Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Ibu (Indonesia) Frequent ash plumes and small lava flows active in the crater through June 2019

Ebeko (Russia) Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

Klyuchevskoy (Russia) Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Yasur (Vanuatu) Strong thermal activity with incandescent ejecta continues, February-May 2019

Bagana (Papua New Guinea) Infrequent thermal anomalies, no ash emissions, February-May 2019

Ambae (Vanuatu) Declining thermal activity and no explosions during February-May 2019

Sangay (Ecuador) Explosion on 26 March 2019; activity from 10 May through June produced ash plumes, lava flows, and pyroclastic flows

Kadovar (Papua New Guinea) Ash emissions and thermal anomalies during October 2018-April 2019; lava emissions at the E flank coast and summit area

Sarychev Peak (Russia) Brief ash emission reported on 16 May 2019

Nyiragongo (DR Congo) Lava lake remains active through May 2019; three new vents around the secondary cone

Bezymianny (Russia) Ongoing thermal anomalies, gas-and-steam plumes, and lava dome growth during February-May 2019; strong explosion in mid-March

Nevados de Chillan (Chile) Small ash explosions and dome growth during December 2018-May 2019; ballistic ejecta deposited around the crater, with a pyroclastic flow in May



Ibu (Indonesia) — July 2019 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash plumes and small lava flows active in the crater through June 2019

Ibu volcano on Halmahera island in Indonesia began the current eruption episode on 5 April 2008. Since then, activity has largely consisted of small ash plumes with less frequent lava flows, lava dome growth, avalanches, and larger ash plumes up to 5.5 km above the crater. This report summarizes activity during December 2018 through June 2019 and is based on Volcano Observatory Notice for Aviation (VONA) reports by MAGMA Indonesia, reports by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and Badan Nasional Penanggulangan Bencana (BNPB), and various satellite data.

During December PVMBG reported ash plumes ranging from 200 to 800 m above the crater. There were 11 MODVOLC thermal alerts that registered during 1-12 December. An explosion on 12 January 2019 produced an ash plume that reached 800 m above the crater and dispersed to the S (figure 15). A report released for this event by Sutopo at BNPB said that Ibu had erupted almost every day over the past three months; an example given was of activity on 10 January consisting of 80 explosions. There were four MODVOLC thermal alerts through the month.

Figure (see Caption) Figure 15. An eruption at Ibu at 1712 on 21 January 2019 produced an ash plume that rose to 800 m above the crater. Courtesy of BNPB (color adjusted).

Throughout February explosions frequently produced ash plumes as high as 800 m above the crater, and nine MODVOLC thermal alerts were issued. Daily reports showed variable plume heights of 200-800 m most days throughout the month. Wind directions varied and dispersed the plumes in all directions. A VONA released at 1850 on 6 February reported an ash plume that rose to 1,925 m altitude (around 600 m above the summit) and dispersed S. Activity continued through March with the Darwin VAAC and PVMBG reporting explosions producing ash plumes to heights of 200-800 m above the crater and dispersing in various directions. There were ten MODVOLC alerts through the month.

Similar activity continued through April, May, and June, with ash plumes reaching 200-800 m above the crater. There were 12, 6, and 15 MODVOLC Alerts in April, May, and June, respectively.

Planet Scope satellite images show activity at a two vents near the center of the crater that were producing small lava flows from February through June (figure 16). Thermal anomalies were frequent during December 2018 through June 2019 across MODVOLC, MIROVA, and Sentinel-2 infrared data (figures 17 and 18). Sentinel-2 data showed minor variation in the location of thermal anomalies within the crater, possibly indicating lava flow activity, and MIROVA data showed relatively constant activity with a few reductions in thermal activity during January and February.

Figure (see Caption) Figure 16. Planet Scope natural color satellite images showing activity in the Ibu crater during January through June 2019, with white arrows indicating sites of activity. One vent is visible in the 21 February image, and a 330-m-long (from the far side of the vent) lava flow with flow ridges had developed by 24 March. A second vent was active by 12 May with a new lava flow reaching a maximum length of 520 m. Activity was centered back at the previous vent by 23-27 June. Natural color Planet Scope Imagery, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 17. Examples of thermal activity in the Ibu crater during January through May 2019. These Sentinel-2 satellite images show variations in hot areas in the crater due to a vent producing a small lava flow. Sentinel-2 false color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. MIROVA log radiative power plot of MODIS thermal infrared at Ibu from September 2018 through June 2019. The registered energy was relatively stable through December, with breaks in January and February. Regular thermal anomalies continued with slight variation through to the end of June. Courtesy of MIROVA.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/).


Ebeko (Russia) — July 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

The Ebeko volcano, located on the northern end of the Paramushir Island in the Kuril Islands, consists of many craters, lakes, and thermal features and has been frequently erupting since late February 2017. Typical activity includes ash plumes, explosive eruptions, and gas-and-steam activity. The previous report through November 2018 (BGVN 43:12) described frequent ash explosions that sometimes caused ashfall in Severo-Kurilsk (7 km E). The primary source of information is the Kamchatka Volcanic Eruptions Response Team (KVERT). This report updates the volcanic activity at Ebeko for December 2018 through May 2019.

Frequent moderate explosive activity continued after November 2018. Volcanologists in Severo-Kurilsk observed explosions sending up ash, which drifted N, NE, and E, resulting in ash falls on Severo-Kurilsk on 28 different days between December 2018 and March 2019. On 25 December 2018 an explosion sent ash up to a maximum altitude of 4.5 km and then drifted N for about 5 km. Explosions occurring on 8-10 March 2019 sent ash up to an altitude of 4 km, resulting in ashfall on Severo-Kurilsk on 9-10 March 2019. An ash plume from these explosions rose to a height of 2.5 km and drifted to a maximum distance of 30 km ENE.

Satellite data analyzed by KVERT registered 12 thermal anomalies from December 2018 through May 2019. According to satellite data analyzed by MIROVA (Middle InfraRed Observation of Volcanic Activity), only one thermal anomaly was recorded from December 2018-May 2019, and no hotspot pixels were recognized using satellite thermal data from the MODVOLC algorithm.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Klyuchevskoy (Russia) — July 2019 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Klyuchevskoy has had alternating eruptive and less active periods since August 2015. Activity has included lava flows, a growing cinder cone, thermal anomalies, gas-and-steam plumes, and ash explosions. Though some eruptions occur near the summit crater, major explosive and effusive eruptions have also occurred from flank craters (BGVN 42:04 and 43:05). Intermittent moderate gas-and-steam and ash emissions were previously reported from mid-February to mid-August 2018. The Kamchatka Volcanic Eruptions Response Team (KVERT) is the primary source of information for this September 2018-June 2019 reporting period.

KVERT reported that moderate gas-and-steam activity, some of which contained a small amount of ash, and weak thermal anomalies occurred intermittently from the beginning of September 2018 through mid-April 2019. On 21-22 April 2019 webcam data showed a gas-and-steam plume extending about 160 km SE (figure 31). Moderate Strombolian-type volcanism began late April 2019 and continued intermittently through June 2019. On 11-12 June webcam data showed explosions that sent ash up to a maximum altitude of 6 km, with the resulting ash plume extending about 200 km WNW.

Figure (see Caption) Figure 31. Gas-and-steam plume containing some amount of ash rising from the summit of Klyuchevskoy on 22 April 2019. Photo by A. Klimova, courtesy of Institute of Volcanology and Seismology (IVS FEB RAS).

Thermal anomalies were noted by KVERT during two days in September 2018, six days in April 2019, eleven days in May 2019, and six days in June 2019. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed infrequent weak thermal anomalies December 2018 through early May 2019.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Yasur (Vanuatu) — June 2019 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Strong thermal activity with incandescent ejecta continues, February-May 2019

Yasur volcano on Tanna Island has been characterized by Strombolian activity with large incandescent bombs, frequent explosions, lava fountaining, and ash emissions for much of its known eruptive history. Melanesians from nearby islands are believed to have settled Tanna in about 400 BCE; it is now part of the nation of Vanuatu, independent since 1980. The Kwamera language (or Tannese) spoken on the SE coast of the island is thought to be the source of the name of the island. No known oral history describes volcanic activity; the first written English-language documentation of activity dates to 5 August 1774, when Captain James Cook saw "a great fire" on Tanna Island. Cook realized that it "was a Volcano which threw up vast quantities of fire and smoak and made a rumbling noise which was heard at a good distance" (The Captain Cook Society) (figure 51).

Figure (see Caption) Figure 51. Incandescence, steam, and dark ash from Yasur fill the sky in this sketch representing Captain James Cook's landing in the 'Resolution' at Tanna Island on 5 August 1774. The form of the volcano is behind the ship, the incandescence is in the upper right next to the ship's masts. "Landing at Tanna" by William Hodges, 1775-1776, National Maritime Museum, Greenwich, London. The Maritime Museum noted that this is one of a group of panel paintings produced by Hodges of encounters with islanders during the voyage, in which the European perception of each society at the time is portrayed. Image taken from Wikimedia Commons.

Based on numerous accounts from ships logs and other sources, volcanic activity has been continuous since that time. During periods of higher activity, multiple vents within the summit crater send ejecta 100 m or more above the crater rim, with large bombs occasionally landing hundreds of meters away. Continued activity during February-May 2019 is covered in this report with information provided by the Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD) which monitors the volcano and satellite data; photographs from tourists also provide valuable information about this remote location.

VMGD has maintained Alert Level 2 at Yasur since October 2016, indicating that it is in a major state of unrest. There is a permanent exclusion zone within 395 m of the eruptive vents where access is prohibited due to multiple hazards, primarily from large incandescent bombs up to 4 m in diameter which have been ejected from the vents onto the crater rim in the past, resulting in fatalities (BGVN 20:08).

Satellite and ground based information all support high levels of thermal activity during February -May 2019. MODVOLC thermal alerts were issued 11 times in February, 27 times in March, and 20 times each in April and May. The MIROVA graph also indicated the ongoing consistently high levels of thermal energy throughout the period (figure 52). Plumes of SO2 emissions are common from Vanuatu's volcanoes; newer higher resolution data available beginning in 2019 reveal a persistent stream of SO2 from Yasur on a near-daily basis (figure 53).

Figure (see Caption) Figure 52. The MIROVA graph of thermal energy at Yasur from 3 September 2018 through May 2019 indicates the ongoing activity at the volcano. Courtesy of MIROVA.
Figure (see Caption) Figure 53. The SO2 plumes from Yasur were persistent during January-May 2019 when they were visible many days of each week throughout the period. Top left: On 12 January plumes were visible drifting E from both Ambrym (top) and Yasur (bottom). Top right: Plumes drifted W from three Vanuatu volcanoes on 7 February, Gaua (top), Ambrym (middle) and Yasur (bottom). Bottom left: On 12 March N drifting plumes could be seen from Ambae (top) and Yasur (bottom). On 27 April, only Yasur had an SO2 plume drifting W. Courtesy of Goddard Space Flight Center.

Satellite imagery confirmed that the heat sources from Yasur were vents within the summit crater of the pyroclastic cone. Both northern and southern vent areas were active. On 7 March 2019 the N vent area had a strong thermal signal. Ten days later, on 17 March, similar intensity thermal anomalies were present in both the N and S vent areas (figure 54). On 6 April the S vent area had a stronger signal, and gas emissions from both vents were drifting N (figure 55). Satellite imagery from 21 May 2019 indicated a strong thermal signal inside the crater in the area of the vents, and included a weaker signal clearly visible on the inside E crater rim. Strong Strombolian activity or spatter sending large incandescent bombs as far as the crater rim are a likely explanation for the signal (figure 56), underscoring the hazardous nature of approaching the crater rim.

Figure (see Caption) Figure 54. Strong thermal anomalies from the crater of Yasur's pyroclastic cone seen in satellite images confirmed the ongoing high level of activity. Left: 7 March 2019, a strong thermal anomaly from the N vent area, shown with "Geology" rendering (bands 12, 4, 2). Right: 17 March 2019, thermal anomalies at both the N and S vent areas, shown with "Atmospheric Penetration" rendering (bands 12, 11, 8A). The crater is about 500 m in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 55. Strong thermal anomalies (left) and gas emissions (right) at Yasur were captured with different bands in the same Sentinel-2 satellite image on 6 April 2019. Left: The thermal anomaly in the S vent area was stronger than in the N vent area, "Atmospheric Penetration" rendering (bands 12, 11, 8A). Right: Gas plumes drifted N from both vent areas, "Natural color" rendering (bands 4, 3, 2). The crater is about 500 m in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Thermal activity from the crater of Yasur on 21 May 2019 produced a strong thermal signal from the center of the crater and a weaker signal on the inside E crater rim, likely the result of hazardous incandescent bombs and ejecta, frequent products of the activity at Yasur. Left: "Atmospheric Penetration" rendering (bands 12, 11, 8A). Right: "Geology" rendering (bands 12, 4, 2). The crater is about 0.5 km in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.

Tourists visit Yasur on a regular basis. A former lake on the N side of Yasur has left ripples in the sand deposits over older volcanic rocks on the N side of the volcano (figure 57) since it drained in 2000 (BGVN 28:01). Visitors are allowed to approach the S rim of the crater where incandescence from both the N and S vents is usually visible (figure 58). Incandescent spatter from the convecting lava in the vents is highly dangerous and unpredictable and often covers the inner slopes of the rim as well as sending bombs outside the crater (figure 59).

Figure (see Caption) Figure 57. The pyroclastic cone of Yasur viewed from the north on 6 May 2019. Ripples in volcaniclastic sand in the foreground are remnants of a lake that was present on the N side of the volcano until a natural dam breached in 2000. Copyrighted photo by Nick Page, used with permission.
Figure (see Caption) Figure 58. Two glowing vents were visible from the south rim of Yasur on 6 May 2019. The S vent area is in the foreground, the N vent area is in the upper left. Copyrighted by Nick Page, used with permission.
Figure (see Caption) Figure 59. Incandescent spatter at Yasur on 6 May 2019 sent fragments of lava against the inside crater wall and onto the rim. The convecting lava in the vent can be seen in the lower foreground. Copyrighted photo by Nick Page, used with permission.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Captain Cook Society (URL: https://www.captaincooksociety.com/home/detail/225-years-ago-july-september-1774); Royal Museums Greenwich (URL: https://collections.rmg.co.uk/collections/objects/13383.html); Wikimedia Commons, (URL: https://commons.wikimedia.org/wiki/File:The_Landing_at_Tana_one_of_the_New_Hebrides,_by_William_Hodges.jpg); Nick Page, Australia,Flickr: (URL: https://www.flickr.com/photos/152585166@N08/).


Bagana (Papua New Guinea) — June 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Infrequent thermal anomalies, no ash emissions, February-May 2019

With historical eruptions reported back to 1842, Papua New Guinea's Bagana volcano on the island of Bougainville has been characterized by viscous andesitic lava flows down the steep flanks of its cone, along with intermittent ash plumes and pyroclastic flows. Ongoing thermal anomalies and frequent ash plumes have been typical of activity during the current eruption since it began in early 2000. Activity declined significantly in December 2018 and remained low through May 2019, the period covered in this report (figure 33). Information for this report comes primarily from satellite images and thermal data.

Figure (see Caption) Figure 33. The MIROVA plot of radiative power at Bagana from 1 September 2018 through May 2019 shows a marked decline in thermal activity during December 2018 after ash explosions and satellite observations of flows during the previous months. Courtesy of MIROVA.

The last ash emission at Bagana was reported on 1 December 2018 by the Darwin Volcanic Ash Advisory Center (VAAC). A Sentinel-2 satellite image showed a linear thermal anomaly trending NW from the summit on 14 December (BGVN 50:01). On 8 January 2019, an image contained a dense steam plume drifting E and a very faint thermal anomaly on the N flank a few hundred meters from the summit. A more distinct thermal anomaly at the summit appeared on 22 February 2019 (figure 34). A visitor to the region photographed incandescence on the flank, likely from the volcano, at dawn around 19 February 2019 (figure 35).

Figure (see Caption) Figure 34. Sentinel-2 satellite imagery revealed thermal anomalies at Bagana in January and February 2019. Left: a very faint thermal anomaly was N of the summit at the edge of the E-drifting steam plume on 8 January 2019. Right: A thermal anomaly was located at the summit, at the base of the NE-drifting steam plume on 22 February 2019. Sentinel-2 satellite images with "Atmospheric Penetration" rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 35. A visitor near Bagana spotted incandescence on the flank at dawn, possibly from a lava flow. Posted online 19 February 2019. Courtesy of Emily Stanford.

Two faint thermal anomalies were visible at the summit in satellite imagery on 19 March; a single one appeared on 29 March 2019 (figure 36). No thermal anomalies were recorded in Sentinel-2 images during April or May, but steam plumes and gas emissions were visible through cloud cover on multiple occasions (figure 37).

Figure (see Caption) Figure 36. Faint thermal anomalies at Bagana were recorded in satellite imagery twice during March 2019. Left: 19 March, two anomalies appear right of the date label. Right: 29 March, a small anomaly appears right of the date label. Sentinel-2 image rendered with "Atmospheric Penetration" (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 37. Steam and gas emissions at Bagana were recorded in satellite imagery during April and May 2019. Left: A steam plume drifted NW from the summit on 23 April, visible through dense cloud cover. Right: A gas plume drifted SW from the summit on 18 May. Sentinel-2 image with "Geology" rendering (bands 12, 4, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Emily Stanford (Twitter: https://twitter.com/NerdyBatLady, image posted at https://twitter.com/NerdyBatLady/status/1098052063009792001/photo/1).


Ambae (Vanuatu) — June 2019 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Declining thermal activity and no explosions during February-May 2019

Ambae (Aoba) is a large basaltic shield volcano in the New Hebrides arc, part of the multi-island country of Vanuatu. Its periodic phreatic and pyroclastic explosions originating in the summit crater lakes have been recorded since the 16th century. A pyroclastic cone appeared in Lake Voui during November 2005-February 2006 (BGVN 31:12, figure 30); an explosive eruption from a new pyroclastic cone in the lake began in mid-September 2017 (BGVN 43:02). Activity included high-altitude ash emissions (9.1 km), lava flows, and Strombolian activity. Intermittent pulses of ash emissions during the following months resulted in extensive ashfall and evacuations; multiple communities were affected by lahars. The most recent episode of the eruption from July to September 2018 (BGVN 44:02) resulted in 11-km-altitude ash plumes and the evacuation of the entire island due to heavy ashfall and lahars. This report covers activity from February to May 2019, with information provided by the Vanuatu Geohazards Observatory of the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data from multiple sources.

Activity diminished after the extensive eruptive phase of July-September 2018 when substantial ash plumes and ashfall resulted in evacuations. An explosion with an ash plume on 30 October 2018 was the last activity reported for 2018. Thermal alerts were reported by the Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC thermal alerts system through January 2019, and the Log Radiative Power graph prepared by the MIROVA project showed decreasing thermal anomalies into June 2019 (figure 92). Satellite images recorded in April and May 2019 (figure 93) showed the configuration of the summit lakes to be little changed from the previous November except for the color (BGVN 44:02, figure 89). No ash emissions or SO2 plumes were reported during the period. VMGD noted that the volcano remained at Alert Level 2 through May 2019 with a 2-km-radius exclusion zone around the summit.

Figure (see Caption) Figure 92. The MIROVA log radiative power plot for Ambae showed ongoing intermittent thermal anomalies from early September 2018 through May 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 93. Satellite imagery in April and May 2019 showed little change in the configuration of lakes at the summit of Ambae since November 2018 (see BGVN 44:02, figure 89). Left: 24 April 2019. Right: 29 May 2019. Sentinel-2 satellite imagery with "Natural Color" rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sangay (Ecuador) — July 2019 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Explosion on 26 March 2019; activity from 10 May through June produced ash plumes, lava flows, and pyroclastic flows

Sangay is the southernmost active volcano in Ecuador, with confirmed historical eruptions going back to 1628. The previous eruption occurred during August and December and was characterized by ash plumes reaching 2,500 m above the crater. Lava flows and pyroclastic flows descended the eastern and southern flanks. This report summarizes activity during January through July 2019 and is based on reports by Instituto Geofísico (IG-EPN), Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

After the December 2018 eruption there was a larger reduction in seismicity, down to one event per day. During January, February, and most of March there was no recorded activity and low seismicity until the Washington VAAC reported an ash plume at 0615 on 26 March. The ash plume rose to a height of around 1 km and dispersed to the SW as seen in GOES 16 satellite imagery as a dark plume within white meteorological clouds. There was no seismic data available due to technical problems with the station.

More persistent eruptive activity began on 10 May with thermal alerts (figure 30) and an ash plume at 0700 that dispersed to the W. An explosion was recorded at 1938 on 11 May, producing an ash plume and incandescent material down the flank (figure 31). Two M 2 earthquakes were detected between 3.5 and 9 km below the crater on 10 May, possibly corresponding to explosive activity. By 17 May there were two active eruptive centers, the central crater and the Ñuñurcu dome (figure 32).

Figure (see Caption) Figure 30. MIROVA log radiative power plot of MODIS thermal infrared at Sangay for the year ending June 2019. The plot shows the August to December 2018 eruption, a break in activity, and resumed activity in May 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 31. An explosion at Sangay on 10 May 2019 sent ballistic projectiles up to 650 m above the crater at a velocity of over 400 km/hour, an ash plume that rose to over 600 m, and incandescent blocks that traveled over 1.5 km from the crater at velocities of around 150 km/hour. Screenshots are from video by IG-EPN.
Figure (see Caption) Figure 32. A photograph of the southern flank of Sangay on 17 May 2019 with the corresponding thermal infrared image in the top right corner. The letters correspond to: a) a fissure to the W of the lava flow; b) an active lava flow from the Ñuñurcu dome; c) the central crater producing a volcanic gas plume; d) a pyroclastic flow deposit produced by collapsing material from the front of the lava flow. Prepared by M. Almeida; courtesy of IG-EPN (special report No. 3 – 2019).

Activity at the central crater by 21 May was characterized by sporadic explosive eruptions that ejected hot ballistic ejecta (blocks) with velocities over 400 km/hour; after landing on the flanks the blocks travelled out to 2.5 km from the crater. Ash plumes reached heights between 0.9-2.3 km above the crater and dispersed mainly to the W and NW; gas plumes also dispersed to the W. The Ñuñurcu dome is located around 190 m SSE of the central crater and by 21 May had produced a lava flow over 470 m long with a maximum width of 175 m and an estimated minimum volume of 300,000 to 600,000 m3. Small pyroclastic flows and rockfalls resulted from collapse of the lava flow front, depositing material over a broad area on the E-SE flanks (figure 33). One pyroclastic flow reached 340 m and covered an area of 14,300 m2. During the 17 May observation flight the lava flow surface reached 277°C.

Figure (see Caption) Figure 33. A view of the ESE flanks of Sangay on 17 May 2019. The area within the black dotted line is the main area of pyroclastic flow deposition from the Ñuñurco Dome. Photo by M. Almeida; courtesy of IG-EPN (special report No. 4 – 2019).

At the end of June activity was continuing at the central crater and Ñuñurco Dome. At least three lava flows had been generated from the dome down the SE flank and pyroclastic flows continued to form from the flow fronts (figure 34). Pyroclastic material had been washed into the Upano river and steam was observed in the Volcán River possibly due to the presence of hot rocks. Ash plumes continued through June reaching heights of 800 m above the crater (figure 35), but no ashfall had been reported in nearby communities.

Figure (see Caption) Figure 34. Sentinel-2 natural color (left) and thermal (center) images (bands 12, 11, 4), and 1:50 000 scale maps (right) of Sangay with interpretation on the background of a 30 m numerical terrain model (WGS84; Zone 17S) (Prepared by B. Bernard). The dates from top to bottom are 17 May, 22 May, 27 May, 16 June, and 26 June 2019. Prepared by B. Bernard; courtesy IG-EPN (special report No. 4 – 2019).
Figure (see Caption) Figure 35. Plots giving the heights and dispersal direction of ash plumes at Sangay during May and June 2019. Top: Ash plume heights measures in meters above the crater. Bottom: A plot showing that the dominant dispersal direction of ash plumes is to the W during this time. Courtesy of IG-EPN (special report No. 4 – 2019).

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kadovar (Papua New Guinea) — May 2019 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Ash emissions and thermal anomalies during October 2018-April 2019; lava emissions at the E flank coast and summit area

Steeply-sloped Kadovar Island is located about 25 km NNE from the mouth of the Sepik River on the mainland of Papua New Guinea. The first confirmed historical eruption with ash plumes and lava extrusion began in early January 2018, resulting in the evacuation of around 600 residents from the N side of the approximately 1.4-km-diameter island (BGVN 43:03); continuing activity from October 2018 through April 2019 is covered in this report. Information was provided by the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), satellite sources, and photos from visiting tourists.

Activity during March-September 2018. After the first recorded explosions with ash plumes in early January 2018, intermittent ash plumes continued through March 2018. A lava flow on the E flank extended outward from the island, extruding from a vent low on the E flank and forming a dome just offshore. The dome collapsed and regrew twice during February 2018; the growth rate slowed somewhat during March. A satellite image from 21 March 2018 was one of the first showing the new dome growing off the E flank with a thermal anomaly and sediment plumes in the water drifting N and E from the area. Thermal anomalies were visible at both the summit vent and the E-flank coastal dome in in April and May 2018, along with steam and gas rising from both locations (figure 19).

Figure (see Caption) Figure 19. Sentinel-2 satellite imagery of Kadovar provided clear evidence of thermal activity at the new E-flank coastal dome during March-May 2018. Sediment plumes were visible drifting N and E in the water adjacent to the coastal dome. The summit crater also had a persistent steam plume and thermal anomaly in April and May 2018. Left: 21 March 2018. Middle 10 April 2018. Right: 15 May 2018. Images all shown with "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

A trip to Kadovar by tourists in mid-May 2018 provided close-up views of the dense steam plumes at the summit and the growing E-flank coastal dome (figures 20 and 21). The thermal anomaly was still strong at the E-flank coastal dome in a mid-June satellite image, but appeared diminished in late July. Intermittent puffs of steam rose from both the summit and the coastal dome in mid-June; the summit plume was much denser on 29 July (figure 22). Ash emissions were reported by the Darwin VAAC and photographed by tourists during June (figure 23) and September 2018 (BGVN 43:10), but thermal activity appeared to decline during that period (figure 24).

Figure (see Caption) Figure 20. A tourist photographed Kadovar and posted it online on 19 May 2018. Steam plumes rose from both the summit and the E-flank coastal dome in this view taken from the SE. Courtesy of Tico Liu.
Figure (see Caption) Figure 21. A closeup view of the E-flank coastal dome at Kadovar posted online on 19 May 2018 showed steam rising from several places on the dome, and dead trees on the flank of the volcano from recent eruptive activity. Courtesy of Tico Liu.
Figure (see Caption) Figure 22. The thermal anomaly was still strong at the E-flank coastal dome of Kadovar in a 14 June 2018 satellite image (left), but appeared diminished on 29 July 2018 (right). Intermittent puffs of steam rose from both the summit and the coastal dome on 14 June; the summit plume was much denser on 29 July. Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 23. An ash plume rose from the summit of Kadovar and drifted W while steam and gas rose from the E-flank coastal dome, posted online 27 June 2018. Courtesy of Shari Kalt.
Figure (see Caption) Figure 24. Thermal activity at Kadovar for the year ending on 26 April 2019 was consistent from late April 2018 through mid-June 2018; a quiet period afterwards through late September ended with renewed and increased thermal activity beginning in October 2018. All distances are actually within 1 km of the summit of Kadovar, a DEM georeferencing error makes some locations appear further away. Courtesy of MIROVA.

Multiple satellite images during August and early September 2018 showed little or no sign of thermal activity at the E-flank coastal dome, with only intermittent steam plumes from the summit. A new steam plume on the eastern slope appeared in a 22 September 2018 image (figure 25). The Rabaul Volcano Observatory (RVO) reported explosive activity on the afternoon of 21 September. Noises of explosions were accompanied by dark gray and brown ash clouds that rose several hundred meters above the summit crater and drifted NW. Local reports indicated that the activity continued through 26 September and ashfall was reported on Blupblup island during the period. Ground observers noted incandescence visible from both the summit and the E-flank coastal dome.

Figure (see Caption) Figure 25. Steam plumes were seen in satellite images of Kadovar during August and early September 2018, but no thermal anomalies. Intermittent steam plumes rose from the summit vent on 28 August (left). A new dense steam plume originating mid-way down the E flank appeared on 22 September 2018 (right). Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

Activity during October-December 2018. Evidence of both thermal and explosive activity reappeared in October 2018 (figure 24). The Darwin VAAC reported intermittent ash plumes rising to 2.7 km altitude and drifting W on 1 October 2018. Low-level continuous ash emissions rising less than a kilometer and drifting W were reported early on 3 October. A higher plume drifted WNW at 2.4 km altitude on 7 October. Intermittent discrete emissions of ash continued daily at that altitude through 16 October, drifting NW or W. Ash emissions drifting NW and thermal anomalies at the summit were visible in satellite imagery on 2 and 12 October (figure 26). A brief ash emission was reported on 21 October 2018 at 2.4 km altitude drifting NE for a few hours. Intermittent ash emissions also appeared on 29 October moving SE at 1.8 km altitude. For the following three days ash drifted SW, W, then NW at 2.1 km altitude, finally dissipating on 1 November; the thermal anomaly at the summit was large and intense in satellite images on 27 October and 1 November compared with previous images (figure 27).

Figure (see Caption) Figure 26. Ash emissions drifting NW and thermal anomalies at the summit of Kadovar were visible in satellite imagery on 2 and 12 October 2018; no thermal activity was noted at the E-flank coastal dome. Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 27. Strong thermal anomalies at the summit of Kadovar on 27 October and 1 November 2018 were not concealed by the steam plumes drifting SW and NW from the summit. Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

An ash explosion was photographed by tourists on a cruise ship on the afternoon of 6 November 2018 (figure 28). After the explosion, a dense steam plume rose from a large dome of lava near the summit at the top of the E flank (figure 29). Continuous ash emissions rising to 1.8 km altitude were reported by the Darwin VAAC beginning on 9 November 2018 moving WNW and lasting about 24 hours. A new ash plume clearly identifiable on satellite imagery appeared on 13 November at 2.4 km altitude moving E, again visible for about 24 hours. Another shipboard tourist photographed an ash plume on 18 November rising a few hundred meters above the summit (figure 30).

Figure (see Caption) Figure 28. An explosion at Kadovar photographed on the afternoon of 6 November 2018 sent a dense gray ash plume hundreds of meters above the summit drifting W; blocks of volcanic debris descended the flanks as well. View is from the S. Courtesy of Coral Expeditions, used with permission.
Figure (see Caption) Figure 29. Tourists on a cruise ship passed by Kadovar on 6 November 2018 and witnessed a steam plume drifting W from a large dome of lava near the summit at the top of the E flank after an ash explosion. Smaller steam plumes were visible in the middle and at the base of the E flank, but no activity was visible at the coastal dome off the E flank (lower right). View is from the SE. Courtesy of Coral Expeditions, used with permission.
Figure (see Caption) Figure 30. An ash plume rose at dusk from the summit of Kadovar and was witnessed by a cruise ship tourist on 18 November 2018. View is from the E; the E-flank coastal dome is a lighter area in the lower foreground. Courtesy of Philip Stern.

Low-level ash emissions were reported briefly on 28 November at about 1 km altitude moving SE. Intermittent puffs of ash were seen drifting WSW on 2 and 3 December at about 1.2 km altitude. They were the last VAAC reports for 2018. Two thermal anomalies were visible at the summit in satellite imagery on 26 November, they grew larger and more intense through 16 December when multiple anomalies appeared at the summit and on the E flank (figure 31).

Figure (see Caption) Figure 31. Multiple thermal anomalies near the summit of Kadovar grew larger and more intense between 26 November and 16 December 2018. Sentinel-2 images show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

Activity during January-April 2019. Multiple thermal anomalies were still visible at the summit in satellite imagery on 5 January 2019 as regular puffs of steam drifted SE from the summit, leaving a long trail in the atmosphere (figure 32). Additional imagery on 10 and 30 January showed a single anomaly at the summit, even through dense meteorologic clouds. A short-lived ash emission rose to 2.4 km altitude on 11 January 2019 and drifted E; it dissipated the next day. Multiple minor intermittent discrete ash plumes extended WNW at 3.0 km altitude on 18 January; they dissipated within six hours.

Figure (see Caption) Figure 32. Multiple thermal anomalies were visible in satellite imagery of Kadovar on 5 January 2019 as regular puffs of steam drifted SE from the summit. Sentinel-2 image shows "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

The Royal New Zealand Air Force released images of eruptive activity on 10 February 2019 (figure 33). Satellite imagery in February was largely obscured by weather; two thermal anomalies were barely visible through clouds at the summit on 14 February. The Darwin VAAC reported an ash emission at 1.8 km altitude drifting ESE on 16 February; a similar plume appeared on 21 February that also dissipated in just a few hours.

Figure (see Caption) Figure 33. The Royal New Zealand Air Force released images of an ash plume at Kadovar on 10 February 2019. Courtesy of Brad Scott.

Satellite imagery on 1 March 2019 confirmed a strong thermal anomaly from the summit and down the E flank almost to the coast. A month later on 5 April the anomaly was nearly as strong and a dense ash and steam plume drifted N from the summit (figure 34). A tourist witnessed a dense steam plume rising from the summit on 4 April (figure 35). Multiple discrete eruptions were observed in satellite imagery by the Darwin VAAC on 9 April at 1.2-1.5 km altitude drifting SE. The thermal anomaly at the summit persisted in satellite imagery taken on 15 April 2019.

Figure (see Caption) Figure 34. A strong thermal anomaly appeared from the summit down the E flank of Kadovar on 1 March 2019 (left). A month later on 5 April the strong anomaly was still present beneath a dense plume of ash and steam (right). Sentinel-2 imagery shows "Geology" rendering with bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 35. A dense steam plume is shown here rising from the summit area of Kadovar, posted online on 4 April 2019. View is from the N. Courtesy of Chaiyasit Saengsirirak.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. Kadovar is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. The village of Gewai is perched on the crater rim. A 365-m-high lava dome forming the high point of the andesitic volcano fills an arcuate landslide scarp that is open to the south, and submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. No certain historical eruptions are known; the latest activity was a period of heightened thermal phenomena in 1976.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tico Liu, Hong Kong (Facebook: https://www.facebook.com/tico.liu. https://www.facebook.com/photo.php?fbid=10155389178192793&set=pcb.10155389178372793&type=3&theater); Shari Kalt (Instagram user LuxuryTravelAdvisor: https://www.instagram.com/luxurytraveladviser/, https://www.instagram.com/p/BkhalnuHu2j/); Coral Expeditions, Australia (URL: https://www.coralexpeditions.com/, Facebook: https://www.facebook.com/coralexpeditions); Philip Stern (Facebook: https://www.facebook.com/sternph, https://www.facebook.com/sternph/posts/2167501866616908); Brad Scott, GNS Science Volcanologist at GNS Science, New Zealand (Twitter: https://twitter.com/Eruptn); Chaiyasit Saengsirirak, Bangkok, Thailand (Facebook: https://www.facebook.com/chaiyasit.saengsirirak, https://www.facebook.com/photo.php?fbid=2197513186969355).


Sarychev Peak (Russia) — June 2019 Citation iconCite this Report

Sarychev Peak

Russia

48.092°N, 153.2°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Brief ash emission reported on 16 May 2019

Located on Matua Island in the central Kurile Islands of Russia, Sarychev Peak has historical observations of eruptions dating back to 1765. Thermal activity in October 2017 (BGVN 43:11) was the first sign of renewed activity since a major eruption with ash plumes and pyroclastic flows in June 2009 (BGVN 34:06). The following month (November 2017) there was fresh dark material on the NW flank that appeared to be from a flow of some kind. After that, intermittent thermal anomalies were the only activity reported until explosions with ash plumes took place that lasted for about a week in mid-September 2018 (figure 24). Additional explosions in mid-October were the last reported for 2018. A single ash explosion in May 2019 was the only reported activity from November 2018 to May 2019, the period covered in this report. Information is provided by the Sakhalin Volcanic Eruption Response Team (SVERT) and the Kamchatka Volcanic Eruptions Response Team (KVERT), members of the Far Eastern Branch, Russian Academy of Sciences (FEB RAS), and from satellite data.

Figure (see Caption) Figure 24. Multiple ash plumes were observed at Sarychev Peak during September 2018. Left: 13 September. Right: 18 September. Photos by S. A. Tatarenkov, courtesy of IMGG FEB RAS.

Satellite imagery in mid-September and early October 2018 showed gas emissions from the summit vent, and a weak thermal anomaly in October (figure 25). KVERT lowered the Aviation Color Code from Orange to Yellow on 1 November 2018, and SVERT released a VONA on 12 November 2018 lowering the Aviation Color Code from Yellow to Green after the ash emissions in October.

Figure (see Caption) Figure 25. Minor gas emissions were visible at Sarychev Peak in satellite imagery in mid-September and early October 2018; a possible weak thermal anomaly appeared in the summit vent in October. Top left: 13 September. Top right: 18 September. Bottom left: 8 October. Bottom right: 11 October. The 13 September image uses "Natural Color" rendering (bands 4, 3, 2) and the other images use "Geology" rendering (bands 12, 4, 2). Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.

Sentinel-2 satellite instruments in March, April, and May 2019 acquired images that showed dark streaks in the snow-covered peak radiating out from the summit vent in various directions. As the spring snows melted, more dark streaks appeared. It is unclear whether the streaks represent fresh ash, particulates from gas emissions in the snow, or concentrated material from earlier emissions that were exposed during the spring melting (figure 26). No further activity was reported until the Tokyo VAAC noted an eruption on 16 May 2019 that produced an ash plume which rose to 2.4 km altitude and drifted S. It was visible in satellite imagery for 3 or 4 hours before dissipating. SVERT reported the ash plume visible up to 50 km SE of the island. They also noted that weak thermal anomalies had been seen in satellite data on 10, 12, and 17 May 2019.

Figure (see Caption) Figure 26. Streaks of brown radiate outward from the summit vent at Sarychev Peak in Sentinel-2 satellite imagery taken during March-May 2019. The exact material and timing of deposition is unknown. Top left: 17 March. Top middle: 14 April. Top right: 19 April. Bottom left: 29 April, Bottom middle: 6 May. Bottom right: 26 May 2019. Sentinel-2 images with "Natural Color" rendering using bands 4,3, and 2. Courtesy of Sentinel Hub Playground.

Geologic Background. Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.

Information Contacts: Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences, (FEB RAS IMGG), 693 022 Russia, Yuzhno-Sakhalinsk, ul. Science 1B (URL: http://imgg.ru/ru); Sakhalin Volcanic Eruption Response Team (SVERT), Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Science, Nauki st., 1B, Yuzhno-Sakhalinsk, Russia, 693022 (URL: http://www.imgg.ru/en/, http://www.imgg.ru/ru/svert/reports); Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyiragongo (DR Congo) — May 2019 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Lava lake remains active through May 2019; three new vents around the secondary cone

Since at least 1971 scientists and tourists have observed a lava lake within the Nyiragongo summit crater. Lava flows have been a hazard in the past for the nearby city of Goma (15 km S). The previous report (BGVN 43:06) of activity between November 2017 and May 2018 described nearly daily record of thermal anomalies due to the active lava lake and lava fountaining, gas-and-steam plumes, and the opening of a new vent within the crater in February 2016. Monthly reports from the Observatoire Volcanologique de Goma (OVG) disseminate information regarding the volcano's activity. This report updates the activity during June 2018-May 2019.

OVG noted that the level of the lava lake changes frequently, and was lower when observed on October 2018, 12 April 2019, and 12 May 2019. According to data from the OVG, on 15 April 2019 the secondary cone that formed in February 2016 produced lava flows and ejecta. In addition, at least three other vents formed surrounding this secondary cone. During most of April 2019 the lava lake was still active; however, beginning on 12 April 2019, seismic and lava lake activity both declined.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continues to show almost daily, strong thermal anomalies every month from June 2018 through 24 May 2019 (figure 66). Similarly, the MODVOLC algorithm reports a majority of the hotspot pixels (2,406) occurring within the lava lake at the summit crater (figure 67).

Figure (see Caption) Figure 66. Thermal anomalies at Nyiragongo for June 2018 through 24 May 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 67. Map showing the number of MODVOLC hotspot pixels at Nyiragongo from 1 June 2018 to 31 May 2019. Nyiragongo (2,423 pixels) is at the bottom center; Nyamuragira volcano (342 pixels) is about 13 km NW. Courtesy of HIGP-MODVOLC Thermal Alerts System.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Goma, North Kivu, DR Congo (URL: https://www.facebook.com/Observatoire-Volcanologique-de-Goma-OVG-180016145663568/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Bezymianny (Russia) — June 2019 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Ongoing thermal anomalies, gas-and-steam plumes, and lava dome growth during February-May 2019; strong explosion in mid-March

Volcanism at Bezymianny has been frequent since 1955. During the last reporting period, observations primarily consisted of moderate gas-and-steam emissions and thermal anomalies. Lava dome growth has been reported, as well as the effusion of several lava flows onto the dome flanks. Monitoring is the responsibility of the Kamchatka Volcano Eruptions Response Team (KVERT). Activity during February to mid-March 2019 consisted of predominantly moderate gas-and-steam emissions. Incandescent, hot avalanches from the lava dome, strong fumarolic activity, and a thermal anomaly began to occur in mid-March 2019. This reporting period includes activity from February-May 2019.

One explosion occurred during this reporting period. According to video data from KVERT and seismic data from the Kamchatka Branch of the Geophysical Service, on 15 March 2019 an explosion sent ash up to an altitude of 15 km. According to the KVERT Weekly Reports, satellite data showed large ash clouds from this eruption drifting several thousands of kilometers east from the volcano. The Volcano Observatory Notice for Aviation (VONA) issued by KVERT for this event described ash clouds to a distance of about 870 km. Ashfall was reported in Ust'-Kamchatsk (115 km E) on 15 March and Nikolskoe (350 km E) on 15-16 March 2019.

Beginning 15 March and continuing through May 2019, the number of hot avalanches from the lava dome top significantly increased, as well as the temperature of the thermal anomalies as reported by KVERT based on satellite data. Incandescent lava dome growth with extruding, viscous lava flows accompanying strong fumarolic activity and thermal anomalies continued in late April-May 2019 (figure 30).

Figure (see Caption) Figure 30. Fumarolic plume rising above at Bezymianny on 14 April 2019. Photo by A. Klimova, courtesy of the Institute of Volcanology and Seismology FEB RAS, KVERT.

MODIS infrared data processed by MIROVA showed stronger and more frequent thermal anomalies in mid-March 2019 compared to the typical thermal activity since late January and afterwards through May (figure 31). According to the MODVOLC algorithm, 11 hotspot pixels were recorded between February and May 2019.

Figure (see Caption) Figure 31. Thermal anomalies at Bezymianny for September 2018 through May 2019 as recorded by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS) (URL: http://www.emsd.ru/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Nevados de Chillan (Chile) — June 2019 Citation iconCite this Report

Nevados de Chillan

Chile

36.868°S, 71.378°W; summit elev. 3180 m

All times are local (unless otherwise noted)


Small ash explosions and dome growth during December 2018-May 2019; ballistic ejecta deposited around the crater, with a pyroclastic flow in May

The current Nevados de Chillán eruption period began on 8 January 2018 with a phreatic explosion from the new Nicanor crater, within the Nuevo crater; a new dome was observed within this crater the next day. Dome growth continues with explosions that eject ash plumes and incandescent ejecta. This bulletin summarizes activity from December 2018 through May 2019 and is based on reports by Chile's Servicio Nacional de Geología y Minería (SERNAGEOMIN)-Observatorio Volcanológico de Los Andes del Sur (OVDAS) and satellite imagery.

Throughout December 2018 pulsating emissions from the Nicanor crater produced white plumes predominantly composed of water vapor, with occasional ash ejections giving the plume a gray appearance. Incandescence was frequently observed during the night due to the ejection of hot ballistic ejecta emplaced around the crater during explosions. After 11 months of observations, the dacite dome in the crater maintained a semi-stable extrusion rate of around 345 m3/day. Explosions were reported on 7, 17, 28, and 29 December.

Similar background activity continued through January with pulsating gas-and-steam plumes occasionally including ash, and incandescence observed during the nights due to hot ejecta around the crater. Explosions were recorded at 0500 and 1545 on 11 January, and on 13, 21, and 31 January (figures 33 and 34). During the night explosions and incandescent ejecta were observed impacting the area around the crater.

Figure (see Caption) Figure 33. An explosion at Nevados de Chillán on 11 January 2019. The explosion ejected incandescent blocks that impacted the flanks. The timestamp is at the top left of each image; screenshots are of footage courtesy of SERNAGEOMIN.
Figure (see Caption) Figure 34. An explosion at Nevados de Chillán on 31 January 2019 produced an ash plume from the Nicanor crater. Courtesy of SERNAGEOMIN.

Activity continued through February similar to previous months. The dome in the crater maintained a low extrusion, and activity alternated between dome growth and partial destruction during explosions. Steam-and-gas plumes with occasional ash content continued, with plumes reaching 1 km and drifting in multiple directions. Incandescence was observed during the night. Explosions were reported on 15 February.

During March through May, typical activity consisting of pulsating emission of steam plumes with occasional ash content, and incandescence at night, continued. Intermittent explosions associated with the partial destruction of the dome continued, with events reported on 1 March at 2323, and on 4, 7, and 8 March. Several explosions were reported during 8-9 and 23-30 April. Three explosions were reported on 3 May with one of them producing a 2-km-high ash plume and a pyroclastic flow on 10 May (figure 35). Additional explosions occurred on the 12 and 18 May.

Figure (see Caption) Figure 35. An explosion at Nevados de Chillán on 10 May 2019 produced an ash plume that rose to 2 km above the crater and a pyroclastic flow. The white plume in the bottom two images is steam from the interaction of the hot pyroclastic material and the snow. Screenshots are of a video courtesy of SERNAGEOMIN with timestamps indicated in the top left of each image.

Satellite data from December 2018 through May 2019 recorded intermittent thermal energy, with an increase after February 2019 (figure 36). Thermal anomalies from MODIS instruments were detected by the MODVOLC system on 29 March and 17 May 2019 (two anomalies). A thermal anomaly in the Nicanor crater was persistent in Sentinel-2 data throughout this period.

Figure (see Caption) Figure 36. Thermal anomalies at the active Nicanor crater of the Nevados de Chillán complex. Top: Sentinel-2 thermal image of showing the location of the thermal anomaly (orange). Bottom: MIROVA log radiative power plot of MODIS thermal infrared data from September 2018 through May 2019. Thermal signatures are intermittent and increase after February 2019. Note that the black lines are not from the crater and are unlikely to be related to volcanic activity. Courtesy of Sentinel Hub Playground and MIROVA.

Geologic Background. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 36, Number 01 (February 2011)

Managing Editor: Richard Wunderman

Bagana (Papua New Guinea)

Occasional ash plumes during 11 February-1 October 2010

Karangetang (Indonesia)

Eruption in August 2010 isolated 20,000 residents and caused four deaths

Kizimen (Russia)

Powerful fissure eruption in November 2010 ends ~82-year repose

Manam (Papua New Guinea)

Ashfall, pyroclastic flows, and seismicity in late December 2010

Merapi (Indonesia)

Eruption started 26 October 2010; 386 deaths, more than 300,000 evacuated

Rumble III (New Zealand)

Eruption in 2009 linked to over 100 m of sea floor collapse

Sangay (Ecuador)

Many plumes seen by pilots during past year ending February 2011

Taal (Philippines)

Intermittent non-eruptive unrest during 2008-2010



Bagana (Papua New Guinea) — February 2011 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Occasional ash plumes during 11 February-1 October 2010

This report discusses thermal anomalies and occasional ash plumes at Bagana during February into October 2010, with some satellite thermal data (MODVOLC) as late as early 2011. Our previous report (BGVN 35:02) also noted small lava flows, occasional ash plumes, and thermal anomalies from October 2009 through February 2010.

Historical records describe frequent eruptions since 1842. Bagana lacks instrumental monitoring and sits far from population centers. Many recent observations are remote-sensing based, although the Rabaul Volcano Observatory (RVO) produces reports with direct air- and ground-based observations. Bagana's flanks are covered with andesitic lava flows up to 50 m thick (Blake, 1968). The flows typically descend the mid-slope within the confines of tall lava levees, but emerge from the levees on the outer flanks to form sub-circular flow fields. Bagana's thick lava flows are visible in two photos below (figures 18 and 19).

Figure (see Caption) Figure 18. An International Space Station photo taken on 2 April 2007 showing a diffuse white vapor plume extending SSW from Bagana's summit. The volcano is known for ongoing activity and lava flows of noteworthy thickness (~ 50 m thick). The brown-to-olive colors of the volcano stand out amidst the green of tropical rain forest. Astronaut Photo ISS014-E-18844. Courtesy NASA.

Activity. Between 10 February 2010 and 1 October 2010, the Darwin Volcanic Ash Advisory Center (VAAC) reported one or a few ash plumes per month from Bagana. Many rose to ~3 km and drifted from 20-205 km (table 5). According to RVO, ash plumes were seen on 5 February and night-time incandescence was seen on 2, 12, 13, and 19 February. White vapor was emitted during 1-21 February. Sulfur dioxide plumes drifted ENE during 11-20 February and NNW on 20 and 21 February. Consistent with the thick lava flows, MODVOLC detected well over 100 thermal anomalies at Bagana in the year ending 10 February 2011.

Table 5. Summary of ash plumes from Bagana reported during 1 February-October 2010. Courtesy of the Darwin Volcanic Ash Advisory Centre (VAAC).

Date Altitude (km) Drift (distance and direction)
11-15 Feb 2010 2.4 18-150 km E, NE
19-20, 23, 25 and 27 Apr 2010 1.5-3 35-85 km S, SW, W, NW
06, 10-12 May 2010 2.4-3 55-75 km W, SW, WSW
25-28 May 2010 3 30-185 km NW, W, SW
13-14 Jun 2010 3 75-205 km SW, W
04 Jul 2010 2.4 75 km W
10-11 Jul 2010 2.4 75-150 km SW
13-15 Aug 2010 2.4 75 km SW, W
01 Oct 2010 2.4 75 km NW

Reference. Blake D H, 1968. Post Miocene volcanoes on Bougainville Island, Territory of Papua and New Guinea. Bull Volc, 32: 121-140

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Rabaul Volcano Observatory (RVO), PO Box 386, Rabaul, Papua New Guinea; NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Image Science and Analysis Laboratory, NASA-Marshall Space Flight Center (URL: http://eol.jsc.nasa.gov, http://www.flickriver.com/photos/); VolcanoWallpapers (URL: http://www.volcanowallpapers.com/Volcano-Smoke/mount-bagana-volcano/).


Karangetang (Indonesia) — February 2011 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Eruption in August 2010 isolated 20,000 residents and caused four deaths

A sudden eruption at Karangetang on 6 August 2010 occurred without warning and caused considerable damage. This report covers the interval from 6 August 2010 to mid-March 2011. Previously, the Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM) had reported that, after explosions and lava flows during May and June 2009 and a pyroclastic flow and lahar in November 2009, seismicity had declined through early February 2010 (BGVN 35:01). On 12 February 2010, CVGHM had lowered the Alert Level to 2 (on a scale of 1-4).

According to news articles, an explosion on 6 August 2010 ejected hot clouds of gas and sent pyroclastic flows down the W flank. At least one house was buried and several other buildings, including a church, were damaged. A damaged bridge isolated about six villages and their ~20,000 residents, and communication links were lost. According to news reports (CNN and Associated Press), four people were confirmed dead and five were injured, and about 65 were evacuated. The Darwin Volcanic Ash Advisory Centre (VAAC) reported that an ash plume rose to an altitude of 9.1 km and drifted W on that same day.

The news reports cited CVGHM official Priyadi Kardono as noting that the volcano erupted just after midnight when water from heavy rains had penetrated the volcano's hot lava dome, causing the explosion. According to these reports, Kardono said volcanologists did not issue a warning about the eruption because there were no indications of increased volcanic activity. Kardono also noted that the explosion was not large, and the flow of volcanic debris had since decreased.

CVGHM reported that during 1-21 September 2010, lava traveled 75-500 m down Karangetang's flanks and avalanches traveled as far as 2 km down multiple drainages, to the S, E, and W. Incandescent material was ejected up to 500 m above the crater. Ashfall was reported in areas to the NW.

On 21 and 22 September incandescent material traveled down multiple drainages. Strombolian activity was observed on 22 September; material ejected 50 m high fell back down around the crater. That same day, the Alert level was raised to 3.

During November and early December 2010, CVGHM noted a drastic decrease in the occurrence of pyroclastic flows on Karangetang's flanks. Seismicity also decreased. The only reports were of white plumes that rose up to 300 m above the craters. The Alert Level was thus lowered to 2 on 13 December 2010.

According to CVGHM, the Alert Level was again raised from 2 to 3 on 11 March 2011 due to increased seismicity. According to news reports, lava flows were visible and blocks originating from the lava dome traveled as far as 2 km down the flanks, along with hot gas clouds. A Reuters News photo published in Okezone News showed a moderate Strombolian eruption venting from the summit on 11 March, with an apron of incandescent spatter dotting the upper slopes, and a swath of red spatter and bombs bouncing down one flank. Darwin VAAC reported that on that same day, an ash plume rose to an altitude of 2.4 km and drifted 55 km SW; on 13 March, another ash plume rose to an altitude of 3.7 km and drifted 37 km.

During 12-16 March, CVGHM stated that bluish gas plumes rose 50-150 m above the main crater. On 17 March lava flows traveled as far as 2 km from the main crater, accompanied by roaring and booming noises.

On 18 and 20 March lava flows traveled 1.5-1.8 km and collapses from the lava flow fronts generated avalanches that moved another 500 m. Avalanches from the crater traveled 3.8 km down the flanks. Multiple pyroclastic flows about 1.5-2.3 km long destroyed a bridge, damaged a house, and trapped 31 people (later rescued) between the flow paths. Later that day, pyroclastic flows traveled 4 km, reaching the shore. The Alert Level was raised to 4. According to news articles, 600-1,200 people were evacuated from villages on the W flank.

During the week after 20 March, seismicity and deformation declined. The number of new lava flows also declined.

MODVOLC Thermal Alerts. Thermal alerts derived from the Hawai'i Institute of Geophysics and Planetology Thermal Alerts System (MODVOLC) were reported through 19 February 2010 in BGVN 35:01. A significant number of alerts were measured on 19 March 2010 (14 pixels at 0215 UCT on Terra) and 23 March (1 pixel on Aqua), followed by ~5 months without measured alerts. Alerts reappeared during 16 August-19 October 2010. Alerts were absent between 20 October 2010 and 10 March 2011, followed by renewed alerts during 11-12 March 2011.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Okezone News (URL: http://news.okezone.com/read/2011/03/12/340/434280/gunung-muntahkan-lava-pijar); Associated Press (URL: http://www.ap.org/); Reuters (URL: http://www.reuters.com/); CNN (URL: http://www.cnn.com/); Straits Times (URL: http://www.straitstimes.com/); Novinite (URL: http://www.novinite.com/).


Kizimen (Russia) — February 2011 Citation iconCite this Report

Kizimen

Russia

55.131°N, 160.32°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Powerful fissure eruption in November 2010 ends ~82-year repose

Eruption began here during mid-November 2010, the first since 1927-1928 (Brown and other, 2010). Ash plumes rose to ~10 km and were visible in satellite imagery as they traveled hundreds of kilometers during November 2010 through at least late February 2011. Our previous Bulletin (BGVN 35:02) reported that the number of earthquakes at Kizimen had increased substantially beginning in July 2009 (up to 120 earthquakes per day) through early April 2010 and that fumarolic temperatures increased in August. This report discusses activity since early April 2010.

After early April 2010, seismicity at Kizimen entered a quiescent phase until the Kamchatkan Volcanic Eruption Response Team (KVERT) reported increased seismic activity on 20 August and particularly during early November 2010. Based on information from a tourist center 10 km from Kizimen, KVERT noted that on 11 November 2010, strong gas-and-steam emissions resulted in a plume, possibly containing some ash, that rose to an altitude of 4 km.

According to the Kamchatkan Branch of Geophysical Survey (KG GS RAS), seismicity of the volcano was above background levels all week, and an M 4 earthquake occurred on 16 November 2010. Accroding to information from the Yelizovo Airport (UHPP), the Tokyo VAAC reported that on 17 November an ash plume from Kizimen rose to an altitude of 3 km and drifted NE. KVERT noted the lack of satellite data about ash near Kizimen. The Level of Aviation Color Code remained at Green (on a scale that goes from low to high using these terms: Green, Yellow, Orange, and Red).

On 17 November 2010 (UTC), based on information from KB GS RAS and analysis of satellite imagery, the Tokyo VAAC reported that an ash plume rose to an altitude of 3 km and drifted NE. KVERT noted lightning in the ash plumes. The Aviation Color Code was raised to Red.

Seismic activity was above background levels during 19 November to 24 December 2010. On 20 November, volcanologists flying around Kizimen by helicopter observed several new fumaroles at the summit and SW flank. A small amount of "dust" covered the SW flank, possibly ash from the new fumaroles. Activity at the established old fumarole "Revuschaya" on the volcano's NE flank decreased. No thermal anomaly was noted from satellite images. The Level of Aviation Color Code was raised to Yellow.

On 9 December 2010, seismicity increased significantly and the Aviation Color Code level was raised to Orange. That same day, the Tokyo VAAC reported that, according to KB GS RAS, an explosion produced a plume that rose to an altitude of 2.7 km and drifted N. Ash was not identified in satellite images. A bright thermal anomaly was observed in satellite imagery the next day.

The beginning of the eruption Kizimen was captured in in a photo made by Don Page on 10 December from a commercial flight. The eruption start from long fissure on the SE slope (figure 5).

Figure (see Caption) Figure 5. Photo taken on 10 December 2010 at 0314 UTC (1414 local Kamchatka time; from Seat 36K of Air Canada Flight 063 from Vancouver, Canada, to Incheon-Seoul, Korea). A dark, angled (non-vertical) plume rises from the along the length of an elongate fissure network on the SE slope. [Photo: 981x656 pixels, with a Nikon D80 digital camera and an AF-S Nikkor 18-200 mm zoom lens (probably set at 200 mm).] Photo by Don Nelson Page (University of Alberta).

Evgeny Gordeev wrote a reply to Don Page thanking him for sharing the rare photos (figure 5) of the eruption's start and providing interpretation of the unusual genesis of the ash cloud. Gordeev told Page that he had documented the beginning of the Kizimen 10 December eruption, noting that the closest village to Kizimen is almost 100 km distant. Gordeev commented that the only practical way to monitor the volcano involves satellite images, which are discontinuous and not always of high resolution. "Your pictures help us enormously, mainly to recognize the vent of eruption. It is very unusual for volcanoes to erupt through [such a] long fissure on the slope. You are right, this fissure [is] very narrow and very long. After [this,] your pictures you will be very [well] known [by] volcanologists."

On 12 December 2010 an explosive eruption generated ash plumes that rose to an altitude of 3-3.5 km and drifted NW. Ash deposits in Kozyrevsk and Tigil, 110 and 308 km NW, respectively, were 5 mm thick. Later that day seismic activity decreased and the Aviation Color Code was lowered to Orange. Kronotsky National Park staff, residing at Ipuin (~16 km WSW), noted that the water level in Levaya Schapina river rose 60 cm after the explosions and remained elevated for the next two days. The water was also very muddy. During 14-24 December seismicity remained above background and a thermal anomaly over the lava dome was detected in satellite imagery.

KVERT noted that during 17-24 December 2010 the number of shallow seismic earthquakes increased from 110 events on 17 December to 304 events on 22 December. Volcanic tremor was detected on 23 December. During 26-28 December, seismicity also increased and there were possible small ash explosions and hot avalanches. A thermal anomaly over the lava dome was again seen in satellite imagery. On 27 December seismic analysis indicated that ash plumes that day possibly rose to altitudes of 3.5-4.5 km. Satellite imagery showed ash plumes drifting 140 km W at an altitude of 4 km. On 28 December, based on a Yelizovo Airport (UHPP) notice, the Tokyo VAAC reported an ash plume drifting W at an altitude of 3.7 km. The Aviation Color Code was raised to Red.

A thermal anomaly over Kizimen's lava dome was again observed in satellite imagery during 29 December 2010-1 January 2011 and an explosive eruption that began on 13 December continued. On 31 December seismicity increased and volcanic tremor was detected. Explosions occurred sporadically for a period of about 20 minutes. Ash plumes detected in satellite imagery rose to an altitude of 8 km and drifted SW. Ashfall at least 1 mm thick occurred in multiple areas 225-275 km SSW, including Petropavlovsk-Kamchatsky, Yelizovo, Paratunka, and Nalychevo. Ash plumes at an altitude of 4 km drifted 480-500 km SW; ash continued to accumulate in some areas.

Seismic data indicated increased activity on 3 January. Based on analysis of satellite imagery, the Tokyo VAAC reported that possible eruptions during 2-4 January produced plumes that rose to an altitude of 3-4.6 km and drifted S, E, and NE. Subsequent images on those same days showed ash emissions continuing, then dissipating. During 4-7 January seismicity remained high and variable and volcanic tremor continued. A thermal anomaly over the volcano was observed in satellite imagery. Explosions continued through 7 January 2011 producing ash plumes mostly below altitudes of 6-8 km as reported by pilots or observed in satellite imagery. These drifted more than 200 km SE. A large and bright thermal anomaly was observed in satellite imagery.

A pattern of high seismicity and ash emissions was noted during early January 2011. On 5 January ash plumes drifted more than 500 km ENE. Ashfall was reported on the Komandorsky Islands, 350-500 km E (figure 6).

Figure (see Caption) Figure 6. An ash plume rising from Kizimen and blowing to the ENE on 5 January 2011. Courtesy of A. Lobashevsky.

The Tokyo VAAC reported that ash continued to be observed in satellite imagery on 5 January. According to information from KVERT and analyses of satellite imagery, a possible eruption on 6 January produced a plume that rose to an altitude of 3.7 km and drifted E. Subsequent satellite images that same day showed continuing ash emissions. Ash plumes drifted NW on 9 January, and drifted NW again on 11 January 2011, at an altitude of 2.7 km.

KVERT reported that during 7-13 January 2011 they saw both a thermal anomaly over Kizimen in satellite imagery and pyroclastic flow deposits on the E flank. Seismicity recorded during 6-7 and 12 January was high but variable, and many shallow volcanic earthquakes as well as volcanic tremor continued to be detected. Ash plumes that rose to altitudes of 6-8 km during 5-13 January were seen drifting multiple directions, and appeared in satellite imagery to be drifting more than 275 km W and NW. On 12 January ashfall was reported in the villages of Anavgai and Esso, 140 km NW. Seismic data during 14-15 January suggested that ash plumes rose to altitudes of 4-5 km. Satellite images showed a bright thermal anomaly over the volcano and ash plumes drifting more than 180 km W on 15 January 2011. The Aviation Color Code level was lowered to Orange.

From 14 January through 1 February, KVERT reported that seismicity from Kizimen was high but variable, and many shallow volcanic earthquakes as well as volcanic tremor continued to be detected. Seismic data analyses suggested that ash plumes possibly rose to an altitude no higher than 6 km. Satellite images showed a daily bright thermal anomaly over the volcano, and ash plumes that drifted more than 200 km W during 15-16 and 20 January. Based on satellite data, the Tokyo VAAC also reported that during 23-25 January eruptions produced plumes that rose to altitudes of 4.9-10.1 km. Based on analyses of satellite imagery, the Tokyo VAAC reported that a possible eruption on 29 January produced a plume that rose to an altitude of 3.7 km and drifted SW. Photo and satellite images taken during late January through late February showed continuing ash emissions (figures 7 and 8).

Figure (see Caption) Figure 7. Two images of Kizimen taken on 26 January 2011. On the left photo (a), a dark pyroclastic flow rushes down the slopes of the volcano. Photo by Igor Shpilenok. On the right (b), a thermal infra-red (IR) image taken of a pyroclastic flow during an explosion (IR scale temperature appears at right). The pyroclastic flow originated from the summit of the lava dome and swept downward. (The infrared image shows radiated energy as areas of bright glow.) During this eruptive stage a pyroclastic surge spread out over the slopes. IR image by V. Droznin, S. Chirkov, and I. Dubrovskaya (IVS RAS).
Figure (see Caption) Figure 8. This satellite image taken on 25 February 2011 shows a vigorous ash-laden plume extending from Kizimen at an altitude of ~3 km, drifting towards the NE, and visible for more than 170 km. The white portion of the plume is likely rich in steam, while the tan plume is primarily ash. The ground E of Kizimen is coated in newly fallen ash not yet covered by fresh snow. To the S of the summit are several dark streaks. These are probably traces of pyroclastic flows. Thermal anomalies (red in colored versions of this Bulletin) show the presence of recent hot block-and-ash flows from summit dome collapses. The image was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. Courtesy of NASA/GSFC/METI/ERSDAC/JAROS.

Reference: Browne B., Izbekov, P., Eichelberger, J., and Churikova, T., 2010, Pre-eruptive storage conditions of the Holocene dacite erupted from Kizimen Volcano, Kamchatka: International Geology Review, v. 52, Issue 1 January 2010, p. 95-110.

Geologic Background. Kizimen is an isolated, conical stratovolcano that is morphologically similar to St. Helens prior to its 1980 eruption. The summit consists of overlapping lava domes, and blocky lava flows descend the flanks of the volcano, which is the westernmost of a volcanic chain north of Kronotsky volcano. The 2334-m-high edifice was formed during four eruptive cycles beginning about 12,000 years ago and lasting 2000-3500 years. The largest eruptions took place about 10,000 and 8300-8400 years ago, and three periods of long-term lava dome growth have occurred. The latest eruptive cycle began about 3000 years ago with a large explosion and was followed by intermittent lava dome growth lasting about 1000 years. An explosive eruption about 1100 years ago produced a lateral blast and created a 1.0 x 0.7 km wide crater breached to the NE, inside which a small lava dome (the fourth at Kizimen) has grown. Prior to 2010, only a single explosive eruption, during 1927-28, had been recorded in historical time.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanology and Seismology Russian Academy of Sciences, Far East Division, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Kamchatka Branch of the Geophysical Service of the Russian Academy of Sciences (KB GS RAS), Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Sergey Senukov, Russia (URL: http://www.emsd.ru/) Valery Droznin and Sergey Chirkov, Institute of Volcanology and Seismology Russian Academy of Sciences, Far Eastern Branch, 9 Piip Boulevard, Petropavlovsk-Kamchatsky, 683006, Russia; A. Lobashevsky (URL: http://www.photokamchatka.ru/); I. Shpilenok (URL: http://shpilenok.livejournal.com/44922.html); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/); Don Nelson Page, Theoretical Physics Institute, 412 Physics Lab., University of Alberta, Edmonton, Alberta T6G 2J1, Canada.


Manam (Papua New Guinea) — February 2011 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Ashfall, pyroclastic flows, and seismicity in late December 2010

This report discusses Manam behavior during November 2010 to early 2011. As previously reported, during August-October 2010, lava fragments and ash plumes rose from Manam (BGVN 35:09). Similar activity continued through at least 4 January 2011. Over 10,000 former island residents remain in care centers on the mainland (see below).

During the reporting period, the Rabaul Volcano Observatory (RVO) reported that the Main Crater produced mostly white plumes that were occasionally laden with ash. Incandescent material was ejected at times and mainly fell back in and around the crater, but occasionally spilled into the SE and SW valleys.

Based on analysis of satellite imagery, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that ash plumes during 14-16 November 2010 rose to an altitude of 2.7 km and drifted ~95 km NW.

RVO reported that light brown to dark gray ash plumes rose 400-500 m above the South Crater during late November. People living on the island reported occasional roaring and rumbling noises. A new episode of eruptive activity began at South Crater on 25 December and was characterized during 25-29 December by rising ash plumes and ejections of incandescent lava fragments. Electronic tilt measurements showed a strong inflationary trend during 24-26 December but this slowed down on 26 December.

On 30 December 2010, activity from South Crater increased and was reported by observers in Bogia (on the mainland 20 km SSW). A dense ash plume rose 3 km above the summit crater and drifted NW, causing light ashfall in Tabele (4 km SW of Manam). An observer at Tabele confirmed the eruption and also reported that three pyroclastic flows descended the SE valley, stopping within a few to several hundred meters from the coastline. The first and largest pyroclastic flow devastated a broad unpopulated area between Warisi (E of Manam) and Dugulava (S of Manam) villages. RVO increased the Alert Level to Stage 3. Later that day, both ash emissions and the ejection of incandescent fragments diminished.

During early January 2011, plumes, sometimes containing ash, continued to rise above the South and Main Craters. RVO reported low roaring from the South Crater and incandescence was reported at times. On 8 January, the Alert Level was lowered from Stage 3 to Stage 2.

Seismicity and MODVOLC thermal alerts. Seismic data were not available during late November because of technical problems. Seismicity was low on 24 December, increased slightly after 25 December, then reached a point after 27 December where it fluctuated at and above moderate level. RVO reported seismicity during early January 2011 to be at a moderately low to moderate level.

Between 16 October 2010 and 10 January 2011, MODVOLC detected thermal anomalies on 25 days, mostly during late November and December. After 10 January, no thermal anomalies were detected through at least 16 February.

Multi-year evacuation. The UN's IRIN (Integrated Regional Information Networks) discussed Manam evacuees in reports issued 5 May and 20 December 2010. The 5 May 2010 report stated that "Around 14,000 islanders have been living in three care centres in the mainland province of Madang since November 2004. In March 2010 there was discussion that the displaced persons might be allowed to voluntarily return home to Manam Island."

According to the report, "A July 2009 assessment by the National Disaster Centre, the UN, and Oxfam concluded that living on the island was not a viable option because of a lack of access to arable land and public services, and the risk of further volcanic activity."

"The decision to begin returning residents was taken following heightened tensions between islanders and local residents (they speak the same language), largely over land issues. With little to no assistance, many of the IDPs rely on local gardening as their only source of food and livelihood, meaning they often encroach on nearby land.

"In March 2010, the National Executive Council (NEC) approved the establishment of the Manam Task Force Committee to manage the needs of the displaced islanders, with the primary goal of finding a suitable location for their permanent relocation."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), PO Box 386, Rabaul, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Merapi (Indonesia) — February 2011 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Eruption started 26 October 2010; 386 deaths, more than 300,000 evacuated

This report represents a preliminary discussion of the deadly eruption at Merapi that started on 26 October 2010. That eruption included weeks of instability that generated pyroclastic (block-and-ash) flows, which became particularly vigorous and numerous in early November, with at least one surge reportedly traveling along the Gendol drainage to 15-16 km from the summit dome. Of particular note from a hazards perspective, the path of some of these deposits differed at times from those of the recent past (but we have yet to find maps showing the flow directions and associated dates). An abstract by Lavigne and others (2011) reported the volume of tephra erupted in the 2010 eruption at over 100 x 106 m3, ~10-fold higher than similar deposits after typical eruptions in the past few decades, and among the factors why ongoing lahars are likely to be a hazard.

Our summary covers events into late 2010, with recognition of ongoing seismicity, weaker emissions, and repeated lahars in early 2011. The bulk of this report is based on those from the Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM) and their observatory dedicated to Merapi (MVO). According to CVGHM, the 2010 eruption was the biggest since the 1872 eruption. Eruptions in 1930 killed around 1,300 people. The last eruption of Merapi occurred during March 2006-August 2007 (BGVN 31:05, 31:06, 32:02, and 33:10). A table appears near the end of this report summarizing some key events and observations. Fatalities and scale of evacuations are discussed in a separate subsection below. Another subsection notes that at least one commercial airliner sustained serious in-flight engine damage.

Regional background and prior eruptive patterns. Merapi (figures 38, 39, and 40) is located in the central part of Java, and this region and the island as a whole have extremely high population density (roughly double that of Japan or Thailand). Substantial numbers of people live or vacation on the mountain. The most densely settled part of the mountain is the dangerous S side (figure 39).

Figure (see Caption) Figure 38. (Bottom) Two maps showing Merapi's location and (on the larger map) the distribution of block-and-ash flows that took place during 1954-1998. During that interval, these deposits went to the NW, W, and SW. From Hort and others (2006).
Figure (see Caption) Figure 39. A map of the S portion of Merapi showing population data in shaded patterns with key at left. The segments of circles depict distances from the summit. The 2010 eruptions sent pyroclastic flows through Merapi's SE quadrant, thus passing areas of elevated population. Taken from OCHA (8 November 2010).
Figure (see Caption) Figure 40. A set of simple diagrams illustrating Merapi in cross section (looking W; S is to the left) summarizing behavior that occurred during 1986-1994 (such a diagram has yet to be published for the 2010 eruption). The 1989 case shows VT earthquakes in the edifice (circles containing crosses). Taken from Ratdomopurbo and Poupinet (2000).

Figure 38 provides a summary of block-and ash-flow deposits from 1954-1998 (Hort and others, 2006; Schwarzkopf, 2001). The eruptions starting in October 2010 sent pyroclastic flows and possible surges at least 15 km in the volcano's W to S quadrant. Block-and-ash flows are pyroclastic flows formed by dome collapse and containing a substantial amount of broken dome fragments.

The inset map at the lower left shows Merapi with respect to the city of Yogyakarta (30 km SSW). Although the metro area of that city has a population of 1.6 million residents, the Indonesian statistical bureau estimated the 2010 populations of the ~30 km2 city of Yogyakarta at ~396,000 residents, and the broader region at ~3.5 million residents.

Figure 39 shows the summit and S part of Merapi, plotting population data by village at distances up to 20-25 km from the summit. This side of the volcano is by far the most densely populated, and was also crossed by numerous pyroclastic flows both historically and in the 2010 eruptions.

Figure 40 illustrates critical processes in Merapi's mode of eruption in the recent past. A significant portion of the dome is unconfined by the summit crater and the S side is free to descend the volcano's upper slopes endangering residents below. In the recent episode, CVGHM benefitted from daily access to satellite radar imagery that reliably depicted dome morphology despite weather and steam clouds. Vöge and Hort (2008) and Hort and others (2006) discuss monitoring dome instability using Doppler radar.

Monitoring and lead-up to the 26 October 2010 eruption. Since 2007, short swarms of volcanic earthquakes occurred (eg., on 31 October 2009, 6 December 2009, and 10 June 2010). Monitored parameters, including earthquakes, deformation, and gas emmisions increased significantly during September 2010. Steeper increases in seismicity appeared during 15-26 October with the main ramp-up during 20-26 October.

Figure 41 shows several histograms that depict Merapi seismic data and summarize the variations in hazard status. The CVGHM scale, which stretches from 1 (low) to 4 (high), makes a complete ascent and partial descent through the full range of those levels during the date range shown. The heavy vertical line between Alert Levels 3 and 4 took place on 25 October, slightly before the onset of the major eruption on 26 October.

Figure (see Caption) Figure 41. Three histograms describing Merapi seismicity during 1 September 2010 to 6 March 2011. Horizontal scale marked in weeks and extends from 1 September 2010 to 5 March 2011. Words along the top line show hazard status (on an increasing scale starting from 1 [Normal] and extending to 2 [Waspada]), to 3 [Siaga]), and finally to 4 [Awas] and then declining). The top panel contains seismically inferred rockfalls and avalanches (guguran in Indonesian). The middle panel shows multiphase (MP) earthquakes (shallow source, dominant frequency ~1.5 Hz). The bottom panel shows volcanic earthquakes of both A- and B-type (where VTA represents deep volcano-tectonic earthquakes, 2.5-5 km below the summit; VTB represents shallow volcano-tectonic earthquakes, less than ~1.5 km below the summit). Taken from CVGHM report of 7 March, with minor revisions by Bulletin editors.

Figure 42 presents typical waveforms for various types of earthquakes and tremor signals previously recorded at Merapi (Ratdomopurbo and Poupinet, 2000). Both multiphase (MP) and volcanic type-A (VTA) showed strong peaks in seismicity prior to the 26 October eruption's onset. Rockfalls on upper panel (labeled guguran) and type-b events on bottom panel both peaked on or near 26 October.

Figure (see Caption) Figure 42. Typical waveforms, tremor signals, and descriptive seismic terminology in use at Merapi. These include tremor, LF-low frequency (earthquakes nominally from shallow sources, dominant frequency between 3 and 4 Hz), VTA and VTB (volcano-tectonic A and B, where VTA represents deeper volcano-tectonic earthquakes, 2.5-5 km below the summit; and VTB represents shallower volcano-tectonic earthquake, less than ~1.5 km below the summit), and MP-multiphase earthquakes. Records are from Station PUS (~0.5 km E of summit), shown in the upper part of the figure, and from Station DEL (~3 km SE of the summit), in the lower part. From Ratdomopurbo and Poupinet (2000).

The onset of the 26 October explosion occurred ~19 hours after an M 7.7 tectonic earthquake along the trench near the Mentawai islands adjacent to Central Sumatra, 1,200 km NW of Merapi. This earthquake was followed by several aftershocks, including two prior to the eruption (M 6.1 and 6.2) and one after the eruption (M 5.8). One or more of these earthquakes triggered tsunamis that hit the remote Mentawai islands, sweeping entire villages to sea and killing at least 428 people. There, too, thousands of people were displaced. The two near-simultaneous crises taxed authorities, NGOs, and the natural hazards community (figure 43).

Figure (see Caption) Figure 43. A map emphasizing the locations of the M 7.7 tsunamigenic (tsunami-generating) earthquake and the eruption onset at Merapi, events of 25 and 26 October, respectively. (The earthquake time stated is incorrect—according to USGS cataloging, it registered at 1442 UTC on the 25th, which corresponds to 2142 local time that day. The eruption began at 1002 UTC on the 26th). Jakara is Indonesia's capital. Courtesy of Relief Web.

Except for the close timing and regional proximity, the linkage between the M 7.7 earthquake and the eruption remains ambiguous. However, many researchers have noted that tectonic earthquakes can seemingly trigger volcanic responses (eg., Delle Donne and others, 2010; Lowenstern, JB, Smith, RB, and Hill, DP, 2006; Manga and Brodsky, 2006).

In early September 2010, the pattern of increased volcanic seismicity began to appear with MP earthquakes averaging 10/day and VTA and VTB averaging 3/day, with a total daily seismic energy of 603 x 1012 erg.

Gas analyses in August 2010 showed concentrations of HCl of 0.8 % mol and H2O of 80 % mol. Declining levels of H2O (less than 90 %) and increased levels of HCl (>0.5 %) were interpreted to indicate increased activity.

In September, summit inflation increased markedly. Seismicity also increased beginning on 12 September, when an M 2.5 VTA earthquake and pyroclastic flows/avalanches occurred. On 13 September, VTA earthquakes occurred twice, and white plumes rose 800 m above the crater.

During 23-26 October, there were small steam-and-ash emissions. Inflation increased sharply on 24 October to a rate of 420 mm/day. The next day, CVGHM raised the Alert Level to 4, and recommended immediate evacuation for several communities within a 10-km radius. A Reuters photo by Dwi Oblo taken at sunrise on 26 October looking up at the dome and the prominent S-trending avalanche channel revealed comparatively calm conditions, with emissions consisting of a thick white steam plume blowing W from the dome.

Initial October eruptions. The first eruption occurred at 1702 on 26 October 2010, an event characterized by explosions and multiple pyroclastic flows that traveled S ~8 km down the Gendol and Kuning drainages, and to some extent WSW down the Bedog drainage. Most of the pyroclastic flows lasted 2-9 minutes, but the eruptions associated with the final two each lasted 35 minutes. The event killed 35 people including the renowned mystical guardian of Merapi, Mbah Mbahmarijan, at 7 km distance.

Figure 44 shows an exposed ridge affected by pyroclastic flows in a photo taken on 27 October.

Figure (see Caption) Figure 44. An exposed ridge at Merapi as it appeared the day after the 26 October eruption. Pyroclastic flows had reduced forest to stumps, leaving stripped and fallen trees. Courtesy of The Boston Globe website of Merapi photos (Ulet Ifansasti/Getty Images).

According to the Darwin Volcanic Ash Advisory Center (VAAC), an ash plume rose to an altitude of 18 km, followed by extrusion of lava in the summit crater.

By 27 October the lava dome had sustained damage and a new 200-m-diameter crater had formed at the summit. After that, lava extrusions built a small dome in the crater. A space-based estimate made from the ozone monitoring instrument (OMI) indicated the eruption on the 26th vented at least 3,000 metric tons of SO2 gas. According to the Darwin VAAC, ground-based reports indicated that another explosion occurred on 28 October 2010. Cloud cover prevented satellite observations.

Following the eruption and continuing through 4 November, intense tremor took place. It was felt by people up to 20 km from the volcano.

CVGHM reported that two pyroclastic flows occurred on 30 October following an early morning explosion, the third since 26 October. According to a news article, ash fell in Yogyakarta, 30 km SSW, causing low visibility. CVGHM noted four pyroclastic flows on 31 October.

Stronger eruptions in November. According to CVGHM, during 31 October-4 November, a lava dome grew rapidly within Merapi's summit crater. Collapses from the S side of the dome fed minor pyroclastic flows that extended several hundred meters into the upper part of the Gendol valley.

On 1 November, an explosion began mid-morning with a low-frequency earthquake, and avalanches occurred. About seven pyroclastic flows occurred during the next few hours (figure 45), traveling SSE a maximum runout distance of 4 km, and in another (possibly later) case that day, 9 km. The Darwin VAAC reported that the explosion produced an ash plume that rose to an altitude of 6.1 km. News reports noted flight diversions and cancellations in and out of the airports serving Solo (40 km E) and Yogyakarta.

Figure (see Caption) Figure 45. On 1 November 2010, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this thermal signature of Merapi's lava dome and hot pyroclastic flows. The thermal information is overlaid on a three-dimensional map of the volcano to show the approximate location of the pyroclastic flow. The three-dimensional data is from a global topographic model created using ASTER stereo observations. Courtesy of NASA Earth Observatory website (credit to Robert Simmon and Jesse Allen and NASA/GSFC/METI/ERSDAC/JAROS, and the U.S./Japan ASTER Science Team). Original caption by Holli Riebeek.

On 2 November, an ash plume was seen in satellite imagery drifting 75 km N at an altitude of 6.1 km. On the same day, CVGHM reported 26 pyroclastic flows. On 3 November, observers stationed at multiple posts reported ash plumes from pyroclastic flows. One pyroclastic flow traveled 10 km, prompting CVGHM to extend the hazard zone from a radius of 10 km to 15 km, and they recommended evacuations from several more communities. Another pyroclastic flow traveled 9 km SE later that day. Figure 46 shows a 2 November view of Merapi.

Figure (see Caption) Figure 46. Incandescent material spilled from Merapi's dome glows orange-red in colored versions of this long-exposure photograph taken on 2 November 2010 from ~25 km SSE of the summit (Klaten district). Condensate droplets in the thin (lenticular) clouds over the summit also reflect considerable light. Courtesy of The Boston Globe (Boston.com website); photo credit to Sonny Timbelaka (AFP/Getty Images).

CVGHM reported that, during 3-8 November, the eruption from Merapi continued at a vigorous pace, characterized by incandescent avalanches from the lava dome, pyroclastic flows, ash plumes, and occasional explosions.

Visual observations were often difficult due to inclement weather and eruption plumes. To overcome these challenges, people working on the crisis gained regular access to satellite radar data of high resolution (RADARSAT2). That data was made available 25 October through an agreement called the International Charter Space and Major Disasters.

According to the NASA Earth Observatory website, the strongest explosion during the 2010 eruption took place on 4-5 November, lasting more than 24 hours, when plumes rose to ~18 km altitude and drifted 110 km W. They claimed that some surges of pyroclastic material reached an 18 km runout distance (direction and damage unstated and several kilometers longer than some other observations). They also said that, according to local geologists, this explosion was the most violent one at Merapi since the 1870's. They noted that, by some estimates, the 4-5 November eruption was five times more intense than the one on 26 October.

A CVGHM report on the 4-5 November eruption stated that 38 pyroclastic flows had occurred before it ended. Although dense fog hampered visual observations, a CVGHM observer from Kaliurang post (~7 km S of the summit) saw 19 of those 38 flows travel ~4 km S. Another traveled 9 km SE. Ashfall was noted in some nearby areas. Satellite data indicated this explosion released much more SO2 than previous recent Merapi eruptions, ~300,000 metric tons.

Residents in towns up to 240 km away reported that 'heavy gray ash' blanketed trees, cars, and roads. On 5 November, rumbling sounds were heard in areas 30 km away, and pyroclastic flows continued to descend the flanks. Ash fell in Yogyakarta and "sand"-sized tephra fell within 15 km. CVGHM recommended evacuations from several more towns within a 20-km radius. Observations shortly after the 5 November eruption showed that the large lava dome of the previous week had been destroyed, and the summit crater had enlarged to a diameter of 300-400 m. However, by 6 November, another lava dome had grown, amassing, according to RADARSAT images 11 hours apart, at a rate of ~35 m3 per second.

Activity remained very intense on 6 November. Pyroclastic flows continued to descend the flanks; one flow traveled 4 km down the Senowo drainage to the W. Incandescent flashes from the lava dome were reported from observations posts, and incandescent material was ejected above the crater. Incandescent avalanches traveled 2 km down multiple drainages to the SSE, S, and SSW. The Darwin VAAC reported that ash plumes seen in satellite imagery rose to an altitude of 16.8 km on 5 and 6 November.

During this period, ashfall was heavy on Merapi's flanks, and was observed in multiple surrounding areas, including the villages of Selo (~5 km NNE) and Magelang (26 km WNW). In Muntilan village (18 km WSW), tephra and ash accumulated up to 4 cm. At the volcano, a new dome formed during 6-7 November 2010; it stood ~240 m in a NW-SE orientation, 140 m wide, and 40-50 m high.

On 7 November, the number of pyroclastic flows increased from the previous day. An explosion was heard, and ash plumes rose 6 km and drifted W. Lightning was seen from Yogyakarta. Pyroclastic flows traveled 5 km, and lava avalanches moved 600 m S and SW. The next day, ash plumes rose to altitudes of 6-7 km and were accompanied by rumbling sounds. According to the Darwin VAAC, satellite imagery during 7-8 November showed ash plumes at an altitude of 7.6 km drifting 165-220 km W and SW.

Figure 47 shows Merapi's erupted SO2 in the atmosphere during 4-8 November 2010. On 9 November, an SO2 cloud was seen over the Indian Ocean at altitudes of 12-15 km.

Figure (see Caption) Figure 47. SO2 concentration-pathlength (in Dobson units, with 100 DU as darkest colors) during 4-8 November 2010, as observed by the OMI on NASA's Aura spacecraft. OMI data provided courtesy of Simon Carn (Michigan Technical University). Courtesy of Natural Hazards NASA Earth Observatory website (image by Jesse Allen, and original caption by Michon Scott).

The European Space Agency (ESA) has created updates on SO2 gas retrieval from their Envisat, Eumetsat's MetOp, and NASA's Aura satellites. For the interval 4-13 November 2010, the peak atmospheric loading of SO2 appeared on 8 November at 227 kT SO2. The estimates can be seen presented as animations that depict complex rotating dispersal patterns. As seen in figure 47, significant portions of the gas blew over Western Australia. In Norwegian Institute for Air Research models shown in the article, many of the Merapi plumes centered around 15 km altitude, with tops and bottoms ~5 km above and below that height.

ESA (2010) quoted Andrew Tupper as saying, "The updates from ESA have been very useful to Darwin VAAC [Volcanic Ash Advisory Center] when received in real time, and we expect that in the post-event analysis we'll be able to show lots more potential value." The SO2 maps can help the aviation community avoid dangerous emissions from volcanoes.

ESA (2010) noted that they send SO2 email alerts in near-real time. The alerts link to a web page with a map showing the location of the sulphur dioxide peak.

Reduced eruptive vigor; lahars. Eruptions and seismicity generally dropped during mid-November 2010 into March 2011, but lahars became a problem. On 9 November, CVGHM noted a reduction in the intensity of activity; a single pyroclastic flow occurred in a 6-hour period. Rumbling sounds were accompanied by an ash plume that rose to an altitude of 4.5 km, and ashfall was reported in Selo (~5 km NNE). Lava-dome incandescence was again observed, and lava avalanches moved 800 m SSE.

During 10-11 November, seismicity continued to decrease. Lahar deposits were seen in multiple drainages, at a maximum distance of 16.5 km from the summit. On 10 November, plumes generally rose 0.8-1.5 km above the crater. Heavy ashfall was reported in areas to the WSW and WNW. A 3.5-km-long pyroclastic flow and a 200-m-long avalanche both traveled S in the Gendol drainage. Incandescence from the crater was observed through a closed-circuit television system at the Merapi museum (in the village of Kaliurang, ~7 km S of the summit). On 11 November, roaring was followed by light ashfall at the Ketep Merapi observation post, ~9 km NW of the summit. Plumes, brownish-black at times, rose 800 m above the crater and drifted W and NW, and one plume rose 1.5 km. Avalanches again proceeded S in the Gendol drainage.

According to the Darwin VAAC, during 12-21 November, ash plumes rose as high as 7.6 km and drifted in multiple directions. The SO2 concentration at high altitudes decreased. About 300,000 residents also began to return home after the "danger zone" was reduced in some areas due to decreased activity.

Between 10 November and 1 December, lahar deposits were seen in multiple drainages and in all rivers flowing from Merapi. CVGHM noted that several bridges had been damaged. On 29 November, a narrow tongue of lava was observed, and light-colored flow deposits extended S down several narrow channels (Gendol and Kuning drainages) at least 5 km from the summit.

According to CVGHM, seismicity declined further during 1-3 December, in number of volcanic earthquakes and their associated energy. Deformation measurements were either stable or did not show significant changes. Although fog often prevented visual observations, gas plumes were seen rising 500 m above the crater and drifting W. SO2 plumes were no longer detected in satellite imagery. On 4 December, the Alert Level was lowered to 3.

On 9 January, as seismicity continued to decrease, CVGHM lowered the Alert Level to 2. Plumes continued to rise above the crater and, on 12 January, avalanches descended the Krasak drainage, traveling 1.5 km SW. Lahars and high water during 15-23 January damaged infrastructure and caused temporary road closures. On 22 January, plumes rose 175 m above the crater and drifted E.

According to a news account (vivanews.com), Merapi spewed thick white plumes as of the first week of February 2011. CVGHM reported that gas plumes rose from Merapi during 28 February-6 March. The highest plume, on 5 March, rose 100 m and drifted E. The number of MP earthquakes was slightly lower compared to the previous week.

Analysis of the lahar problem emerged as this issue went to press. According to Lavigne and others (2011) the volume of pyroclastic debris from the 2010 eruptive episode was in excess of 100 x 106 m3, ~10-fold higher than similar deposits after more conventional eruptions. These deposits and subsequent lahars filled most of the protective Sabo-dam structures. The eruption coincided with the onset of the rainy season, an interval that usually brings 4 m of rain but due to La Niña conditions, is predicted to bring more rain than usual. The 50-year absence of lahars in Kuning and Woro drainages altered the perception of risk in residents there. Thousands of sand miners work in the riverbed of all lahar-prone channels.

Fatalities and scale of evacuations. As previously noted, on 26 October, pyroclastic flows killed ~35 people who 7 km from the summit. They had refused to evacuate the village of Kinahejo (Kinahrejo).

According to the U.S. Agency for International Development (USAID) (quoting the Government of Indonesia's National Disaster Management Agency-Badan Nasional Penanggulangan Bencana or BNPB), the 2010 eruptions killed 386 people, injured 131 people, and displaced initially more than 300,000 residents (USAID, 2011). According to Relief Web, the 11,000 displaced remained unable to return to their homes at least as late as January 2011.

Lahars followed the eruptive processes and caused at least one additional death and one injury. An 11 January IRIN News article stated that " . . . more than 300,000 people have been able to return home, another 11,000 remain displaced, living with family or in camps, according to the government's National Disaster Management Agency."

According to the UN's Integrated Regional Information Networks (IRIN News), a source of humanitarian news and analysis, rainfall triggered lahars on Merapi's flanks on 3 and 9 January 2011. This caused damage to houses, farms, and infrastructure in multiple villages in the Magelang district, 26 km WNW of Merapi. One death and an injury were reported. The flooded area reportedly affected an estimated 3,000 residents but the number evacuated was unstated. The flooding on 9 January was more intense and, according to IRIN News, the Red Cross evacuated dozens of people trapped in their homes.

Referring to the larger 2010 eruption and evacuees, the same 11 January IRIN article stated that " . . . more than 300,000 people have been able to return home, another 11,000 remain displaced, living with family or in camps, according to the government's National Disaster Management Agency." This article also quoted the same agency with regard to the 386 reported deaths and the 131 injuries from the 2010 eruption.

Airlines affected. According the Jakarta Post, a total of 13 international carriers stopped their flights to Jakarta on 6 November, citing concerns about volcanic ash in the air that could cause damage to their aircraft and engines, and thus jeopardize safety. They included Malaysia Airlines, Air Asia, Singapore Airlines, Emirate, Ethihad, Turkish Air, Japan Airlines, Lufthansa, and KLM.

Andrew Tupper at the Australian Bureau of Meteorology notified us that Indonesian media reported that a plane encountered a volcanic cloud N of Java ascribed to Merapi on 28 October 2010. The suspected ash-plume encounter occurred at altitudes in the range 9.1-11.6 km. An engine stall message alerted the crew, who also noted a strong burning odor that disappeared as the plane descended from 9.1 to 6.1 km altitude.

According to another news account (Kompas.com), possibly reporting the same incident, on 28 October, a Garuda Indonesia airplane with 383 passengers from Solo, Central Java, landed safely at Hang Nadim Airport, Batam, a scheduled refueling stop. Enroute, volcanic ash from Merapi had been sucked into the left engine of the Airbus 330 aircraft, disrupting the engine. Richard Wijaya, Operational Duty Manager of Garuda Indonesia in Batam, explained that the pilot had notified ground staff of the disruption before landing, and as soon as they landed in Batam, the engine was checked. The crew cancelled the next leg of the scheduled flight to Jeddah, Saudi Arabia.

On 2 November, an unspecified number of international airlines had to cancel flights to airports at Solo and Yogyakarta, as plumes blackened the sky. Poor visibility and heavy ash on the runway caused the cancellations. According to an ABC news report, Yogyakarta airport reopened on 20 November after being closed for ~2 weeks.

Data table. Table 20 summarizes currently available CVGHM reports on Merapi's behavior during September to 1 December 2010. In the first row, it presents some background values commonly seen at Merapi during non-eruption conditions. Seismic terminology in the table is equivalent to that seen in figure 42 (Ratdomopurbo and Poupinet, 2000). Note the rise in seismic energy on 19 September, various changes in Alert Level, and major events in bolded type. Comparative calm prevailed after early November, but lahars became a problem (see text). The table is intended to give readers an overview of the eruption rather than capture all the details.

Table 20. Preliminary summary of pyroclastic flows as well as some collateral observations, and hazard status changes relating to Merapi during early September through 22 November 2010. Pyroclastic flows (locally termed AP for awan panas, hot clouds) here are tallied both from seismic detection and visual observations, along with direction of travel. The table omits seismic data shown in figure 41. The "ber" (beruntun) refers to episodes of densely spaced signals indistinguishable from each other. Those signals were common beginning 4 November and complicated assessments of tremor (not shown). The pre-eruption seismic energy was less than 342 x 1012 erg (normal, non-eruptive conditions). Courtesy of CVGHM and A. Ratdomopurbo (personal communication).

Date Pyroclastic flows Related comments
Early Sep 2010 -- Seismic energy, 603 x 1012 ergs
19 Sep 2010 -- Seismic energy, ~6,000 x 1012 erg
20 Sep 2010 -- Alert Level raised to 2
21 Oct 2010 -- Alert Level raised to 3
25 Oct 2010 -- Regional M 7.7 earthquake; Alert Level raised to 4
26 Oct 2010 8 [Multiple (WSW, SE)] Initial eruption at 1702 LT
30 Oct 2010 2 Second explosive eruption; ashfall in city of Yogyakarta
31 Oct 2010 4 Eruption
01 Nov 2010 7 during several hr --
02 Nov 2010 26 Eruption; 9 and 10 km runout distances
03 Nov 2010 38 [At least 19 (S)] Eruption
04 Nov 2010 ber [Multiple] Eruption (over 24 hours)
05 Nov 2010 ber [Multiple] 4-5 Nov. eruption was largest 2010 eruption (ash plume to 16.8 km asl); runout distances of ~18 km(?); widespread ash fall; dome destruction
06 Nov 2010 5 [Multiple] Eruption, rapid dome extrusion
07 Nov 2010 ber [Multiple] Eruption
08 Nov 2010 7 Eruption
09 Nov 2010 2 [1 in 6 hr period] Weaker eruption
10 Nov 2010 1 [At least 1 (S)] Weaker eruption
11 Nov 2010 1 [At least 1 (S)] Weaker eruption
14 Nov 2010 2 [0 (none)] Weaker eruption
15 Nov 2010 [1] Weaker eruption
16 Nov 2010 [1] Weaker eruption
22 Nov 2010 [5] Eruption

References. Delle Donne, D., Harris, AJL, Ripepe, M, and Wright, R., 2010, Earthquake-induced thermal anomalies at active volcanoes, Geology, Sept. 2010; v. 38; pp. 771-774 [DOI: 10.1130/G30984.1].

European Space Agency (ESA), 2010, Satellites tracking Mt Merapi volcanic ash clouds, ESA News (online; 15 November 2010) (URL: http://www.esa.int/esaCP/SEMY0Y46JGG_index_0.html).

Hort, M, Vöge, FM., Seyfried, R, and Ratdomopurbo, A, 2006, In situ observation of dome instabilities at Merapi volcano, Indonesia: A new tool for volcanic hazard mitigation, Journal of Volcanology and Geothermal Research, v. 154, no. 3-4, p. 301-312.

Lavigne,F, de Bélizal, E, Cholik, N, Aisyah, N, Picquout, A, and Wulan Mei, ET, 2011, Lahar hazards and risks following the 2010 eruption of Merapi volcano, Indonesia, Geophysical Research Abstracts, v. 13, EGU2011-4400, 2011, EGU General Assembly 2011.

Lowenstern, JB, Smith, RB, and Hill, DP, 2006, Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems, Phil. Trans. R. Soc. A, 15 August 2006, v. 364, no. 1845, p. 2055-2072.

Manga, M. and Brodsky, E, 2006, Seismic triggering of eruptions in the far field: volcanoes and geysers, Annual Review of Earth and Planetary Sciences, v. 34, p. 263-291 [DOI: 10.1146/annurev.earth.34.031405.125125].

Ratdomopurbo, A, and Poupinet, G, 2000, An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983-1994, Journal of Volcanology and Geothermal Research, v. 100, no. 1-4, p.193-214 (DOI: 10.1016/S0377-0273(00)00137-2).

Schwarzkopf, L, 2001, The 1995 and 1998 block and ash flow deposits at Merapi volcano, Central Java, Indonesia: implications for emplacement mechanisms and hazard mitigation. Ph.D. Thesis, University at Kiel, Kiel, Germany.

USAID (U.S. Agency for International Development), 2011 (February 4), Indonesia - Tsunami and Volcano, Fact Sheet 2, Fiscal Year 2011.

Vöge, FM, and Hort, M, 2008, Automatic classification of dome instabilities based on Doppler radar measurements at Merapi volcano, Indonesia: Part I. Geophysical Journal International, v. 172, no. 3, p. 1188-1206 (DOI: 10.1111/j.1365-246X.2007.03605.x).

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://vsi.esdm.go.id/); Merapi Volcano Observatory (MVO); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/); U.S. Agency for International Development (USAID) (URL: https://www.usaid.gov/); Antonius Ratdomopurbo, Nanyang Technological University, Earth Observatory of Singapore, Nanyang Avenue, Singapore (URL: http://www.earthobservatory.sg/); Andrew Tupper, Australian Bureau of Meteorology (URL: http://www.bom.gov.au/); European Geosciences Union (URL: http://www.egu.eu/); Badan Nasional Penanggulangan Bencana (BNPB - Indonesian National Disaster Management Agency) (URL: http://dibi.bnpb.go.id/); Relief Web (URL: https://reliefweb.int/); Kompas News, Jakarta, Indonesia (URL: http://www.Kompas.com); The Jakarta Post (URL: http://www.thejakartapost.com/); Reuters (URL: http://www.reuters.com/); Vivanews.com (URL: http://vivanews.com/); ABC News (Australia) (URL: http://www.abc.net.au/); The Boston Globe (URL: http://www.boston.com/bigpicture/2010/11/mount_merapis_eruptions.html); IRIN News (URL: http://www.IRINnews.org/).


Rumble III (New Zealand) — February 2011 Citation iconCite this Report

Rumble III

New Zealand

35.745°S, 178.478°E; summit elev. -220 m

All times are local (unless otherwise noted)


Eruption in 2009 linked to over 100 m of sea floor collapse

We reported in BGVN 34:07 that New Zealand scientists found evidence during a research cruise in 2009 of a recent large eruption at Rumble III, one of more than 30 big submarine volcanoes on the Kermadec Arc, NE of the Bay of Plenty on the N coast of New Zealand's North Island (figures 3 and 4). A newly available report of the 2009 cruise (Dodge, 2010) noted some new details, including the following: (1) since the last study of Rumble III volcano in 2007, significant volcanic activity had occurred; (2) the bathymetric profile of the seamount had changed since it was last mapped in 2007—the summit of Rumble III had collapsed and was ~100 m deeper, at 310 m, much of the 800-m-wide crater was filled by ash, and much of the W side of the volcano had slid down-slope; (3) volcanic flow deposits were documented in camera tows—lava boulders, hackley flow, truncated lobate or pillows, and talus were common; and (4) there was a massive abundance of ash, in particular draped across substrates in many areas, provided compelling evidence for a large eruption since 2007.

Figure (see Caption) Figure 3. Southwest Pacific from Samoa (NE) to New Zealand (SW), showing the location of Rumble III and other submarine volcanoes along the southern Kermadec Arc. Rumble III volcano is located ~ 350 km NE of the Bay of Plenty, New Zealand, 200 km NE of Auckland, and is one of a number of submarine volcanoes that delineate the active arc front in this region. Bathymetry data were satellite-derived (for deep water) and acquired using an EM 300 multibeam echo sounder (along the arc and Lau Basin). Satellite-derived bathymetry from Sandwell and Smith (1997); EM300 bathymetry data courtesy of New Zealand National Institute of Water and Atmospheric Research (NIWA). Map courtesy of National Oceanic and Atmospheric Agency (NOAA) Ocean Explorer web site; from New Zealand American Submarine Ring of Fire 2005 expedition plan.
Figure (see Caption) Figure 4. Bathymetric map of all available multibeam data as of 2009 for the Southern Havre Trough, between the Colville and Kermadec Ridges and N of the New Zealand's North Island. In the colored version of this figure, the bathymetry key (in meters) ranges from red at the surface to purple at depths of 5 to 6 km. The location of Rumble III submarine volcano is highlighted. The inset indicates the tracks and areas of individual surveys whose data comprise the map. Areas that are not covered use satellite data configured to fit the edges of multibeam data set. Courtesy of Wysoczanski and others (2010).

A press release dated 17 August 2010 by the New Zealand National Institute of Water and Atmospheric Research (NIWA) noted that, during an oceanographic cruise aboard NIWA's research vessel R/V Tangaroa in May-June 2010, scientists confirmed that (a) the W flank of the volcano had collapsed ~100 m or more, (b) collapse of 90 m was observed at its highest (shallowest) point, and (c) as much as 120 m collapse occurred in some places. The release noted that the collapse was caused by an eruption some time in the last 2 years.

Glassy, black basaltic rock filled with vesicles was dredged from the volcano. Richard Wysoczanski (NIWA) noted that the samples are the youngest-known rocks from the Kermadec Arc region, created some time between the years 2007 and 2009. It is notable that andesite samples were previously collected from the flank of the submarine volcano by Brothers (1967). Rumble III was last mapped using multibeam technology in 2002.

NIWA principal scientist Geoffrey Lamarche said that the observation of significant pieces of sea floor moving hundreds of meters in height over a short timespan of 8 years give insight into short-time movements of the seabed. Research of the Kermadec Arc is directed in part by NIWA's survey of the area for massive sulphide deposits that sometimes develop over hydrothermal vents.

On 28 February 2011, NIWA and GNS Science announced an upcoming research cruise of about 3 weeks in 2011 to investigate mineral deposits and hydrothermal activity at five major submarine volcanoes in the Kermadec Arc (Clark, Healy, Brothers, Rumble II West, and Rumble III; see figure 4).

References. Brothers, R.N., 1967, Andesite from Rumble III Volcano, Kermadec Ridge, southwest Pacific, Bulletin of Volcanology, v. 31, no. 1, pp. 17-19.

Dodge, E., 2010, Catastrophic volcanic activity at Rumble III volcano based on EM300 bathymetry and direct sea floor imaging, Senior Thesis for Oceanography 444, University of Washington, School of Oceanography, Seattle, WA.

Smith, W. H. F., and Sandwell, D.T., 1997, Global seafloor topography from satellite altimetry and ship depth soundings, Science, v. 277, p. 1957-1962+.

Todd, E., Gill, J.B., Wysoczanski, R.J., Handler, M.R., Wright, I.C., Gamble, J.A., 2010, Sources of constructional cross-chain volcanism in the southern Havre Trough: New insights from HFSE and REE concentration and isotope systematics, Geochemistrry Geophysics Geosystems. v. 11, Q04009, 31 pp, DOI: 10.1029/2009GC002888.

Wysoczanski, R.J., Todd, E., Wright, I.C., Leybourne, M.I., Hergt, J.M., Adam, C., and Mackay, K., 2010, Backarc rifting, constructional volcanism and nascent disorganised spreading in the southern Havre Trough backarc rifts (SW Pacific), Journal of Volcanology and Geothermal Research, v. 190, issues 1-2, p. 39-57.

Geologic Background. The Rumble III seamount, the largest of the Rumbles group of submarine volcanoes along the South Kermadec Ridge, rises 2300 m from the sea floor to within about 200 m of the sea surface. Collapse of the edifice produced a horseshoe-shaped caldera breached to the west and a large debris-avalanche deposit. Fresh-looking andesitic rocks have been dredged from the summit and basaltic lava from its flanks. Rumble III has been the source of several submarine eruptions detected by hydrophone signals.

Information Contacts: Roger Matthews, North Shore City Council, 1 The Strand, Takapuna Private Bag 93500, Takapuna, North Shore City, New Zealand; Richard Wysoczanski, New Zealand National Institute of Water and Atmospheric Research (NIWA) (URL: https://www.niwa.co.nz/); Geoffrey Lamarche, NIWA (URL: https://www.niwa.co.nz/); GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); National Oceanic and Atmospheric Agency (NOAA) Ocean Explorer (URL: http://oceanexplorer.noaa.gov/gallery/gallery.html).


Sangay (Ecuador) — February 2011 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Many plumes seen by pilots during past year ending February 2011

The last report discussed observations of ash plumes and MODVOLC thermal alerts at Sangay through February 2010 (BGVN 35:01). Intermittent reporting indicated that similar activity continued through at least February 2011, with plumes reaching up to 7.6 km altitude (table 7). Clouds obscured the view at times, and plumes were reported primarily by pilots and were sometimes visible on satellite imagery.

Table 7. Plumes reported at Sangay during April 2010-February 2011. No plumes were noted during March 2011. Courtesy of the Washington VAAC.

Date Type of plume Altitude Distance and direction Source
21 Apr 2010 Ash 6.7 km -- Pilot observation
06 May 2010 Ash -- -- Pilot observation
06 May 2010 Ash -- W Pilot observation and satellite imagery
22-23 Jul 2010 Diffuse plumes -- 65-115 km W Pilot observation and satellite imagery
21 and 23 Jul 2010 Occasional thermal anomalies -- -- Satellite imagery
19 Aug 2010 Ash-and-gas plumes, intermittent thermal anomalies -- 25 km W Satellite imagery
20 Aug 2010 Emission -- -- Pilot observation
30 Aug 2010 Ash -- -- Pilot observation (near Sangay)
05 Sep 2010 Ash 5.5 km -- Pilot observation
10 Sep 2010 Small plume and thermal anomaly -- -- Satellite imagery
13 Sep 2010 Gas with possible ash and a thermal anomaly -- W Tegucigalpa Meteorological Watch Office (MWO) (Honduras), pilot observation, and satellite imagery
21 Sep 2010 Ash 7.6 km -- Pilot observation
06 Oct 2010 Small ash clouds -- WNW Pilot observation and satellite imagery
14 Oct 2010 Pilot reported ash, only gas plumes drifting NW observed in satellite imagery -- NW Pilot observation and satellite imagery
29 Oct 2010 Steam and gas plume possibly with ash and a thermal anomaly -- -- Satellite imagery
05 Dec 2010 Ash -- -- Guayaquil MWO (Ecuador)
12 Jan 2011 Ash and thermal anomaly 6.7 km >45 km SW Pilot observation and satellite imagery
20 Jan 2011 Ash 7.6 km -- Pilot observation
27 Jan 2011 Small ash clouds -- N Satellite imagery
23 Feb 2011 Pilot reported ash, small cloud drifting NW in satellite imagery with no ash confirmed -- SSE Pilot observation and satellite imagery

On 5 December 2010, the Washington Volcanic Ash Advisory Center (VAAC) stated that Instituto Geofisico reported elevated seismicity.

The MODVOLC alert system issued thermal alerts for Sangay monthly during March 2010 through early October 2010. Then, alerts were absent until 11 January 2011 (table 8).

Table 8. Thermal alerts issued for Sangay by the MODVOLC system during March 2010-20 March 2011 (continued from the list in BGVN 35:01). The system uses the MODIS instrument on the Terra and Aqua satellites. Courtesy MODVOLC Thermal Alerts System.

Date (UTC) Time (UTC) Pixels Satellite
15 Mar 2010 0330 1 Terra
30 Apr 2010 0345 1 Terra
16 May 2010 0345 1 Terra
03 Jun 2010 0330 1 Terra
12 Jul 2010 0340 1 Terra
18 Aug 2010 0655 1 Aqua
28 Sep 2010 0650 2 Aqua
30 Sep 2010 0335 1 Terra
02 Oct 2010 0325 1 Terra
07 Oct 2010 0345 1 Terra
11 Jan 2011 0345 1 Terra
02 Mar 2011 0330 1 Terra

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Taal (Philippines) — February 2011 Citation iconCite this Report

Taal

Philippines

14.002°N, 120.993°E; summit elev. 311 m

All times are local (unless otherwise noted)


Intermittent non-eruptive unrest during 2008-2010

As previously reported (BGVN 32:01), during the last four months of 2006 Taal displayed restlessness. This report discusses Taal seismicity, deformation, and hydrothermal behavior (steaming, and temperature changes in lake water at Main Crater) that occurred intermittently during 2008, 2010, and 2011.

Taal (also known as Talisay) is a lake-filled, 15 x 20 km caldera located on SW Luzon Island 65 km S of Manila (figure 9). The lake engulfs a large island with several thousand residents, Volcano Island, the place where all historical eruptions have vented (figures 10 and 11). Restlessness described herein was not confined to the area beneath the island.

Figure (see Caption) Figure 9. Index map of the Philippines showing Manila (the Capital) and several major volcanoes including Taal. Courtesy of Lyn Topinka (US Geological Survey).
Figure (see Caption) Figure 10. A map showing Taal caldera and surroundings. Notice that the caldera lies at the intersection of major faults and the topographic margin extends well beyond the caldera lake's margin. Courtesy of NASA Earth Observing System (EOS) Volcanology and their slide set compiled by Peter Mouginis-Mark (University of Hawaii).
Figure (see Caption) Figure 11. Photo of the Taal caldera lake and Volcano Island taken from the N in November 1999. Courtesy of NASA Earth Observing System (EOS) Volcanology and their slide set compiled by Peter Mouginis-Mark (University of Hawaii).

The Philippine Institute of Volcanology and Seismology (PHIVOLCS) announced in August 2008 that seismic unrest continued. On 28 August 2008, ten volcanic earthquakes occurred, two of which were felt and heard as rumbling sounds by residents in the Pira-Piraso village on Volcano Island. The earthquakes were located NE of the island near the Daang Kastila area (below Taal caldera's N rim) at estimated depths of 0.6-0.8 km. Surface observations indicated no change in the main crater lake area. The Alert Level remained at 1 (scale is 0-5, with 0 referring to No Alert).

On 8 June 2010, PHIVOLCS raised the Alert Level for Taal to 2 because of changes in several monitored parameters that began in late April. Since 26 April, the number and magnitude of volcanic earthquakes had increased. Most signals were high-frequency earthquakes, but at least one, on 2 June, was low-frequency. Steam emissions from the N and NE sides of Main Crater occasionally intensified. Deformation data showed slight inflation since 2004; measurements taken at the SE side of Taal on 7 June showed further inflation by 3 mm.

In addition to increased seismicity, the temperature of the Main Crater Lake increased from 32°C on 11 May to 34°C on 24 May. According to PHIVOLCS, the ratios of Mg:Cl and SO4:Cl, as well as total dissolved solids in the lake, all increased. Temperature measurements of the main crater lake did not increase further, remaining between 33-34°C.

PHIVOLCS proposed that the high frequency earthquakes could be the result of active rock fracturing associated with magma intrusion beneath the volcano, and that the fractures could serve as passageways through which hot gases from the intruding magma could escape into the lake.

According to news reports (Xinhua, Philippine Daily Inquirer), the more than 5,000 residents living near Taal were advised to evacuate their homes voluntarily. On 10 June, the Philippine Coast Guard sent five teams of divers and rescue swimmers with rubber boats and medical teams to its forward command post to help evacuate, if necessary, these residents. A news report (Philippine Daily Inquirer), however, indicated that most residents refused to leave without an official order.

The number of earthquakes recorded daily gradually declined to background levels beginning the second week of July 2010. Hydrothermal activity in the N and NE sides of the main crater and Daang Kastila also decreased. Precise leveling measurements conducted during 13-21 July along the NE, SE, and SW flanks detected minimal inflation. On 2 August, PHIVOLCS lowered the Alert Level to 1.

According to PHIVOLCS, seismic activity increased during the first week of September 2010. From 1-27 September 2010, a total of 274 volcanic earthquakes, or an average of 10 events/day, was recorded. However, given that field surveys conducted at the Main Crater and at the 1965-1977 "New Eruption" site (SW edge of Main Crater) indicated no anomalous thermal or surface activity.

PHIVOLCS reported that a December 2010 deformation survey showed slight inflation compared to a September 2010 survey. Field observations on 10 and 18 January revealed no significant changes. Weak steaming from a thermal area inside the main crater was noted and the lake temperature, acidity, and color were normal. During 15-16 January 2011, ten volcanic earthquakes were detected, two of which were felt by residents of Pira-Piraso, on the N side of the island. On 17 January three volcanic earthquakes were detected and on 18 January only one was reported. Between 18-30 January, up to seven daily volcanic earthquakes were detected by the seismic network.

Field observations during 23-25 January 2011 revealed an increase in the number of steaming vents inside the main crater and a drop in the lake level there. The lake water temperature and pH values remained normal. Visual observations on 27 January showed weak steaming at a thermal area in the crater.

Geologic Background. Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph).Pete Mouginis-Mark, Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://eos.higp.hawaii.edu/ppages/pinatubo/8.taal/?); Xinhua (URL: http://www.xinhuanet.com/english2010); Philippine Daily Inquirer (URL: http://www.inquirer.net/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).