Logo link to homepage

Report on Long Valley (United States) — July 1986

Scientific Event Alert Network Bulletin, vol. 11, no. 7 (July 1986)
Managing Editor: Lindsay McClelland.

Long Valley (United States) Nearby earthquakes cause no pronounced seimicity and deformation change in caldera

Please cite this report as:

Global Volcanism Program, 1986. Report on Long Valley (United States). In: McClelland, L. (ed.), Scientific Event Alert Network Bulletin, 11:7. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198607-323822.

Volcano Profile |  Complete Bulletin


Long Valley

United States

37.7°N, 118.87°W; summit elev. 3390 m

All times are local (unless otherwise noted)


As of the end of July, no pronounced changes in seismicity and deformation had been observed ...after a series of moderate earthquakes began mid-July in the Chalfant Valley, ~20 km to the SE. [The largest event, 6.2 Ms/6.0 mb, occurred 21 July at 2142 (37.54°N, 118.45°W, 9 km depth). Small foreshocks were recorded two days earlier, and several moderate-sized aftershocks occurred the following week.] Some co-seismic deformation across the caldera was observed. The 2-color trilateration network showed uniaxial contraction in an E-W direction and the borehole dilatometer showed a compressional signal of comparable magnitude. Most of the borehole tiltmeters in the caldera showed a co-seismic offset coincident with the Chalfont Valley earthquakes. Stephen McNutt reported that no low-frequency earthquakes were recorded within the caldera by the California Division of Mines and Geology network.

Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.

Information Contacts: D. Hill, USGS Menlo Park; Stephen McNutt, California Division of Mines and Geology, 630 Bercutt, Sacramento, California 95814 USA.