Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Asosan (Japan) Intermittent ash plumes and elevated SO2 emissions continue during July-December 2019

Tinakula (Solomon Islands) Intermittent thermal activity suggests ongoing eruption, July-December 2019

Ibu (Indonesia) Frequent ash plumes and small lava flows in the crater through December 2019

Lateiki (Tonga) Eruption 13-22 October 2019 creates new island, which disappears by mid-January 2020

Aira (Japan) Ongoing explosions with ejecta and ash plumes, along with summit incandescence, during July-December 2019

Suwanosejima (Japan) Explosions, ash emissions, and summit incandescence in July-December 2019

Barren Island (India) Thermal anomalies and small ash plumes during February-April 2019 and September 2019-January 2020

Whakaari/White Island (New Zealand) Explosion producing an ash plume and pyroclastic surge resulted in fatalities and injuries on 9 December 2019

Kadovar (Papua New Guinea) Frequent gas and some ash emissions during May-December 2019 with some hot avalanches

Nyiragongo (DR Congo) Lava lake persists during June-November 2019

Ebeko (Russia) Frequent moderate explosions, ash plumes, and ashfall continue through November 2019

Nevado del Ruiz (Colombia) Intermittent ash plumes with significant gas and steam emissions during January 2016-December 2017



Asosan (Japan) — January 2020 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Intermittent ash plumes and elevated SO2 emissions continue during July-December 2019

The large Asosan caldera reaches around 23 km long in the N-S direction and contains a complex of 17 cones, of which Nakadake is the most active (figure 58). A recent increase in activity prompted an alert level increase from 1 to 2 on 14 April 2019. The Nakadake crater is the site of current activity (figure 59) and contains several smaller craters, with the No. 1 crater being the main source of activity during July-December 2019. The activity during this period is summarized here based on reports by the Japan Meteorological Agency and satellite data.

Figure (see Caption) Figure 58. Asosan is a group of cones and craters within a larger caldera system. January 2010 Monthly Mosaic images copyright Planet Labs 2019.
Figure (see Caption) Figure 59. Hot gas emissions from the Nakadake No. 1 crater on 25 June 2019 reached around 340°C. Courtesy of the Japan Meteorological Agency (July 2019 monthly report).

Small explosions were observed at the No. 1 vent on the 4, 5, 9, 13-16, and 26 July. There was an increase in thermal energy detected near the vent leading to a larger event on the 26th (figures 60 and 61), which produced an ash plume up to 1.6 km above the crater rim and continuing from 0757 to around 1300 with a lower plume height of 400 m after 0900. Light ashfall was reported downwind. Elevated activity was noted during 28-29 July, and an ash plume was seen in webcam footage on the 30th. Incandescence was visible in light-sensitive cameras during 4-17 and after the 26th. A field survey on 5 July measured 1,300 tons of sulfur dioxide (SO2) per day. This had increased to 2,300 tons per day by the 12th, 2,500 on the 24th, and 2,400 by the 25th. A sulfur dioxide plume was detected in Sentinel-5P/TROPOMI satellite data acquired on 28 July (figure 62).

Figure (see Caption) Figure 60. Thermal images taken at Asosan on 26 July 2019 show the increasing temperature of emissions leading to an explosion. Courtesy of the Japan Meteorological Agency (July 2019 monthly report).
Figure (see Caption) Figure 61. An eruption from the Nakadake crater at Asosan on 26 July 2019. Courtesy of the Japan Meteorological Agency (July 2019 monthly report).
Figure (see Caption) Figure 62. A sulfur dioxide plume was detected from Asosan (to the left) on 28 July 2019. The larger plume (red) to the right is not believed to be associated with volcanism in this area. NASA Sentinel-5P/TROPOMI satellite image courtesy of the NASA Goddard Space Flight Center.

The increased eruptive activity that began on 5 July continued to 16 August. There were 24 eruptions recorded throughout the month, with eruptions occurring on 18-23, 25, and 29-31 August. An ash plume at 2100 on 4 August reached 1.5 km above the crater rim. Detected SO2 increased to extremely high levels from late July to early August with 5,200 tons per day recorded on 9 August, but which then reduced to 2,000 tons per day. Ashfall occurred out to around 7 km NW on the 10th (figure 63). Activity continued to increase at the Nakadake No. 1 crater, producing incandescence. High-temperature gas plumes were detected at the No. 2 crater.

Figure (see Caption) Figure 63. Ashfall from Asosan on 10 August 2019 near Otohime, Aso city, which is about 7 km NW of the Nakadake No. 1 crater that produced the ash plume. The ashfall was thick enough that the white line in the parking lot was mostly obscured (lower photo). Courtesy of the Japan Meteorological Agency (August 2019 monthly report).

Thermal activity continued to increase, and incandescence was observed at the No. 1 crater throughout September. There were 24 eruptions recorded throughout August. Light ashfall occurred out to around 8 km NE on the 3rd and ash plumes reached 1.6 km above the crater rim during 10-13, and again during 25-30 (figures 64 and 65). During the later dates ashfall was reported to the NE and NW. The SO2 levels were back down to 1,600 tons per day by 11 September and increased to 2,600 tons per day by the 26th.

Figure (see Caption) Figure 64. Ash plumes at Asosan on 29 September 2019. Courtesy of Volcanoverse.
Figure (see Caption) Figure 65. Activity at Asosan in late September 2019. Left: incandescence and a gas plume at the Nakadake No. 1 crater on the 28th. Right: an eruption produced an ash plume at 0839 on the 30th. Aso Volcano Museum surveillance camera image (left) and Kusasenri surveillance camera image (right) courtesy of the Japan Meteorological Agency (September 2019 monthly report).

Similar elevated activity continued through October with ash plumes reaching 1.3 km above the crater and periodic ashfall reported at the Kumamoto Regional Meteorological Observatory, and out to 4 km S to SW on the 19th and 29th. Temperatures up to 580°C were recorded at the No. 1 crater on 23 October and incandescence was occasionally visible at night through the month (figure 66). Gas surveys detected 2,800 tons per day of SO2 on 7 October, which had increased to 4,000 tons per day by the 11th.

Figure (see Caption) Figure 66. Drone images of the Asosan Nakadake crater area on 23 October 2019. The colored boxes show the same vents and the photographs on the left correlate to the thermal images on the right. The yellow box is around the No. 1 crater, with temperature measurements reaching 580°C. The emissions in the red box reached 50°C, and up to 100°C on the southwest crater wall (blue box). Courtesy of the Japan Meteorological Agency (October 2019 monthly report).

Ash plume emission continued through November (figure 67 and 68). Plumes reached 1.5 to 2.4 km above sea level during 13-18 November and ashfall occurred downwind, with a maximum of 1.4 km above the crater rim for the month. Ashfall was reported near Aso City Hall on the 27th. Incandescence was observed until 6 November. During the first half of October sulfur dioxide emissions were slightly lower than the previous month, with measurements detecting under 3,000 tons per day. In the second half of the month emissions increased to 2,000 to 6,300 tons per day. This was accompanied by an increase in volcanic tremor.

Figure (see Caption) Figure 67. Examples of ash plumes at Asosan on 2, 8, 9, and 11 November 2019. The plume on 2 November reached 1.3 km above the crater rim. Kusasenri surveillance camera images courtesy of the Japan Meteorological Agency.
Figure (see Caption) Figure 68. Ash emissions from the Nakadake crater at Asosan on 15 and 17 November 2019. The continuous ash emission is weak and is being dispersed by the wind. Copyright Mizumoto, used with permission.

Throughout December activity remained elevated with ash plumes reaching 1.1 km above the Nakadake No. 1 crater and producing ashfall. The maximum gas plume height was 1.8 km above the crater. A total of 23 eruptions were recorded, and incandescence at the crater was observed through the month. Sulfur dioxide emissions continued to increase with 5,800 tons per day recorded on the 27th, and 7,400 tons per day recorded on the 31st.

Overall, eruptive activity has continued intermittently since 26 July and SO2 emissions have increased through the year. Incandescence was seen at the crater since 2 October and this is consistent with an increase in thermal energy detected by the MIROVA algorithm around that time (figure 69).

Figure (see Caption) Figure 69. Thermal anomalies were low through 2019 with a notable increase around October to November. Log radiative power plot courtesy of MIROVA.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Planet Labs, Inc. (URL: https://www.planet.com/); Mizumoto, Kumamoto, Kyushu, Japan (Twitter: https://twitter.com/hepomodeler); Volcanoverse (URL: https://www.youtube.com/channel/UCi3T_esus8Sr9I-3W5teVQQ).


Tinakula (Solomon Islands) — January 2020 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Intermittent thermal activity suggests ongoing eruption, July-December 2019

Remote Tinakula lies 100 km NE of the Solomon Trench at the N end of the Santa Cruz Islands, which are part of the South Pacific country of the Solomon Islands located 400 km to the W. It has been uninhabited since an eruption with lava flows and ash explosions in 1971 when the small population was evacuated (CSLP 87-71). The nearest communities live on Te Motu (Trevanion) Island (about 30 km S), Nupani (40 km N), and the Reef Islands (60 km E); residents occasionally report noises from explosions at Tinakula. Ashfall from larger explosions has historically reached these islands. A large ash explosion during 21-26 October 2017 was a short-lived event; renewed thermal activity was detected beginning in December 2018 and intermittently throughout 2019. This report covers the ongoing activity from July-December 2019. Since ground-based observations are rarely available, satellite thermal and visual data are the primary sources of information.

MIROVA thermal anomaly data indicated intermittent but ongoing thermal activity at Tinakula during July-December 2019 (figure 35). It was characterized by pulses of multiple alerts of varying intensities for several days followed by no activity for a few weeks.

Figure (see Caption) Figure 35. The MIROVA project plot of Radiative Power at Tinakula from 2 March 2019 through the end of the year indicated repeated pulses of thermal energy each month except for August 2019. It was characterized by pulses of multiple alerts for several days followed by no activity for a few weeks. Courtesy of MIROVA.

Observations using Sentinel-2 satellite imagery were often prevented by clouds during July, but two MODVOLC thermal alerts on 2 July 2019 corresponded to MIROVA thermal activity on that date. No thermal anomalies were reported by MIROVA during August 2019, but Sentinel-2 satellite images showed dense steam plumes drifting away from the summit on four separate dates (figure 36). Two distinct thermal anomalies appeared in infrared imagery on 9 September, and a dense steam plume drifted about 10 km NW on 14 September (figure 37).

Figure (see Caption) Figure 36. Sentinel-2 satellite imagery for Tinakula recorded ongoing steam emissions on multiple days during August 2019 including 10 August (left) and 20 August (right). The island is about 3 km in diameter. Left image is natural color rendering with bands 4,3,2, right image is atmospheric penetration with bands 12, 11, and 8a. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 37. A bright thermal anomaly at the summit and a weaker one on the nearby upper W flank of Tinakula on 9 September 2019 (left) indicated ongoing eruptive activity in Sentinel-2 satellite imagery. While no thermal anomalies were visible on 14 September (right), a dense steam plume originating from the summit drifted more than 10 km NW. Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

During October 2019 steam emissions were captured in four clear satellite images; a weak thermal anomaly was present on the W flank on 9 October (figure 38). MODVOLC recorded a single thermal alert on 9 November. Stronger thermal anomalies appeared twice during November in satellite images. On 13 November a strong anomaly was present at the summit in Sentinel-2 imagery; it was accompanied by a dense steam plume drifting NE from the hotspot. On 28 November two thermal anomalies appeared part way down the upper NW flank (figure 39). Thermal imagery on 3 December suggested that a weak anomaly remained on the NW flank in a similar location; a dense steam plume rose above the summit, drifting slightly SW on 18 December (figure 40). A thermal anomaly at the summit on 28 December was accompanied by a dense steam plume and corresponded to multiple MIROVA thermal anomalies at the end of December.

Figure (see Caption) Figure 38. A weak thermal anomaly was recorded on the upper W flank of Tinakula on 9 October 2019 in Sentinel-2 satellite imagery (left). Dense steam drifted about 10 km NW from the summit on 29 October (right). Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 39. On 13 November 2019 a strong anomaly was present at the summit of Tinakula in Sentinel-2 imagery; it was accompanied by a dense steam plume drifting NE from the hotspot (left). On 28 November two thermal anomalies appeared part way down the upper NW flank (right). Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. Thermal imagery on 3 December 2019 from Tinakula suggested that a weak anomaly remained in a similar location to one of the earlier anomalies on the NW flank (left); a dense steam plume rose above the summit, drifting slightly SW on 18 December (center). A thermal anomaly at the summit on 28 December was accompanied by a dense steam plume (right) and corresponded to multiple MIROVA thermal anomalies at the end of December. Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Ibu (Indonesia) — January 2020 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash plumes and small lava flows in the crater through December 2019

Heightened continuing activity at Ibu since March 2018 has been dominated by frequent ash explosions with weak ash plumes, and numerous thermal anomalies reflecting one or more weak lava flows (BGVN 43:05, 43:12, and 44:07). This report summarizes activity through December 2019, and is based on data from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Darwin Volcanic Ash Advisory Centre (VAAC), and various satellites.

Typical ash plumes during the reporting period of July-December 2019 rose 800 m above the crater, with the highest reported to 1.4 km in early October (table 5). They were usually noted a few times each month. According to MAGMA Indonesia, explosive activity caused the Aviation Color Code to be raised to ORANGE (second highest of four) on 14, 22, and 31 August, 4 and 30 September, and 15 and 20 October.

Table 5. Ash plumes and other volcanic activity reported at Ibu during December 2018-December 2019. Plume heights are reported above the crater rim. Data courtesy of PVMBG and Darwin VAAC.

Date Time Ash Plume Height Plume Drift Remarks
11 Dec 2018 -- 500 m -- Weather clouds prevented views in satellite data.
12 Jan 2019 1712 800 m S --
13 Jan 2019 0801 800 m S --
05-12 Feb 2019 -- 200-800 m E, S, W Weather conditions occasionally prevented observations.
25-26 Feb 2019 -- 1.1-1.7 km NE, ENE Thermal anomaly.
28 Feb 2019 -- 800 m N --
18 Mar 2019 -- 1.1 km E Plume drifted about 17 km NE.
23 Mar 2019 -- 1.1 km E --
28 Mar 2019 -- 800 m SE --
10 Apr 2019 -- 800 m N --
15-16 Apr 2019 -- 1.1 km N, NE --
18 Apr 2019 -- 800 m E --
07 May 2019 -- 1.1 km ESE --
08 May 2019 -- 1.1 km ESE --
09 May 2019 1821 600 m S Seismicity characterized by explosions, tremor, and rock avalanches.
10 May 2019 -- 500 m ESE --
14 May 2019 1846 800 m N --
14-16, 18-19 May 2019 -- 0.8-1.7 km NW, N, ENE --
23-24 May 2019 -- 1.1-1.4 km SE --
31 May 2019 -- 800 m W --
02 Jun 2019 -- 1.7 km W --
21 Jun 2019 -- 500 m N, NE --
24-25 Jun 2019 -- 0.2-1.1 km SE, ESE --
06 Jul 2019 -- 800 m N Intermittent thermal anomaly.
15 Jul 2019 -- 800 m NE --
07-12 Aug 2019 -- 200-800 m -- Plumes were white-to-gray.
14 Aug 2019 1107 800 m N Seismicity characterized by explosions and rock avalanches.
22 Aug 2019 0704 800 m W Seismicity characterized by explosions and rock avalanches.
31 Aug 2019 1847 800 m N Seismicity characterized by explosions and rock avalanches.
04 Sep 2019 0936 300 m S --
28 Sep 2019 -- 500-800 m WNW --
30 Sep 2019 1806 800 m N --
06-07 Oct 2019 -- 0.8-1.4 km S, N --
15 Oct 2019 0707 400 m S --
20 Oct 2019 0829 400 m W --
01-05 Nov 2019 -- 200-800 m E, N Plumes were white-and-gray.
20-21, 23-25 Nov 2019 -- 500-800 m Multiple Thermal anomaly on 21 Nov.
03 Dec 2019 -- 800 m NE Thermal anomaly.
26 Dec 2019 -- 800 m S Discrete ash puffs in satellite imagery.

Thermal anomalies were sometimes noted by PVMBG, and were also frequently obvious in infrared satellite imagery suggesting lava flows and multiple active vents, as seen on 22 November 2019 (figure 19). Thermal anomalies using MODIS satellite instruments processed by the MODVOLC algorithm were recorded 2-4 days every month from July to December 2019. In contrast, the MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected numerous hotspots on most days (figure 20).

Figure (see Caption) Figure 19. Example of thermal activity in the Ibu crater on 22 November 2019, along with a plume drifting SE. One or more vents in the crater are producing small lava flows, an observation common throughout the reporting period. Sentinel-2 false color (urban) images (bands 12, 11, 4), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 20. Thermal anomalies recorded at Ibu by the MIROVA system using MODIS infrared satellite data for the year 2019. Courtesy of MIROVA.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Lateiki (Tonga) — February 2020 Citation iconCite this Report

Lateiki

Tonga

19.18°S, 174.87°W; summit elev. 43 m

All times are local (unless otherwise noted)


Eruption 13-22 October 2019 creates new island, which disappears by mid-January 2020

Lateiki (Metis Shoal) is one of several submarine and island volcanoes on the W side of the Tonga trench in the South Pacific. It has produced ephemeral islands multiple times since the first confirmed activity in the mid-19th century. Two eruptions, in 1967 and 1979, produced islands that survived for a few months before eroding beneath the surface. An eruption in 1995 produced a larger island that persisted, possibly until a new eruption in mid-October 2019 destroyed it and built a new short-lived island. Information was provided by the Ministry of Lands, Survey and Natural Resources of the Government of the Kingdom of Tonga, and from satellite information and news sources.

Review of eruptions during 1967-1995. The first reported 20th century eruption at this location was observed by sailors beginning on 12 December 1967 (CSLP 02-67); incandescent ejecta rose several hundred meters into the air and "steam and smoke" rose at least 1,000 m from the ocean surface. The eruption created a small island that was reported to be a few tens of meters high, and a few thousand meters in length and width. Eruptive activity appeared to end in early January 1968, and the island quickly eroded beneath the surface by the end of February (figure 6). When observed in April 1968 the island was gone, with only plumes of yellowish water in the area of the former island.

Figure (see Caption) Figure 6. Waves break over Lateiki on 19 February 1968, more than a month after the end of a submarine eruption that began in December 1967 and produced a short-lived island. Photo by Charles Lundquist, 1968 (Smithsonian Astrophysical Observatory).

A large steam plume and ejecta were observed on 19 June 1979, along with a "growing area of tephra" around the site with a diameter of 16 km by the end of June (SEAN 04:06). Geologists visited the site in mid-July and at that time the island was about 300 m long, 120 m wide, and 15 m high, composed of tephra ranging in size from ash to large bombs (SEAN 04:07); ash emissions were still occurring from the E side of the island. It was determined that the new island was located about 1 km E of the 1967-68 island. By early October 1979 the island had nearly disappeared beneath the ocean surface.

A new eruption was first observed on 6 June 1995. A new island appeared above the waves as a growing lava dome on 12 June (BGVN 20:06). Numerous ash plumes rose hundreds of meters and dissipated downwind. By late June an elliptical dome, about 300 x 250 m in size and 50 m high, had stopped growing. The new island it formed was composed of hardened lava and not the tuff cones of earlier islands (figure 7) according to visitors to the island; pumice was not observed. An overflight of the area in December 2006 showed that an island was still present (figure 8), possibly from the June 1995 eruption. Sentinel-2 satellite imagery confirming the presence of Lateiki Island and discolored water was clearly recorded multiple times between 2015 and 2019. This suggests that the island created in 1995 could have lasted for more than 20 years (figure 9).

Figure (see Caption) Figure 7. An aerial view during the 1995 eruption of Lateiki forming a lava dome. Courtesy of the Government of the Kingdom of Tonga.
Figure (see Caption) Figure 8. Lateiki Island as seen on 7 December 2006; possibly part of the island that formed in 1995. Courtesy of the Government of the Kingdom of Tonga and the Royal New Zealand Air Force.
Figure (see Caption) Figure 9. Sentinel-2 satellite imagery confirmed the existence of an island present from 2015 through 2019 with little changes to its shape. This suggests that the island created in 1995 could have lasted for more than 20 years. Courtesy of Sentinel Hub Playground.

New eruption in October 2019. The Kingdom of Tonga reported a new eruption at Lateiki on 13 October 2019, first noted by a ship at 0800 on 14 October. NASA satellite imagery confirmed the eruption taking place that day (figure 10). The following morning a pilot from Real Tonga Airlines photographed the steam plume and reported a plume height of 4.6-5.2 km altitude (figure 11). The Wellington VAAC issued an aviation advisory report noting the pilot's observation of steam, but no ash plume was visible in satellite imagery. They issued a second report on 22 October of a similar steam plume reported by a pilot at 3.7 km altitude. The MODVOLC thermal alert system recorded three thermal alerts from Lateiki, one each on 18, 20, and 22 October 2019.

Figure (see Caption) Figure 10. NASA's Worldview Aqua/MODIS satellite imagery taken on 14 October 2019 over the Ha'apai and Vava'u region of Tonga showing the new eruption at Lateiki. Neiafu, Vava'u, is at the top right and Tofua and Kao islands are at the bottom left. The inset shows a closeup of Late Island at the top right and a white steam plume rising from Lateiki. Courtesy of the Government of the Kingdom of Tonga and NASA Worldview.
Figure (see Caption) Figure 11. Real Tonga Airline's Captain Samuela Folaumoetu'I photographed a large steam plume rising from Lateiki on the morning of 15 October 2019. Courtesy of the Government of the Kingdom of Tonga.

The first satellite image of the eruption on 15 October 2019 showed activity over a large area, much bigger than the preexisting island that was visible on 10 October (figure 12). Although the eruption produced a steam plume that drifted several tens of kilometers SW and strong incandescent activity, no ash plume was visible, similar to reports of dense steam with little ash during the 1968 and 1979 eruptions (figure 13). Strong incandescence and a dense steam plume were still present on 20 October (figure 14).

Figure (see Caption) Figure 12. The first satellite image of the eruption of Lateiki on 15 October 2019 showed activity over a large area, much bigger than the preexisting island that was visible on 10 October (inset). The two images are the same scale; the island was about 100 m in diameter before the eruption. Image uses Natural Color Rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 13. The steam plume from Lateiki on 15 October 2019 drifted more than 20 km SE from the volcano. A strong thermal anomaly from incandescent activity was present in the atmospheric penetration rendering (bands 12, 11, 8a) closeup of the same image (inset). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 14. A dense plume of steam drifted NW from Lateiki on 20 October 2019, and a strong thermal signal (inset) indicated ongoing explosive activity. Courtesy of Annamaria Luongo and Sentinel Hub Playground.

A clear satellite image on 30 October 2019 revealed an island estimated to be about 100 m wide and 400 m long, according to geologist Taaniela Kula of the Tonga Geological Service of the Ministry of Lands, Survey and Natural Resources as reported by a local news source (Matangitonga). There was no obvious fumarolic steam activity from the surface, but a plume of greenish brown seawater swirled away from the island towards the NE (figure 15). In a comparison of the location of the old Lateiki island with the new one in satellite images, it was clear that the new island was located as far as 250 m to the NW (figure 16) on 30 October. Over the course of the next few weeks, the island's size decreased significantly; by 19 November, it was perhaps one-quarter the size it had been at the end of October. Lateiki Island continued to diminish during December 2019 and January 2020, and by mid-month only traces of discolored sea water were visible beneath the waves over the eruption site (figure 17).

Figure (see Caption) Figure 15. The new Lateiki Island was clearly visible on 30 October 2019 (top left), as was greenish-blue discoloration in the surrounding waters. It was estimated to be about 100 m wide and 400 m long that day. Its size decreased significantly over subsequent weeks; ten days later (top right) it was about half the size and two weeks later, on 14 November 2019 (bottom left), it was about one-third its original size. By 19 November (bottom right) only a fraction of the island remained. Greenish discolored water continued to be visible around the volcano. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 16. The location of the new Lateiki Island (Metis Shoal), shown here on 30 October 2019 in red, was a few hundred meters to the NW of the old position recorded on 5 September 2019 (in white). Courtesy of Annamaria Luongo and Sentinel Hub Playground.
Figure (see Caption) Figure 17. Lateiki Island disappeared beneath the waves in early January 2020, though plumes of discolored water continued to be observed later in the month. Courtesy of Sentinel Hub Playground.

Geologic Background. Lateiki, previously known as Metis Shoal, is a submarine volcano midway between the islands of Kao and Late that has produced a series of ephemeral islands since the first confirmed activity in the mid-19th century. An island, perhaps not in eruption, was reported in 1781 and subsequently eroded away. During periods of inactivity following 20th-century eruptions, waves have been observed to break on rocky reefs or sandy banks with depths of 10 m or less. Dacitic tuff cones formed during the first 20th-century eruptions in 1967 and 1979 were soon eroded beneath the ocean surface. An eruption in 1995 produced an island with a diameter of 280 m and a height of 43 m following growth of a lava dome above the surface.

Information Contacts: Government of the Kingdom of Tonga, PO Box 5, Nuku'alofa, Tonga (URL: http://www.gov.to/ ); Royal New Zealand Air Force (URL: http://www.airforce.mil.nz/); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Annamaria Luongo, Brussels, Belgium (Twitter: @annamaria_84, URL: https://twitter.com/annamaria_84 ); Taaniela Kula, Tonga Geological Service, Ministry of Lands, Survey and Natural Resources; Matangi Tonga Online (URL: https://matangitonga.to/2019/11/06/eruption-lateiki).


Aira (Japan) — January 2020 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Ongoing explosions with ejecta and ash plumes, along with summit incandescence, during July-December 2019

Sakurajima is a highly active stratovolcano situated in the Aira caldera in southern Kyushu, Japan. Common volcanism for this recent eruptive episode since March 2017 includes frequent explosions, ash plumes, and scattered ejecta. Much of this activity has been focused in the Minamidake crater since 1955; the Showa crater on the E flank has had intermittent activity since 2006. This report updates activity during July through December 2019 with the primary source information from monthly reports by the Japan Meteorological Agency (JMA) and various satellite data.

During July to December 2019, explosive eruptions and ash plumes were reported multiple times per week by JMA. November was the most active, with 137 eruptive events, seven of which were explosive while August was the least active with no eruptive events recorded (table 22). Ash plumes rose between 800 m to 5.5 km above the crater rim during this reporting period. Large blocks of incandescent ejecta traveled as far as 1.7 km from the Minamidake crater during explosions in September through December. The Kagoshima Regional Meteorological Observatory (11 km WSW) reported monthly amounts of ashfall during each month, with a high of 143 g/m2 during October. Occasionally at night throughout this reporting period, crater incandescence was observed with a highly sensitive surveillance camera. All explosive activity originated from the Minamidake crater; the adjacent Showa crater produced mild thermal anomalies and gas-and-steam plumes.

Table 22. Monthly summary of eruptive events recorded at Sakurajima's Minamidake crater in the Aira caldera, July through December 2019. The number of events that were explosive in nature are in parentheses. No events were recorded at the Showa crater during this time. Ashfall is measured at the Kagoshima Local Meteorological Observatory (KLMO), 10 km W of Showa crater. Data courtesy of JMA (July to December 2019 monthly reports).

Month Ash emissions (explosive) Max plume height above crater Max ejecta distance from crater Total amount of ashfall (g/m2)
Jul 2019 9 (5) 3.8 km 1.1 km --
Aug 2019 -- 800 m -- 2
Sep 2019 32 (11) 3.4 km 1.7 km 115
Oct 2019 62 (41) 3.0 km 1.7 km 143
Nov 2019 137 (77) 5.5 km 1.7 km 69
Dec 2019 71 (49) 3.3 km 1.7 km 54

An explosion that occurred at 1044 on 4 July 2019 produced an ash plume that rose up to 3.2 km above the Minamidake crater rim and ejected material 1.1 km from the vent. Field surveys conducted on 17 and 23 July measured SO2 emissions that were 1,200-1,800 tons/day. Additional explosions between 19-22 July generated smaller plumes that rose to 1.5 km above the crater and ejected material 1.1 km away. On 28 July explosions at 1725 and 1754 produced ash plumes 3.5-3.8 km above the crater rim, which resulted in ashfall in areas N and E of Sakurajima (figure 86), including Kirishima City (20 km NE), Kagoshima Prefecture (30 km SE), Yusui Town (40 km N), and parts of the Kumamoto Prefecture (140 km NE).

Figure (see Caption) Figure 86. Photo of the Sakurajima explosion at 1725 on 28 July 2019 resulting in an ash plume rising 3.8 km above the crater (left). An on-site field survey on 29 July observed ashfall on roads and vegetation on the N side of the island (right). Photo by Moto Higashi-gun (left), courtesy of JMA (July 2019 report).

The month of August 2019 showed the least activity and consisted of mainly small eruptive events occurring up to 800 m above the crater; summit incandescence was observed with a highly sensitive surveillance camera. SO2 emissions were measured on 8 and 13 August with 1,000-2,000 tons/day, which was slightly greater than the previous month. An extensometer at the Arimura Observation Tunnel and an inclinometer at the Amida River recorded slight inflation on 29 August, but continuous GNSS (Global Navigation Satellite System) observations showed no significant changes.

In September 2019 there were 32 eruptive events recorded, of which 11 were explosions, more than the previous two months. Seismicity also increased during this month. An extensometer and inclinometer recorded inflation at the Minamidake crater on 9 September, which stopped after the eruptive events. On 16 September, an eruption at 0746 produced an ash plume that rose 2.8 km above the crater rim and drifted SW; a series of eruptive events followed from 0830-1110 (figure 87). Explosions on 18 and 20 September produced ash plumes that rose 3.4 km above the crater rim and ejecting material as far as 1.7 km from the summit crater on the 18th and 700 m on the 20th. Field surveys measured an increased amount of SO2 emissions ranging from 1,100 to 2,300 tons/day during September.

Figure (see Caption) Figure 87. Webcam image of an ash plume rising 2.8 km from the Minamidake crater at Sakurajima on 16 September 2019. Courtesy of Weathernews Inc.

Seismicity, SO2 emissions, and the number of eruptions continued to increase in October 2019, 41 of which were explosive. Field surveys conducted on 1, 11, and 15 October reported that SO2 emissions were 2,000-2,800 tons/day. An explosion at 0050 on 12 October produced an ash plume that traveled 1.7 km from the Minamidake crater. Explosions between 16 and 19 October produced an ash plume that rose up to 3 km above the crater rim (figure 88). The Japan Maritime Self-Defense Force 1st Air group observed gas-and-steam plumes rising from both the Minamidake and Showa craters on 25 October. The inflation reported from 16 September began to slow in late October.

Figure (see Caption) Figure 88. Photos taken from the E side of Sakurajima showing gas-and-steam emissions with some amount of ash rising from the volcano on 16 October 2019 after an explosion around 1200 that day (top). At night, summit incandescence is observed (bottom). Courtesy of Bradley Pitcher, Vanderbilt University.

November 2019 was the most active month during this reporting period with increased seismicity, SO2 emissions, and 137 eruptive events, 77 of which were explosive. GNSS observations indicated that inflation began to slow during this month. On 8 November, an explosion at 1724 produced an ash plume up to a maximum of 5.5 km above the crater rim and drifted E. This explosion ejected large blocks as far as 500-800 m away from the crater (figure 89). The last time plumes rose above 5 km from the vents occurred on 26 July 2016 at the Showa crater and on 7 October 2000 at the Minamidake crater. Field surveys on 8, 21, and 29 November measured increased SO2 emissions ranging from 2,600 to 3,600 tons/day. Eruptions between 13-19 November produced ash plumes that rose up to 3.6 km above the crater and ejected large blocks up 1.7 km away. An onsite survey on 29 November used infrared thermal imaging equipment to observe incandescence and geothermal areas near the Showa crater and the SE flank of Minamidake (figure 90).

Figure (see Caption) Figure 89. Photos of an ash plume rising 5.5 km above Sakurajima on 8 November 2019 and drifting E. Photo by Moto Higashi-gun (top left), courtesy of JMA (November 2019 report) and the Geoscientific Network of Chile.
Figure (see Caption) Figure 90. Webcam image of nighttime incandescence and gas-and-steam emissions with some amount of ash at Sakurajima on 29 November 2019. Courtesy of JMA (November 2019 report).

Volcanism, which included seismicity, SO2 emissions, and eruptive events, decreased during December 2019. Explosions during 4-10 December produced ash plumes that rose up to 2.6 km above the crater rim and ejected material up to 1.7 km away. Field surveys conducted on 6, 16, and 23 December measured SO2 emissions around 1,000-3,000 tons/day. On 24 December, an explosion produced an ash plume that rose to 3.3 km above the crater rim, this high for this month.

Sentinel-2 natural color satellite imagery showed dense ash plumes in late August 2019, early November, and through December (figure 91). These plumes drifted in different directions and rose to a maximum 5.5 km above the crater rim on 8 November.

Figure (see Caption) Figure 91. Natural color Sentinel-2 satellite images of Sakurajima within the Aira caldera from late August through December 2019 showed dense ash plumes rising from the Minamidake crater. Courtesy of Sentinel Hub Playground.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed intermittent thermal anomalies beginning in mid-August to early September 2019 after a nearly two-month hiatus (figure 92). Activity increased by early November and continued through December. Three Sentinel-2 thermal satellite images between late July and early October showed distinct thermal hotspots within the Minamidake crater, in addition to faint gas-and-steam emissions in July and September (figure 93).

Figure (see Caption) Figure 92. Thermal anomalies at Sakurajima during January-December 2019 as recorded by the MIROVA system (Log Radiative Power) started up in mid-August to early September after a two-month break and continued through December. Courtesy of MIROVA.
Figure (see Caption) Figure 93. Sentinel-2 thermal satellite images showing small thermal anomalies and gas-and-steam emissions (left and middle) at Sakurajima within the Minamidake crater between late July and early October 2019. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Weathernews Inc. (Twitter: @wni_jp, https://twitter.com/wni_jp, URL: https://weathernews.jp/s/topics/201608/210085/, photo posted at https://twitter.com/wni_jp/status/1173382407216652289); Bradley Pitcher, Vanderbilt University, Nashville. TN, USA (URL: https://bradpitcher.weebly.com/, Twitter: @TieDyeSciGuy, photo posted at https://twitter.com/TieDyeSciGuy/status/1185191225101471744); Geoscientific Network of Chile (Twitter: @RedGeoChile, https://twitter.com/RedGeoChile, Facebook: https://www.facebook.com/RedGeoChile/, photo posted at https://twitter.com/RedGeoChile/status/1192921768186515456).


Suwanosejima (Japan) — January 2020 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Explosions, ash emissions, and summit incandescence in July-December 2019

Suwanosejima, located south of Japan in the northern Ryukyu Islands, is an active andesitic stratovolcano that has had continuous activity since October 2004, typically producing ash plumes and Strombolian explosions. Much of this activity is focused within the Otake crater. This report updates information during July through December 2019 using monthly reports from the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and various satellite data.

White gas-and-steam plumes rose from Suwanosejima on 26 July 2019, 30-31 August, 1-6, 10, and 20-27 September, reaching a maximum altitude of 2.4 km on 10 September, according to Tokyo VAAC advisories. Intermittent gray-white plumes were observed rising from the summit during October through December (figure 40).

Figure (see Caption) Figure 40. Surveillance camera images of white gas-and-steam emissions rising from Suwanosejima on 10 December 2019 (left) and up to 1.8 km above the crater rim on 28 December (right). At night, summit incandescence was also observed on 10 December. Courtesy of JMA.

An explosion that occurred at 2331 on 1 August 2019 ejected material 400 m from the crater while other eruptions on 3-6 and 26 August produced ash plumes that rose up to a maximum altitude of 2.1 km and drifted generally NW according to the Tokyo VAAC report. JMA reported eruptions and summit incandescence in September accompanied by white gas-and-steam plumes, but no explosions were noted. Eruptions on 19 and 29 October produced ash plumes that rose 300 and 800 m above the crater rim, resulting in ashfall in Toshima (4 km SW), according to the Toshima Village Office, Suwanosejima Branch Office. Another eruption on 30 October produced a similar gray-white plume rising 800 m above the crater rim but did not result in ashfall. Similar activity continued in November with eruptions on 5-7 and 13-15 November producing grayish-white plumes rising 900 m and 1.5 km above the crater rim and frequent crater incandescence. Ashfall was reported in Toshima Village on 19 and 20 November; the 20 November eruption ejected material 200 m from the Otake crater.

Field surveys on 14 and 18 December using an infrared thermal imaging system to the E of Suwanose Island showed hotspots around the Otake crater, on the N slope of the crater, and on the upper part of the E coastline. GNSS (Global Navigation Satellite Systems) observations on 15 and 17 December showed a slight change in the baseline length. After 2122 on 25-26 and 31 December, 23 eruptions, nine of which were explosive were reported, producing gray-white plumes that rose 800-1,800 m above the crater rim and ejected material up to 600 m from the Otake crater. JMA reported volcanic tremors occurred intermittently throughout this reporting period.

Incandescence at the summit crater was occasionally visible at night during July through December 2019, as recorded by webcam images and reported by JMA (figure 41). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed weak thermal anomalies that occurred dominantly in November with little to no activity recorded between July and October (figure 42). Two Sentinel-2 thermal satellite images in early November and late December showed thermal hotspots within the summit crater (figure 43).

Figure (see Caption) Figure 41. Surveillance camera image of summit incandescence at Suwanosejima on 31 October 2019. Courtesy of JMA.
Figure (see Caption) Figure 42. Weak thermal anomalies at Suwanosejima during January-December 2019 as recorded by the MIROVA system (Log Radiative Power) dominantly occurred in mid-March, late May to mid-June, and November, with two hotspots detected in late September and late December. Courtesy of MIROVA.
Figure (see Caption) Figure 43. Sentinel-2 thermal satellite images showing small thermal anomalies (bright yellow-orange) within the Otake crater at Suwanosejima on 8 November 2019 (left) and faintly on 23 December 2019 behind clouds (right). Both images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Barren Island (India) — February 2020 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Thermal anomalies and small ash plumes during February-April 2019 and September 2019-January 2020

Barren Island is a remote stratovolcano located east of India in the Andaman Islands. Its most recent eruptive episode began in September 2018 and has included lava flows, explosions, ash plumes, and lava fountaining (BGVN 44:02). This report updates information from February 2019 through January 2020 using various satellite data as a primary source of information.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed intermittent thermal anomalies within 5 km of the summit from mid-February 2019 through January 2020 (figure 41). There was a period of relatively low to no discernible activity between May to September 2019. The MODVOLC algorithm for MODIS thermal anomalies in comparison with Sentinel-2 thermal satellite imagery and Suomi NPP/VIIRS sensor data, registered elevated temperatures during late February 2019, early March, sparsely in April, late October, sparsely in November, early December, and intermittently in January 2020 (figure 42). Sentinel-2 thermal satellite imagery shows these thermal hotspots differing in strength from late February to late January 2020 (figure 43). The thermal anomalies in these satellite images are occasionally accompanied by ash plumes (25 February 2019, 23 October 2019, and 21 January 2020) and gas-and-steam emissions (26 April 2019).

Figure (see Caption) Figure 41. Intermittent thermal anomalies at Barren Island for 20 February 2019 through January 2020 occurred dominantly between late March to late April 2019 and late September 2019 through January 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 42. Timeline summary of observed activity at Barren Island from February 2019 through January 2020. For Sentinel-2, MODVOLC, and VIIRS data, the dates indicated are when thermal anomalies were detected. White areas indicated no activity was observed, which may also be due to meteoric clouds. Data courtesy of Darwin VAAC, Sentinel Hub Playground, HIGP, and NASA Worldview using the "Fire and Thermal Anomalies" layer.
Figure (see Caption) Figure 43. Sentinel-2 thermal images show ash plumes, gas-and-steam emissions, and thermal anomalies (bright yellow-orange) at Barren Island during February 2019-January 2020. The strongest thermal signature was observed on 23 October while the weakest one is observed on 26 January. Sentinel-2 False color (bands 12, 11, 4) images courtesy of Sentinel Hub Playground.

The Darwin Volcanic Ash Advisory Center (VAAC) reported ash plumes rising from the summit on 7, 14, and 16 March 2019. The maximum altitude of the ash plume occurred on 7 March, rising 1.8 km altitude, drifting W and NW and 1.2 km altitude, drifting E and ESE, based on observations from Himawari-8. The VAAC reports for 14 and 16 March reported the ash plumes rising 0.9 km and 1.2 km altitude, respectively drifting W and W.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Whakaari/White Island (New Zealand) — February 2020 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Explosion producing an ash plume and pyroclastic surge resulted in fatalities and injuries on 9 December 2019

Whakaari/White Island has been New Zealand's most active volcano since 1976. Located 48 km offshore, the volcano is a popular tourism destination with tours leaving the town of Whakatane with approximately 17,500 people visiting the island in 2018. Ten lives were lost in 1914 when part of the crater wall collapsed, impacting sulfur miners. More recently, a brief explosion at 1411 on 9 December 2019 produced an ash plume and pyroclastic surge that impacted the entire crater area. With 47 people on the island at the time, the death toll stood at 21 on 3 February 2019. At that time more patients were still in hospitals within New Zealand or their home countries.

The island is the summit of a large underwater volcano, with around 70% of the edifice below the ocean and rising around 900 m above sea level (figure 70). A broad crater opens to the ocean to the SE, with steep crater walls and an active Main Crater area to the NW rear of the crater floor (figure 71). Although the island is privately owned, GeoNet continuously monitors activity both remotely and with visits to the volcano. This Bulletin covers activity from May 2017 through December 2019 and is based on reports by GeoNet, the New Zealand Civil Defence Bay of Plenty Emergency Management Group, satellite data, and footage taken by visitors to the island.

Figure (see Caption) Figure 70. The top of the Whakaari/White Island edifice forms the island in the Bay of Plenty area, New Zealand, while 70% of the volcano is below sea level. Courtesy of GeoNet.
Figure (see Caption) Figure 71. This photo from 2004 shows the Main Crater area of Whakaari/White Island with the vent area indicated. The crater is an amphitheater shape with the crater floor distance between the vent and the ocean entry being about 700 m. The sediment plume begins at the area where tour boats dock at the island. Photo by Karen Britten, graphic by Danielle Charlton at University of Auckland; courtesy of GeoNet (11 December 2019 report).

Nearly continuous activity occurred from December 1975 to September 2000, including the formation of collapse and explosion craters producing ash emissions and explosions that impacted all of the Main Crater area. More recently, it has been in a state of elevated unrest since 2011. Renewed activity commenced with an explosive eruption on 5 August 2012 that was followed by the extrusion of a lava dome and ongoing phreatic explosions and minor ash emissions through March 2013. An ash cone was seen on 4 March 2013, and over the next few months the crater lake reformed. Further significant explosions took place on 20 August and 4, 8, and 11 October 2013. A landslide occurred in November 2015 with material descending into the lake. More recent activity on 27 April 2016 produced a short-lived eruption that deposited material across the crater floor and walls. A short period of ash emission later that year, on 13 September 2016, originated from a vent on the recent lava dome. Explosive eruptions occur with little to no warning.

Since 19 September 2016 the Volcanic Alert Level (VAL) was set to 1 (minor volcanic unrest) (figure 72). During early 2017 background activity in the crater continued, including active fumaroles emitting volcanic gases and steam from the active geothermal system, boiling springs, volcanic tremor, and deformation. By April 2017 a new crater lake had begun to form, the first since the April 2016 explosion when the lake floor was excavated an additional 13 m. Before this, there were areas where water ponded in depressions within the Main Crater but no stable lake.

Figure (see Caption) Figure 72. The New Zealand Volcanic Alert Level system up to date in February 2020. Courtesy of GeoNet.

Activity from mid-2017 through 2018. In July-August 2017 GeoNet scientists carried out the first fieldwork at the crater area since late 2015 to sample the new crater lake and gas emissions. The crater lake was significantly cooler than the past lakes at 20°C, compared to 30-70°C that was typical previously. Chemical analysis of water samples collected in July showed the lowest concentrations of most "volcanic elements" in the lake for the past 10-15 years due to the reduced volcanic gases entering the lake. The acidity remained similar to that of battery acid. Gas emissions from the 2012 dome were 114°C, which were over 450°C in 2012 and 330°C in 2016. Fumarole 0 also had a reduced temperature of 152°C, reduced from over 190°C in late 2016 (figure 73). The observations and measurements indicated a decline in unrest. Further visits in December 2017 noted relatively low-level unrest including 149°C gas emissions from fumarole 0, a small crater lake, and loud gas vents nearby (figures 74 and 75). By 27 November the lake had risen to 10 m below overflow. Analysis of water samples led to an estimate of 75% of the lake water resulting from condensing steam vents below the lake and the rest from rainfall.

Figure (see Caption) Figure 73. A GeoNet scientists conducting field work near Fumarole 0, an accessible gas vent on Whakaari/White Island in August 2017. Courtesy of GeoNet (23 August 2017 report).
Figure (see Caption) Figure 74. GeoNet scientists sample gas emissions from vents on the 2012 Whakaari/White Island dome. The red circle in the left image indicates the location of the scientists. Courtesy of GeoNet (23 August 2017 report).
Figure (see Caption) Figure 75. Active fumaroles and vents in the Main Crater of Whakaari/White Island including Fumarole 0 (top left). The crater lake formed in mid-2017 and gas emissions rise from surrounding vents (right). Courtesy of GeoNet (22 December 2017 report).

Routine fieldwork by GeoNet monitoring teams in early March 2018 showed continued low-level unrest and no apparent changes after a recent nearby earthquake swarm. The most notable change was the increase in the crater lake size, likely a response from recent high rainfall (figure 76). The water remained a relatively cool 27°C. Temperatures continued to decline at the 2012 dome vent (128°C) and Fumarole 0 (138°C). Spring and stream flow had also declined. Deformation was observed towards the Active Crater of 2-5 mm per month and seismicity remained low. The increase in lake level drowned gas vents along the lake shore resulting in geyser-like activity (figure 77). GeoNet warned that a new eruption could occur at any time, often without any useful warning.

In mid-April 2018 visitors reported loud sounds from the crater area as a result of the rising lake level drowning vents on the 2012 dome (in the western side of the crater) and resulting in steam-driven activity. There was no notable change in volcanic activity. The sounds stopped by July 2018 as the geothermal system adjusted to the rising water, up to 17 m below overfill and filling at a rate of about 2,000 m3 per day, rising towards more active vents (figure 78). A gas monitoring flight taken on 12 September showed a steaming lake surrounded by active fumaroles along the crater wall (figure 79).

Figure (see Caption) Figure 76. The increase in the Whakaari/White Island crater lake size in early March 2018 with gas plumes rising from vents on the other side. Courtesy of GeoNet (19 March 2018 report).
Figure (see Caption) Figure 77. The increasing crater lake level at Whakaari/White Island produced geyser-like activity on the lake shore in March 2018. Courtesy of Brad Scott, GeoNet.
Figure (see Caption) Figure 78. Stills taken from a drone video of the Whakaari/White Island Main Crater lake and active vents producing gas emissions. Courtesy of GeoNet.
Figure (see Caption) Figure 79. Photos taken during a gas monitoring flight with GNS Science at Whakaari/White Island show gas and steam emissions, and a steaming crater lake on 12 September 2018. Note the people for scale on the lower-right crater rim in the bottom photograph. Copyright of Ben Clarke, University of Leicester, used with permission.

Activity during April to early December 2019. A GeoNet volcanic alert bulletin in April 2019 reported that steady low-level unrest continued. The level of the lake had been declining since late January and was back down to 13 m below overflow (figure 80). The water temperature had increased to over 60°C due to the fumarole activity below the lake. Fumarole 0 remained steady at around 120-130°C. During May-June a seismic swarm was reported offshore, unrelated to volcanic activity but increasing the risk of landslides within the crater due to the shallow locations.

Figure (see Caption) Figure 80. Planet Labs satellite images from March 2018 to April 2019 show fluctuations in the Whakaari/White Island crater lake level. Image copyright 2019 Planet Labs, Inc.

On 26 June the VAL was raised to level 2 (moderate to heightened volcanic unrest) due to increased SO2 flux rising to historically high levels. An overflight that day detected 1,886 tons/day, nearly three times the previous values of May 2019, the highest recorded value since 2013, and the second highest since measurements began in 2003. The VAL was subsequently lowered on 1 July due to a reduction in detected SO2 emissions of 880 tons/day on 28 June and 693 tons/day on 29 June.

GeoNet reported on 26 September that there was an increase in steam-driven activity within the active crater over the past three weeks. This included small geyser-like explosions of mud and steam with material reaching about 10 m above the lake. This was not attributed to an increase in volcanic activity, but to the crater lake level rising since early August.

On 30 October an increase in background activity was reported. An increasing trend in SO2 gas emissions and volcanic tremor had been ongoing for several months and had reached the highest levels since 2016. This indicated to GeoNet that Whakaari/White Island might be entering a period where eruptive activity was more likely. There were no significant changes in other monitoring parameters at this time and fumarole activity continued (figure 81).

Figure (see Caption) Figure 81. A webcam image taken at 1030 on 30 October 2019 from the crater rim shows the Whakaari/White Island crater lake to the right of the amphitheater-shaped crater and gas-and-steam plumes from active fumaroles. Courtesy of GeoNet.

On 18 November the VAL was raised to level 2 and the Aviation Colour Code was raised to Yellow due to further increase in SO2 emissions and volcanic tremor. Other monitoring parameters showed no significant changes. On 25 November GeoNet reported that moderate volcanic unrest continued but with no new changes. Gas emissions remained high and gas-driven ejecta regularly jetting material a few meters into the air above fumaroles in the crater lake (figure 82).

Figure (see Caption) Figure 82. A webcam image from the Whakaari/White Island crater rim shows gas-driven ejecta rising above a fumarole within the crater lake on 22 November 2019. Courtesy of GeoNet.

GeoNet reported on 3 December that moderate volcanic unrest continued, with increased but variable explosive gas and steam-driven jetting, with stronger events ejecting mud 20-30 m into the air and depositing mud around the vent area. Gas emissions and volcanic tremor remained elevated and occasional gas smells were reported on the North Island mainland depending on wind direction. The crater lake water level remained unchanged. Monitoring parameters were similar to those observed in 2011-2016 and remained within the expected range for moderate volcanic unrest.

Eruption on 9 December 2019. A short-lived eruption occurred at 1411 on 9 December 2019, generating a steam-and-ash plume to 3.6 km and covering the entire crater floor area with ash. Video taken by tourists on a nearby boat showed an eruption plume composed of a white steam-rich portion, and a black ash-rich ejecta (figure 83). A pyroclastic surge moved laterally across the crater floor and up the inner crater walls. Photos taken soon after the eruption showed sulfur-rich deposits across the crater floor and crater walls, and a helicopter that had been damaged and blown off the landing pad (figure 84). This activity caused the VAL to be raised to 4 (moderate volcanic eruption) and the Aviation Colour Code being raised to Orange.

Figure (see Caption) Figure 83. The beginning of the Whakaari/White Island 9 December 2019 eruption viewed from a boat that left the island about 20-30 minutes prior. Top: the steam-rich eruption plume rising above the volcano and a pyroclastic surge beginning to rise over the crater rim. Bottom: the expanded steam-and-ash plume of the pyroclastic surge that flowed over the crater floor to the ocean. Copyright of Michael Schade, used with permission.
Figure (see Caption) Figure 84. This photo of Whakaari/White Island taken after the 9 December 2019 eruption at around 1424 shows ash and sediment coating the crater floor and walls. The helicopter in this image was blown off the landing pad and damaged during the eruption. Copyright of Michael Schade, used with permission.

A steam plume was visible in a webcam image taken at 1430 from Whakatane, 21 minutes after the explosion (figure 85). Subsequent explosions occurred at 1630 and 1749. Search-and-Rescue teams reached the island after the eruption and noted a very strong sulfur smell that was experienced through respirators. They experienced severe stinging of any exposed skin that came in contact with the gas, and were left with sensitive skin and eyes, and sore throats. Later in the afternoon the gas-and-steam plume continued and a sediment plume was dispersing from the island (figure 86). The VAL was lowered to level 3 (minor volcanic eruption) at 1625 that day; the Aviation Colour Code remained at Orange.

Figure (see Caption) Figure 85. A view of Whakaari/White Island from Whakatane in the North Island of New Zealand. Left: there is no plume visible at 1410 on 9 December 2019, one minute before the eruption. Right: A gas-and-steam plume is visible 21 minutes after the eruption. Courtesy of GeoNet.
Figure (see Caption) Figure 86. A gas-and-steam plume rises from Whakaari/White Island on the afternoon of 9 December 2019 as rescue teams visit the island. A sediment plume in the ocean is dispersing from the island. Courtesy of Auckland Rescue Helicopter Trust.

During or immediately after the eruption an unstable portion of the SW inner crater wall, composed of 1914 landslide material, collapsed and was identified in satellite radar imagery acquired after the eruption. The material slid into the crater lake area and left a 12-m-high scarp. Movement in this area continued into early January.

Activity from late 2019 into early 2020. A significant increase in volcanic tremor began at around 0400 on 11 December (figure 87). The increase was accompanied by vigorous steaming and ejections of mud in several of the new vents. By the afternoon the tremor was at the highest level seen since the 2016 eruption, and monitoring data indicated that shallow magma was driving the increased unrest.

Figure (see Caption) Figure 87. This RSAM (Real-Time Seismic Amplitude) time series plot represents the energy produced at Whakaari/White Island from 11 November to 11 December 2019 with the Volcanic Activity Levels and the 9 December eruption indicated. The plot shows the sharp increase in seismic energy during 11 December. Courtesy of GeoNet (11 December 2019 report).

The VAL was lowered to 2 on the morning of 12 December to reflect moderate to heightened unrest as no further explosive activity had occurred since the event on the 9th. Volcanic tremor was occurring at very high levels by the time a bulletin was released at 1025 that day. Gas emissions increased since 10 January, steam and mud jetting continued, and the situation was interpreted to be highly volatile. The Aviation Colour Code remained at Orange. Risk assessment maps released that day show the high-risk areas as monitoring parameters continued to show an increased likelihood of another eruption (figure 88).

Figure (see Caption) Figure 88. Risk assessment maps of Whakaari/White Island show the increase in high-risk areas from 2 December to 12 December 2019. Courtesy of GeoNet (12 December 2019 report).

The volcanic activity bulletin for 13 December reported that volcanic tremor remained high, but had declined overnight. Vigorous steam and mud jetting continuing at the vent area. Brief ash emission was observed in the evening with ashfall restricted to the vent area. The 14 January bulletin reported that volcanic tremor had declined significantly over night, and nighttime webcam images showed a glow in the vent area due to high heat flow.

Aerial observations on 14 and 15 December revealed steam and gas emissions continuing from at least three open vents within a 100 m2 area (figure 89). One vent near the back of the crater area was emitting transparent, high-temperature gas that indicated that magma was near the surface, and produced a glow registered by low-light cameras (figure 90). The gas emissions had a blue tinge that indicated high SO2 content. The area that once contained the crater lake, 16 m below overflow before the eruption, was filled with debris and small isolated ponds mostly from rainfall, with different colors due to the water reacting with the eruption deposits. The gas-and-steam plume was white near the volcano but changed to a gray-brown color as it cooled and moved downwind due to the gas content (figure 91). On 15 December the tremor remained at low levels (figure 92).

Figure (see Caption) Figure 89. The Main Crater area of Whakaari/White Island showing the active vent area and gas-and-steam emissions on 15 December 2019. Gas emissions were high within the circled area. Before the eruption a few days earlier this area was partially filled by the crater lake. Courtesy of GeoNet (15 December 2019 report).
Figure (see Caption) Figure 90. A low-light nighttime camera at Whakaari/White Island imaged "a glow" at a vent within the active crater area on 13 December 2019. This glow is due to high-temperature gas emissions and light from external sources like the moon. Courtesy of GeoNet (15 December 2019 report).
Figure (see Caption) Figure 91. A gas-and-steam plume at Whakaari/White Island on 15 December 2019 is white near the crater and changes to a grey-brown color downwind due to the gas content. Courtesy of GeoNet (15 December 2019 report).
Figure (see Caption) Figure 92. The Whakaari/White Island seismic drum plot showing the difference in activity from 12 December (top) to 15 December (bottom). Courtesy of GeoNet (15 December 2019 report).

On 19 December tremor remained low (figure 93) and gas and steam emission continued. Overflight observations confirmed open vents with one producing temperatures over 650°C (figure 94). SO2 emissions remained high at around 15 kg/s, slightly lower than the 20 kg/s detected on 12 December. Small amounts of ash were produced on 23 and 26 December due to material entering the vents during erosion.

Figure (see Caption) Figure 93. This RSAM (Real-Time Seismic Amplitude) time series plot represents the energy produced at Whakaari/White Island from 1 November to mid-December 2019. The Volcanic Alert Levels and the 9 December eruption are indicated. Courtesy of GeoNet.
Figure (see Caption) Figure 94. A photograph and thermal infrared image of the Whakaari/White Island crater area on 19 December 2019. The thermal imaging registered temperatures up to 650°C at a vent emitting steam and gas. Courtesy of GeoNet.

The Aviation Colour Code was reduced to Yellow on 6 January 2020 and the VAL remained at 2. Strong gas and steam emissions continued from the vent area through early January and the glow persisted in nighttime webcam images. Short-lived episodes of volcanic tremor were recorded between 8-10 January and were accompanied by minor explosions. A 15 January bulletin reported that the temperature at the vent area remained very hot, up to 440°C, and SO2 emissions were within normal post-eruption levels.

High temperatures were detected within the vent area in Sentinel-2 thermal data on 6 and 16 January (figure 95). Lava extrusion was confirmed within the 9 December vents on 20 January. Airborne SO2 measurements on that day recorded continued high levels and the vent temperature was over 400°C. Observations on 4 February showed that no new lava extrusion had occurred, and gas fluxes were lower than two weeks ago, but still elevated. The temperatures measured in the crater were 550-570°C and no further changes to the area were observed.

Figure (see Caption) Figure 95. Sentinel-2 thermal infrared satellite images show elevated temperatures in the 9 December 2019 vent area on Whakaari/White Island. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: New Zealand GeoNet Project, a collaboration between the Earthquake Commission and GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.geonet.org.nz/); GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); Bay of Plenty Emergency Management Group Civil Defense, New Zealand (URL: http://www.bopcivildefence.govt.nz/); Auckland Rescue Helicopter Trust, Auckland, New Zealand (URL: https://www.rescuehelicopter.org.nz/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Ben Clarke, The University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom (URL: https://le.ac.uk/geology, Twitter: https://twitter.com/PyroclasticBen); Michael Schade, San Francisco, USA (URL: https://twitter.com/sch).


Kadovar (Papua New Guinea) — January 2020 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Frequent gas and some ash emissions during May-December 2019 with some hot avalanches

Kadovar is an island volcano north of Papua New Guinea and northwest of Manam. The first confirmed historical activity began in January 2018 and resulted in the evacuation of residents from the island. Eruptive activity through 2018 changed the morphology of the SE side of the island and activity continued through 2019 (figure 36). This report summarizes activity from May through December 2019 and is based largely on various satellite data, tourist reports, and Darwin Volcanic Ash Advisory Center (VAAC) reports.

Figure (see Caption) Figure 36. The morphological changes to Kadovar from 2017 to June 2019. Top: the vegetated island has a horseshoe-shaped crater that opens towards the SE; the population of the island was around 600 people at this time. Middle: by May 2018 the eruption was well underway with an active summit crater and an active dome off the east flank. Much of the vegetation has been killed and ashfall covers a lot of the island. Bottom: the bay below the SE flank has filled in with volcanic debris. The E-flank coastal dome is no longer active, but activity continues at the summit. PlanetScope satellite images copyright Planet Labs 2019.

Since this eruptive episode began a large part of the island has been deforested and has undergone erosion (figure 37). Activity in early 2019 included regular gas and steam emissions, ash plumes, and thermal anomalies at the summit (BGVN 44:05). On 15 May an ash plume originated from two vents at the summit area and dispersed to the east. A MODVOLC thermal alert was also issued on this day, and again on 17 May. Elevated temperatures were detected in Sentinel-2 thermal satellite data on 20, 21, and 30 May (figure 38), with accompanying gas-and-steam plumes dispersing to the NNW and NW. On 30 May the area of elevated temperature extended to the SE shoreline, indicating an avalanche of hot material reaching the water.

Figure (see Caption) Figure 37. The southern flank of Kadovar seen here on 13 November 2019 had been deforested by eruptive activity and erosion had produced gullies down the flanks. Copyrighted photo by Chrissie Goldrick, used with permission.
Figure (see Caption) Figure 38. Sentinel-2 thermal satellite images show elevated temperatures at the summit area, and down to the coast in the top image. Gas-and-steam plumes are visible dispersing towards the NW. Sentinel-2 false color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel-Hub Playground.

Throughout June cloud-free Sentinel-2 thermal satellite images showed elevated temperatures at the summit area and extending down the upper SE flank (figure 38). Gas-and-steam plumes were persistent in every Sentinel-2 and NASA Suomi NPP / VIIRS (Visible Infrared Imaging Radiometer Suite) image. MODVOLC thermal alerts were issued on 4 and 9 June. Similar activity continued through July with gas-and-steam emissions visible in every cloud-free satellite image. Thermal anomalies appeared weaker in late-July but remained at the summit area. An ash plume was imaged on 17 July by Landsat 8 with a gas-and-ash plume dispersing to the west (figure 39). Thermal anomalies continued through August with a MODVOLC thermal alert issued on the 14th. Gas emissions also continued and a Volcano Observatory Notice for Aviation (VONA) was issued on the 19th reporting an ash plume to an altitude of 1.5 km and drifting NW.

Figure (see Caption) Figure 39. An ash plume rising above Kadovar and a gas plume dispersing to the NW on 17 July 2019. Truecolor pansharpened Landsat 8 satellite image courtesy of Sentinel Hub Playground.

An elongate area extending from the summit area to the E-flank coastal dome appears lighter in color in a 7 September Sentinel-2 natural color satellite image, and as a higher temperature area in the correlating thermal bands, indicating a hot avalanche deposit. These observations along with the previous avalanche, persistent elevated summit temperatures, and persistent gas and steam emissions from varying vent locations (figure 40) suggests that the summit dome has remained active through 2019.

Figure (see Caption) Figure 40. Sentinel-2 visible and thermal satellite images acquired on 7 September 2019 show fresh deposits down the east flank of Kadovar. They appear as a lighter colored area in visible, and show as a hot area (orange) in thermal data. Sentinel-2 natural color (bands 4, 3, 2) and false color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel-Hub Playground.

Thermal anomalies and emissions continued through to the end of 2019 (figure 41). A tour group witnessed an explosion producing an ash plume at around 1800 on 13 November (figure 42). While the ash plume erupted near-vertically above the island, a more diffuse gas plume rose from multiple vents on the summit dome and dispersed at a lower altitude.

Figure (see Caption) Figure 41. The summit area of Kadovar emitting gas-and-steam plumes in August, September, and November 2019. The plumes are persistent in satellite images throughout May through December and there is variation in the number and locations of the source vents. PlanetScope satellite images copyright Planet Labs 2019.
Figure (see Caption) Figure 42. An ash plume and a lower gas plume rise during an eruption of Kadovar on 13 November 2019. The summit lava dome is visibly degassing to produce the white gas plume. Copyrighted photos by Chrissie Goldrick, used with permission.

While gas plumes were visible throughout May-December 2019 (figure 43), SO2 plumes were difficult to detect in NASA SO2 images due to the activity of nearby Manam volcano. The MIROVA thermal detection system shows continued elevated temperatures through to early December, with an increase during May-June (figure 44). Sentinel-2 thermal images showed elevated temperatures through to the end of December but at a lower intensity than previous months.

Figure (see Caption) Figure 43. This photo of the southeast side Kadovar on 13 November 2019 shows a persistent low-level gas plume blowing towards the left and a more vigorous plume is visible near the crater. This is an example of the persistent plume visible in satellite imagery throughout July-December 2019. Copyrighted photo by Chrissie Goldrick, used with permission.
Figure (see Caption) Figure 44. The MIROVA plot of radiative power at Kadovar shows thermal anomalies throughout 2019 with some variations in frequency. Note that while the black lines indicate that the thermal anomalies are greater than 5 km from the vent, the designated summit location is inaccurate so these are actually a the summit crater and on the E flank. Courtesy of MIROVA.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov); Chrissie Goldrick, Australian Geographic, Level 7, 54 Park Street, Sydney, NSW 2000, Australia (URL: https://www.australiangeographic.com.au/).


Nyiragongo (DR Congo) — December 2019 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Lava lake persists during June-November 2019

Nyiragongo is a stratovolcano with a 1.2 km-wide summit crater containing an active lava lake that has been present since at least 1971. It is located the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo, part of the western branch of the East African Rift System. Typical volcanism includes strong and frequent thermal anomalies, primarily due to the lava lake, incandescence, gas-and-steam plumes, and seismicity. This report updates activity during June through November 2019 with the primary source information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

In the July 2019 monthly report, OVG stated that the lava lake level had dropped during the month, with incandescence only visible at night (figure 68). In addition, the small eruptive cone within the crater, which has been active since 2014, decreased in activity during this timeframe. A MONUSCO (United Nations Stabilization Mission in the Democratic Republic of the Congo) helicopter overflight took photos of the lava lake and observed that the level had begun to rise on 27 July. Seismicity was relatively moderate throughout this reporting period; however, on 9-16 July and 21 August strong seismic swarms were recorded.

Figure (see Caption) Figure 68. Webcam images of Nyiragongo on 20 July 2019 where incandescence is not visible during the day (left) but is observed at night (right). Incandescence is accompanied by gas-and-steam emissions. Courtesy of OVG.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continued to show frequent and strong thermal anomalies within 5 km of the crater summit through November 2019 (figure 69). Similarly, the MODVOLC algorithm reported almost daily thermal hotspots (more than 600) within the summit crater between June 2019 through November. These data are corroborated with Sentinel-2 thermal satellite imagery and a photo from OVG on 19 December 2019 showing the active lava lake (figures 70 and 71).

Figure (see Caption) Figure 69. Thermal anomalies at Nyiragongo from 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 70. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed ongoing thermal activity (bright yellow-orange) at Nyiragongo during June through November 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 71. Photo of the active lava lake in the summit crater at Nyiragongo on 19 December 2019. Incandescence is accompanied by a gas-and-steam plume. Courtesy of OVG via Charles Balagizi.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Charles Balagizi (Twitter: @CharlesBalagizi, https://twitter.com/CharlesBalagizi).


Ebeko (Russia) — December 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Frequent moderate explosions, ash plumes, and ashfall continue through November 2019

Activity at Ebeko includes frequent explosions that have generated ash plumes reaching altitudes of 1.5-6 km over the last several years, with the higher altitudes occurring since mid-2018 (BGVN 43:03, 43:06, 43:12, 44:07). Ash frequently falls in Severo-Kurilsk (7 km ESE), which is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT). This activity continued during June through November 2019; the Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Explosive activity during December 2018 through November 2019 often sent ash plumes to altitudes between 2.2 to 4.5 km, or heights of 1.1 to 3.4 km above the crater (table 8). Eruptions since 1967 have originated from the northern crater of the summit area (figure 20). Webcams occasionally captured ash explosions, as seen on 27 July 2019(figure 21). KVERT often reported the presence of thermal anomalies; particularly on 23 September 2019, a Sentinel-2 thermal satellite image showed a strong thermal signature at the crater summit accompanied by an ash plume (figure 22). Ashfall is relatively frequent in Severo-Kurilsk (7 km ESE) and can drift in different direction based on the wind pattern, which can be seen in satellite imagery on 30 October 2019 deposited NE and SE from the crater(figure 23).

Table 8. Summary of activity at Ebeko, December 2018-November 2019. S-K is Severo-Kurilsk (7 km ESE of the volcano). TA is thermal anomaly in satellite images. Data courtesy of KVERT.

Date Plume Altitude (km) Plume Distance Plume Directions Other Observations
30 Nov-07 Dec 2018 3.6 -- E Explosions. Ashfall in S-K on 1, 4 Dec.
07-14 Dec 2018 3.5 -- E Explosions.
25 Jan-01 Feb 2019 2.3 -- -- Explosions. Ashfall in S-K on 27 Jan.
02-08 Feb 2019 2.3 -- -- Explosions. Ashfall in S-K on 4 Feb.
08-15 Feb 2019 2.5 -- -- Explosions. Ashfall in S-K on 11 Feb.
15-22 Feb 2019 3.6 -- -- Explosions.
22-26 Feb 2019 2.5 -- -- Explosions. Ashfall in S-K on 23-26 Feb.
01-02, 05 Mar 2019 -- -- -- Explosions. Ashfall in S-K on 1, 5 Mar.
08-10 Mar 2019 4 30 km ENE Explosions. Ashfall in S-K on 9-10 Mar.
15-19, 21 Mar 2019 4.5 -- -- Explosions. Ashfall in S-K on 15-16, 21 Mar.
22, 24-25, 27-28 Mar 2019 4.2 -- -- Explosions. Ashfall in S-K on 24-25, 27 Mar.
29-31 Mar, 01, 04 Apr 2019 3.2 -- -- Explosions. Ashfall in S-K on 31 Mar. TA on 31 Mar.
09 Apr 2019 2.2 -- -- Explosions.
12-15 Apr 2019 3.2 -- -- Explosions. TA on 13 Apr.
21-22, 24 Apr 2019 -- -- -- Explosions.
26 Apr-03 May 2019 3 -- -- Explosions.
04, 06-07 May 2019 3.5 -- -- Explosions. TA on 6 May.
12-13 May 2019 2.5 -- -- Explosions. TA 12-13 May.
16-20 May 2019 2.5 -- -- Explosions. TA on 16-17 May.
25-28 May 2019 3 -- -- Explosions. TA on 27-28 May.
03 Jun 2019 3 -- E Explosions.
12 Jun 2019 -- -- -- TA.
14-15 Jun 2019 2.5 -- NW, NE Explosions.
21-28 Jun 2019 -- -- -- TA on 23 June.
28 Jun-05 Jul 2019 4.5 -- Multiple Explosions. TA on 29 Jun, 1 Jul.
05-12 Jul 2019 3.5 -- S Explosions. TA on 11 Jul.
15-16 Jul 2019 2 -- S, SE Explosions. TA on 13-16, 18 Jul.
20-26 Jul 2019 4 -- Multiple Explosions. TA on 18, 20, 25 Jul
25-26, 29 Jul, 01 Aug 2019 2.5 -- Multiple Explosions.
02, 04 Aug 2019 3 -- SE Explosions. TA on 2, 4 Aug.
10-16 Aug 2019 3 -- SE Explosions. TA on 10, 12 Aug.
17-23 Aug 2019 3 -- SE Explosions. TA on 16 Aug.
23, 27-28 Aug 2019 3 -- E Explosions. TA on 23 Aug.
30-31 Aug, 03-05 Sep 2019 3 -- E, SE Explosions on 30 Aug, 3-5 Sep. TA on 30-31 Aug.
07-13 Sep 2019 3 -- S, SE, N Explosions. Ashfall in S-K on 6 Sep. TA on 8 Sep.
13-15, 18 Sep 2019 2.5 -- E Explosions. TA on 15 Sep.
22-23 Sep 2019 3 -- E, NE Explosions. Ashfall in S-K.
27 Sep-04 Oct 2019 4 -- SE, E, NE Explosions.
07-08, 10 Oct 2019 2.5 -- E, NE Explosions. Ashfall in S-K on 4-5 Oct. Weak TA on 8 Oct.
11-18 Oct 2019 4 -- NE Explosions. Ashfall in S-K on 15 Oct. Weak TA on 12 Oct.
18, 20-21, 23 Oct 2019 3 -- N, E, SE Explosions. Weak TA on 20 Oct.
25-26, 29-30 Oct 2019 2.5 -- E, NE Explosions. Weak TA on 29 Oct.
02-06 Nov 2019 3 -- N, E, SE Explosions.
11-12, 14 Nov 2019 3 -- E, NE Explosions.
15-17, 20 Nov 2019 3 -- SE, NE Explosions.
22-23, 28 Nov 2019 2.5 -- SE, E Explosions. Ashfall in S-K on 23 Nov.
Figure (see Caption) Figure 20. Satellite image showing the summit crater complex at Ebeko, July 2019. Monthly mosaic image for July 2019, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 21. Webcam photo of an explosion and ash plume at Ebeko on 27 July 2019. Videodata by IMGG FEB RAS and KB GS RAS (color adjusted and cropped); courtesy of Institute of Volcanology and Seismology FEB RAS, KVERT.
Figure (see Caption) Figure 22. Satellite images showing an ash explosion from Ebeko on 23 September 2019. Top image is in natural color (bands 4, 3, 2). Bottom image is using "Atmospheric Penetration" rendering (bands 12, 11, 8A) to show a thermal anomaly in the northern crater visible around the rising plume. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 23. A satellite image of Ebeko from Sentinel-2 (LC1 natural color, bands 4, 3, 2) on 30 October 2019 showing previous ashfall deposits on the snow going in multiple directions. Courtesy of Sentinel Hub Playground.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data detected four low-power thermal anomalies during the second half of July, and one each in the months of June, August, and October; no activity was recorded in September or November MODVOLC thermal alerts observed only one thermal anomaly between June through November 2019.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Nevado del Ruiz (Colombia) — December 2019 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Intermittent ash plumes with significant gas and steam emissions during January 2016-December 2017

Nevado del Ruiz is a glaciated volcano in Colombia (figure 86). It is known for the 13 November 1985 eruption that produced an ash plume and associated pyroclastic flows onto the glacier, triggering a lahar that approximately 25,000 people in the towns of Armero (46 km west) and Chinchiná (34 km east). Since 1985 activity has intermittently occurred at the Arenas crater. The eruption that began on 18 November 2014 included ash plumes dominantly dispersed to the NW of Arenas crater (BGVN 42:06). This bulletin summarizes activity during January 2016 through December 2017 and is based on reports by Servicio Geologico Colombiano and Observatorio Vulcanológico y Sismológico de Manizales, Washington Volcanic Ash Advisory Center (VAAC) notices, and satellite data.

Figure (see Caption) Figure 86. A satellite image of Nevado del Ruiz showing the location of the active Arenas crater. September 2019 Monthly Mosaic image copyright Planet Labs 2019.

Activity during 2016. Throughout January 2016 ash and steam plumes were observed reaching up to a few kilometers. Significant water vapor and volcanic gases, especially SO2, were detected throughout the month. Thermal anomalies were detected in the crater on the 27th and 31st. Significant water vapor and volcanic gas plumes, in particular SO2, were frequently detected by the SCAN DOAS (Differential Optical Absorption Spectroscopy) station and satellite data (figure 87). A M3.2 earthquake was felt in the area on 18 January. Similar activity continued through February with notable ash plumes up to 1 km, and a M3.6 earthquake was felt on the 6th. Ash and gas-and-steam plumes were reported throughout March with a maximum of 3.5 km on the 31st (figure 88). Significant water vapor and gas plumes continued from the Arenas crater throughout the month, and a thermal anomaly was noted on the 28th. An increase in seismicity was reported on the 29th.

Figure (see Caption) Figure 87. Examples of SO2 plumes from Nevado del Ruiz detected by the Aura/OMI instrument on 10, 26, and 31 January 2019. Courtesy of Goddard Space Flight Center.
Figure (see Caption) Figure 88. Ash plumes at Nevado del Ruiz during March. Webcam images courtesy of Servicio Geologico Colombiano, various 2016 reports.

The activity continued into April with a M 3.0 earthquake felt by nearby inhabitants on the 8th, an increase in seismicity reported in the week of 12-18, and another significant increase on the 28th with earthquakes felt around Manizales. Thermal anomalies were noted during 12-18 April with the largest on the 16th. Ash plumes continued through the month as well as significant steam-and-gas plumes. Ashfall was reported in Murillo on the 29th.

The elevated activity continued through May with significant steam plumes up to 1.7 km above the crater during the week of 10-16. Thermal anomalies were reported on the 11th and 12th. Steam, gas, and ash plumes reached 2.5 km above the crater and dispersed to the W and NW. Ashfall was reported in La Florida on the 20th (figure 89) and multiple ash plumes on the 22nd reached 2.5 km and resulted in the closure of the La Nubia airport in Manizales. Ash and gas-and-steam emission continued during June (figure 90).

Figure (see Caption) Figure 89. Ash plumes at Nevado del Ruiz on 17, 18, and 20 May 2016 with fine ash deposited on a car in La Florida, Manizales on the 20th. Webcams located in the NE Guali sector of the volcano, courtesy of Servicio Geologico Colombiano 20 May 2016 report.
Figure (see Caption) Figure 90. Examples of gas-and-steam and ash plumes at Nevado del Ruiz during June and July 2016. Courtesy of Servicio Geologico Colombiano (7 July 2016 report).

Similar activity was reported in July with gas-and-steam and ash plumes often dispersing to the NW and W. Ashfall was reported to the NW on 16 July (figure 91). Drumbeat seismicity was detected on 13, 15, 16, and 17 July, with two hours on the 16th being the longest duration episode do far. Drumbeat seismicity was noted by SGC as indicating dome growth. Significant water vapor and gas emissions continued through August. Ash plumes were reported through the month with plumes up to 1.3 km above the crater on 28 and 2.3 km on 29. Similar activity was reported through September as well as a thermal anomaly and ash deposition apparent in satellite data (figure 92). Drumbeat seismicity was noted again on the 17th.

Figure (see Caption) Figure 91. The location of ashfall resulting from an explosion at Nevado del Ruiz on 16 July 2016 and a sample of the ash under a microscope. The ash is composed of lithics, plagioclase and pyroxene crystals, and minor volcanic glass. Courtesy of Servicio Geologico Colombiano (16 July 2016 report).
Figure (see Caption) Figure 92. This Sentinel-2 thermal infrared satellite image shows elevated temperatures in the Nevado del Ruiz Arenas crater (yellow and orange) on 16 September 2016. Ash deposits are also visible to the NW of the crater. In this image blue is snow and ice. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

During the week of 4-10 October it was noted that activity consisting of regular ash plumes had been ongoing for 22 months. Ash plumes continued with reported plumes reaching 2.5 above the crater throughout October (figure 93), accompanied by significant steam and water vapor emissions. A M 4.4 earthquake was felt nearby on the 7th. Similar activity continued through November and December 2016 with plumes consisting of gas and steam, and sometimes ash reaching 2 km above the crater.

Figure (see Caption) Figure 93. An ash plume rising above Nevado del Ruiz on 27 October 2016. Courtesy of Servicio Geologico Colombiano.

Activity during 2017. Significant steam and gas emissions, especially SO2, continued into early 2017. Ash plumes detected through seismicity were confirmed in webcam images and through local reports; the plumes reached a maximum height of 2.5 km above the volcano on the 6th (figure 94). Drumbeat seismicity was recorded during 3-9, and on 22 January. Inflation was detected early in the month and several thermal anomalies were noted.

Intermittent deformation continued into February. Significant steam-and-gas emissions continued with intermittent ash plumes reaching 1.5-2 km above the volcano. Thermal anomalies were noted throughout the month and there was a significant increase in seismicity during 23-26 February.

Figure (see Caption) Figure 94. Ash plumes at Nevado del Ruiz on 6 January 2017. Courtesy of Servicio Geologico Colombiano.

Thermal anomalies continued to be detected through March. Ash plumes continued to be observed and recorded in seismicity and maximum heights of 2 km above the volcano were noted. Deflation continued after the intermittent inflation the previous month. On 10-11 April a period of short-duration and very low-energy drumbeat seismicity was recorded. Significant gas and steam emission continued through April with intermittent ash plumes reaching 1.5 km above the volcano. Thermal anomalies were detected early in the month.

Unrest continued through May with elevated seismicity, significant steam-and-gas emissions, and ash plumes reaching 1.7 km above the crater. Five episodes of drumbeat seismicity were recorded on 29 May and intermittent deformation continued. There were no available reports for June and July.

Variable seismicity was recorded during August and deflation was measured in the first week. Gas-and-steam plumes were observed rising to 850 m above the crater on the 3rd, and 450 m later in the month. A thermal anomaly was noted on the 14th. There were no available reports for September through December.

On 18 December 2017 the Washington VAAC issued an advisory for an ash plume to 6 km that was moving west and dispersing. The plume was described as a "thin veil of volcanic ash and gasses" that was seen in visible satellite imagery, NOAA/CIMSS, and supported by webcam imagery.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: Servicio Geologico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html); Observatorio Vulcanológico y Sismológico de Manizales (URL: https://www.facebook.com/ovsmanizales); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 36, Number 07 (July 2011)

Managing Editor: Richard Wunderman

Axial Seamount (Undersea Features)

April 2011 eruption follows deformation-based forecast issued in 2006

Ebeko (Russia)

Gas-and-steam plumes and ash plumes in 2009 and 2010

Kirishimayama (Japan)

February 2011 explosions launching ballistics; evacuations

Marapi (Indonesia)

Increased seismicity in 2004; small ash-bearing eruptions in 2011

Rabaul (Papua New Guinea)

Two small eruptions since one in July 2010

Ruapehu (New Zealand)

2009-2011: Earthquake triggered shift in lake height; lake heating cycle

Suwanosejima (Japan)

Many small explosions up to 2 km altitude during mid-2009 to mid-2011

Tofua (Tonga)

Evidence of ongoing intermittent eruption into 2011



Axial Seamount (Undersea Features) — July 2011 Citation iconCite this Report

Axial Seamount

Undersea Features

45.95°N, 130°W; summit elev. -1410 m

All times are local (unless otherwise noted)


April 2011 eruption follows deformation-based forecast issued in 2006

According to a press release from Oregon State University on 9 August 2011, a team of scientists recently discovered a recent eruption of Axial Seamount, an undersea volcano located about 400 km off the Oregon coast (figure 7). Both fresh lava that disturbed and covered in-situ instruments and a small earthquake swarm detected by ocean-bottom hydrophones and land-based seismometers helped fix the eruption date at around 6 April 2011. The scientists had forecast this eruption about 5 years ago-touted as the first successful forecast of an undersea volcano erupting.

Figure (see Caption) Figure 7. Map of Axial submarine caldera showing the 1998 lava flows (black outline), which omits the exact area of the April 2011 lava (which is not yet released publically). Dots indicate locations of bottom pressure recorders (BPR; white dots) and seafloor benchmarks for mobile pressure recorders (MPR; black dots), which were collected via a remotely operated vehicle. Inset shows location of Axial Seamount in relation to the Juan de Fuca Ridge off the Washington-Oregon coast. As discussed briefly in text, the white star indicates the location of the best fit (Mogi, 1958) inflation source for MPR measurements between 2000 and 2004 (Chadwick and others, 1999). From Chadwick and others, 2006.

The Mogi (1958) model predicts deformation due to a small spherical zone of expansion at depth, thus modeling magma intrusion. For ease of computation, the zone is assumed to be embedded in a homogeneous, isotropic, elastic half-space. The modeling technique is widely used to reconcile surface deformation at active volcanoes with plausible intrusions at depth. In this case it modeled the deformation of the ocean floor (figure 7, see caption).

Bill Chadwick (National Oceanic and Atmospheric Administration (NOAA) and Oregon State University (OSU)), and Scott Nooner (Lamont-Doherty Earth Observatory (LDEO)) have been monitoring Axial Seamount for more than a decade. In Chadwick and others (2006) they forecast that Axial would erupt before the year 2014. Their forecast was based on a series of seafloor pressure measurements that indicated the volcano was inflating.

Axial last erupted in 1998 (BGVN 23:01 and 23:02) and Chadwick, Nooner, and colleagues have monitored it ever since. They used precise bottom pressure sensors to measure vertical movements of the floor of the caldera. They discovered that the volcano was gradually inflating at the rate of 15 cm/yr, indicating that magma was rising and accumulating under the volcano summit.When Axial erupted in 1998, the floor of the caldera suddenly subsided or deflated 3.2 m as magma was removed from underground to erupt at the surface. The scientists estimated that the volcano would be ready to erupt again when re-inflation pushed the caldera floor back up to its 1998 level.

As noted in Chadwick and others (2006), "If inflation continues at the current rate of 19 cm/yr at the caldera center, it will take another 9 years (16 years total) for the caldera to fully re-inflate to its January 1998 level (or in about 2014). If one assumes that Axial (seamount) would then be poised to erupt again, such a recurrence interval (~ 16 years), although admittedly speculative, would not be unreasonable since it is also the time necessary to accumulate ~ 1 m of extensional strain (the mean thickness of dikes seen in ophiolites (Kidd, 1977) and tectonic windows (Karson, 2002)) at the Juan de Fuca Ridge's spreading rate of 6 cm/yr (Riddihough, 1984)."

Nooner was reported to state that "We now have evidence, however, that Axial Seamount behaves in a more predictable way than many other volcanoes-likely due to its robust magma supply coupled with its thin crust, and its location on a mid-ocean ridge spreading center. It is now the only volcano on the seafloor whose surface deformation has been continuously monitored throughout an entire eruption cycle."

The discovery of the new eruption came on 28 July 2011 when Chadwick and Nooner, along with University of Washington colleagues Dave Butterfield and Marvin Lilley, led an expedition to Axial aboard the RV Atlantis (operated by the Woods Hole Oceanographic Institution). Using Jason, a remotely operated robotic vehicle (ROV), they discovered a new lava flow on the seafloor that was not present a year ago (figure 8).

Figure (see Caption) Figure 8. (top) A spider crab inspects an ocean-bottom hydrophone mooring at Axial seamount before its 2011 eruption. The hydrophone, in the white pressure case, is designed to detect undersea earthquakes. The chain extending above the pedestal for the hydrophone appears in the photo below. Photo taken 31 August 2003, courtesy of Bill Chadwick and Bob Dziak, Oregon State University (9 August 2011). (bottom) On 28 July 2011, the chain is all that is visible of this ocean-bottom hydrophone buried in about 1.8 m of new lava from an April 2011 eruption of Axial Seamount. Photo courtesy of Bill Chadwick and Bob Dziak, Oregon State University (9 August 2011).

Chadwick commented that "When we first arrived on the seafloor, we thought we were in the wrong place because it looked so completely different. We couldn't find our markers or monitoring instruments or other distinctive features on the bottom. When eruptions like this occur, a huge amount of heat comes out of the seafloor, the chemistry of seafloor hot springs is changed, and pre-existing vent biological communities are destroyed and new ones form. Some species are only found right after eruptions, so it is a unique opportunity to study them."

The first Jason ROV dive of the July 2011 expedition targeted a field of black smokers (dark, mineral laden hot springs) on the caldera's W side, an area beyond the reach of the new lava flows. Butterfield had been tracking the chemistry and microbiology of hot springs around the caldera since the 1998 eruption.

He noted that "The hot springs on the W side did not appear to be significantly disturbed, but the seawater within the caldera was much murkier than usual, and that meant something unusual was happening. When we saw the 'Snowblower' vents blasting out huge volumes of white floc and cloudy water on the next ROV dive, it was clear that the after-effects of the eruption were still going strong. This increased output seems to be associated with cooling of the lava flows and may last for a few months or up to a year."

The crew recovered seafloor instruments, including two bottom-pressure recorders and two ocean-bottom hydrophones, which showed that the eruption took place on 6 April 2011.

A third hydrophone was found buried in the new lava flows. According to Chadwick, "So far, it is hard to tell the full scope of the eruption because we discovered it near the end of the expedition. But it looks like it might be at least three times bigger than the 1998 eruption." The lava flow from the 6 April 2011 eruption was at least 2 km wide, the scientists noted.

The bottom-anchored instruments documented hundreds of tiny earthquakes during the volcanic eruption, but land-based seismic monitors and the Sound Surveillance System (SOSUS) hydrophone array operated by the U.S. Navy only detected a handful of them on the day of the eruption because many components of the hydrophone system were offline.

"Because the earthquakes detected back in April at a distance from the volcano were so few and relatively small, we did not believe there was an eruption," said Bob Dziak, an OSU marine geologist who monitors the SOSUS array. "That is why discovering the eruption at sea last week was such a surprise."

This latest Axial eruption caused the caldera floor to subside by more than 2 m. The scientists will be measuring the rate of magma inflation over the next few years to see if they can successfully forecast the next event.

References. Chadwick, W.W., Jr., Embley, R.W., Milburn, H.B., Meinig, C., and Stapp, M., 1999, Evidence for deformation associated with the 1998 eruption of Axial Volcano, Juan de Fuca Ridge, from acoustic extensometer measurements, Geophysical Research Letters, v. 26, no. 23, pp. 3441-3444 (doi:10.1029/1999GL900498).

Chadwick, W.W., Jr., Nooner, S.L., Zumberge, M.A., Embley, R.W., and Fox, C.G., 2006, Vertical deformation monitoring at Axial Seamount since its 1998 eruption using deep-sea pressure sensors, Journal of Volcanology and Geothermal Research, v. 150, issue 1-3, p. 313-327 (doi:10.1016/j.jvolgeores.2005.07.006).

Karson, J.A., 2002, Geologic structure of the uppermost oceanic crust created at fast- to intermediate-rate spreading centers, Annual Review of Earth and Planetary Science, v. 30, p. 347-384.

Kidd, R.G.W., 1977, A model for the process of formation of the upper oceanic crust, Geophysical Journal of the Royal Astronomical Society, v. 50, issue 1, p. 149-183.

Mogi, K., 1958, Relations between the eruptions of various volcanoes and the deformation of the ground surfaces around them. Bulletin of the Earthquake Research Institute, University of Tokyo, v. 36, p. 99-134.

Riddihough, R., 1984, Recent movements of the Juan de Fuca plate system, Journal of Geophysical Research, v. 89, p. 6980-6994.

Geologic Background. Axial Seamount rises 700 m above the mean level of the central Juan de Fuca Ridge crest about 480 km W of Cannon Beach, Oregon, to within about 1400 m of the sea surface. It is the most magmatically robust and seismically active site on the Juan de Fuca Ridge between the Blanco Fracture Zone and the Cobb offset. The summit is marked by an unusual rectangular-shaped caldera (3 x 8 km) that lies between two rift zones and is estimated to have formed about 31,000 years ago. The caldera is breached to the SE and is defined on three sides by boundary faults of up to 150 m relief. Hydrothermal vents with biological communities are located near the caldera fault and along the rift zones. Hydrothermal venting was discovered north of the caldera in 1983. Detailed mapping and sampling efforts have identified more than 50 lava flows emplaced since about 410 CE (Clague et al., 2013). Eruptions producing fissure-fed lava flows that buried previously installed seafloor instrumentation were detected seismically and geodetically in 1998 and 2011, and confirmed shortly after each eruption during submersible dives.

Information Contacts: Oregon State University, News and Research Communications, Corvalis, OR (URL: http://oregonstate.edu/ua/ncs/); Bill Chadwick and Bob Dziak, National Oceanic and Atmospheric Administration (NOAA) and Oregon State University (OSU); Scott Nooner.


Ebeko (Russia) — July 2011 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Gas-and-steam plumes and ash plumes in 2009 and 2010

Our most recent report on Ebeko (BGVN 34:08) described intermittent activity from mid-2005 to mid-2009, primarily plumes that sometimes deposited minor ash. Ebeko lacks a dedicated seismometer; therefore, the Kamchatkan Volcanic Eruption Response Team (KVERT) generally monitors the volcano with visual and satellite observations (figure 4). Intermittent plumes continued in 2009-2010.

Figure (see Caption) Figure 4. Topographic map of Paramushir Island (Ebeko volcano sits at the extreme NE end and town of Severo-Kurilsk is nearby). From National Oceanic and Atmospheric Administration Tactical Pilotage Chart ONC-E10C, as provided by McGimsey and others (2005).

Activity during October 2009. Based on analyses of satellite imagery, the Tokyo VAAC reported two possible eruption plumes from Ebeko in October 2009. The first plume, reported on 15 October 2009, rose to an altitude of 10.7 km and drifted NE. The second plume, on 26 October, rose to an altitude of 8.8 km and drifted E.

KVERT reported that on 26 October a gas-and-steam plume was seen by observers in Severo-Kurilsk (figure 4), a town about 7 km E of Ebeko. The plume rose about 300 m above the crater and drifted 1-2 km NNE. Gas-and-steam plumes rose 250 m above the crater and drifted 2 km E on 28 October and NNE on 29 October 2009.

Activity during June-July 2010. KVERT reported that activity increased on 2 July according to observers in Severo-Kurilsk (figure 5). Explosions produced ash plumes that rose to an altitude of 1.8 km and drifted SSE. The Aviation Color Code was raised to Yellow. On 23 July, KVERT reported that the Aviation Color Code was lowered to Green. Visual observations and satellite data indicated no activity from the volcano during 16-23 July.

Figure (see Caption) Figure 5. Photograph of an ash explosion from Ebeko on 2 July 2010 taken from the town of Severo-Kurilsk. Photo taken by Leonid Kotenko.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Tokyo Volcanic Ash Advisory Center (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/).


Kirishimayama (Japan) — July 2011 Citation iconCite this Report

Kirishimayama

Japan

31.934°N, 130.862°E; summit elev. 1700 m

All times are local (unless otherwise noted)


February 2011 explosions launching ballistics; evacuations

Our last issue (BGVN 35:12) discussed the explosive eruptions and dome growth from early 2011 (19 January to about 4 February) from the summit crater of Kirishima's Shinmoe-dake. Vulcanian and Subplinian eruptions released enough ash to delay air traffic and prompt evacuations.

Regular ash plumes were observed above the volcano by pilots and with satellite imagery from January 2011 through March 2011 (table 2). More than 140 advisories were issued by the Tokyo Volcanic Ash Advisory Center (VAAC) since the eruption began in January, although only 14 were issued between April and July. Relying primarily on JMA data, this report presents a review of the monthly highlights, followed by a section with tilt, geodetic, and multi-year seismic data.

Table 2. Kirishima ash plumes reported from 22 January through 29 June 2011 based on JMA and VAAC reports with plume heights and drift directions. No plumes were reported for May or July.

Date Altitude (km) Drift
22 Jan 2011 1.8-2.1 SE
26-27 Jan 2011 1.8-2.1 SE
31 Jan 2011 2.1 SE
02-08 Feb 2011 1.5-4.6 SE
03 Feb 2011 9.1 NE
09-11 Feb 2011 1.8-4.0 E, SE
11, 14 Feb 2011 4.6-6.1 --
18 Feb 2011 4.6 S
24, 28 Feb 2011 1.8-2.1 N, E, and SE
01, 03 Mar 2011 3.7 NE
03, 04, 08 Mar 2011 1.5-3.0 SE
13 Mar 2011 5.5-6.1 E
23 Mar 2011 2.4 SE
29 Mar 2011 2.1 SE
03, 04 Apr 2011 4.6-6.1 E
18 Apr 2011 3.7 SE
23 Jun 2011 1.8 E
29 Jun 2011 1.8-2.4 N

Peak of Kirishima's 2011 activity. The most dramatic events of the reporting interval took place on 1 and 14 February 2011. JMA field surveyors and local communities reported ballistics from Shinmoe-dake impacted areas up to 3.2 km SW from the crater; these volcanic bombs were from the 1 February eruption. Car windows, solar panels, and roofs were damaged from a shockwave and rock fragments that ranged from lapilli to bombs (up to 0.7 m) (figure 15).

Figure (see Caption) Figure 15. JMA investigated several sites within 5 km of Kirishima's Shinmoe-dake, where damage from volcanic bombs was reported. The location map shows political boundaries (gray and green) and investigation sites (red squares). At Site 1, investigators found ballistics larger than 0.3 m; at Site 2, ballistics larger than 0.4 m; at Site 3, broken car windows; and at Site 4, damaged roofs. A map showing the volcano's location off the Korean Peninsula and the main islands of Japan appeared in BGVN 33:09. Courtesy of JMA.

The largest explosion, at 0754 on 1 February 2011, launched large blocks and juvenile material that impacted the forest to distances of 3.2 km from the crater. Kyushu University recorded oscillations from the impacts of some of these bombs. Investigators from the Earthquake Research Institute of the University of Tokyo visited an impact crater that was surrounded by broken trees; bomb fragments could be found more than 50 m from the crater. Charred wood was found beneath some of the bombs indicating that the material was still hot when it impacted the ground (personal communication, John Lyons, Michigan Technological University).

On 14 February, roofs were damaged when volcanic bombs traveled up to 16 km NE; JMA reported that strong winds that day contributed to these long dispersal distances. According to local news reports, bombs struck and damaged cars parked in the service area of Miyazaki Expressway and they shattered windows in Kobayashi, 13 km NE.

News reports relayed recommendations from civil authorities to evacuate 72,500 people from near Shinmoe-dake due to lahar hazards. Heavy rain had been falling since the previous day and in preparation for expected debris flows, authorities opened primary schools and community centers to shelter residents. At the time of the advisory, 63 people has already evacuated from Miyakonojo, 30 km SE of the crater region.

According to the JMA monthly report, incandescence was visible at night from 26 January to 10 February and also on 28 February. SO2 flux was 11,000-12,000 tons/day during January and averaged 600 tons/day on 25 February. There were 2,037 and 2,506 seismic events in January and February respectively. Tremor was continuous from 26 January to 7 February (a decrease occurred on 29 January). After 7 February, tremor was intermittent.

Activity during March 2011. On 1 March, ashfall was reported E of Shinmoe-dake and a shockwave was felt 3 km from the crater. Ash was deposited to the SW on 3 March and on 13 March ash was reported 60 km E over the Sea of Hyuga. As the intensity of ejections tapered off on 22 March, the restricted zone was reduced from 4 km to 3 km.

According to the monthly JMA report, a sensitive camera recorded night time glow from 1-14 March. SO2 flux averaged 1,300 tons/day on 2 March; however, on 8 March and six subsequent sampling days, the average was 200-500 tons/day. A total of 2,262 seismic events were recorded this month; continuous tremor was recorded from 28 February to 4 March.

Activity during April 2011. Ballistics on 3 April impacted areas as far as 600 m from the crater and ash traveled E to the Hyuga Sea. Ash from 9 April extended ENE and reached a town 60 km from the crater. Ballistics on 18 April impacted the local region as far as 1 km W and N; ash was reported 60 km E, and lapilli reached 9 km from the crater, damaging solar heaters and roof panels in the town of Takaharu.

According to JMA, the average SO2 flux on 2 and 21 April was 100-200 tons/day. A total of 3,840 seismic events were documented in the April report with hypocenters ~ 2 km below the crater; total tremor duration was 42 hours and 13 minutes.

Activity during May 2011. On 13 May, the average SO2 flux was measured at 200 tons/day according to JMA. Seismic stations detected 1,784 events with hypocenters between 0-2 km above sea level near Shinmoe-dake. Total duration of tremor was 1 hour 9 minutes.

Activity during June 2011. On 29 June, ash from an explosion was distributed N and reached the town of Itsuki ~ 50 km N from the crater. Ash from a 16 June eruption reached Takaharu and the city of Kobayashi, 15 km E of the crater. On the 23 June a smaller amount of ash was also observed in Kobayashi. No lapilli or ballistics were associated with these events. According to JMA, rainy weather (common in Japan during early summer) hampered direct observations of the crater. No gas or thermal data was collected. Seismic reports for June documented 4,096 events with hypocenters 0-2 km above sea level and the duration of tremor was 43 hours and 41 minutes.

Activity during July 2011. According to news reports, on 6 July advisories were issued throughout SE Kyushu for torrential rain hazards. Poor weather reduced direct observations of crater activity. JMA reported 3,764 seismic events during this period with 41 minutes of tremor. Earthquake hypocenters were in the same range as past months (0-2 km).

Tilt and geodetic data. Figure 16 plots multiple kinds of data collected during February-July 2011. During the reporting interval, tilt measurements typically indicated inflation on the flanks of Shinmoe-dake hours-to-several-days before explosive events occurred. Conversely, they recorded subsidence immediately after some eruptions. There were also cases of eruptions and explosive events not correlating with tilt. JMA interpreted tilt data as related to the intermittent ascent of magma moving from the chamber to the crater. GPS measurements since February 2011 by the Geospatial Information Authority of Japan suggested a deep magma supply centered several kilometers NW of Shinmoe-dake.

Figure (see Caption) Figure 16. Data describing Kirishima for February-July 2011. Plotted together are earthquake counts (per day), rainfall (mm), tilt, eruptions, and ash plumes. Key: tremor "x", explosive eruptions (red triangles), ash plumes (gray triangles), and tilt records showing N-S (red) and E-W (blue). Earthquake counts and rainfall are presented in the black histograms. Lower panels show possible correlation between earthquakes and rainfall that started around 4-6 July 2011. Courtesy of JMA.

Multi-year seismic data. In the July report, JMA released continuous seismic data for Kirishima during June 2004 through July 2011. Epicenters were located for numerous earthquakes and appeared to concentrate within 2 km of the crater with depths less than 6 km (figure 17).

Figure (see Caption) Figure 17. Epicenters at Kirishima's Shinmoe-dake as reported by JMA for the interval January 2004 to July 2011. Locations and depths are displayed in cross-sections, including, at right, two plots of earthquakes as a time series, tracking location with time (the lower two rectangles consist of, at left, a conventional E-W cross section, and, at right, the same data in the form of a time series). Note key for shading of data points. Courtesy of JMA.

During the explosive activity beginning in January 2011, more than 1,000 high frequency earthquakes occurred each month. High frequency (HF) earthquakes are defined as signals greater than 5 Hz (Ishihara and others, 2005). The total number of earthquakes increased and appeared to peak in June with 4,096 high-frequency earthquakes.

Visible and thermal aerial observations. Rapid growth of a lava dome within the Shinmoe-dake crater began on 28 January and was closely monitored by aerial observations. Over the course of 3 days, the dome reached a volume of more than 107 m3 and sustained a diameter of ~ 600 m (BGVN 35:12). Collaboration between the Japan Ground and Air Self-Defense Force (JGSDF-JASDF) provided numerous thermal images as recent as 31 May. During four separate flights in May, white plumes were observed from the SE parts of the dome margin. These plumes reached 50-100 m above the crater rim. Infrared imagery taken during JGSDF-JASDF flights showed no major change since February regarding the heat distribution across the dome and within the crater region. The highest temperatures measured during these flights corresponded to the plume area and the size of the dome had not changed since emplacement.

The Tokyo VAAC reported that on 23 and 29 June, eruptions from Shinmoe-dake produced plumes that rose to an altitude of 1.8 km and 1.8-2.4 km respectively, the first drifted E and the second drifted N. The VAAC reported another eruption on 6 August.

Reference. Ishihara, K., Tameguri, T., Igushi, M., 2005, Automated Classification of Volcanic Earthquakes and Tremors-Outline of the system and preliminary experiment, Annuals of Disaster Prevention Research Institute, Kyoto University, No. 48C.

Geologic Background. Kirishimayama is a large group of more than 20 Quaternary volcanoes located north of Kagoshima Bay. The late-Pleistocene to Holocene dominantly andesitic group consists of stratovolcanoes, pyroclastic cones, maars, and underlying shield volcanoes located over an area of 20 x 30 km. The larger stratovolcanoes are scattered throughout the field, with the centrally located Karakunidake being the highest. Onamiike and Miike, the two largest maars, are located SW of Karakunidake and at its far eastern end, respectively. Holocene eruptions have been concentrated along an E-W line of vents from Miike to Ohachi, and at Shinmoedake to the NE. Frequent small-to-moderate explosive eruptions have been recorded since the 8th century.

Information Contacts: Volcano Research Center, Earthquake Research Institute (VRC-ERI), University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/topics/ASAMA2004/index-e.html); Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/); Tokyo Volcanic Ash Advisory Center (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Yukio Hayakawa, Gunma University, Faculty of Education, Aramaki 4-2, Maebashi 371-8510, Japan; John Lyons, Michigan Technological University, Dept. of Geological and Mining Engineering and Sciences, 1400 Townsend Drive, Houghton MI, 49931, USA (URL: http://www.geo.mtu.edu/~jlyons/); News On Japan (URL: http://www.newsonjapan.com/); Japan Today (URL: http://www.japantoday.com/); Daily Mail (URL: http://www.dailymail.co.uk/).


Marapi (Indonesia) — July 2011 Citation iconCite this Report

Marapi

Indonesia

0.38°S, 100.474°E; summit elev. 2885 m

All times are local (unless otherwise noted)


Increased seismicity in 2004; small ash-bearing eruptions in 2011

This report first describes a 2005 increase in seismicity at Marapi, then presents a 2010 field map of Marapi's active crater area, and notes several plumes seen in 2011 to 1 km above the vent, some bearing ash. As previously noted, Marapi had generated explosions in 2000 and 2001, and a small ash-bearing eruption in 2004 (BGVN 25:11, 27:01, and 30:01).

Activity during 2005. During the week 8-14 July 2005, the number of earthquakes at Marapi increased dramatically. The seismic network recorded 112 deep volcanic earthquakes, compared to a normal average of 7 per week. Other changes were absent at the volcano, for example, fumarole temperatures were normal and gas emissions typically rose ~ 50 m above the summit. As a result of the increased seismicity, the Center of Volcanology and Geological Hazard Mitigation (CVGHM) raised the Alert Level from 1 to 2 (on a scale of 1-4).

Activity during 2010. During a 4-day visit to Marapi in July 2010, volcanologist Mary-Ann del Marmol created a sketch map of the area (figure 3). More detailed mapping and rock observations of the old crater side of the volcano were thwarted by dense vegetation there.

Figure (see Caption) Figure 3. A sketch map of Marapi's active crater and vicinity prepared in the course of fieldwork during July 2010. The labels "S.A. Bonjol" and "S.A. Sabu" identify drainages. Courtesy of Mary-Ann del Marmol (University of Ghent, Belgium).

Activity during 2011. According to CVGHM, seismicity increased during 21 June-3 August 2011. Observers noted that during June, July, and the first day of August white plumes rose 15-75 m above the summit craters. On 3 August dense gray plumes rose 300-1,000 m above the crater on eight occasions. That same day CVGHM raised the Alert Level again to 2. Visitors and residents were prohibited from going within a 3 km radius of the summit.

According to a news article, two eruptions from Marapi occurred on 9 August 2011.

Geologic Background. Gunung Marapi, not to be confused with the better-known Merapi volcano on Java, is Sumatra's most active volcano. This massive complex stratovolcano rises 2,000 m above the Bukittinggi Plain in the Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera. The summit craters are located along an ENE-WSW line, with volcanism migrating to the west. More than 50 eruptions, typically consisting of small-to-moderate explosive activity, have been recorded since the end of the 18th century; no lava flows outside the summit craters have been reported in historical time.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://vsi.esdm.go.id/); Mary-Ann del Marmol, Geology and Soil Science Department, University of Ghent, Krijgslaan, 281 S8/A.326, B-9000 Gent, Belgium (URL: http://www.volcanology.ugent.be/delmarmol.htm); Metro TV News (URL: http://www.metrotvnews.com/).


Rabaul (Papua New Guinea) — July 2011 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Two small eruptions since one in July 2010

A significant volume of ash from the Tavurvur cone of Rabaul volcano fell in the surrounding region during an eruption on 23-24 July 2010 (BGVN 35:09). Moderate SE winds and moving vehicles raised dust and presented difficult conditions for residents. Similar conditions were reported by the Rabaul Volcano Observatory (RVO, a facility that sits 6.75 km NW of Tavurvur) through the rest of 2010 and early into 2011. This report discusses behavior as late as mid-2011. This report also draws attention to a comprehensive overview of the Rabaul volcano by Johnson and others (2010), the result of the Rabaul Volcano Workshop held in the town of Rabaul (about 6 km NW of Tavurvur), Papua New Guinea during 17-18 November 2009. Several of the maps and figures from that report appear below.

RVO reported that post-eruption processing of Global Positioning System (GPS) data showed slight deflation after the eruption of 23-25 July 2010. Sulfur dioxide (SO2) gas measurements on 28 July were low. RVO opined that the lack of seismicity suggested Tavurvur would remain quiet; however, changes in the status of the volcano can happen very rapidly as was the case on 23 July. For the period from 26 July to 12 August 2010 no ash emissions occurred from Tavurvur cone. Only very small volumes of white vapor were released. No audible noises were reported and no incandescence was observed. In addition, seismicity was very low.

GPS measurements on Matupit Island continued to show inflation; long-term information indicated further increase in the rate of uplift from mid-February 2011 onwards.

RVO had noted a swarm of high frequency volcano-tectonic earthquakes on 28 February 2011 in the caldera's NE sector. This swarm followed the occurrence of both small, discrete, high-frequency earthquakes and an emergence of low-frequency earthquakes. Previous observations during the past 16 years suggest strong connections between such NE-sector earthquakes and either renewed eruption or increased activity from Tavurvur. However, in this case RVO did not report increased activity following the 28 February seismic swarm.

RVO reported that Tavurvur remained quiet throughout the month of March 2011. Activity consisted mainly of very small volumes of thin white vapor, which became denser during rain and cool conditions. No audible noises were heard and no glow was observed at night. That said, based on analyses of satellite imagery, the Darwin VAAC reported that on 29 March an ash plume rose to an altitude of 3 km and drifted over 53 km NW.

During an on-site inspection in March 2011 steady dull glow was observed in three small vents on the floor of the crater, indicating the presence of magma near the surface. Incandescence on the crater floor was still present when the volcano was observed during another on-site inspection in April 2011, however the vent opening had become enlarged due to collapse of material surrounding the earlier vents.

During April and most of July 2011, RVO reported variable amounts of white vapor emissions, occasionally tinted blue, and no audible noises. About twelve earthquakes were recorded in July; the most notable events occurred on 12, 15, 19, 20, and 27 July. A new eruption characterized by emergent low-frequency tremors and slowly rising gray ash plumes occurred on 29 July 2011 at 1332. A single explosion occurred on 30 July at 0106 which probably produced light ashfall to the NW. The explosion produced a short explosion noise. A brief period of harmonic volcanic tremors was recorded between 0740 and 0758 hours on 1 August 2011, presumably caused by forceful vent degassing. There was no short-term anomalous seismicity prior to the start of the eruption.

GPS measurements on Matupit Island continued to show long-term inflation; about 10-11 cm of uplift was recorded since August 2010. There was a slight drop in the rate of the uplift in early-to mid-July 2011. The drop did not affect the long-term trend of uplift significantly.

RVO reported that white vapor plumes rose from the Tavurvur cone during 1-3 August 2011. An explosion on 3 August produced a gray ash plume that rose 1 km above the crater and drifted NNW. Sustained emissions of pale-gray ash continued for about an hour afterwards. In addition, ash deposited at the former airport was re-suspended and blown NW into the E part of Rabaul town (3-5 km NW) and towards Namanula hill (3 km W). Seismicity was very low, although two periods of harmonic tremor on 2 August and the explosion and ash emissions on 3 August were detected.

During 4-5 August 2011 gray ash emissions periodically continued, punctuated by a few large and notable explosions. Ash plumes from the explosions rose 1 km above the crater and drifted N and NW producing fine ashfall in the E part of Rabaul town, Namanula Hill, and further downwind towards Tavui Point. Moderate seismicity consisting of low-frequency earthquakes, explosions, and volcanic tremors with variable durations was detected. During 5-9 August activity increased, characterized by an increased frequency and duration of ash emissions and more explosions. About 34 explosions were recorded between 5 and 8 August. Ash-rich clouds that rose 1.5 km above the crater drifted NW, causing ashfall in most parts of Rabaul town and in areas between Toliap and Nonga (10 km NW).

With the resumption of ash emissions, the trend of uplift during the past year, discrete volcano-tectonic earthquakes detected during the past two months, and the magnitude of the earthquake swarm that occurred in the caldera's NE sector in late February 2011, RVO warned that possible sporadic ashfall may occur in the future.

Report of the 2009 Rabaul workshop. The Rabaul Volcano Workshop of 2009 was held to review, synthesize, and assess geoscientific information on the volcanoes of the NE Gazelle Peninsula and identify needed instrumental monitoring and scientific research directions. Several figures from the workshop report (Johnson and others, 2010) give current ideas about Rabaul and vicinity. This includes an array of volcanoes at the N end of the Gazelle Volcanic Zone (figure 51), New Britain volcanism (figure 52), the Nengmutka-to-Tavui volcanic centers (figure 53), and the spatial distribution of earthquakes (figure 54). In addition, two kinds of cross-sectional models of Rabaul are included (figures 55 and 56).

Figure (see Caption) Figure 51. Map of the N end of the Gazelle volcanic zone with the location of the Rabaul caldera and the active cones of Tavurvur and Vulcan. Shown schematically are (1) the nested calderas of Rabaul volcano (called the Blanche Bay Caldera Complex), (2) volcanoes of the Watom-to-Turagunan Zone (WTZ), and (3) Tavui caldera (50 m isobaths in the ocean). From Johnson and others (2010-their figure 13, page 17).
Figure (see Caption) Figure 52. Volcanic centers and faults of New Britain. Dashed line represents the S extension of the Gazelle volcanic front to the Wide Bay fault. Based on the geological map compiled by D'Addario and others (1976). From Johnson and others (2010-their figure 19, page 27).
Figure (see Caption) Figure 53. Collapse structures comprising the Nengmutka-to-Tavui volcanic centers in the Gazelle volcanic zone. From Johnson and others (2010-their figure 10, page 12).
Figure (see Caption) Figure 54. Relocated hypocenters for Rabaul from a study conducted during August 1997 to January 1998, a map in a horizontal view and two cross-sections, one N-S (right) and one W-E (bottom). Hypocenters form an elongate ring-fault pattern; the cross-sections suggest that the ring faults are straight sided in the N-looking (lower) figure and more complex in the W-looking figure (at right). From Johnson and others (2010-their figure 32A, page 44).
Figure (see Caption) Figure 55. An interpretive cross-section depicting magma trelationships for Rabaul (location of the roughly N-S line shown in the next figure). The model given involves mixing between mafic magma, which is being injected (inclined arrow) from the Rabuana LVA (seismic low-velocity anomaly) into the dacite magma of the Harbour LVA. Gradational boundaries signify crystal/melt mushes of old magma and the absence of precise boundaries for the two magma reservoirs. Vulcan and Tavurvur cones are projected onto the plane of the cross section. The exact position of the magma-feeder zone beneath the Rabuana LVA is unknown and is here drawn rather arbitrarily just to the NE of the WTZ itself. From Johnson and others (2010-their figure 47, page 68).
Figure (see Caption) Figure 56. A Rabaul map based on seismic profiling. The map shows P-wave velocity perturbation for a 5-km-deep, horizontal slice. It shows the so-called Harbor LVA (seismic low-velocity anomaly) and the Rabuana LVA. Rabalanakaia (a cone of Rabaul volcano) lies between the two anomalies, and the Harbour LVA lies between Tavurvur and Vulcan cones. The WTZ (Watom-to-Turagunan Zone-see figure 51) and North East Earthquakes (NEEq) fault zone intersect near Rabalanakaia. The line labeled N-S signifies the cross-section in the previous figure. From Johnson and others (2010-their figure 36, page 49).

According to the workshop report, over the last 15 years Tavurvur has been erupting with a Volcanic Explosivity Index (VEI) of 3 to 4. The Rabaul caldera has produced a variety of products due to magma mixing.

The report noted that Tavurvur's eruption style differs from the other volcanoes in the caldera. It has two different styles of eruptions: phreatomagmatic and Vulcanian-Strombolian. Tavurvur's eruptions last significantly longer. These facts, in addition to Tavurvur's emission of sulfur dioxide (SO2), lead to the conclusion that Tavurvur is part of an active geothermal system. This geothermal system overlies a magma chamber that is in contact with basalt (leading to magma mixing). That magmatic system is actively degassing.

References. D'Addario, G.W., Dow, D.B., and Swoboda, R., 1976, Geology of Papua New Guinea, Bureau of Mineral Resources, Canberra, Australia.

Johnson, R.W., Itikarai, I., Patia, H., and McKee, C.O., 2010. Volcanic systems of the Northeastern Gazalle Peninsula, Papua New Guinea: Synopsis, evaluation, and a model for Rabaul volcano; Rabaul Volcano Workshop Report, Papua New Guinea Dept.of Mineral Policy and Geohazards Management and the Australian Agency for International Development, 84 p. [Copies available from Wally Johnson (wallyjohnson _at_ grapevine.com.au), and Rabaul Volcano Observatory, P.O. Box 3386, Kokopo, East New Britain Province, Papua New Guinea].

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: R.W. Johnson, Rabaul Volcanological Observatory Twinning Program, Visiting Fellow, College of Asia and the Pacific, Australian National University, Canberra, Australia; Darwin Volcanic Ash Advisory Centre (VAAC) (URL: http://www.bom.gov.au/info/vaac/); Rabaul Volcano Observatory, Department of Mineral Policy and Geohazards Management, Volcanological Observatory Geohazards Management Division, P.O. Box 3386, Kokopo, East New Britain Province, Papua New Guinea.


Ruapehu (New Zealand) — July 2011 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


2009-2011: Earthquake triggered shift in lake height; lake heating cycle

A hydrothermal explosion occurred at Ruapehu on 25 September 2007 (BGVN 32:10 and 32:11).

New Zealand's GeoNet, a combination of the country's Earthquake Commission and GNS Science, reported that at 1830 on 13 July 2009, there was a small (M 2) volcanic earthquake beneath Ruapehu's crater lake. As a result of a new research project measuring the temperature and level of the lake, instruments documented a sudden 15-cm jump in lake level following the earthquake. The lake temperature remained unchanged at 20°C.

The lake was examined from a helicopter on 14 July 2009. Viewing conditions were very poor, but no obvious changes had occurred since the last visit on 2 July 2009. No eruption had occurred and the lake was overflowing. The preliminary interpretation was that the volcanic earthquake was followed by about 20 x 106 liters of extra water moving into the lake from the hydrothermal system beneath it.

A much larger rise in lake level had followed a very small eruption in October 2006, so lake-height adjustments were not unknown at Ruapehu. However, this was the first time that scientists had been able to correlate such a small rise with a single volcanic earthquake. The Volcanic Alert Level remained at Level 1 (a designation signifying a departure from typical background surface activity and signs of unrest).

2010-2011 heating cycle. In October 2010, GeoNet reported that the lake had began a heating cycle, the eighth since the lake was re-established in 2002 after the 1995-1996 eruptions (BGVN 20:09 and 20:10). Later, on 7 March 2011, GeoNet reported the lake temperature at 40°C, the third highest temperature recorded since the re-establishment of the lake (table 14).

Table 14. Summary of reported temperatures in Ruapehu's Crater Lake. Courtesy of GeoNet.

Date Crater Lake Temperature Comments
May 2003 42.5°C Highest temperature since re-establishment of lake in 2002
13 Jul 2009 20°C Low temperature
Oct 2010 -- Onset of 2010-2011 heating cycle
07 Mar 2011 40-41°C High temperatures
05 Apr 2011 38-39°C Slightly decreased (but still high) temperatures around this time
18 Apr 2011 33-34°C Decreased temperatures
02 May 2011 30°C Further drop in temperature

Other monitored indicators had shown variable trends in parts of March 2011. Those indicators included gas output, seismicity, lake chemistry, and ground deformation. Such variable trends were like those previously seen during Ruapehu's lake heating cycles.

GeoNet reported on 5 April 2011 that Ruapehu had undergone a sustained period of high Crater Lake water temperatures. In recent weeks changes also occurred in volcanic gas output, seismic activity and lake water chemistry. These changes suggested unrest above known background levels, hence authorities elevated the Aviation Color Code to Yellow but kept the Volcanic Alert Level at 1.

After 4 April there was a general decrease in activity, with lower CO2 gas flux, less seismicity, little change in lake-water chemistry, and cessation of lake overflow accompanying the start of the cooling trend. On 18 April 2011 GeoNet reported decreased lake temperature; other monitored indicators in recent weeks also suggest a slow decrease of activity.

On 2 May 2011 authorities lowered the Aviation Color Code to Green, the lowest hazard status. This followed a continued decrease in lake-water temperature and several weeks of slow decreases in other available indicators.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The 110 km3 dominantly andesitic volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the Murimoto debris-avalanche deposit on the NW flank. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. A single historically active vent, Crater Lake, is located in the broad summit region, but at least five other vents on the summit and flank have been active during the Holocene. Frequent mild-to-moderate explosive eruptions have occurred in historical time from the Crater Lake vent, and tephra characteristics suggest that the crater lake may have formed as early as 3000 years ago. Lahars produced by phreatic eruptions from the summit crater lake are a hazard to a ski area on the upper flanks and to lower river valleys.

Information Contacts: GeoNet (URL: http://www.geonet.org.nz/).


Suwanosejima (Japan) — July 2011 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Many small explosions up to 2 km altitude during mid-2009 to mid-2011

In a previous report (BGVN 34:07) we discussed ash plume data from the Tokyo Volcanic Ash Advisory Center (VAAC) and reports from the Japan Meteorological Agency (JMA) that covered explosive activity based on infrasound measurements and seismicity during October 2008 to July 2009. Many explosions were heard and felt but cloud cover obscured direct observations. From 6 July 2009 to 14 July 2011 the Tokyo VAAC reported 234 explosions; 62 of which produced a measurable ash plume (table 9) from the summit crater, On-take (also called Otake).

Table 9. A summary of Tokyo Volcanic Ash Advisory Center (VAAC) reports on measured ash plumes from Suwanose-jima, 15 July 2009 to 14 July 2011. Courtesy of Tokyo VAAC, based on information from the JMA, pilot reports, and satellite imagery.

Date (UTC) Plume Altitude (km) Drift Direction
15-17 Jul 2009 1.5-2.1 NE, W
16-17 Aug 2009 1.8 E
28-29 Aug 2009 1.5-2.4 W
17-18 Sep 2009 1.5 S
01 Oct 2009 1.5 W
10 Oct 2009 1.5 --
04-05 Nov 2009 1.2-1.8 SW, W, NE
26 Nov 2009 3.0 E
14 Dec 2009 1.2-1.5 E
22 Dec 2009 1.5 --
02 Jan 2010 1.8 --
04-05 Jan 2010 1.5-1.8 NE, E
09 Jan 2010 1.8 E
26-27 Jan 2010 1.2-1.5 SE, W
29 Jan 2010 1.8 --
17 Feb 2010 1.2-1.5 E, SE
19 Feb 2010 1.5 SE
21 Feb 2010 1.8 --
15-16 May 2010 1.5-1.8 NW
23 Jul 2010 2.4 NW
26 Jul 2010 1.5 W
22 Sep 2010 1.5-2.1 SE
25 Sep 2010 1.5 E
05 Oct 2010 1.5 E
17 Oct 2010 1.5 SE
10-12 Nov 2010 1.5-2.1 SE, N, SW
18 Nov 2010 1.8 --
21 Nov 2010 2.1 NE
29 Nov 2010 1.2-1.5 --
04 Dec 2010 1.2 SE
13 Jan 2011 1.2 SE
22 Jan 2011 1.5 S
05 Feb 2011 0.6 SW
12 Apr 2011 1.8 --
14 Jul 2011 3.7 --

JMA stated that this volcano has erupted every year since 1956. The activity alert status for Suwanose-jima was Level 2 (on a 1 to 5 scale where 5 is the highest) from December 2007 to July 2011; this status indicates that the crater is too dangerous to visit.

Activity during late 2009. The Tokyo VAAC reported frequent plumes from mid-August through December 2009. The tallest plumes, above 1.5 km altitude, occurred on 16-17 and 29 August, and 5 and 26 November (table 9). According to JMA, a visitor during 29-30 December 2009 saw Strombolian eruptions.

Activity during 2010. Ash plumes up to ~ 2.4 km altitude were reported by the Tokyo VAAC on many days throughout the year (table 9).

Based on the seismic record, JMA was able to infer when explosions occurred within the crater. The number of these explosions decreased from 64 in January to 0 in June; from July to September there were less than 20 monthly explosions, but activity appeared to peak in November when 94 explosions were recorded.

Aerial observations were made in collaboration with the Japan Maritime Self Defense Force (JMSDF) on 14 December (figure 14). The flight confirmed high temperature areas at both the summit crater's center and at the lower, outer rim. Thes results were congruent with those obtained earlier, in December 2009, and JMA concluded that similar conditions prevailed in the crater during this interval.

Figure (see Caption) Figure 14. Thermal imaging of Suwanose-jima's summit crater, On-take, taken on 14 December 2010. On the false-color scale (calibrated at right), the highest temperatures are white, the lowest temperatures are blue, showing values in Celsius. The maximum temperature from photo B is 442.5°C; maximum temperature from photo D is 106.1°C. Courtesy of JMA; photos by the Japan Maritime Self Defense Force (JMSDF), Kanoya Air Base.

Activity during 2011. Ash plumes were reported by the Tokyo VAAC for January, February, April, and July; the tallest occurred on July 14 and reached ~ 3.6 km altitude (table 9). From January to July 2011, volcanic earthquakes and tremor remained relatively high (figure 15).

Figure (see Caption) Figure 15. Geophysical data recorded for Suwanose-jima from 2003 to July 2011. The uppermost plot indicates eruptions (red arrows, at top) and the daily maximum plume height in meters (histogram). High-frequency (A-type) earthquakes are separated from low-frequency (B-type) earthquakes. JMA also reported monthly tremor durations (not shown here). Courtesy of JMA.

A 2.9-magnitude earthquake centered below Suwanose-jima occurred on 3 February 2011 at 2206. That month, local inhabitants reportedly felt 17 earthquakes. No surface change was observed before or after the earthquakes. Surveillance in February 2011 included visual observations by the Coast Guard.

Immediately after the 11 March 2011 Tohoku Earthquake (M 9.0, located offshore of Honshu, Japan) instruments at Suwanose-jima recorded increases in high-frequency (A-type) earthquakes. A-type earthquakes are generally considered to have shallow focal depths; B-type earthquakes, deeper focal depths.

Ash explosions seemingly rarely occurred through March 2011, but reports from [the village 4 km SSW of the crater] stated that observers there had seen ballistics thrown from the summit crater. Due to prolonged poor weather, surveillance cameras did not record this activity. JMA reported that plume heights for April, May, and June 2011 remained at background levels, with maximum heights of 0.4?1.0 km. Intermittent incandescence was recorded with surveillance cameras when clear weather allowed observations at night from March through June.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Tokyo Volcanic Ash Advisory Center (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/); Yukio Hayakawa, Gunma University, Faculty of Education, Aramaki 4-2, Maebashi 371-8510, Japan.


Tofua (Tonga) — July 2011 Citation iconCite this Report

Tofua

Tonga

19.75°S, 175.07°W; summit elev. 515 m

All times are local (unless otherwise noted)


Evidence of ongoing intermittent eruption into 2011

Tofua is a non-instrumented, remote, island volcano that is seldom the subject of reports; it continued to emit at least low-level eruptions well into 2011. This small volcanic island lies in southern Tonga (see map and other figures in BGVN 34:02), ~ 1,700 km NNE of New Zealand. In 1993 there were ~ 10 residents (BGVN 34:02).

Our previous report on Tofua (BGVN 34:02) gave a summary of MODVOLC thermal alert data through March 2009 and discussed data artifacts due to reflected sunlight over the ocean. Since that time, only a single-pixel thermal alert was measured, located at the vent on 4 March 2011.

Sailors visit in 2010. On 24 April 2010, sailors in a replica 7.6-m-long wooden boat landed on the island associated with a re-enactment of the landing made by Captain Bligh after he and his crew were cast off of the Bounty in 1789. A number of photos associated with announcements regarding the 2010 landing and activities on Tofua suggests that the volcano was still active in a manner similar to that previously discussed (BGVN 31:06 and 34:02), issuing spatter from a small vent that contained lava (figure 6).

Figure (see Caption) Figure 6. Looking into the active crater at Tofua on 24 April 2010 from the crater's N side. The shot emphasizes the crater's sheer walls, ledges draped with ash, and a morphologically complex crater floor covered by black, fresh looking spatter, ash, and possibly lava flows. The scene on the crater floor differs somewhat from the photo made in March 2009 (BGVN 34:02). A large down-dropped zone seems to have developed adjacent (to the right of) the glowing vent. Portions of that lower area emitted gases. As in the 2009 photo, this documents a glowing vent that contains molten lava and the area at the far end of this vent suggest active spattering. Photo by Stuart Kershaw posted by the Tonga Visitors Bureau.

Other photos confirmed that, seen from a distance, the active Lofia crater emitted either a substantial white plume or thin gaseous emissions. A down-dropped zone appears to have developed on part of the crater floor between March 2009 and early 2010 (figure 6). The floor itself is not horizontal; much of it slopes at ~45 degrees from the horizontal.

The original caption for the photo shown in figure 6 read "Mark Belvedere peers into Tofua's very active volcanic crater." Belvedere (president of the Kalia Foundation, an organization developed to preserve and extend the Polynesian seafaring tradition) participated in events associated with the re-enactment. The sailors traveled on a replica of the boat used by Bligh and the crew members loyal to him.

According to the expedition announcements, the re-enactment attempted to make the voyage under similar conditions with the same amount of food and water. The sailors went without charts, additional landfalls, and many modern luxuries. According to news accounts, the 2010 voyage took 7 weeks, ending in Kupang, West Timor.

VAAC report in 2011. July reports by the Tonga Meteorological Services and pilot observations described a cloud of unspecified color and dimension from Tofua that rose to an altitude of 1.3 km. This led the Wellington Volcanic Ash Advisory Centre (VAAC) to produce aviation reports (called Volcanic Ash Advisories) starting 13 July 2011. Follow-up reports (without new information) continued until 19 July 2011. Subsequent notices stated that the cloud was not detected in satellite imagery.

Bligh's comment. Following the 1789 mutiny on the Bounty, Captain William Bligh and 18 others were cast adrift on the small launch in which they completed a 6,700 km journey from near Tofua to West Timor. Bligh's small notebook formed the basis of In Bligh's Hand: Surviving the Mutiny on the Bounty (Gall, 2010). An entire chapter is devoted to Tofua ("We eat under great apprehension of the Natives, Tofua and indigenous relations") but the remarks describing the volcano's behavior are brief:

"When Bligh left the Bounty in the launch, he set course for Tofua, 30 miles away. Its location was marked by a smoke smudge on the skyline issuing from the island's active volcano."

That comment indicates the volcano was degassing when seen in 1789, but leaves the issue of the exact eruptive state ambiguous. The earliest witnessed eruption, the 1774 eruption seen by Captain Cook, was judged as explosive (a VEI 2 eruption; Siebert and others, 2010).

References. Gall, J., 2010, In Bligh's Hand: Surviving the Mutiny on the Bounty, National Library of Australia collection highlights, 234 pp. [ISBN: 9780642277053] (Selected portions, including those referred to here, available on Google books, URL: http://books.google.com/books?id=0TfjOmTv8bYC& )

Siebert, L., Simkin, T., and Kimberly, P., 2010, Volcanoes of the World, 3nd edition: University of California Press and Smithsonian Institution, 568 p.

Tonga Visitors Bureau, 2010, The 'Mutiny on the Bounty' crew visit the volcanic island of Tofua; Tonga Visitors Bureau (Ministry of Tourism), the National Tourist Office (NTO) for the Kingdom of Tonga, URL: http://www.tongaholiday.com/?p=4892; Posted 6 May 2010; accessed August 2011.

Geologic Background. The low, forested Tofua Island in the central part of the Tonga Islands group is the emergent summit of a large stratovolcano that was seen in eruption by Captain Cook in 1774. The summit contains a 5-km-wide caldera whose walls drop steeply about 500 m. Three post-caldera cones were constructed at the northern end of a cold fresh-water caldera lake, whose surface lies only 30 m above sea level. The easternmost cone has three craters and produced young basaltic-andesite lava flows, some of which traveled into the caldera lake. The largest and northernmost of the cones, Lofia, has a steep-sided crater that is 70 m wide and 120 m deep and has been the source of historical eruptions, first reported in the 18th century. The fumarolically active crater of Lofia has a flat floor formed by a ponded lava flow.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Kalia Foundation USA, 4515 SW Natchez Ct., Tualatin, Oregon 97062 USA; Mark Belvedere, Treasure Island Eueiki Eco Resort, Vava'u, Tonga; Stuart Kershaw, In the Dark Productions company (URL: http://inthedarkproductions.co.uk/); Wellington Volcanic Ash Advisory Center (VAAC), New Zealand (URL: http://vaac.metservice.com/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).