Recently Published Bulletin Reports
Sangay (Ecuador) Ash plumes, lava flows, pyroclastic flows, and lahars during July-December 2020; larger explosions in September
Ebeko (Russia) Continued explosions, ash plumes, and ashfall; June-November 2020
Kuchinoerabujima (Japan) Intermittent thermal anomalies and small eruptions in May and August 2020
Raung (Indonesia) Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020
Nyamuragira (DR Congo) Numerous thermal anomalies and gas emissions from the lava lake through November 2020
Sinabung (Indonesia) Explosions begin again on 8 August 2020; dome growth confirmed in late September
Heard (Australia) Persistent thermal anomalies in the summit crater from June through October 2020
Sabancaya (Peru) Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020
Rincon de la Vieja (Costa Rica) Frequent small phreatic explosions with intermittent ash plumes during April-September 2020
Fuego (Guatemala) Daily explosions, ash emissions, and block avalanches during August-November 2020
Kikai (Japan) Explosion on 6 October 2020 and thermal anomalies in the crater
Manam (Papua New Guinea) Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020
Sangay
Ecuador
2.005°S, 78.341°W; summit elev. 5286 m
All times are local (unless otherwise noted)
Ash plumes, lava flows, pyroclastic flows, and lahars during July-December 2020; larger explosions in September
Sangay is one of the most active volcanoes in Ecuador with the current eruptive period continuing since 26 March 2019. Activity at the summit crater has been frequent since August 1934, with short quiet periods between events. Recent activity has included frequent ash plumes, lava flows, pyroclastic flows, and lahars. This report summarizes activity during July through December 2020, based on reports by Ecuador's Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), ash advisories issued by the Washington Volcanic Ash Advisory Center (VAAC), webcam images taken by Servicio Integrado de Seguridad ECU911, and various satellite data.
Overall activity remained elevated during the report period. Recorded explosions were variable during July through December, ranging from no explosions to 294 reported on 4 December (figure 80), and dispersing mostly to the W and SW. SO2 was frequently detected using satellite data (figure 81) and was reported several times to be emitting between about 770 and 2,850 tons/day. Elevated temperatures at the crater and down the SE flank were frequently observed in satellite data (figure 82), and less frequently by visual observation of incandescence. Seismic monitoring detected lahars associated with rainfall events remobilizing deposits emplaced on the flanks throughout this period.
Activity during July-August 2020. During July activity continued with frequent ash and gas emission recorded through observations when clouds weren’t obstructing the view of the summit, and Washington VAAC alerts. There were between one and five VAAC alerts issued most days, with ash plumes reaching 570 to 1,770 m above the crater and dispersing mostly W and SE, and NW on two days (figure 83). Lahar seismic signals were recorded on the 1st, 7th, three on the 13th, and one on the 19th.
During August there were between one and five VAAC alerts issued most days, with ash plumes reaching 600 to 2,070 m above the crater and predominantly dispersing W, SW, and occasionally to the NE, S, and SE (figure 84). There were reports of ashfall in the Alausí sector on the 24th. Using seismic data analysis, lahar signals were identified after rainfall on 1, 7, 11-14, and 21 August. A lava flow was seen moving down the eastern flank on the night of the 15th, resulting in a high number of thermal alerts. A pyroclastic flow was reported descending the SE flank at 0631 on the 27th (figure 85).
Activity during September-October 2020. Elevated activity continued through September with two significant increases on the 20th and 22nd (more information on these events below). Other than these two events, VAAC reports of ash plumes varied between 1 and 5 issued most days, with plume heights reaching between 600 and 1,500 m above the crater. Dominant ash dispersal directions were W, with some plumes traveling SE, S, SE, NE, and NW. Lahar seismic signals were recorded after rainfall on 1, 2, 5, 8-10, 21, 24, 25, 27, and 30 September. Pyroclastic flows were reported on the 19th (figure 86), and incandescent material was seen descending the SE ravine on the 29th. There was a significant increase in thermal alerts reported throughout the month compared to the July-August period, and Sentinel-2 thermal satellite images showed a lava flow down the SE flank (figure 87).
Starting at 0420 on the morning of 20 September there was an increase in explosions and emissions recorded through seismicity, much more energetic than the activity of previous months. At 0440 satellite images show an ash plume with an estimated height of around 7 km above the crater. The top part of the plume dispersed to the E and the rest of the plume went W. Pyroclastic flows were observed descending the SE flank around 1822 (figure 88). Ash from remobilization of deposits was reported on the 21st in the Bolívar, Chimborazo, Los Ríos, Guayas and Santa Elena provinces. Ash and gas emission continued, with plumes reaching up to 1 km above the crater. There were seven VAAC reports as well as thermal alerts issued during the day.
Ash plumes observed on 22 September reached around 1 km above the crater and dispersed W to NW. Pyroclastic flows were seen descending the SE flank (figure 89) also producing an ash plume. A BBC article reported the government saying 800 km2 of farmland had experienced ashfall, with Chimborazo and Bolívar being the worst affected areas (figure 90). Locals described the sky going dark, and the Guayaquil was temporarily closed. Ash plume heights during the 20-22 were the highest for the year so far (figure 91). Ash emission continued throughout the rest of the month with another increase in explosions on the 27th, producing observed ash plume heights reaching 1.5 km above the crater. Ashfall was reported in San Nicolas in the Chimborazo Province in the afternoon of the 30th.
Thermal alerts increased again through October, with a lava flow and/or incandescent material descending the SE flank sighted throughout the month (figure 92). Pyroclastic flows were seen traveling down the SE flank during an observation flight on the 6th (figure 93). Seismicity indicative of lahars was reported on 1, 12, 17, 19, 21, 23, 24, and 28 October associated with rainfall remobilizing deposits. The Washington VAAC released one to five ash advisories most days, noting plume heights of 570-3,000 m above the crater; prevailing winds dispersed most plumes to the W, with some plumes drifting NW, N, E to SE, and SW. Ashfall was reported in Alausí (Chimborazo Province) on the 1st and in Chunchi canton on the 10th. SO2 was recorded towards the end of the month using satellite data, varying between about 770 and 2,850 tons on the 24th, 27th, and 29th.
Activity during November-December 2020. Frequent ash emission continued through November with between one and five Washington VAAC advisories issued most days (figure 94). Reported ash and gas plume heights varied between 570 and 2,700 m above the crater, with winds dispersing plumes in all directions. Thermal anomalies were detected most days, and incandescent material from explosions was seen on the 26th. Seismicity indicating lahars was registered on nine days between 15 and 30 November, associated with rainfall events.
Lahar signals associated with rain events continued to be detected on ten out of the first 18 days of November. Ash emissions continued through December with one to five VAAC alerts issued most days. Ash plume heights varied from 600 to 1,400 m above the crater, with the prevailing wind direction dispersing most plumes W and SW (figure 95). Thermal anomalies were frequently detected and incandescent material was observed down the SE flank on the 3rd, 14th, and 30th, interpreted as a lava flow and hot material rolling down the flank. A webcam image showed a pyroclastic flow traveling down the SE flank on the 2nd (figure 96). Ashfall was reported on the 10th in Capzol, Palmira, and Cebadas parishes, and in the Chunchi and Guamote cantons.
Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.
Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); ECU911, Servicio Integrado de Seguridad ECU911, Calle Julio Endara s / n. Itchimbía Park Sector Quito – Ecuador. (URL: https://www.ecu911.gob.ec/; Twitter URL: https://twitter.com/Ecu911Macas/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); BBC News “In pictures: Ash covers Ecuador farming land” Published 22 September 2020 (URL: https://www.bbc.com/news/world-latin-america-54247797).
Ebeko
Russia
50.686°N, 156.014°E; summit elev. 1103 m
All times are local (unless otherwise noted)
Continued explosions, ash plumes, and ashfall; June-November 2020
Volcanism at Ebeko, located on the N end of the Paramushir Island in the Kuril Islands, has been ongoing since October 2016, characterized by frequent moderate explosions, ash plumes, and ashfall in Severo-Kurilsk (7 km ESE) (BGVN 45:05). Similar activity during this reporting period of June through November 2020 continues, consisting of frequent explosions, dense ash plumes, and occasional ashfall. Information for this report primarily comes from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.
Activity during June was characterized by frequent, almost daily explosions and ash plumes that rose to 1.6-4.6 km altitude and drifted in various directions, according to KVERT reports and information from the Tokyo VAAC advisories using HIMAWARI-8 satellite imagery and KBGS (Kamchatka Branch of the Geophysical Service) seismic data. Satellite imagery showed persistent thermal anomalies over the summit crater. On 1 June explosions generated an ash plume up to 4.5 km altitude drifting E and S, in addition to several smaller ash plumes that rose to 2.3-3 km altitude drifting E, NW, and NE, according to KVERT VONA notices. Explosions on 11 June generated an ash plume that rose 2.6 km altitude and drifted as far as 85 km N and NW. Explosions continued during 21-30 June, producing ash plumes that rose 2-4 km altitude, drifting up to 5 km in different directions (figure 26); many of these eruptive events were accompanied by thermal anomalies that were observed in satellite imagery.
Explosions continued in July, producing ash plumes rising 2-5.2 km altitude and drifting for 3-30 km in different directions. On 3, 6, 15 July explosions generated an ash plume that rose 3-4 km altitude that drifted N, NE, and SE, resulting in ashfall in Severo-Kurilsk. According to a Tokyo VAAC advisory, an eruption on 4 July produced an ash plume that rose up to 5.2 km altitude drifting S. On 22 July explosions produced an ash cloud measuring 11 x 13 km in size and that rose to 3 km altitude drifting 30 km SE. Frequent thermal anomalies were identified in satellite imagery accompanying these explosions.
In August, explosions persisted with ash plumes rising 1.7-4 km altitude drifting for 3-10 km in multiple directions. Intermittent thermal anomalies were detected in satellite imagery, according to KVERT. On 9 and 22 August explosions sent ash up to 2.5-3 km altitude drifting W, S, E, and SE, resulting in ashfall in Severo-Kurilsk. Moderate gas-and-steam activity was reported occasionally during the month.
Almost daily explosions in September generated dense ash plumes that rose 1.5-4.3 km altitude and drifted 3-5 km in different directions. Moderate gas-and-steam emissions were often accompanied by thermal anomalies visible in satellite imagery. During 14-15 September explosions sent ash plumes up to 2.5-3 km altitude drifting SE and NE, resulting in ashfall in Severo-Kurilsk. On 22 September a dense gray ash plume rose to 3 km altitude and drifted S. The ash plume on 26 September was at 3.5 km altitude and drifted SE (figure 27).
During October, near-daily ash explosions continued, rising 1.7-4 km altitude drifting in many directions. Intermittent thermal anomalies were identified in satellite imagery. During 7-8, 9-10, and 20-22 October ashfall was reported in Severo-Kurilsk.
Explosions in November produced dense gray ash plumes that rose to 1.5-5.2 km altitude and drifted as far as 5-10 km, mainly NE, SE, E, SW, and ENE. According to KVERT, thermal anomalies were visible in satellite imagery throughout the month. On clear weather days on 8 and 11 November Sentinel-2 satellite imagery showed ashfall deposits SE of the summit crater from recent activity (figure 28). During 15-17 November explosions sent ash up to 3.5 km altitude drifting NE, E, and SE which resulted in ashfall in Severo-Kurilsk on 17 November. Similar ashfall was observed on 22-24 and 28 November due to ash rising to 1.8-3 km altitude (figure 29). Explosions on 29 November sent an ash plume up to 4.5 km altitude drifting E (figure 29). A Tokyo VAAC advisory reported that an ash plume drifting SSE on 30 November reached an altitude of 3-5.2 km.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a pulse in low-power thermal activity beginning in early June through early August (figure 30). On clear weather days, the thermal anomalies in the summit crater are observed in Sentinel-2 thermal satellite imagery, accompanied by occasional white-gray ash plumes (figure 31). Additionally, the MODVOLC algorithm detected a single thermal anomaly on 26 June.
Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS) (URL: http://www.emsd.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Kuchinoerabujima (Japan) — November 2020
Cite this Report
Kuchinoerabujima
Japan
30.443°N, 130.217°E; summit elev. 657 m
All times are local (unless otherwise noted)
Intermittent thermal anomalies and small eruptions in May and August 2020
Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The current eruptive period began in January 2020 and has been characterized by small explosions, ash plumes, ashfall, a pyroclastic flow, and gas-and-steam emissions. This report covers activity from May to October 2020, which includes small explosions, ash plumes, crater incandescence, and gas-and-steam emissions. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC).
Volcanism at Kuchinoerabujima remained relatively low during May through October 2020, according to JMA. During this time, SO2 emissions ranged from 40 to 3,400 tons/day; occasional gas-and-steam emissions were reported, rising to a maximum of 900 m above the crater. Sentinel-2 satellite images showed a particularly strong thermal anomaly in the Shindake crater on 1 May (figure 10). The thermal anomaly decreased in power after 1 May and was only visible on clear weather days, which included 19 August and 3 and 13 October. Global Navigation Satellite System (GNSS) observations identified continued slight inflation at the base of the volcano during the entire reporting period.
Three small eruptions were detected by JMA on 5, 6, and 13 May, which produced an ash plume rising 500 m above the crater on each day, resulting in ashfall on the downwind flanks. Incandescence was observed at night using a high-sensitivity surveillance camera (figure 11). On 5 and 13 May the Tokyo VAAC released a notice that reported ash plumes rising 0.9-1.2 km altitude, drifting NE and S, respectively. On 20 May weak fumaroles were observed on the W side of the Shindake crater. The SO2 emissions ranged from 700-3,400 tons/day.
Activity during June and July decreased compared to May, with gas-and-steam emissions occurring more prominently. On 22 June weak incandescence was observed, accompanied by white gas-and-steam emissions rising 700 m above the crater. Weak crater incandescence was also seen on 25 June. The SO2 emissions measured 400-1,400 tons/day. White gas-and-steam emissions were again observed on 31 July rising to 800 m above the crater. The SO2 emissions had decreased during this time to 300-700 tons/day.
According to JMA, the most recent eruptive event occurred on 29 August at 1746, which ejected bombs and was accompanied by some crater incandescence, though the eruptive column was not visible due to the cloud cover. However, white gas-and-steam emissions could be seen rising 1.3 km above the Shindake crater drifting SW. The SO2 emissions measured 200-500 tons/day. During August, the number of volcanic earthquakes increased significantly to 1,032, compared to the number in July (36).
The monthly bulletin for September reported white gas-and-steam emissions rising 900 m above the crater on 9 September and on 11 October the gas-and-steam emissions rose 600 m above the crater. Seismicity decreased between September and October from 1,920 to 866. The SO2 emissions continued to decrease compared to previous months, totaling 80-400 tons/day in September and 40-300 tons/day in October.
Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.
Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Raung (Indonesia) — December 2020
Cite this Report
Raung
Indonesia
8.119°S, 114.056°E; summit elev. 3260 m
All times are local (unless otherwise noted)
Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020
A massive stratovolcano in easternmost Java, Raung has over sixty recorded eruptions dating back to the late 16th Century. Explosions with ash plumes, Strombolian activity, and lava flows from a cinder cone within the 2-km-wide summit crater have been the most common activity. Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) has installed webcams to monitor activity in recent years. An eruption from late 2014 through August 2015 produced a large volume of lava within the summit crater and formed a new pyroclastic cone in the same location as the previous one. The eruption that began in July 2020 is covered in this report with information provided by PVMBG, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.
The 2015 eruption was the largest in several decades; Strombolian activity was reported for many months and fresh lava flows covered the crater floor (BGVN 45:09). Raung was quiet after the eruption ended in August of that year until July of 2020 when seismicity increased on 13 July and brown emissions were first reported on 16 July. Tens of explosions with ash emissions were reported daily during the remainder of July 2020. Explosive activity decreased during August, but thermal activity didn’t decrease until mid-September. The last ash emissions were reported on 3 October and the last thermal anomaly in satellite data was recorded on 7 October 2020.
Eruption during July-October 2020. No further reports of activity were issued after August 2015 until July 2020. Clear Google Earth imagery from October 2017 and April 2018 indicated the extent of the lava from the 2015 eruption, but no sign of further activity (figure 31). By August 2019, many features from the 2015 eruption were still clearly visible from the crater rim (figure 32).
PVMBG reported that the number and type of seismic events around the summit of Raung increased beginning on 13 July 2020, and on 16 July the height of the emissions from the crater rose to 100 m and the emission color changed from white to brown. About three hours later the emissions changed to gray and white. The webcams captured emissions rising 50-200 m above the summit that included 60 explosions of gray and reddish ash plumes (figure 33). The Raung Volcano Observatory released a VONA reporting an explosion with an ash plume that drifted N at 1353 local time (0653 UTC). The best estimate of the ash cloud height was 3,432 m based on ground observation. They raised the Aviation Color Code from unassigned to Orange. About 90 minutes later they reported a second seismic event and ash cloud that rose to 3,532 m, again based on ground observation. The Darwin VAAC reported that neither ash plume was visible in satellite imagery. The following day, on 17 July, PVMBG reported 26 explosions between midnight and 0600 that produced brown ash plumes which rose 200 m above the crater. Based on these events, PVMBG raised the Alert Level of Raung from I (Normal) to II (Alert) on a I-II-III-IV scale. By the following day they reported 95 explosive seismic events had occurred. They continued to observe gray ash plumes rising 100-200 m above the summit on clear days and 10-30 daily explosive seismic events through the end of July; plume heights dropped to 50-100 m and the number of explosive events dropped below ten per day during the last few days of the month.
After a long period of no activity, MIROVA data showed an abrupt return to thermal activity on 16 July 2020; a strong pulse of heat lasted into early August before diminishing (figure 34). MODVOLC thermal alert data recorded two alerts each on 18 and 20 July, and one each on 21 and 30 July. Satellite images showed no evidence of thermal activity inside the summit crater from September 2015 through early July 2020. Sentinel-2 satellite imagery first indicated a strong thermal anomaly inside the pyroclastic cone within the crater on 19 July 2020; it remained on 24 and 29 July (figure 35). A small SO2 signature was measured by the TROPOMI instrument on the Sentinel-5P satellite on 25 July.
After an explosion on 1 August 2020 emissions from the crater were not observed again until steam plumes were seen rising 100 m on 7 August. They were reported rising 100-200 m above the summit intermittently until a dense gray ash plume was reported by PVMBG on 11 August rising 200 m. After that, diffuse steam plumes no more than 100 m high were reported for the rest of the month except for white to brown emissions to 100 m on 21 August. Thermal anomalies of a similar brightness to July from the same point within the summit crater were recorded in satellite imagery on 3, 8, 13, 18, and 23 August. Single MODVOLC thermal alerts were reported on 1, 8, 12, and 19 August.
In early September dense steam plumes rose 200 m above the crater a few times but were mostly 50 m high or less. White and gray emissions rose 50-300 m above the summit on 15, 20, 27, and 30 September. Thermal anomalies were still present in the same spot in Sentinel-2 satellite imagery on 2, 7, 12, 17, and 27 September, although the signal was weaker than during July and August (figure 36). PVMBG reported gray emissions rising 100-300 m above the summit on 1 October 2020 and two seismic explosion events. Gray emissions rose 50-200 m the next day and nine explosions were recorded. On 3 October, emissions were still gray but only rose 50 m above the crater and no explosions were reported. No emissions were observed from the summit crater for the remainder of the month. Sentinel-2 satellite imagery showed a hot spot within the summit crater on 2 and 7 October, but clear views of the crater on 12, 17, and 22 October showed no heat source within the crater (figure 37).
Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Google Earth (URL: https://www.google.com/earth/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); MJ (URL: https://twitter.com/MieJamaludin/status/1167613617191043072).
Nyamuragira (DR Congo) — December 2020
Cite this Report
Nyamuragira
DR Congo
1.408°S, 29.2°E; summit elev. 3058 m
All times are local (unless otherwise noted)
Numerous thermal anomalies and gas emissions from the lava lake through November 2020
Nyamuragira (also known as Nyamulagira) is a shield volcano in the Democratic Republic of the Congo with a 2 x 2.3 km caldera at the summit. A summit crater lies in the NE part of the caldera. In the recent past, the volcano has been characterized by intra-caldera lava flows, lava emissions from its lava lake, thermal anomalies, gas-and-steam emissions, and moderate seismicity (BGVN 44:12, 45:06). This report reviews activity during June-November 2020, based on satellite data.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed numerous thermal anomalies associated with the volcano during June-November 2020, although some decrease was noted during the last half of August and between mid-October to mid-November (figure 91). Between six and seven thermal hotspots per month were identified by MODVOLC during June-November 2020, with as many as 4 pixels on 11 August. In the MODVOLC system, two main hotspot groupings are visible, the largest being at the summit crater, on the E side of the caldera.
Sentinel-2 satellite images showed several hotspots in the summit crater throughout the reporting period (figure 92). By 26 July and thereafter, hotspots were also visible in the SW portion of the caldera, and perhaps just outside the SW caldera rim. Gas-and-steam emissions from the lava lake were also visible throughout the period.
Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.
Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp).
Sinabung (Indonesia) — November 2020
Cite this Report
Sinabung
Indonesia
3.17°N, 98.392°E; summit elev. 2460 m
All times are local (unless otherwise noted)
Explosions begin again on 8 August 2020; dome growth confirmed in late September
Indonesia’s Sinabung volcano in north Sumatra has been highly active since its first confirmed Holocene eruption during August and September 2010. It remained quiet after the initial eruption until September 2013, when a new eruptive phase began that continued through June 2018. A summit dome emerged in late 2013 and produced a large lava “tongue” during 2014. Multiple explosions produced ash plumes, block avalanches, and deadly pyroclastic flows during the eruptive period. A major explosion in February 2018 destroyed most of the summit dome. After a pause in eruptive activity from September 2018 through April 2019, explosions resumed during May and June 2019. The volcano was quiet again until an explosion on 8 August 2020 began another eruption that included a new dome. This report covers activity from July 2019 through October 2020 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM or the Indonesian Center of Volcanology and Geological Hazard Mitigation, the Darwin Volcanic Ash Advisory Centre (VAAC), and the Badan Nacional Penanggulangan Bencana (National Disaster Management Authority, BNPB). Additional information comes from satellite instruments and local news reports.
Only steam plumes and infrequent lahars were reported at Sinabung during July 2019-July 2020. A new eruption began on 8 August 2020 with a phreatic explosion and dense ash plumes. Repeated explosions were reported throughout August; ashfall was reported in many nearby communities several times. Explosions decreased significantly during September, but SO2 emissions persisted. Block avalanches from a new growing dome were first reported in early October; pyroclastic flows accompanied repeated ash emissions during the last week of the month. Thermal data suggested that the summit dome continued growing slowly during October.
Activity during July 2019-October 2020. After a large explosion on 9 June 2019, activity declined significantly, and no further emissions or incandescence was reported after 25 June (BGVN 44:08). For the remainder of 2019 steam plumes rose 50-400 m above the summit on most days, occasionally rising to 500-700 m above the crater. Lahars were recorded by seismic instruments in July, August, September, and December. During January-July 2020 steam plumes were reported usually 50-300 m above the summit, sometimes rising to 500 m. On 21 March 2020 steam plumes rose to 700 m, and a lahar was recorded by seismic instruments. Lahars were reported on 26 and 28 April, 3 and 5 June, and 11 July.
A swarm of deep volcanic earthquakes was reported by PVMBG on 7 August 2020. This was followed by a phreatic explosion with a dense gray to black ash plume on 8 August that rose 2,000 m above the summit and drifted E; a second explosion that day produced a plume that rose 1,000 m above the summit. According to the Jakarta Post, ash reached the community of Berastagi (15 km E) along with the districts of Naman Teran (5-10 km NE), Merdeka (15 km NE), and Dolat Rayat (20 km E). Continuous tremor events were first recorded on 8 August and continued daily until 26 August. Two explosions were recorded on 10 August; the largest produced a dense gray ash plume that rose 5,000 m above the summit and drifted NE and SE (figure 77). The Darwin VAAC reported the eruption clearly visible in satellite imagery at 9.7 km altitude and drifting W. Later they reported a second plume drifting ESE at 4.3 km altitude. After this large explosion the local National Disaster Management Authority (BNPB) reported significant ashfall in three districts: Naman Teran, Berastagi and Merdeka. Emissions on 11 and 12 August were white and gray and rose 100-200 m. Multiple explosions on 13 August produced white and gray ash plumes that rose 1,000-2,000 m above the summit. Explosions on 14 August produced gray and brown ash plumes that rose 1,000-4,200 m above the summit and drifted S and SW (figure 77). The Darwin VAAC reported that the ash plume was partly visible in satellite imagery at 7.6 km altitude moving W; additional plumes were moving SE at 3.7 km altitude and NE at 5.5 km altitude.
White, gray, and brown emissions rose 800-1,000 m above the summit on 15 and 17 August. The next day white and gray emissions rose 2,000 m above the summit. The Darwin VAAC reported an ash plume visible at 5.2 km altitude drifting SW. A large explosion on 19 August produced a dense gray ash plume that rose 4,000 above the summit and drifted S and SW. Gray and white emissions rose 500 m on 20 August. Two explosions were recorded seismically on 21 August, but rainy and cloudy weather prevented observations. White steam plumes rose 300 m on 22 August, and a lahar was recorded seismically. On 23 August, an explosion produced a gray ash plume that rose 1,500 m above the summit and pyroclastic flows that traveled 1,000 m down the E and SE flanks (figure 78). Continuous tremors were accompanied by ash emissions. White, gray, and brown emissions rose 600 m on 24 August. An explosion on 25 August produced an ash plume that rose 800 m above the peak and drifted W and NW (figure 79). During 26-30 August steam emissions rose 100-400 m above the summit and no explosions were recorded. Dense gray ash emissions rose 1,000 m and drifted E and NE after an explosion on 31 August. Significant SO2 emissions were associated with many of the explosions during August (figure 80).
Explosive activity decreased substantially during September 2020. A single explosion reported on 5 September produced a white and brown ash plume that rose 800 m above the summit and drifted NNE. During the rest of the month steam emissions rose 50-500 m above the summit before dissipating. Two lahars were reported on 7 September, and one each on 11 and 30 September. Although only a single explosion was reported, anomalous SO2 emissions were present in satellite data on several days.
The character of the activity changed during October 2020. Steam plumes rising 50-300 m above the summit were reported during the first week and a lahar was recorded by seismometers on 4 October. The first block avalanches from a new dome growing at the summit were reported on 8 October with material traveling 300 m ESE from the summit (figure 81). During 11-13 October block avalanches traveled 300-700 m E and SE from the summit. They traveled 100-150 m on 14 October. Steam plumes rising 50-500 m above the summit were reported during 15-22 October with two lahars recorded on 21 October. White and gray emissions rose 50-1,000 m on 23 October. The first of a series of pyroclastic flows was reported on 25 October; they were reported daily through the end of the month when the weather permitted, traveling 1,000-2,500 m from the summit (figure 82). In addition, block avalanches from the growing dome were observed moving down the E and SE flanks 500-1,500 m on 25 October and 200-1,000 m each day during 28-31 October (figure 83). Sentinel-2 satellite data indicated a very weak thermal anomaly at the summit in late September; it was slightly larger in late October, corroborating with images of the slow-growing dome (figure 84).
Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Jakarta Post, 3rd Floor, Gedung, Jl. Palmerah Barat 142-143 Jakarta 10270 (URL: https://www.thejakartapost.com/amp/news/2020/08/08/mount-sinabung-erupts-again-after-year-of-inactivity.html);Rizal (URL: https://twitter.com/Rizal06691023/status/1319452375887740930); CultureVolcan (URL: https://twitter.com/CultureVolcan/status/1321156861173923840).
Heard (Australia) — November 2020
Cite this Report
Heard
Australia
53.106°S, 73.513°E; summit elev. 2745 m
All times are local (unless otherwise noted)
Persistent thermal anomalies in the summit crater from June through October 2020
The remote Heard Island is located in the southern Indian Ocean and contains the Big Ben stratovolcano, which has had intermittent activity since 1910. The island’s activity, characterized by thermal anomalies and occasional lava flows (BGVN 45:05), is primarily monitored by satellite instruments. This report updates activity from May through October 2020 using information from satellite-based instruments.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent thermal activity in early June that continued through July (figure 43). Intermittent, slightly higher-power thermal anomalies were detected in late August through mid-October, the strongest of which occurred in October. Two of these anomalies were also detected in the MODVOLC algorithm on 12 October.
Sentinel-2 thermal satellite imagery showed a single thermal anomaly on 3 May. In comparison to the MIROVA graph, satellite imagery showed a small pulse of strong thermal activity at the summit of Big Ben in June (figure 44). Some of these thermal anomalies were accompanied by gas-and-steam emissions. Persistent strong thermal activity continued through July. Starting on 2 July through at least 17 July two hotspots were visible in satellite imagery: one in the summit crater and one slightly to the NW of the summit (figure 45). Some gas-and-steam emissions were seen rising from the S hotspot in the summit crater. In August the thermal anomalies had decreased in strength and frequency but persisted at the summit through October (figure 45).
Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.
Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Sabancaya
Peru
15.787°S, 71.857°W; summit elev. 5960 m
All times are local (unless otherwise noted)
Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020
Sabancaya, located in Peru, is a stratovolcano that has been very active since 1986. The current eruptive period began in November 2016 and has recently been characterized by lava dome growth, daily explosions, ash plumes, ashfall, SO2 plumes, and ongoing thermal anomalies (BGVN 45:06). Similar activity continues into this reporting period of June through September 2020 using information from weekly reports from the Observatorio Vulcanologico INGEMMET (OVI), the Instituto Geofisico del Peru (IGP), and various satellite data. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued a total of 520 reports of ongoing ash emissions during this time.
Volcanism during this reporting period consisted of daily explosions, nearly constant gas-and-ash plumes, SO2 plumes, and persistent thermal anomalies in the summit crater. Gas-and-ash plumes rose to 1.5-4 km above the summit crater, drifting up to 35 km from the crater in multiple directions; several communities reported ashfall every month except for August (table 7). Sulfur dioxide emissions were notably high and recorded almost daily with the TROPOMI satellite instrument (figure 83). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month of the reporting period. These SO2 plumes sometimes persisted over multiple days and ranged between 1,900-10,700 tons/day. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent thermal activity through September within 5 km of the summit crater, though the power varied; by late August, the thermal anomalies were stronger compared to the previous months (figure 84). This increase in power is also reflected by the MODVOLC algorithm that detected 11 thermal anomalies over the days of 31 August and 4, 6, 13, 17, 18, 20, and 22 September 2020. Many of these thermal hotspots were visible in Sentinel-2 thermal satellite imagery, occasionally accompanied by gas-and-steam and ash plumes (figure 85).
Table 7. Persistent activity at Sabancaya during June through September included multiple daily explosions that produced ash plumes rising several kilometers above the summit and drifting in multiple directions; this resulted in ashfall in communities within 35 km of the volcano. Satellite instruments recorded daily SO2 emissions. Data courtesy of OVI-INGEMMET, IGP, and the NASA Global Sulfur Dioxide Monitoring Page.
Month |
Avg. daily explosions by week |
Max plume heights (km above the crater) |
Plume drift (km) and direction |
Communities reporting ashfall |
Minimum days with SO2 over 2 DU |
SO2 emissions per day (tons) by week |
Jun 2020 |
20, 10, 9, 13 |
1.5-4 |
30 km, SE, S, SW, NE, W, E |
Chivay, Achoma, Ichupampa, Yanque, and Coporaque, Sallali, Madrigal, Lari, and Ichupampa |
28 |
8,400, 2,200, 3,100, 7,600 |
Jul 2020 |
20, 15, 11, 12, 19 |
2-2.6 |
15-30 km E, NE, NW, SE, SW, S, W |
Achoma and Chivay |
23 |
4,400, 6,000, 1,900, 2,100, 5,900 |
Aug 2020 |
18, 12, 9, 29 |
1.7-3.6 |
20-30 km W, SW, SE, S, E, NW |
- |
20 |
2,300, 3,800, 5,300, 10,700 |
Sep 2020 |
39, 35, 33, 38, 40 |
1.8-3.5 |
25-35 km SE, S, SW, W, E, NE, N, NW, W |
Lari, Achoma, Maca, Chivay, Taya, Huambo, Huanca, and Lluta |
28 |
9,700, 2,600, 8,800, 7,800, 4,100 |
OVI detected slight inflation on the N part of the volcano, which continued to be observed throughout the reporting period. Persistent thermal anomalies caused by the summit crater lava dome were observed in satellite data. The average number of daily explosions during June ranged from 18 during 1-7 June to 9 during 15-21 June, which generated gas-and-ash plumes that rose 1.5-4 km above the crater and drifted 30 km SE, S, SW, NE, W, and E (figure 86). The strongest sulfur dioxide emissions were recorded during 1-7 June measuring 8,400 tons/day. On 20 June drone video showed that the lava dome had been destroyed, leaving blocks on the crater floor, though the crater remained hot, as seen in thermal satellite imagery (figure 85). During 22-28 June there were an average of 13 daily explosions, which produced ash plumes rising to a maximum height of 4 km, drifting NE, E, and SE. As a result, ashfall was reported in the districts of Chivay, Achoma, Ichupampa, Yanque, and Coporaque, and in the area of Sallali. Then, on 27 June ashfall was reported in several areas NE of the volcano, which included the districts of Madrigal, Lari, Achoma, Ichupampa, Yanque, Chivay, and Coporaque.
Slight inflation continued to be monitored in July, occurring about 4-6 km N of the crater, as well as on the SE flank. Daily explosions continued, producing gas-and-ash plumes that rose 2-2.6 km above the crater and drifting 15-30 km E, NE, NW, SE, SW, S, and W (figure 87). The number of daily explosions increased slightly compared to the previous month, ranging from 20 during 1-5 July to 11 during 13-19 July. SO2 emissions that were measured each week ranged from 1,900 to 6,000 tons/day, the latter of which occurred during 6-12 July. Thermal anomalies continued to be observed in thermal satellite data over the summit crater throughout the month. During 6-12 July gas-and-ash plumes rose 2.3-2.5 km above the crater, drifting 30 km SE, E, and NE, resulting in ashfall in Achoma and Chivay.
OVI reported continued slight inflation on the N and SE flanks during August. Daily explosive activity had slightly declined in the first part of the month, ranging from 18 during the 3-9 August to 9 during 17-23 August. Dense gray gas-and-ash plumes rose 1.7-3.6 km above the crater, drifting 20-30 km in various directions (figure 88), though no ashfall was reported. Thermal anomalies were observed using satellite data throughout the month. During 24-30 August a pulse in activity increased the daily average of explosions to 29, as well as the amount of SO2 emissions (10,700 tons/day); nighttime incandescence accompanied this activity. During 28-29 August higher levels of seismicity and inflation were reported compared to the previous weeks. The daily average of explosions increased again during 31 August-6 September to 39; nighttime incandescence remained.
Increased volcanism was reported during September with the daily average of explosions ranging from 33 during 14-20 September to 40 during 28 September-4 October. The resulting gas-and-ash plumes rose 1.8-3.5 km above the crater drifting 25-35 km in various directions (figure 89). SO2 flux was measured by OVI ranging from 2,600 to 9,700 tons/day, the latter of which was recorded during 31 August to 6 September. During 7-13 September an average of 35 explosions were reported, accompanied by gas-and-ash plumes that rose 2.6-3.5 km above the crater and drifting 30 km SE, SW, W, E, and S. These events resulted in ashfall in Lari, Achoma, and Maca. The following week (14-20 September) ashfall was reported in Achoma and Chivay. During 21-27 September the daily average of explosions was 38, producing ash plumes that resulted in ashfall in Taya, Huambo, Huanca, and Lluta. Slight inflation on the N and SE flanks continued to be monitored by OVI. Strong activity, including SO2 emissions and thermal anomalies over the summit crater persisted into at least early October.
Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.
Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Rincon de la Vieja (Costa Rica) — October 2020
Cite this Report
Rincon de la Vieja
Costa Rica
10.83°N, 85.324°W; summit elev. 1916 m
All times are local (unless otherwise noted)
Frequent small phreatic explosions with intermittent ash plumes during April-September 2020
Rincón de la Vieja is a remote volcanic complex in Costa Rica that contains an acid lake. Frequent weak phreatic explosions have occurred since 2011 (BGVN 44:08). The most recent eruption period began in January 2020, which consisted of small phreatic explosions, gas-and-steam plumes, pyroclastic flows, and lahars (BGVN 45:04). This reporting period covers April through September 2020, with activity characterized by continued small phreatic explosions, three lahars, frequent gas-and-steam plumes, and ash plumes. The primary source of information for this report is the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins and the Washington Volcanic Ash Advisory Center (VAAC).
Small, frequent, phreatic explosions were common at Rincón de la Vieja during this reporting period. One to several eruptions were reported on at least 16 days in April, 15 days in May, 8 days in June, 10 days in July, 18 days in August, and 13 days in September (table 5). Intermittent ash plumes accompanied these eruptions, rising 100-3,000 m above the crater and drifting W, NW, and SW during May and N during June. Occasional gas-and-steam plumes were also observed rising 50-2,000 m above the crater rim.
Table 5. Monthly summary of activity at Rincón de la Vieja during April through September 2020. Courtesy of OVSICORI-UNA.
Month |
Minimum total days of eruptions |
Ash plume height (m above the crater) |
Notable plume drift |
Gas-and-steam plume height (m above the crater) |
Apr 2020 |
16 |
200-1,000 |
- |
50-1,500 |
May 2020 |
15 |
200-3,000 |
W, NW, SW |
200-2,000 |
Jun 2020 |
8 |
100-2,000 |
N |
- |
Jul 2020 |
10 |
1,000 |
- |
- |
Aug 2020 |
18 |
500-1,000 |
- |
500 |
Sep 2020 |
13 |
700 |
- |
50 |
During April small explosions were detected almost daily, some of which generated ash plumes that rose 200-1,000 m above the crater and gas-and-steam emissions that rose 50-1,500 m above the crater. On 4 April an eruption at 0824 produced an ash plume that rose 1 km above the crater rim. A small hydrothermal explosion at 0033 on 11 April, recorded by the webcam in Sensoria (4 km N), ejected water and sediment onto the upper flanks. On 15 April a phreatic eruption at 0306 resulted in lahars in the Pénjamo, Azufrada, and Azul rivers, according to local residents. Several small explosions were detected during the morning of 19 April; the largest phreatic eruption ejected water and sediment 300 m above the crater rim and onto the flanks at 1014, generated a lahar, and sent a gas-and-steam plume 1.5 km above the crater (figure 30). On 24 April five events were recorded by the seismic network during the morning, most of which produced gas-and-steam plumes that rose 300-500 m above the crater. The largest event on this day occurred at 1020, ejecting water and solid material 300 m above the crater accompanied by a gas-and-steam plume rising up to 1 km.
Similar frequent phreatic activity continued in May, with ash plumes rising 200-1,500 m above the crater, drifting W, NW, and SW, and gas-and-steam plumes rising up to 2 km. On 5 May an eruption at 1317 produced a gas-and-steam plume 200 m above the crater and a Washington VAAC advisory reported that an ash plume rose to 2.1 km altitude, drifting W. An event at 1925 on 9 May generated a gas-and-steam plume that rose almost 2 km. An explosion at 1128 on 15 May resulted in a gas-and-steam plume that rose 1 km above the crater rim, accompanied by a gray, sediment-laden plume that rose 400 m. On 21 May a small ash eruption at 0537 sent a plume 1 km above the crater (figure 31). According to a Washington VAAC advisory, an ash plume rose 3 km altitude, drifting NW on 22 May. During the early evening on 25 May an hour-long sequence of more than 70 eruptions and emissions, according to OVSICORI-UNA, produced low gas-and-steam plumes and tephra; at 1738, some ejecta was observed above the crater rim. The next day, on 26 May, up to 52 eruptive events were observed. An eruption at 2005 was not visible due to weather conditions; however, it resulted in a minor amount of ashfall up to 17 km W and NW, which included Los Angeles of Quebrada Grande and Liberia. A phreatic explosion at 1521 produced a gray plume that rose 1.5 km above the crater (figure 31). An eruption at 1524 on 28 May sent an ash plume 3 km above the crater that drifted W, followed by at least three smaller eruptions at 1823, 1841, and 1843. OVSICORI-UNA reported that volcanism began to decrease in frequency on 28-29 May. Sulfur dioxide emissions ranged between 100 and 400 tons per day during 28 May to 15 June.
There were eight days with eruptions in June, though some days had multiple small events; phreatic eruptions reported on 1-2, 13, 16-17, 19-20, and 23 June generated plumes 1-2 km above the crater (figure 32). During 2-8 June SO2 emissions were 150-350 tons per day; more than 120 eruptions were recorded during the preceding weekend. Ashfall was observed N of the crater on 4 June. During 9-15 June the SO2 emissions increased slightly to 100-400 tons per day. During 16-17 June several small eruptive events were detected, the largest of which occurred at 1635 on 17 June, producing an ash plume that rose 1 km above the crater.
Explosive hydrothermal activity was lower in June-September compared to January-May 2020, according to OVSICORI-UNA. Sporadic small phreatic explosions and earthquakes were registered during 22-25 and 29 July-3 August, though no lahars were reported. On 25 July an eruptive event at 0153 produced an ash plume that rose 1 km above the crater. Similar activity continued into August. On 5 and 6 August phreatic explosions were recorded at 0546 and 0035, respectively, the latter of which generated a plume that rose 500 m above the crater. These events continued to occur on 10, 16, 19-20, 22-25, 27-28, and 30-31 August, generating plumes that rose 500 m to 1 km above the crater.
On 3 September geologists observed that the acid lake in the main crater had a low water level and exhibited strong gas emissions; vigorous fumaroles were observed on the inner W wall of the crater, measuring 120°C. Gas-and-steam emissions continued to be detected during September, occasionally accompanied by phreatic eruptions. On 7 September an eruption at 0750 produced an ash plume that rose 50 m above the crater while the accompanying gas-and-steam plume rose 500 m. Several low-energy phreatic explosions occurred during 8-17, 20, and 22-28 September, characterized primarily by gas-and-steam emissions. An eruption on 16 September ejected material from the crater and generated a small lahar. Sulfur dioxide emissions were 100 tons per day during 16-21 September. On 17 September an eruption at 0632 produced an ash plume that rose 700 m above the crater (figure 33). A relatively large eruptive event at 1053 on 22 September ejected material out of the crater and into N-flank drainages.
Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.
Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).
Fuego (Guatemala) — December 2020
Cite this Report
Fuego
Guatemala
14.473°N, 90.88°W; summit elev. 3763 m
All times are local (unless otherwise noted)
Daily explosions, ash emissions, and block avalanches during August-November 2020
Guatemala's Volcán de Fuego has been erupting vigorously since 2002 with reported eruptions dating back to 1531. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars, including a series of explosions and pyroclastic flows in early June 2018 that caused several hundred fatalities. Eruptive activity consisting of explosions with ash emissions, block avalanches, and lava flows began again after a short break and has continued; activity during August-November 2020 is covered in this report. Daily reports are provided by the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH); aviation alerts of ash plumes are issued by the Washington Volcanic Ash Advisory Center (VAAC). Satellite data provide valuable information about heat flow and emissions.
Summary of activity during August-November 2020. Eruptive activity continued at Fuego during August-November 2020, very similar to that during the first part of the year (table 22). Ash emissions were reported daily by INSIVUMEH with explosions often in the 6-12 per hour range. Most of the ash plumes rose to 4.5-4.7 km altitude and generally drifted SW, W, or NW, although rarely the wind direction changed and sent ash to the S and SE. Multiple daily advisories were issued throughout the period by the Washington VAAC warning aviators about ash plumes, which were often visible on the observatory webcam (figure 136). Some of the communities located SW of the volcano received ashfall virtually every day during the period. Block avalanches descended the major drainages daily as well. Sounds were heard and vibrations felt from the explosions most days, usually 7-12 km away. The stronger explosions could be felt and heard 20 km or more from the volcano. During late August and early September a lava flow was active on the SW flank, reaching 700 m in length during the second week of September.
Table 22. Eruptive activity was consistently high at Fuego throughout August – November 2020 with multiple explosions every hour, ash plumes, block avalanches, and near-daily ashfall in the communities in certain directions within 10-20 km of the volcano. Courtesy of INSIVUMEH daily reports.
Month |
Explosions per hour |
Ash Plume Heights (km) |
Ash plume distance (km) and direction |
Drainages affected by block avalanches |
Communities reporting ashfall |
Aug 2020 |
2-15 |
4.3-4.8 |
SW, W, NW, S, N, 8-20 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa |
Panimaché I and II, Morelia, Rochela, Finca Palo Verde, Yepocapa, Santa Sofia, El Porvenir, Palo Verde, Sangre de Cristo, Santa Lucía Cotzumalguapa |
Sep 2020 |
3-16 |
4.3-4.9 |
W, SW, NW, N, S, 8-20 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa |
Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, Yepocapa, Porvenir, Yucales, Ojo de Agua, Finca La Conchita |
Oct 2020 |
3-19 |
4.1-4.8 |
SW, W, S, SE, N, E, 10-20 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa |
Panimache I and II, Morelia, Sangre de Cristo, Yepocapa, La Rochela, El Porvenir, Ceilán, Santa Sofía, Yucales, Finca Palo Verde |
Nov 2020 |
4-14 |
4.0-4.8 |
S, SW, SE, W, NW, 10-35 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa El Jute |
Panimaché I and II, Sangre de Cristo, Morelia, Ceilan, La Rochela, El Zapote, Santa Sofía, Yucales, San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas y Antigua Guatemala, Palo Verde, El Porvenir, San Pedro Yepocapa, Quisaché, Santa Emilia |
The frequent explosions, block avalanches, and lava flows produced a strong thermal signal throughout the period that was recorded in both the MIROVA project Log Radiative Power graph (figure 137) and in numerous Sentinel-2 satellite images (figure 138). MODVOLC data produced thermal alerts 4-6 days each month. At least one lahar was recorded each month; they were most frequent in September and October.
Activity during August-November 2020. The number of explosions per hour at Fuego during August 2020 was most often 7-10, with a few days that were higher at 10-15. The ash plumes usually rose to 4.5-4.8 km altitude and drifted SW or W up to 15 km. Incandescence was visible 100-300 m above the summit crater on most nights. All of the major drainages including the Seca, Santa Teresa, Ceniza, Trinidad, Taniluyá, Las Lajas, and Honda were affected by block avalanches virtually every day. In addition, the communities of Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, El Porvenir, San Pedro Yepocapa, and Sangre de Cristo reported ashfall almost every day. Sounds and vibrations were reported multiple days every week, often up to 12 km from the volcano, but occasionally as far as 20 km away. Lahars carrying blocks of rocks and debris 1-2 m in diameter descended the SE flank in the Las Lajas and Honda ravines on 6 August. On 27 August a lava flow 150 m long appeared in the Ceniza ravine. It increased in length over the subsequent few days, reaching 550 m long on 30 August, with frequent block avalanches falling off the front of the flow.
The lava flow in the Ceniza ravine was reported at 100 m long on 5 September. It grew to 200 m on 7 September and reached 700 m long on 12 September. It remained 200-350 m long through 19 September, although instruments monitored by INSIVUMEH indicated that effusive activity was decreasing after 16 September (figure 139). A second flow was 200 m long in the Seca ravine on 19 September. By 22 September, active flows were no longer observed. The explosion rate varied from a low of 3-5 on 1 September to a high of 12-16 on 4, 13, 18, and 22-23 September. Ash plumes rose to 4.5-4.9 km altitude nearly every day and drifted W, NW, and SW occasionally as far as 20 km before dissipating. In addition to the active flow in the Ceniza ravine, block avalanches persisted in the other ravines throughout the month. Ashfall continued in the same communities as in August, but was also reported in Yucales on 4 September along with Ojo de Agua and Finca La Conchita on 17 September. The Las Lajas, Honda, and El Jute ravines were the sites of lahars carrying blocks up to 1.5 m in diameter on 8 and 18 September. On 19 and 24 September lahars again descended Las Lajas and El Jute ravines; the Ceniza ravine had a lahar on 19 September.
The same activity continued during October 2020 with regard to explosion rates, plume altitudes, distances, and directions of drift. All of the major ravines were affected by block avalanches and the same communities located W and SW of the summit reported ashfall. In addition, ashfall was reported in La Rochela on 2, 3, 7-9 and 30 October, in Ceilán on 3 and 7-9 October, and in Yucales on 5, 14, 18 and 19 October. Multiple strong explosions with abundant ash were reported in a special bulletin on 14 October; high levels of explosive activity were recorded during 16-23 October. Vibrations and sounds were often felt up to 15 km away and heard as far as 25 km from the volcano during that period. Particularly strong block avalanches were present in the Seca and Ceniza ravines on 20, 25, and 30 October. Abundant rain on 9 October resulted in lahars descending all of the major ravines. The lahar in the Las Lajas ravine overflowed and forced the closure of route RN-14 road affecting the community of San Miguel on the SE flank (figure 140). Heavy rains on 15 October produced lahars in the Ceniza, Las Lajas, and Hondas ravines with blocks up to 2 m in diameter. Multiple lahars on 27 October affected Las Lajas, El Jute, and Honda ravines.
On 8 November 2020 a lahar descended the Seca ravine, carrying rocks and debris up to 1 meter in diameter. During the second week of November 2020, the wind direction changed towards the SE and E and brought ashfall to San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas, and Antigua Guatemala on 8 November. Especially strong block avalanches were noted in the Seca and Ceniza ravines on 14, 19, 24, and 29 November. During a period of stronger activity in the fourth week of November, vibrations were felt and explosions heard more than 20 km away on 22 November and more than 25 km away on 27 November. In addition to the other communities affected by ashfall during August-November, Quisaché and Santa Emilia reported ashfall on 30 November.
Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.
Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground);Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).
Kikai
Japan
30.793°N, 130.305°E; summit elev. 704 m
All times are local (unless otherwise noted)
Explosion on 6 October 2020 and thermal anomalies in the crater
Kikai is a mostly submarine caldera, 19-km-wide, just S of the Ryukyu Islands of Japan. At the NW rim of the caldera lies the island of Satsuma Iwo Jima (also known as Satsuma-Iojima and Tokara Iojima), and the island’s highest peak, Iodake, a steep stratovolcano. Recent weak ash explosions at Iodake occurred on 2 November 2019 and 29 April 2020 (BGVN 45:02, 45:05). The volcano is monitored by the Japan Meteorological Agency (JMA) and satellite sensors. This report covers the period May-October 2020. During this time, the Alert Level remained at 2 (on a 5-level scale).
Activity at Kikai has been relatively low since the previous eruption on 29 April 2020. During May through October occasional white gas-and-steam emissions rose 0.8-1.3 km above the Iodake crater, the latter of which was recorded in September. Emissions were intermittently accompanied by weak nighttime incandescence, according to JMA (figure 17).
A small eruption at 0757 on 6 October occurred in the NW part of the Iodake crater, which produced a grayish white plume rising 200 m above the crater (figure 18). Faint thermal anomalies were detected in Sentinel-2 thermal satellite imagery in the days just before this eruption (28 September and 3 October) and then after (13 and 23 October), accompanied by gas-and-steam emissions (figures 19 and 20). Nighttime crater incandescence continued to be observed. JMA reported that sulfur dioxide emissions measured 700 tons per day during October, compared to the previous eruption (400-2,000 tons per day in April 2020).
Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.
Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Manam (Papua New Guinea) — October 2020
Cite this Report
Manam
Papua New Guinea
4.08°S, 145.037°E; summit elev. 1807 m
All times are local (unless otherwise noted)
Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020
Manam, located 13 km off the N coast of Papua New Guinea, is a basaltic-andesitic stratovolcano with historical eruptions dating back 400 years. Volcanism has been characterized by low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption period has been ongoing since 2014, typically with minor explosive activity, thermal activity, and SO2 emissions (BGVN 45:05). This reporting period updates information from April through September 2020, consisting of intermittent ash plumes from late July to mid-September, persistent thermal anomalies, and SO2 emissions. Information comes from Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.
Explosive activity was relatively low during April through late July; SO2 emissions and low power, but persistent, thermal anomalies were detected by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite recorded SO2 emissions, many of which exceeded two Dobson Units, that drifted generally W (figure 76). Distinct SO2 emissions were detected for 10 days in April, 4 days in May, 10 days in June, 4 days in July, 11 days in August, and 8 days in September.
Thermal anomalies recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system were sparse from early January through June 2020, totaling 11 low-power anomalies within 5 km of the summit (figure 77). From late July through September a pulse in thermal activity produced slightly stronger and more frequent anomalies. Some of this activity could be observed in Sentinel-2 thermal satellite imagery (figure 78). Occasionally, these thermal anomalies were accompanied by gas-and-steam emissions or ash plumes, as shown on 28 July. On 17 August a particularly strong hotspot was detected in the S summit crater. According to the MODVOLC thermal alert data, a total of 10 thermal alerts were detected in the summit crater over four days: 29 July (5), 16 August (1), and 3 (1) and 8 (3) September.
Activity during mid-July slightly increased compared to the previous months. On 16 July seismicity increased, fluctuating between low and moderate RSAM values through the rest of the month. In Sentinel-2 satellite imagery a gray ash plume was visible rising from the S summit crater on 28 July (figure 78). RSAM values gradually increased from a low average of 200 to an average of 1200 on 30 July, accompanied by thermal hotspots around the summit crater; a ground observer reported incandescent material was ejected from the summit. On 31 July into 1 August ash plumes rose to 4.3 km altitude, accompanied by an incandescent lava flow visible at the summit, according to a Darwin VAAC advisory.
Intermittent ash plumes continued to be reported by the Darwin VAAC on 1, 6-7, 16, 20, and 31 August. They rose from 2.1 to 4.6 km altitude, the latter of which occurred on 31 August and drifted W. Typically, these ash plumes extended SW, W, NW, and WSW. On 11 September another ash plume was observed rising 2.4 km altitude and drifting W.
Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.
Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Search Bulletin Archive by Publication Date
Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.
The default month and year is the latest issue available.
Scientific Event Alert Network Bulletin - Volume 09, Number 11 (November 1984)
Managing Editor: Lindsay McClelland
Arenal (Costa Rica)
Strombolian activity and lava extrusion continue
Atmospheric Effects (1980-1989) (Unknown)
Aerosols increase over Italy but decline over Hawaii
Bagana (Papua New Guinea)
Lava dome grows & spawns avalanches; seismicity builds
Campi Flegrei (Italy)
Uplift stops in October, but resumes in November
Etna (Italy)
Occasional ash emission; flank seismicity continues
Kilauea (United States)
Episodes 27 and 28 of 1983-84 middle E Rift Zone eruption
Krafla (Iceland)
End of eruption described; tilt data; lava flows mapped
Langila (Papua New Guinea)
Occasional ash emission; seismicity low
Manam (Papua New Guinea)
Ash-laden emissions; seismicity declines
Marapi (Indonesia)
Small plumes
Rabaul (Papua New Guinea)
Activity declines; alert reduced to Stage 1
St. Helens (United States)
Seismicity, SO2 emission, and deformation weak
Ulawun (Papua New Guinea)
Seismicity increases; vapor emission
Veniaminof (United States)
Activity resumes; ash plumes to about 5 km altitude
Villarrica (Chile)
Lava carves channels in ice; bulge on opposite flank
Arenal (Costa Rica) — November 1984
Cite this Report
Arenal
Costa Rica
10.463°N, 84.703°W; summit elev. 1670 m
All times are local (unless otherwise noted)
Strombolian activity and lava extrusion continue
The Strombolian activity that began to accompany the extrusion of block lava flows in June was continuing in mid-November. The eruptions were accompanied by strong rumblings. Blocks and bombs fell as much as 300 m from the crater. Ash was carried by the wind toward the W, to a distance of 5 km. No losses have occurred to agriculture or livestock. Nevertheless, because of the action of acid rain and ash, some vegetable species have chlorosis symptoms and fungus proliferation, both of which have affected plant development.
Lava flow number 49 ended its advance in October. A new flow (no. 50) began to advance toward the SW in October, stopping in November. Flow no. 51, descending toward the W, was still active in mid-November. Portable seismic stations have been operated periodically. They have not registered type A or B volcanic earthquakes, but only events produced by the explosions, and volcanic tremors of different character.
Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.
Information Contacts: Observatorio Vulcanológico y Sismológico, Univ. Nacional, Heredia.
Atmospheric Effects (1980-1989) (Unknown) — November 1984
Cite this Report
Atmospheric Effects (1980-1989)
Unknown
Unknown, Unknown; summit elev. m
All times are local (unless otherwise noted)
Aerosols increase over Italy but decline over Hawaii
Since the El Chichón eruption cloud was first detected over Mauna Loa, Hawaii in April 1982, the aerosols measured by lidar there have extended downward from the stratosphere into the upper troposphere, without a sharply-defined base. Aerosol concentrations in the upper troposphere decreased graduually with decreasing altitude. November lidar data showed a return to typical pre-El Chichón profiles in the upper troposphere, with few aerosols and cleanest air at the top of the troposphere, near the tropopause.
The Mauna Loa lidar cannot reliably measure aerosol concentrations above about 30 km altitude, but the presence of a distinct break in slope in the recorded profile at roughly 39 km in past months has suggested enhanced aerosol concentrations to that altitude. However, lidar measurements on 15 and 27 November showed no structure between 30 and 40 km altitude, suggesting that no aerosols were present. The 27 November data also showed a substantial decrease in the integrated aerosol backscattering, suggesting a decline in the stratospheric aerosol load. The decrease in integrated backscattering appeared real and the instrument signal looked typical, but the presence of a heavy cirrus layer at the altitude where the instrument is usually normalized may have distorted the data. No similar decreases in aerosol backscattering were observed at Fukuoka, Japan or Hampton, Virginia.
Lidar data at Firenze, Italy showed no firm evidence of aerosols from the eruption of Mayon (Philippines) in September, but integrated backscattering increased from the end of October through the end of November. Aerosol loading seemed quite continuous from about 14 km to 22-23 km altitude. Measurements at the end of November showed more evidence of inhomogeneity of aerosol distribution with height.
William Fuller reports that a ground truth measurement experiment took place over Laramie, Wyoming 29-30 November during the overflight of the newly-launched SAGE II satellite. Sun photometer and airborne lidar measurements were conducted on board the Ames Research Center CV 990 aircraft. Aerosol, water vapor, ozone, and NO2 measurements were made using balloon-borne samplers. Excellent data sets were obtained on each day.
Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found here.
Information Contacts: T. DeFoor, MLO; W. Fuller, NASA; M. Fujiwara and M. Hirono, Kyushu Univ., Japan; L. Stefanutti, Isto. di Ricera Sulle Onde Electromagnetiche, Italy.
Bagana (Papua New Guinea) — November 1984
Cite this Report
Bagana
Papua New Guinea
6.137°S, 155.196°E; summit elev. 1855 m
All times are local (unless otherwise noted)
Lava dome grows & spawns avalanches; seismicity builds
"A new eruptive phase started in October 1984. The extrusion of a fresh batch of andesitic magma into the summit crater was accompanied by a marked increase in the volume of vapour rising above the crater, an increase in the area of fumarolic activity in and around the crater, night glows, and incandescent material tumbling down the flanks. Simultaneously, volcanic seismicity increased from fewer than 10 B-type events per day to over 100 per day by 19 October; harmonic tremor appeared on the 12th and became sub-continuous after the 15th. A relative drop in volcano seismicity (24-27 October) was followed by re-intensification. The daily frequency of events was about 1000 by 11 November, and consistently above this after 15 November. Strong tremor was recorded for periods of several hours on 4, 5, 9, 13, 18, 20, and 22 November. Explosion earthquakes were occasionally recorded.
"An aerial inspection by Bougainville Island Copper Ltd. geologists revealed that the dome of viscous andesite had bulged to about 15 m above the crater rim and lava was spilling over the N, E, and W parts of the rim. Debris on these three flanks corroborated the observations of incandescent material avalanching down the sides of the volcano, presumably from collapse of parts of the dome. Paradoxically, the long-established lava flow channel on the N flank of the volcano seems to have been drained, leaving an empty lava channel from the crater rim down to about 1,100 m altitude."
Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.
Information Contacts: P. de Saint-Ours, RVO; K. McCue, Bougainville Island Copper Ltd.
Campi Flegrei (Italy) — November 1984
Cite this Report
Campi Flegrei
Italy
40.827°N, 14.139°E; summit elev. 458 m
All times are local (unless otherwise noted)
Uplift stops in October, but resumes in November
"Activity at Campi Flegrei declined in October. The velocity of uplift, as measured by the tide gauge at Pozzuoli, was null for the entire month and seismic activity was very low. This was the first substantial decrease in activity observed since the beginning of the crisis in the summer of 1982 (figures 7 and 8). A new increase in seismic activity was observed during the first week of November with a M 2.7 earthquake on the 5th. During the second week, uplift started again with a mean velocity of 1 mm/day. On 8 November, events of magnitude 3.2, 3.2, 2.8, and 3.3 occurred in the Gulf of Pozzuoli. Other events occurred on the 10th (M 2.9) and 11th (M 3). Minor events occurred during the third week, but uplift velocity remained at 1 mm/day. During the last week in November, uplift velocity rose to 2.5 mm/day with two earthquakes (M 3.1, M 2.9) on 26 November and several others of lower magnitude.
"The temperatures of fumaroles in Solfatara Crater remained constant at 156°C. A new fumarolic vent opened in the crater during the night of 16-17 November with a violent emission of steam.
"Figure 9 shows the distribution of the 181 best-located events between January 1983 and May 1984. These events were recorded at more than 12 stations and have an (rms) less than 0.1. The figure shows an alignment of the January 1983-May 1984 epicenters on land along a N110°E direction with a clustering of the stronger earthquakes around Solfatara Crater. The earthquake area is limited on the E by the remains of the old Agnano Crater and on the west by Monte Nuovo Crater. A striking feature is that the earthquakes occur mainly along the coastline and the remains of an old marine terrace which uplifted some 40 m about 5,000 years BP.
"Figure 10 shows two perpendicular sections of the same data set. The N20°E section shows two clusters of events, on land and in the sea, with an aseismic area in the middle. The same section shows the rather abrupt boundary between the seismically active areas on land and in the sea. Most of the earthquakes occur between 2 and 3 km depth, but these data are still preliminary due to the uncertainties of the velocity model."
Geologic Background. Campi Flegrei is a large 13-km-wide caldera on the outskirts of Naples that contains numerous phreatic tuff rings and pyroclastic cones. The caldera margins are poorly defined, and on the south lie beneath the Gulf of Pozzuoli. Episodes of dramatic uplift and subsidence within the dominantly trachytic caldera have occurred since Roman times. The earliest known eruptive products are dated 47,000 yrs BP. The caldera formed following two large explosive eruptions, the massive Campanian ignimbrite about 36,000 BP, and the over 40 km3 Neapolitan Yellow Tuff (NYT) about 15,000 BP. Following eruption of the NYT a large number of eruptions have taken place from widely scattered subaerial and submarine vents. Most activity occurred during three intervals: 15,000-9500, 8600-8200, and 4800-3800 BP. Two eruptions have occurred in historical time, one in 1158 at Solfatara and the other in 1538 that formed the Monte Nuovo cinder cone.
Information Contacts: G. Luongo and R. Scandone, OV; F. Barberi, Univ. di Pisa.
Etna
Italy
37.748°N, 14.999°E; summit elev. 3320 m
All times are local (unless otherwise noted)
Occasional ash emission; flank seismicity continues
No major eruptive activity has occurred since the Southeast Crater eruption ended in mid-October. From the Northeast Crater, emission of white vapor was more or less continuous and consistent. Sporadic expulsions of reddish ash were observed 27 November and 3 December. Ejection of mainly reddish ash observed at Bocca Nuova was particularly violent 22-24 November. Ash ejected 23 November was mainly dark in color, but on succeeding days was mostly reddish older material that had fallen into the conduit. Ash fell on the lower SE flank. Only weak emission of gas and vapor occurred from The Chasm.
Flank seismicity began as the Southeast Crater eruption ended in mid-October (09:10). Isolated tremors continued in November. Both felt and located events were mainly on the N and NE flanks. No additional damage was reported.
Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.
Information Contacts: R. Romano, IIV.
Kilauea (United States) — November 1984
Cite this Report
Kilauea
United States
19.421°N, 155.287°W; summit elev. 1222 m
All times are local (unless otherwise noted)
Episodes 27 and 28 of 1983-84 middle E Rift Zone eruption
EPISODES 26 and 27
"Episode 26 occurred 2 November between about 1140 and 1634. This episode of high fountaining from the Pu'u O vent lasted only 5 hours, making it the shortest episode in 1983-84 eruption sequence. Lava exited through the N spillway of the cone and fanned out into broad aa flows that extended a maximum of 2.2 km NE and ESE from the vent. During the 17-day repose period following episode 26 there was little activity at the vent, unlike the period between episodes 25 and 26. Episode 27 began 20 November at 0005 and lasted 10 hours. High fountains produced aa flows extending 3.5 km SE.
"Because poor weather hampered efforts to obtain aerial photographs, an accurate map of episode 26 flows was not completed before the flows were overrun by lava of episode 27 (figure 30). The estimated volume of lava from the two episodes combined is approximately 16 x 106 m3. The summit of Pu'u O, which increased in height by 10 m in November, was 886 m above sea level and 167 m above the pre-1983 surface after episode 27.
Deformation. "Summit subsidence (recorded by the Uwekahuna tiltmeter) associated with episode 26 began at 1100 on 2 November. The net E-W tilt change related to the subsidence was 7.5 µrad; more than half of the tilt change occurred after the end of episode 26. During the next 17 days, the summit tilt regained 7.7 µrad. Subsidence accompanying episode 27 started at about 0030 on 20 November and continued until 1630, resulting in a net tilt change of 12.3 µrad. By the end of the month, the summit tilt had recovered 8 µrad.
Seismicity. "Shallow seismic events correlated with the continuing volcanic activity on the middle E rift zone. Strong harmonic tremor was recorded during major outpourings of lava, and low-level tremor and numerous tiny shocks occurred near the active vent between eruptive episodes.
"Harmonic tremor associated with episode 26 started with bursts of increasing amplitude at 1004 on 2 November and developed into sustained high-level tremor by 1140. Tremor remained strong for the duration of the eruptive episode. At 1634, after the cessation of high fountaining, tremor decreased rapidly. Low tremor and tiny microearthquakes resumed in the middle E rift zone during the period of relative quiescence following episode 26.
"At 2101 on 19 November, harmonic tremor began to increase intermittently at Pu'u O. The intensity of tremor reached about an order of magnitude above background at 0005 on 20 November, triggering the HVO tremor alarm system. For the next 10 hours, the seismic signal was sustained at the high level characteristic of periods of high fountaining and continuous lava production. Tremor decreased rapidly between 1008 and 1012, following the end of episode 27.
"Seismic activity assumed a typical interphase pattern for the remainder of the month. Low-level harmonic tremor continued in the middle E rift zone, varying from a pattern of constant amplitude to episodic short bursts indicative of gas-piston activity in the Pu'u O vent. The number of microearthquakes was generally below average in the summit region and above average in the E rift zone."
Addendum: Episode 28 began 3 December at about 1905. Vigorous fountaining fed lava flows to the N and SE during the 14-hour episode, which ended about 0941 the next morning.
Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.
Information Contacts: G. Ulrich, A. Okamura, R. Koyanagi, and C. Heliker, HVO.
Krafla (Iceland) — November 1984
Cite this Report
Krafla
Iceland
65.715°N, 16.728°W; summit elev. 800 m
All times are local (unless otherwise noted)
End of eruption described; tilt data; lava flows mapped
"The early phase of the September eruption (9:8) was very similar to previous eruptions. Maximum eruptive activity was reached within about 1 hour, and while the whole 8.5-km-long fissure was active thin fluid lava advanced along the entire zone (figure 8). In the early hours of the eruption's first morning, 5 September, activity decreased rapidly, dying out on many of the fissure segments, especially in the southern half. By 6 September only one crater remained active, just S of the N end of the original fissure.
"By midday 5 September, while activity was dying out along most of the fissure, deflation over the magma reservoirs below Leirhnjúkur stopped and inflation began (figure 9). This situation changed on 9 September when deflation resumed. Around the same time, activity at the one remaining crater increased. Deflation and relatively vigorous eruption continued until the afternoon of 18 September when activity at the crater died out and inflation resumed. The inflation pattern since then is similar to that following previous eruptions.
"The new lava covers about 24 km2 and the total area now covered by Krafla lava is about 36 km2. As in some of the previous eruptions lava was observed flowing into older fissures, causing secondary rifting. Sometimes this lava reemerged farther along the fissures. Flames from burning gas were widely observed near the flow margin."
Further Reference. Tryggvason, E., 1986, Multiple magma reservoirs in a rift zone volcano: ground deformation and magma transport during the September 1984 eruption of Krafla, Iceland: JVGR, v. 28, p. 1-44.
Geologic Background. The Krafla central volcano, located NE of Myvatn lake, is a topographically indistinct 10-km-wide caldera that is cut by a N-S-trending fissure system. Eruption of a rhyolitic welded tuff about 100,000 years ago was associated with formation of the caldera. Krafla has been the source of many rifting and eruptive events during the Holocene, including two in historical time, during 1724-29 and 1975-84. The prominent Hverfjall and Ludent tuff rings east of Myvatn were erupted along the 100-km-long fissure system, which extends as far as the north coast of Iceland. Iceland's renowned Myvatn lake formed during the eruption of the older Laxarhraun lava flow from the Ketildyngja shield volcano of the Fremrinamur volcanic system about 3800 years before present (BP); its present shape is constrained by the roughly 2000 years BP younger Laxarhraun lava flow from the Krafla volcanic system. The abundant pseudocraters that form a prominent part of the Myvatn landscape were created when the younger Laxarhraun lava flow entered the lake.
Information Contacts: K. Grönvold and G. Sigvaldason, NVI; P. Einarsson, Univ. of Iceland.
Langila (Papua New Guinea) — November 1984
Cite this Report
Langila
Papua New Guinea
5.525°S, 148.42°E; summit elev. 1330 m
All times are local (unless otherwise noted)
Occasional ash emission; seismicity low
"For the period September to November, activity remained at a low level. Occasional grey or brown ash emissions from Crater 2 were reported. Seismicity was at a very low level with only a few volcanic earthquakes recorded."
Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.
Information Contacts: C. McKee, RVO.
Manam (Papua New Guinea) — November 1984
Cite this Report
Manam
Papua New Guinea
4.08°S, 145.037°E; summit elev. 1807 m
All times are local (unless otherwise noted)
Ash-laden emissions; seismicity declines
"No strong eruptive activity took place in October and November, but both craters continued to release ash-laden emissions, usually in small-to-moderate volumes. Summit incandescence was seen only once, from Main crater on 7 October. Daily earthquake totals decreased from about 2,300 at the beginning of October to 1,500 around 19 October and have remained steady since then. Seismic amplitudes declined slightly in early October, then stabilized at about 2-3 times normal. No significant tilts were recorded."
Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.
Information Contacts: C. McKee, RVO.
Marapi (Indonesia) — November 1984
Cite this Report
Marapi
Indonesia
0.38°S, 100.474°E; summit elev. 2885 m
All times are local (unless otherwise noted)
Small plumes
On 15 November at 0500 Marapi emitted a white to brownish plume. A small, possibly phreatic, eruption occurred at 0830, ejecting a blackish plume to about 400 m height. No additional activity was reported. No residents were evacuated.
Geologic Background. Gunung Marapi, not to be confused with the better-known Merapi volcano on Java, is Sumatra's most active volcano. This massive complex stratovolcano rises 2,000 m above the Bukittinggi Plain in the Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera. The summit craters are located along an ENE-WSW line, with volcanism migrating to the west. More than 50 eruptions, typically consisting of small-to-moderate explosive activity, have been recorded since the end of the 18th century; no lava flows outside the summit craters have been reported in historical time.
Information Contacts: A. Sudradjat, VSI.
Rabaul (Papua New Guinea) — November 1984
Cite this Report
Rabaul
Papua New Guinea
4.271°S, 152.203°E; summit elev. 688 m
All times are local (unless otherwise noted)
Activity declines; alert reduced to Stage 1
"The level of activity subsided again following the seismic and ground deformation crisis on 18 October. Caldera seismicity in November consisted of 3,985 earthquakes with total energy of about [6 x 1015] ergs (maximum ML, [2.9]). Most of the energy was released during small swarms on 6, 8, 10, 18, 19, and 27 November. Seismicity was concentrated in the N half of the caldera seismic zone. Meanwhile, ground deformation measurements reflected slow steady inflation at both shallow magma reservoirs, under the mouth of Greet Harbour and immediately E of Vulcan. In the Greet Harbour area, maximum uplift was 19 mm, maximum tilt was 30 µrad, and maximum horizontal strain was 20 ppm.
"In view of the general decrease in activity at Rabaul since the beginning of June 1984, the RVO advised government authorities on 22 November that the situation was considered to have returned to a stage-1 volcanological level of alert in which the anticipated eruption is not now expected to occur before several months to a few years."
Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.
Information Contacts: C. McKee and P. Lowenstein, RVO.
St. Helens (United States) — November 1984
Cite this Report
St. Helens
United States
46.2°N, 122.18°W; summit elev. 2549 m
All times are local (unless otherwise noted)
Seismicity, SO2 emission, and deformation weak
Seismicity, SO2 emission, and deformation of the composite lava dome remained at background levels in November. The maximum displacement rate on the N side of the dome was 3 mm/day. SO2 data were successfully collected from four flights in mid to late November. Rates of emission averaged 25 ± 10 t/d. Very few seismic events were recorded in November and early December.
It has proven difficult to discriminate between the seismic signatures produced by different types of surface events, including tephra emissions, snow avalanches, and rockfalls from the dome and crater walls. Field evidence indicates that the seismic signals reported in SEAN 09:10 were not produced by steam-and-ash emissions. Since 24 September, no emissions of tephra from the dome have been observed by field geologists, nor have any tephra layers been found in the snowpack that has been accumulating in the crater through October and November. USGS geologists noted that each of the three most recent large explosions (March 1982, February 1983, and May 1984) were preceded by a period (1.5-5 months) in which no tephra emission events were observed.
Geologic Background. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fujisan of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago and has been the most active volcano in the Cascade Range during the Holocene. Prior to 2,200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older edifice, but few lava flows extended beyond the base of the volcano. The modern edifice consists of basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the north flank, and were witnessed by early settlers.
Information Contacts: D. Swanson, C. Mullins, USGS CVO, Vancouver, WA; C. Jonientz-Trisler, University of Washington.
Ulawun (Papua New Guinea) — November 1984
Cite this Report
Ulawun
Papua New Guinea
5.05°S, 151.33°E; summit elev. 2334 m
All times are local (unless otherwise noted)
Seismicity increases; vapor emission
"No further eruptive activity has occurred since the short-lived Strombolian eruption, 4-11 September. The only visible activity has been moderate emissions of white vapours. However, volcano seismicity started to increase again on 9 November. Beginning 14 November, daily totals of B-type events averaged about 600, a marked increase from daily totals that usually numbered less than 50, 14 September-8 November. The amplitudes of these events also increased substantially."
Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.
Information Contacts: C. McKee, RVO.
Veniaminof (United States) — November 1984
Cite this Report
Veniaminof
United States
56.17°N, 159.38°W; summit elev. 2507 m
All times are local (unless otherwise noted)
Activity resumes; ash plumes to about 5 km altitude
Eruptive activity resumed on 29 November. At about 0400, Perryville residents were awakened by rumbling noises from the volcano. By 0800, a black ash cloud was rising to about 3.5-4 km altitude. At 1000, a second plume rose to about 4 km, followed by smaller bursts that were occurring at approximately 5-minute intervals as of about 1020. Pilots reported an ash plume to about 4.5 km altitude at 1045, very little activity at 1100, and another ash plume to about 5.4 km at 1115. No incandescent material was observed from Perryville or by the pilots.
A pilot who flew over the volcano on the morning of 5 December reported a white vapor plume, containing only a small amount of ash, rising from two small pits on the E side of the previously active cone. One of the pits was steaming more vigorously than the other, and a brownish haze drifted downwind from the volcano. He observed no incandescent material or recent lava extrusions. On 6 December, Perryville residents observed large vapor plumes of varying intensity that contained very minor amounts of ash. They saw no incandescent material, and had heard no rumbling noises during the previous several days. On 7-8 December the volcano was obscured by weather clouds; however, small intermittent vapor plumes with no ash were observed from Perryville on the 9th. No incandescent material was seen. On the 10th and 11th, the volcano was not visible from Perryville.
Before the eruption, on 25 November, a Lamont-Doherty seismic monitoring station about 30 km from the volcano recorded 3 events (either low frequency volcanic events or tremor). However, other stations of the Lamont-Doherty network are triggered by earthquakes greater than about magnitude 2.5-3, and no such events had been recorded as of 0200 on 29 November.
Geologic Background. Veniaminof, on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3,700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.
Information Contacts: M. E. Yount and T. Miller, USGS, Anchorage; J. Taber, LDGO.
Villarrica (Chile) — November 1984
Cite this Report
Villarrica
Chile
39.42°S, 71.93°W; summit elev. 2847 m
All times are local (unless otherwise noted)
Lava carves channels in ice; bulge on opposite flank
The first paragraph is from a report from Oscar González-Ferrán. The quoted material is from a report from Hugo Moreno, Leopoldo López Escobar, Pedro Riffo A., and Gustavo Fuentealba.
Villarrica began to erupt on 30 October. Activity was generally similar to that of the 1971-72 eruption. A very fluid basaltic lava column ascended the central crater without the emission of pyroclastics. Gases escaped freely, generating explosions in the crater that ejected lava spatter to 20-100 m in height, forming a spatter cone. Lava flowed NE from the base of this cone over the snow and ice that cover the upper flanks, excavating a channel and generating a large column of vapor. The Emergency Office took preventive measures to protect the population against possible avalanches. As of mid-November, the level of lava in the central crater continued to rise.
"On 30 October at 1745, authorities 16 km N of the summit (in Pucón) reported that explosions were occurring in the central crater and a small lava flow was pouring out from the NNE side of the crater through a small V-shaped opening left by the 1971 fissure eruption. The lava moved across the ice, quenched, and generated an avalanche mixed with ice and snow that reached 5 km from the summit (phase 1, figure 1).
"Lava was emitted continuously from the central crater, advancing toward the NNE, where it melted the ice cover and formed a channel that was estimated to be 30-40 m deep, 50 m wide, and 1 km long during aerial observations 2-3 November. The central crater was occupied by a small flat spatter cone showing weak Strombolian activity. Lava from a small lake at the NNE foot of the spatter cone poured into the ice channel. Over the flat bottom of the channel, formed by solidified black lava, two narrow red lava flows were observed. Voluminous quantities of water vapor emerged from the area where the lava flow front was in contact with the channel's steep ice wall. Numerous fissures were present in the ice surrounding the channel, and on 3 November the ice cover on the SW flank also showed several deep fissures (phase 2, figure 1).
"Weather conditions obscured the volcano 4-5 November, but seismometers operated by the Universidad de la Frontera at Temuco recorded intense shallow seismicity (0-1 km depth), [tremors] and B-type [earthquakes] (table 1).
Table 1. Number of B-type events and [tremors] recorded by seismometers at Temuco, from 4 November, 2100, to 0635 the next day.
Date |
Time |
B-type |
Tremors |
04 Nov 1984 |
2100-0100 |
4 |
-- |
05 Nov 1984 |
0100-0200 |
5 |
-- |
05 Nov 1984 |
0200-0300 |
9 |
-- |
05 Nov 1984 |
0300-0400 |
8 |
-- |
05 Nov 1984 |
0400-0500 |
3 |
4 |
05 Nov 1984 |
0500-0600 |
8 |
2 |
05 Nov 1984 |
0600-0635 |
9 |
-- |
"There were no signs of eruptive activity 6-9 November, although tremors and underground rumbling were reported at Pucón. Strombolian activity at the small spatter cone in the central crater resumed 10-12 November, and lava flowed NNE into the ice channel. The speed of the flow was estimated at 10 m/s.
"As of midday on 13 November, almost 2 x 106 m3 of lava had flowed into the ice channel, most of which was concentrated at the lava front under the ice cover. At 1350 on the 13th, the lava front emerged onto the surface, generating a 3 km-long avalanche of lava blocks, ice, and snow, and leaving behind a 150 m-long ice bridge. Since only a very small mudflow moved downstream, it seems that most of the water generated by melting of the ice evaporated. New fissures were observed on the ice-covered SW, E, and NE flanks (phase 3, figure 1).
"Eruptive activity decreased 14-17 November, with only weak fumarolic emissions seen at the spatter cone and water vapor emission at the ice bridge. [Earthquakes] were reported 13 km E and 10 km SW of the volcano (at Palguin and Chaillupen).
"On 18 November, a clear deformation of the SW slope was observed between 2,200 and 2,800 m above sea level. Weak lava production from the central crater opened a new small ice channel, about 200 m long and 50 m wide, toward the N (phase 4, figure 1).
"Villarrica's October-November eruptive behavior is quite similar to the 1971 eruptive cycle that ended in a big lava effusion (29 December at 2345). Villarrica last erupted 11 August and during the first week in September, with small explosions and tephra emissions."
Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.
Information Contacts: O. González-Ferrán, H. Moreno R., and L. López E., Univ. de Chile, Santiago; P. Riffo A. and G. Fuentealba C., Univ. de la Frontera, Temuco.