A small black plume was seen above the crater after a 10 April 1996 earthquake, but later observations noted no significant changes in the crater. A major geothermal field is located on the south flank.

Information Contacts: Alain Creusot, Instituto Nicaraguense de Energía, Managua, Nicaragua.


Cerro Negro (Nicaragua) — March 1998 Citation iconCite this Report

Cerro Negro

Nicaragua

12.506°N, 86.702°W; summit elev. 728 m

All times are local (unless otherwise noted)


February observations show decreasing fumarole temperatures

A 14 February visit to Cerro Negro's crater revealed a general decrease in fumarole temperatures since Alain Creusot last measured temperatures there on 23 December 1996 (BGVN 21:12). The highest temperature found on his latest visit was 340°C. For comparison, in October 1996 fumarole temperatures were as high as 700°C.

Geologic Background. Nicaragua's youngest volcano, Cerro Negro, was created following an eruption that began in April 1850 about 2 km NW of the summit of Las Pilas volcano. It is the largest, southernmost, and most recent of a group of four youthful cinder cones constructed along a NNW-SSE-trending line in the central Marrabios Range. Strombolian-to-subplinian eruptions at intervals of a few years to several decades have constructed a roughly 250-m-high basaltic cone and an associated lava field constrained by topography to extend primarily NE and SW. Cone and crater morphology have varied significantly during its short eruptive history. Although it lies in a relatively unpopulated area, occasional heavy ashfalls have damaged crops and buildings.

Information Contacts: Alain Creusot, Instituto Nicaraguense de Energía, Managua, Nicaragua.


Poas (Costa Rica) — March 1998 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Fumarolic vigor, tremor, and earthquakes high during February

Poás monthly reports from OVSICORI-UNA since November 1997, and as recently as March, have noted that its N crater lake has remained turquoise green and continued to host rafts of suspended sulfur. The lake's surface normally sits at ~2,300 m elevation. Although during 1997 the lake's surface reached a high stand, it descended during early 1998, dropping 3 m due to lack of rain. Mauricio Mora Fernandez provided plots of the lake water's pH, temperature, sulfate, and chlorine for the past several years (figures 67 and 68). Fernandez also reported that during February 1998 fumarolic activity continued in five areas within the active crater (figure 69). During April, he found a sixth fumarolic area on the dome's N slope.

Figure (see Caption) Figure 67. Water pH and temperature measured in the N crater lake at Poás (right- and left-hand scales, respectively), 1993 to early 1998. The time scale is not linear. OVSICORI-UNA staff collected the lake geochemistry data. Courtesy of M. Mora Fernandez.
Figure (see Caption) Figure 68. Aqueous sulfate and chlorine in the N crater lake at Poás, 1993 to early 1998. Time scale is not linear. OVSICORI-UNA staff collected the lake geochemistry data. Courtesy of M. Mora Fernandez.
Figure (see Caption) Figure 69. The active crater at Poás viewed from the S. Numbers 1-5 correspond to areas with fumaroles active during February 1998; a sixth area, located N of the dome (on the side away from the view, not labeled), became active in April 1998. Courtesy of M. Fernandez.

Area 1, the fumarolic field located at the crater's S end, became active in May 1995 and remained comparatively stable thermally until at least March. During 1997-early 1998, the field extended S, SW, and W within the larger crater. During February 1998, the area's average temperature remained constant at ~92°C; during April, it attained 93°C. Steam and high concentrations of SO2 and Cl gas escaped from the fumaroles; sulfur crystals were deposited around the vents. Mora noted that in the time since the fumaroles appeared, hydrothermal alteration became more rapid and reduced competency of the rock, leading up to two landslides in the area.

In area 2, the field W of the crater lake, a large landslide occurred during February. It took place at a spot where hydrothermal alteration resulted from three fumaroles that sent white gas plumes dominantly toward the SW. More fumaroles sprung up in this field during April.

In area 3, the field at the lake's N end, new fumaroles appeared during roughly the second half of 1997. These continued without important changes through April 1998; their emissions were white and not very vigorous.

In area 4, a field on the dome's E slope, small fumaroles produced white plumes. The emissions were not vigorous but their average February-April temperatures were 92-93°C. Some new fumaroles noted in this area during April had temperatures averaging 93°C.

In areas 5 and 6, fields located respectively on the dome's E and N slopes, vigorous fumaroles gave off mainly white plumes. During April, area 5 plumes had temperatures of 92°C and ascended to tens of meters before dispersing. Area 6, which became active in April, gave off plumes that covered the nearby slope with sulfur deposits.

OVSICORI-UNA reported that the pyroclastic cone in the crater discharged a plume that during January rose 400 m above the crater rim. They also noted that during February the rain collection network located around the active crater yielded samples with increased acidity. During this same month, residents 5.5 km SE of the crater reported occasional sulfur odors.

Seismic data from an OVSICORI-UNA station 2.7 km SW of the active crater revealed a noticeable rise in the duration of tremor during February and March 1998. Tremor generally occurred in discontinuous episodes, although one episode on 21 February carried on for 2.5 hours. Also, an anomalously large number of low-frequency earthquakes took place during February 1998 (figure 70)—a count of this magnitude was last seen in January 1996. In contrast, medium and high frequency earthquakes were not particularly abundant in February or March 1998 (figure 70). Many of the low-frequency earthquakes were attributed to continuous degassing.

Figure (see Caption) Figure 70. Seismicity at Poás during January 1997-March 1998. Number of low-frequency earthquakes and hours of tremor (top); number of high- and medium-frequency earthquakes (bottom). Note that the scales are different. Courtesy of OVSICORI-UNA.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernandez, V. Barboza, R. Van der Laat, R. Saenz, E. Duarte, E. Malavassi, T. Marino, M. Martinez, and E. Hernandez, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Mauricio Mora Fernandez, Sección de Sismologia, Vulcanologia y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, P.O. Box 35-2060, San José, Costa Rica.


Rabaul (Papua New Guinea) — March 1998 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Ash emissions, pyroclastic flows, and inflation during March

Eruptive activity at Tavurvur persisted during March following the 3 February eruption (BGVN 23:02), producing ash emissions, small pyroclastic flows, and relatively low but fluctuating seismicity. Seismicity peaked around20 March, when eruptions became more energetic, and was probably related to near-surface eruptive activity.

Deformation monitoring indicated steady inflation at Tavurvur. Readings from the Sulphur Creek water tube (3.5 km NW of Tavurvur) revealed a change of ~3 µrad tilt away from the volcano during March. Leveling and real-time GPS also showed continuing inflation.

Tavurvur continued to erupt throughout March and emitted ash at intervals of ~10 minutes to several hours; the rapidly convecting column sometimes rose 2-4 km. After emissions had ceased for more than 10-20 minutes, activity would often recommence with explosions that threw large numbers of blocks from the vent. Blocks up to 1 m in diameter were regularly thrown 1 km S and W of the vent, landing out to sea. Large blocks (~3-4 m across) littered the rim and upper slopes of Tavurvur, probably produced during larger-than-usual explosions on 7 and 8 March.

The 8 March explosion sent red oxide-covered lava blocks and boulders over the S crater rim and down the S flank of Tavurvur, where the flow traveled ~1 km. This mass was described as being "pushed" from the vent immediately prior to the explosion. At other times the ash plume underwent partial column collapse and sent short, billowing flows randomly down the cone's flanks. The flows deposited light gray dust ~50-150 m downslope in well-defined tongues.

During 18-26 March night glow became more evident; occasionally lava fountains sent glowing fragments 200-300 m above the crater rim for up to 5 minutes at a time. During 26-31 March intermittent ash emissions with discrete explosions after longer periods of quiescence resumed.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ben Talai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Rincon de la Vieja (Costa Rica) — March 1998 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Phreatic eruptions on 15-17 February thrust steam to 2 km

Beginning at 1428 on 15 February, Rincón de la Vieja volcano discharged phreatic eruptions from the main crater. Ten eruptions took place in the first 15 hours of activity; only two followed in the subsequent 13 hours. During the course of the outburst subsidiary fumarolic activity also became more vigorous; it remained elevated until 18 February.

During 15-17 February numerous steam plumes rose hundreds of meters above the volcano. On 17 February one outburst sent a steam plume to a height of 2 km above the crater. This plume was seen by residents on the N and NE flanks of the volcano. A dozen eruptions around this time were small and lacked associated mudflows. An exception, at 0514 on 16 February, produced a modest mudflow that traveled about 9 km/hour and left a capping deposit of mud 30-cm thick in the upper reaches of the Pénjamo and Azul rivers. Rivers had been low in the region, attributed to the El Niño phenomena, with the result that the mudflow was relatively dry. The mudflow had a large impact on local fish and other stream organisms. Sediment from the mudflow was found 12.3 km from the main crater.

Inspecting the 16 February deposit near the summit on 1 March, scientists inferred from the scorching, burning, and other damage to vegetation on the NE flanks that there must have been several smaller eruptions around that time as well. Mudflows failed to develop due to the paucity of surface water in local drainages.

The 1 March visit also revealed the lake's temperature, 48°C, its color, light gray, the presence of suspended sulfur in the lake, and a haze of condensed gases above the lake. An outgassing fumarole on the SW wall made loud hissing noises (similar to gases exiting a high pressure valve) audible from the crater's rim. Columns of gas rose about 200 m above the crater before being blown E. Those inspecting the scene noted strong sulfurous odors, and experienced irritated skin and eyes. The material erupted was uniformly fine- to medium-grained, lacking either bombs, blocks, or impact craters. This contrasted with deposits left by previous eruptions in 1991 and 1995.

The local seismic station (RIN3) lies 5 km SW of the active crater. The station registered microearthquakes as follows: during January, 18 (including 3 of high frequency and 9 of low frequency); during February, 48 (including 1 of high frequency, 21 of low frequency); during March, 7. In assessing their records of the 48 February microearthquakes, seismologists recognized 20 eruptions including 11 comparatively high-intensity phreatic eruptions mainly registered on 15-18 February. Banded tremor occurred on 15 and 16 February during the main eruptive interval; the tremor prevailed for a total of ~6.5 hours. Low in frequency, the tremor had amplitudes that ranged between 1.0 and 37 mm. The larger amplitude registered during the eruption's initial phase, at 1428 on 15 February. Tremor amplitudes later declined to the 1-4 mm range. As with the 1991 and 1995 eruptions, seismic precursors were absent.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernandez, V. Barboza, R. Van der Laat, R. Sáenz, E. Duarte, E. Malavassi, T. Marino, M. Martinez, and E. Hernandez, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Mauricio Mora Fernandez, Sección de Sismologia, Vulcanologia y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, P.O. Box 35-2060, San José, Costa Rica.


Sheveluch (Russia) — March 1998 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Several gas-and-steam plumes seen during March

Seismicity was about at background level during 2 March-5 April. Gas-and-steam plumes rose 100 m above the volcano on 7 and 13-15 March. On 16-18, 22, and 30-31 March, and 1 and 3 April, gas-and-steam plumes rose 100-500 m above the volcano. Clouds obscured observations of the volcano on several days in early April.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Vladimir Kirianov, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Soufriere Hills (United Kingdom) — March 1998 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Heavy ashfalls and rapid dome growth in February

This report condenses Scientific Reports of the Montserrat Volcano Observatory (MVO) covering February. During 1-14 February, seismic activity increased, heavy ashfalls reached the N part of the island, and dome growth continued. Activity during 15-28 February was dominated by rapid dome growth and elevated seismicity.

Visual observations. Low clouds during the first two weeks of February often hampered dome observations. However, on 6 February observers on a police boat reported continued growth in the 26 December collapse scar above the White River. By 10 February the growing dome almost completely filled the 26 December scar, approaching the volume prior to the collapse. In addition, two spines were observed on the dome's S side, and the talus slope below the growth area had grown considerably. Steam-and-ash venting continued and was vigorous during periods of elevated seismicity and rockfall.

Rockfalls and small pyroclastic flows occurred mainly on the Galways side of the dome, but a few small rockfalls were observed in the upper part of Tuitt's Ghaut. Fresh pyroclastic-flow deposits in the upper part of the White River were probably emplaced during the elevated activity of 5-6 February.

On 15 February several rockfalls and small pyroclastic flows traveled down the White River valley. Visibility was poor until 25 February when vigorous ash venting, rockfalls in the White River valley, and several stubby spines atop the dome were observed.

Seismicity. Earthquake activity during 1-14 February mainly consisted of rockfalls and hybrid earthquakes with some tremor. Most swarm events, including 21 locatable volcano-tectonic earthquakes, were concentrated below the dome complex's N sector and had shallow focal depths (2-4 km below the summit). During 15-28 February fewer rockfalls but comparatively more earthquakes and seismic swarms (table 27) occurred than in preceding weeks. The swarms were not followed by surface activity.

Table 27. Number of hybrid, long-period (LP), and volcano-tectonic (VT) events detected during earthquake swarms at Soufriere Hills during February 1998. Courtesy of MVO.

Date Start time Duration (hours) Hybrid Long-period Volcano-tectonic
10 Feb 1998 1154 2.40 21 3 12
11 Feb 1998 1402 2.93 15 3 13
11 Feb 1998 2319 0.40 1 -- 7
17 Feb 1998 0452 2.42 10 0 4
21 Feb 1998 1853 6.48 31 3 8
23 Feb 1998 0823 3.90 11 5 9
23 Feb 1998 1350 1.78 14 1 1
24 Feb 1998 2138 1.87 13 2 1
25 Feb 1998 1059 2.95 17 3 0
26 Feb 1998 0536 5.36 82 2 33
27 Feb 1998 1312 13.12 24 0 0
28 Feb 1998 1033 10.33 28 0 1
28 Feb 1998 1457 14.57 48 0 4

At the beginning of February, seismicity displayed a cyclic pattern with peak amplitudes occurring every 6-8 hours; by 14 February, the cycle had lengthened to 8-12 hours. By 22 February, the cycle was ~14 hours long. Peak amplitudes increased during 1-14 February; these peaks generally coincided with elevated rockfall activity. Towards the end of February, the peaks were dominated by hybrid earthquakes and tremor.

Ground deformation. Two GPS occupations of LEESNET (includes sites at Old Towne, Waterworks, St. Georges Hill, and Lees Yard) were made during 1-14 February. No movement within this network was detected. Meanwhile, GPS surveys at Harris, Hermitage, Lees Yard, Perches, St. Georges Hill, Old Towne, Blakes, and Lookout Yard North confirmed that the Hermitage and Perches sites continued to move NNE. Sites on the volcano's N and NW flanks remained relatively stable.

Electronic tiltmeters were installed at Hermitage and on Gages Mountain to provide data on deformation of the volcano's NE flank. The EDM reflector on the N crater wall (Peak B) was shot from Windy Hill during 15-28 February. During 25 January-late February a 5-cm shortening occurred on this line. Lines between the Lees Yard reflector and sites at MVO south and the Waterworks Estate did not show any movement.

Volume measurements. A 10 February theodolite survey of the dome from Garibaldi Hill and the Delta petrol station revealed that the dome's highest point was 970 m. On 27 February, theodolite measurements from Garibaldi Hill and the old observatory in Old Towne showed that the highest point on the dome had reached 997 m. More theodolite measurements on 1 March from South Soufriere Hills and Perches Mountain gave a height of 1011 m, revealing 14 m of vertical growth in only 2 days.

Environmental monitoring. Sulfur dioxide diffusion tube measurements during 1-14 February showed raised (10-12 ppb) SO2 levels in Plymouth and at St. Georges Hill and low (0-0.6 ppb) levels at Weekes, MVO south, and Lawyers. During 15-28 February SO2 levels at Plymouth, MVO south, and Lawyers were higher than earlier in the month, but levels at St. Georges Hill were reduced by half. The site in Plymouth showed very high values (30.2 ppb) because it was surrounded by ~30-cm-thick tephra deposits and redeposited debris from nearby pyroclastic-flow deposits.

The mass of fine ash deposited in N Montserrat during several 28 January-7 February ashfalls was calculated using an array of ash collection trays. The mass totaled more than 1 kg/m2; most of this ash was produced during episodes of ash venting and rockfall activity. At most locations the ash collected during 3-5 February accounted for more than 50% of the local monthly ash accumulation.

Dust Trak monitoring at four fixed sites to measure airborne particles revealed elevated values (0.05-0.38 mg/m3) during ashfalls on 4-5 February. Levels were even higher (0.11-0.43 mg/m3) on 7 February due to resuspension of the ash. Sites in the S part of the island showed higher concentrations than in the N. During 15-28 February, no major ash fall occurred and levels were low (3) at all sites; however, a diffuse volcanic plume was occasionally blown N, causing light ash fall and hazy conditions.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, P. O. Box 292, Plymouth, Montserrat (URL: http://www.mvo.ms/).


Spurr (United States) — March 1998 Citation iconCite this Report

Spurr

United States

61.299°N, 152.251°W; summit elev. 3374 m

All times are local (unless otherwise noted)


Unusual plume observed from Anchorage

Beginning at about 0900 on 26 March, an unusual cloud or steam plume in the vicinity of Spurr volcano was observed from Anchorage (125 km E). However, seismicity remained at normal levels and nothing unusual was noted in satellite images of the area. The level of concern remained at green, indicating normal seismic and fumarolic activity.

Geologic Background. The summit of Mount Spurr, the highest volcano of the Aleutain arc, is a large lava dome constructed at the center of a roughly 5-km-wide horseshoe-shaped caldera open to the south. The volcano lies 130 km W of Anchorage and NE of Chakachamna Lake. The caldera was formed by a late-Pleistocene or early Holocene debris avalanche and associated pyroclastic flows that destroyed an ancestral edifice. The debris avalanche traveled more than 25 km SE, and the resulting deposit contains blocks as large as 100 m in diameter. Several ice-carved post-caldera cones or lava domes lie in the center of the caldera. The youngest vent, Crater Peak, formed at the breached southern end of the caldera and has been the source of about 40 identified Holocene tephra layers. Spurr's two historical eruptions, from Crater Peak in 1953 and 1992, deposited ash on the city of Anchorage.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Telica (Nicaragua) — March 1998 Citation iconCite this Report

Telica

Nicaragua

12.606°N, 86.84°W; summit elev. 1036 m

All times are local (unless otherwise noted)


February visit reveals slight increase in fumarolic activity and collapse zone

Scientists visited Telica's crater on 7 February. They observed a slight increase in fumarolic activity and an active collapse zone on the S crater rim. Light incandescence seen at night had an estimated temperature of 550°C.

Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Information Contacts: Alain Creusot, Instituto Nicaraguense de Energía, Managua, Nicaragua.


Turrialba (Costa Rica) — March 1998 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Fumarolic condensate data and monthly earthquakes to March 1998

OVSICORI-UNA scientists have taken sporadic samples of the chemistry, pH, and temperature of Turrialba's fumaroles (figures 2 and 3). During January, fumaroles had low emissions but the temperature of one fumarole remained fixed at 90°C (figure 3). Small landslides down the N and S sides of the crater walls covered fumaroles on the crater floor during January; however, during this time new fumaroles also appeared on the crater floor as well.

Figure (see Caption) Figure 2. Chlorine and sulfate in Turrialba fumarolic condensate at [nine] sampling dates during late 1996-early [1997]. For sampling and analytical methods, contact the authors. Courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 3. The pH and temperature of Turrialba fumarolic condensate at four sampling dates during the interval late 1996 to early 1998. Courtesy of OVSICORI-UNA.

The local seismic station ("VTU," located 500 m S of the active crater) was out of service during September-December 1997. After that, the station registered microearthquakes as follows: January, 53; February, 83; and March 96. Two of the February earthquakes, one high- and one low-frequency, also registered on the more distant seismic station IRZ2, ~15 km from the active crater. Besides the 96 microearthquakes registered during March, several more low- and high-frequency earthquakes also took place.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: E. Fernandez, V. Barboza, R. Van der Laat, R. Saenz, E. Duarte, E. Malavassi, T. Marino, M. Martinez, and E. Hernandez, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Mauricio Mora Fernandez, Sección de Sismologia, Vulcanologia y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, P.O. Box 35-2060, San José, Costa Rica.


Villarrica (Chile) — March 1998 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Escalating seismic amplitudes in March prelude to more explosions and ash

Luis Hernan Ecueñique, a manager in charge of "Las Cavernas," a tourist attraction 8 km from Villarrica's active crater, noted that during late March through at least early April there had been an ascent of magma in the central crater. Erupted material reached ~100 m from the crater's edge. Local tour guides had also informed him that explosions had deposited tephra on the N flanks. Measurements within "Las Cavernas" (which are lava tubes) indicated the air temperature rose by about 2°C.

A digital seismic station 21 km from the crater failed to detect either an increase in the number of seismic events or a shift in their character; the system did register a minor increase in event amplitude.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Gustavo Fuentealba1 and Paola Peña S., Observatorio Volcanológico de Los Andes del Sur (OVDAS), Manantial 1710-Carmino del Alba, Temuco, Chile; 1Universidad de La Frontera (UFRO), Departamento Ciencias Fisicas, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).