Logo link to homepage

Report on Kick 'em Jenny (Grenada) — 26 April-2 May 2017

Smithsonian / US Geological Survey Weekly Volcanic Activity Report, 26 April-2 May 2017
Managing Editor: Sally Kuhn Sennert

Please cite this report as:

Global Volcanism Program, 2017. Report on Kick 'em Jenny (Grenada). In: Sennert, S K (ed.), Weekly Volcanic Activity Report, 26 April-2 May 2017. Smithsonian Institution and US Geological Survey.

Volcano Profile |  Weekly Report (26 April-2 May 2017)


Kick 'em Jenny

Grenada

12.3°N, 61.64°W; summit elev. -185 m

All times are local (unless otherwise noted)


The University of the West Indies (UWI) Seismic Research Centre (SRC) reported that seismic activity at Kick 'em Jenny increased on 29 April. A high-amplitude signal lasting 25 seconds was recorded by stations on Grenada and Montserrat. This signal followed an increase in the number of background events associated with the volcano. The report reminded the public of the 5-km maritime exclusion zone.

Geologic Background. Kick 'em Jenny, a historically active submarine volcano 8 km off the N shore of Grenada, rises 1300 m from the sea floor. Recent bathymetric surveys have shown evidence for a major arcuate collapse structure, which was the source of a submarine debris avalanche that traveled more than 15 km W. Bathymetry also revealed another submarine cone to the SE, Kick 'em Jack, and submarine lava domes to its S. These and subaerial tuff rings and lava flows at Ile de Caille and other nearby islands may represent a single large volcanic complex. Numerous historical eruptions, mostly documented by acoustic signals, have occurred since 1939, when an eruption cloud rose 275 m above the sea. Prior to the 1939 eruption, which was witnessed by a large number of people in northern Grenada, there had been no written mention of the volcano. Eruptions have involved both explosive activity and the quiet extrusion of lava flows and lava domes in the summit crater; deep rumbling noises have sometimes been heard onshore. Historical eruptions have modified the morphology of the summit crater.

Source: Seismic Research Unit, University of the West Indies