Logo link to homepage

Report on Krafla (Iceland) — August 1981

Scientific Event Alert Network Bulletin, vol. 6, no. 8 (August 1981)
Managing Editor: Lindsay McClelland.

Krafla (Iceland) Pattern of inflation changes

Please cite this report as:

Global Volcanism Program, 1981. Report on Krafla (Iceland). In: McClelland, L (ed.), Scientific Event Alert Network Bulletin, 6:8. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198108-373080.

Volcano Profile |  Complete Bulletin


Krafla

Iceland

65.715°N, 16.728°W; summit elev. 800 m

All times are local (unless otherwise noted)


Inflation has continued through early September. Previous periods of inflation had been characterized by a single center of uplift beneath the caldera, but data gathered by tiltmeters since 4 February has been more complex and may indicate multiple centers of uplift. Because of the changed pattern of inflation, the rate of magma inflow from depth can no longer be calculated, nor can the timing of future deflation events or eruptions be predicted.

Geologic Background. The Krafla central volcano, located NE of Myvatn lake, is a topographically indistinct 10-km-wide caldera that is cut by a N-S-trending fissure system. Eruption of a rhyolitic welded tuff about 100,000 years ago was associated with formation of the caldera. Krafla has been the source of many rifting and eruptive events during the Holocene, including two in historical time, during 1724-29 and 1975-84. The prominent Hverfjall and Ludent tuff rings east of Myvatn were erupted along the 100-km-long fissure system, which extends as far as the north coast of Iceland. Iceland's renowned Myvatn lake formed during the eruption of the older Laxarhraun lava flow from the Ketildyngja shield volcano of the Fremrinamur volcanic system about 3800 years before present (BP); its present shape is constrained by the roughly 2000 years BP younger Laxarhraun lava flow from the Krafla volcanic system. The abundant pseudocraters that form a prominent part of the Myvatn landscape were created when the younger Laxarhraun lava flow entered the lake.

Information Contacts: K. Grönvold, NVI.