Inyo Craters

Photo of this volcano
  • Country
  • Volcanic Region
  • Primary Volcano Type
  • Last Known Eruption
  • 37.692°N
  • 119.02°W

  • 2629 m
    8623 ft

  • 323130
  • Latitude
  • Longitude

  • Summit
    Elevation

  • Volcano
    Number

The Global Volcanism Program has no activity reports for Inyo Craters.

The Global Volcanism Program has no Weekly Reports available for Inyo Craters.

The Global Volcanism Program has no Bulletin Reports available for Inyo Craters.

This compilation of synonyms and subsidiary features may not be comprehensive. Features are organized into four major categories: Cones, Craters, Domes, and Thermal Features. Synonyms of features appear indented below the primary name. In some cases additional feature type, elevation, or location details are provided.

Eruptive History


There is data available for 3 Holocene eruptive periods.


Start Date Stop Date Eruption Certainty VEI Evidence Activity Area or Unit
1380 ± 50 years Unknown Confirmed 4 Radiocarbon (corrected) S Deadman, Obsidian Flow, Glass Creek
0290 ± 50 years Unknown Confirmed 4 Radiocarbon (corrected) Wilson Butte
4050 BCE (?) Unknown Confirmed   Hydration Rind North of Deadman Creek

Deformation History


There is data available for 1 deformation periods. Expand each entry for additional details.


Deformation during 1992 - 1999 [uplift; Observed by InSAR]

Start Date: 1992 Stop Date: 1999 Direction: uplift Method: InSAR
Magnitude: 20.000 cm Spatial Extent: 30.00 km Latitude: 38.000 Longitude: -119.000

Remarks: Broad uplift of Long Valley Caldera. Model presented from Tizzani et al. 2009

1992?1999 synthetic aperture radar interferometry (InSAR) data

From: Tizzani et al. 2009.


Reference List: Thatcher and Massonnet 1997; Fialko et al. 2001; Hooper et al. 2004; Tizzani et al. 2007; Tizzani et al. 2009;.

Full References:

Fialko, Y., M. Simons, and Y. Khazan, 2001. Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California. Geophys. J. Int., 146, 191-200, doi:10.1046/j.1365-246X.2001.00453.x.

Hooper, A., Zebker, H., Segall, P., & Kampes, B., 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers.. Geophys. Res. Lett., 31, L23611, doi:10.1029/2004GL021737.

Thatcher, W., & Massonnet, D., 1997. Crustal deformation at Long Valley Caldera, eastern California, 1992-1996 inferred from satellite radar interferometry. Geophysical Research Letters, 24(20), 2519-2522.

Tizzani, P., Battaglia, M., Zeni, G., Atzori, S., Berardino, P., & Lanari, R., 2009. Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements. Geology, 37(1), 63-66.

Tizzani, P., Berardino, P., Casu, F., Euillades, P., Manzo, M., Ricciardi, G.P., Zeni, G. and Lanari, R.,, 2007. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sensing of Environment, 108(3), pp.277-289.

Emission History


There is no Emissions History data available for Inyo Craters.

Photo Gallery


The Mono Craters volcanic field south of Mono Lake at the upper left, is a 17-km-long arcuate chain of rhyolitic lava domes and thick, viscous lava flows. Mono Craters has been frequently active throughout the Holocene, along with the Inyo Craters chain to the south. The Inyo Craters chain, which includes the Wilson Butte, Obsidian and Glass Creek domes, which are oriented diagonally along a N-S line from the left center to lower right of the photo. The latest eruptions of Mono Craters and Inyo Craters occurred nearly simultaneously around 600 years ago.

Photo by Roy Bailey, 1980 (U.S. Geological Survey).
See title for photo information.
An aerial view from the south shows the North and South Inyo Craters phreatic explosion craters diagonally cutting forested Deer Mountain from the right center to lower right, and the unvegetated South Deadman lava dome and obsidian flow and the forested mound of North Deadman dome at the upper left. Eruption of magmatic tephra and the formation of the phreatic explosion craters preceded emplacement of the lava domes and flows about 600 years ago.

Photo by Larry Mastin, 1988 (U.S. Geological Survey).
See title for photo information.
The Obsidian Flow, a lava flow with a hackly surface showing prominent flow banding, was erupted at the northern end of a chain of lava domes and flows during a dike-fed eruption about 600 years ago at Inyo Craters. The Obsidian Flow was the largest of four flows and domes emplaced during this eruption.

Photo by Larry Mastin, 1992 (U.S. Geological Survey).
See title for photo information.
South Inyo Crater, one of a chain of small phreatic explosion craters at the southern end of the Inyo Craters chain of lava domes and flows, is partially filled by a shallow lake. The 200-m-wide South Inyo Crater was formed when groundwater interacted with magma from a shallow dike. That interaction fed a powerful explosive eruption that concluded with the emplacement of obsidian lava domes and flows to the north of this crater.

Photo by Larry Mastin, 1992 (U.S. Geological Survey).
See title for photo information.
The pumice layers above the bottom of the pen originated from the South Deadman vent of Inyo Craters about 600 years ago. Interbedded finer layers record brief pauses during the course of the eruption.

Photo by Larry Mastin, 1986 (U.S. Geological Survey).
See title for photo information.
The unvegetated Glass Creek lava flow on the left and Obsidian Flow on the right are among a group of obsidian lava flows and domes that were emplaced during a major eruption from the Inyo Craters about 600 years ago. The eruption, originating from a shallow dike, began with powerful explosive activity, pyroclastic flows, and a series of phreatic explosions, and ended with effusion of the lava domes and flows.

Photo by Larry Mastin, 1991 (U.S. Geological Survey).
See title for photo information.
Wilson Butte, the northermost lava dome of the Inyo Craters, is seen from the Obsidian Flow lava dome to the south. The Inyo Craters are a 12-km-long chain of silicic lava domes, lava flows, and explosion craters along the eastern margin of Sierra Nevada south of Mono Craters near the town of Mammoth. Inyo Craters overtop the NW rim of the Pleistocene Long Valley caldera and extend onto the caldera floor, but are chemically and magmatically part of a different volcanic system. The latest eruptions at Inyo Craters took place about 600 years ago.

Photo by Lee Siebert, 1998 (Smithsonian Institution).
See title for photo information.

Smithsonian Sample Collections Database


The following 7 samples associated with this volcano can be found in the Smithsonian's NMNH Department of Mineral Sciences collections, and may be availble for research (contact the Rock and Ore Collections Manager). Catalog number links will open a window with more information.

Catalog Number Sample Description Lava Source Collection Date
NMNH 117460-171 Obsidian Obsidian Dome --
NMNH 117460-30 Obsidian Glass Creek Dome --
NMNH 117460-31 Obsidian Glass Creek Dome --
NMNH 117460-32 Obsidian Glass Creek Dome --
NMNH 117460-33 Obsidian Glass Creek Dome --
NMNH 117460-34 Obsidian Glass Creek Dome --
NMNH 117460-35 Pumice Glass Creek Dome --

Affiliated Sites