Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Sabancaya (Peru) Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Sheveluch (Russia) Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

Dukono (Indonesia) Numerous ash explosions continue through March 2020

Etna (Italy) Strombolian explosions and ash emissions continue, October 2019-March 2020

Merapi (Indonesia) Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020

Erta Ale (Ethiopia) Continued lava flow outbreaks and thermal anomalies during November 2019 to early April 2020

Rincon de la Vieja (Costa Rica) Weak phreatic explosions during August 2019-March 2020; ash and lahars reported in late January

Manam (Papua New Guinea) Minor explosive activity, continued thermal activity, and SO2 emissions, October 2019-March 2020.

Stromboli (Italy) Strombolian activity continues at both summit crater areas, September-December 2019

Semeru (Indonesia) Ash plumes and thermal anomalies continue during September 2019-February 2020

Popocatepetl (Mexico) Dome growth and destruction continues along with ash emissions and ejecta, September 2019-February 2020

Santa Maria (Guatemala) Daily explosions with ash plumes and block avalanches continue, September 2019-February 2020



Sabancaya (Peru) — June 2020 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Although tephrochronology has dated activity at Sabancaya back several thousand years, renewed activity that began in 1986 was the first recorded in over 200 years. Intermittent activity since then has produced significant ashfall deposits, seismic unrest, and fumarolic emissions. A new period of explosive activity that began in November 2016 has been characterized by pulses of ash emissions with some plumes exceeding 10 km altitude, thermal anomalies, and significant SO2 plumes. Ash emissions and high levels of SO2 continued each week during December 2019-May 2020. The Observatorio Vulcanologico INGEMMET (OVI) reports weekly on numbers of daily explosions, ash plume heights and directions of drift, seismicity, and other activity. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued three or four daily reports of ongoing ash emissions at Sabancaya throughout the period.

The dome inside the summit crater continued to grow throughout this period, along with nearly constant ash, gas, and steam emissions; the average number of daily explosions ranged from 4 to 29. Ash and gas plume heights rose 1,800-3,800 m above the summit crater, and multiple communities around the volcano reported ashfall every month (table 6). Sulfur dioxide emissions were notably high and recorded daily with the TROPOMI satellite instrument (figure 75). Thermal activity declined during December 2019 from levels earlier in the year but remained steady and increased in both frequency and intensity during April and May 2020 (figure 76). Infrared satellite images indicated that the primary heat source throughout the period was from the dome inside the summit crater (figure 77).

Table 6. Persistent activity at Sabancaya during December 2019-May 2020 included multiple daily explosions with ash plumes that rose several kilometers above the summit and drifted in many directions; this resulted in ashfall in communities within 30 km of the volcano. Satellite instruments recorded SO2 emissions daily. Data courtesy of OVI-INGEMMET.

Month Avg. Daily Explosions by week Max plume Heights (m above crater) Plume drift (km) and direction Communities reporting ashfall Min Days with SO2 over 2 DU
Dec 2019 16, 13, 5, 5 2,600-3,800 20-30 NW Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, Chivay, Huambo, Cabanaconde 27
Jan 2020 10, 8, 11, 14, 4 1,800-3,400 30 km W, NW, SE, S Chivay, Yanque, Achoma 29
Feb 2020 8, 11, 20, 19 2,000-2,200 30 km SE, E, NE, W Huambo 29
Mar 2020 14, 22, 29, 18 2,000-3,000 30 km NE, W, NW, SW Madrigal, Lari, Pinchollo 30
Apr 2020 12, 12, 16, 13, 8 2,000-3,000 30 km SE, NW, E, S Pinchollo, Madrigal, Lari, Maca, Ichupampa, Yanque, Chivay, Coporaque, Achoma 27
May 2020 15, 14, 6, 16 1,800-2,400 30 km SW, SE, E, NE, W Chivay, Achoma, Maca, Lari, Madrigal, Pinchollo 27
Figure (see Caption) Figure 75. Sulfur dioxide anomalies were captured daily from Sabancaya during December 2019-May 2020 by the TROPOMI instrument on the Sentinel-5P satellite. Some of the largest SO2 plumes are shown here with dates listed in the information at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 76. Thermal activity at Sabancaya declined during December 2019 from levels earlier in the year but remained steady and increased slightly in frequency and intensity during April and May 2020, according to the MIROVA graph of Log Radiative Power from 23 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Sentinel-2 satellite imagery of Sabancaya confirmed the frequent ash emissions and ongoing thermal activity from the dome inside the summit crater during December 2019-May 2020. Top row (left to right): On 6 December 2019 a large plume of steam and ash drifted N from the summit. On 16 December 2019 a thermal anomaly encircled the dome inside the summit caldera while gas and possible ash drifted NW. On 14 April 2020 a very similar pattern persisted inside the crater. Bottom row (left to right): On 19 April an ash plume was clearly visible above dense cloud cover. On 24 May the infrared glow around the dome remained strong; a diffuse plume drifted W. A large plume of ash and steam drifted SE from the summit on 29 May. Infrared images use Atmospheric penetration rendering (bands 12, 11, 8a), other images use Natural Color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

The average number of daily explosions during December 2019 decreased from a high of 16 the first week of the month to a low of five during the last week. Six pyroclastic flows occurred on 10 December (figure 78). Tremors were associated with gas-and-ash emissions for most of the month. Ashfall was reported in Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, and Chivay during the first week of the month, and in Huambo and Cabanaconde during the second week (figure 79). Inflation of the volcano was measured throughout the month. SO2 flux was measured by OVI as ranging from 2,500 to 4,300 tons per day.

Figure (see Caption) Figure 78. Multiple daily explosions at Sabancaya produced ash plumes that rose several kilometers above the summit. Left image is from 5 December and right image is from 11 December 2019. Note pyroclastic flows to the right of the crater on 11 December. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-49-2019/INGEMMET Semana del 2 al 8 de diciembre de 2019 and RSSAB-50-2019/INGEMMET Semana del 9 al 15 de diciembre de 2019).
Figure (see Caption) Figure 79. Communities to the N and W of Sabancaya recorded ashfall from the volcano the first week of December and also every month during December 2019-May 2020. The red zone is the area where access is prohibited (about a 12-km radius from the crater). Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

During January and February 2020 the number of daily explosions averaged 4-20. Ash plumes rose as high as 3.4 km above the summit (figure 80) and drifted up to 30 km in multiple directions. Ashfall was reported in Chivay, Yanque, and Achoma on 8 January, and in Huambo on 25 February. Sulfur dioxide flux ranged from a low of 1,200 t/d on 29 February to a high of 8,200 t/d on 28 January. Inflation of the edifice was measured during January; deformation changed to deflation in early February but then returned to inflation by the end of the month.

Figure (see Caption) Figure 80. Ash plumes rose from Sabancaya every day during January and February 2020. Left: 11 January. Right: 28 February. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-02-2020/INGEMMET Semana del 06 al 12 de enero del 2020 and RSSAB-09-2020/INGEMMET Semana del 24 de febrero al 01 de marzo del 2020).

Explosions continued during March and April 2020, averaging 8-29 per day. Explosions appeared to come from multiple vents on 11 March (figure 81). Ash plumes rose 3 km above the summit during the first week of March and again the first week of April; they were lower during the other weeks. Ashfall was reported in Madrigal, Lari, and Pinchollo on 27 March and 5 April. On 17 April ashfall was reported in Maca, Ichupampa, Yanque, Chivay, Coporaque, and Achoma. Sulfur dioxide flux ranged from 1,900 t/d on 5 March to 10,700 t/d on 30 March. Inflation at depth continued throughout March and April with 10 +/- 4 mm recorded between 21 and 26 April. Similar activity continued during May 2020; explosions averaged 6-16 per day (figure 82). Ashfall was reported on 6 May in Chivay, Achoma, Maca, Lari, Madrigal, and Pinchollo; heavy ashfall was reported in Achoma on 12 May. Additional ashfall was reported in Achoma, Maca, Madrigal, and Lari on 23 May.

Figure (see Caption) Figure 81. Explosions at Sabancaya on 11 March 2020 appeared to originate simultaneously from two different vents (left). The plume on 12 April was measured at about 2,500 m above the summit. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-11-2020/INGEMMET Semana del 9 al 15 de marzo del 2020 and RSSAB-15-2020/INGEMMET Semana del 6 al 12 de abril del 2020).
Figure (see Caption) Figure 82. Explosions dense with ash continued during May 2020 at Sabancaya. On 11 and 29 May 2020 ash plumes rose from the summit and drifted as far as 30 km before dissipating. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya , RSSAB-20-2020/INGEMMET Semana del 11 al 17 de mayo del 2020 and RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sheveluch (Russia) — May 2020 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

The eruption at Sheveluch has continued for more than 20 years, with strong explosions that have produced ash plumes, lava dome growth, hot avalanches, numerous thermal anomalies, and strong fumarolic activity (BGVN 44:05). During this time, there have been periods of greater or lesser activity. The most recent period of increased activity began in December 2018 and continued through October 2019 (BGVN 44:11). This report covers activity between November 2019 to April 2020, a period during which activity waned. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT) and Tokyo Volcanic Ash Advisory Center (VAAC).

During the reporting period, KVERT noted that lava dome growth continued, accompanied by incandescence of the dome blocks and hot avalanches. Strong fumarolic activity was also present (figure 53). However, the overall eruption intensity waned. Ash plumes sometimes rose to 10 km altitude and drifted downwind over 600 km (table 14). The Aviation Color Code (ACC) remained at Orange (the second highest level on a four-color scale), except for 3 November when it was raised briefly to Red (the highest level).

Figure (see Caption) Figure 53. Fumarolic activity of Sheveluch’s lava dome on 24 January 2020. Photo by Y. Demyanchuk; courtesy of KVERT.

Table 14. Explosions and ash plumes at Sheveluch during November 2019-April 2020. Dates and times are UTC, not local. Data courtesy of KVERT and the Tokyo VAAC.

Dates Plume Altitude (km) Drift Distance and Direction Remarks
01-08 Nov 2019 -- 640 km NW 3 November: ACC raised to Red from 0546-0718 UTC before returning to Orange.
08-15 Nov 2019 9-10 1,300 km ESE
17-27 Dec 2019 6.0-6.5 25 km E Explosions at about 23:50 UTC on 21 Dec.
20-27 Mar 2020 -- 45 km N 25 March: Gas-and-steam plume containing some ash.
03-10 Apr 2020 10 km 526 km SE 8 April: Strong explosion at 1910 UTC.
17-24 Apr 2020 -- 140 km NE Re-suspended ash plume.

KVERT reported thermal anomalies over the volcano every day, except for 25-26 January, when clouds obscured observations. During the reporting period, thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm recorded hotspots on 10 days in November, 13 days in December, nine days in January, eight days in both February and March, and five days in April. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, detected numerous hotspots every month, almost all of which were of moderate radiative power (figure 54).

Figure (see Caption) Figure 54. Thermal anomalies at Sheveluch continued at elevated levels during November 2019-April 2020, as seen on this MIROVA Log Radiative Power graph for July 2019-April 2020. Courtesy of MIROVA.

High sulfur dioxide levels were occasionally recorded just above or in the close vicinity of Sheveluch by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite, but very little drift was observed.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Dukono (Indonesia) — May 2020 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions continue through March 2020

The ongoing eruption at Dukono is characterized by frequent explosions that send ash plumes to about 1.5-3 km altitude (0.3-1.8 km above the summit), although a few have risen higher. This type of typical activity (figure 13) continued through at least March 2020. The ash plume data below (table 21) were primarily provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Centre (VAAC). During the reporting period of October 2019-March 2020, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone.

Table 21. Monthly summary of reported ash plumes from Dukono for October 2019-March 2020. The direction of drift for the ash plume through each month was highly variable; notable plume drift each month was only indicated in the table if at least two weekly reports were consistent. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2019 1.8-3 Multiple
Nov 2019 1.8-2.3 E, SE, NE
Dec 2019 1.8-2.1 E, SE
Jan 2020 1.8-2.1 E, SE, SW, S
Feb 2020 2.1-2.4 S, SW
Mar 2020 1.5-2.3 Multiple
Figure (see Caption) Figure 13.Satellite image of Dukono from Sentinel-2 on 12 November 2019, showing an ash plume drifting E. Image uses natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, high levels of sulfur dioxide were only recorded above or near the volcano during 30-31 October and 4 November 2019. High levels were recorded by the Ozone Mapping and Profiler Suite (OMPS) instrument aboard the Suomi National Polar-orbiting Partnership (NPP) satellite on 30 October 2019, in a plume drifting E. The next day high levels were also recorded by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite on 31 October (figure 14) and 4 November 2019, in plumes drifting SE and NE, respectively.

Figure (see Caption) Figure 14. Sulfur dioxide emission on 31 October 2019 drifting E, probably from Dukono, as recorded by the TROPOMI instrument aboard the Sentinel-5P satellite. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — April 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian explosions and ash emissions continue, October 2019-March 2020

Mount Etna is a stratovolcano located on the island of Sicily, Italy, with historical eruptions that date back 3,500 years. The most recent eruptive period began in September 2013 and has continued through March 2020. Activity is characterized by Strombolian explosions, lava flows, and ash plumes that commonly occur from the summit area, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. This reporting period covers information from October 2019 through March 2020 and includes frequent explosions and ash plumes. The primary source of information comes from the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during October 2019-March 2020. Strombolian activity and gas-and-steam and ash emissions were frequently observed at Etna throughout the entire reporting period, according to INGV and Toulouse VAAC notices. Activity was largely located within the main cone (Voragine-Bocca Nuova complex), the Northeast Crater (NEC), and the New Southeast Crater (NSEC). On 1, 17, and 19 October, ash plumes rose to a maximum altitude of 5 km. Due to constant Strombolian explosions, ground observations showed that a scoria cone located on the floor of the VOR Crater had begun to grow in late November and again in late January 2020. A lava flow was first detected on 6 December at the base of the scoria cone in the VOR Crater, which traveled toward the adjacent BN Crater. Additional lava flows were observed intermittently throughout the reporting period in the same crater. On 13 March, another small scoria cone had formed in the main VOR-BN complex due to Strombolian explosions.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows multiple episodes of thermal activity varying in power from 22 June 2019 to March 2020 (figure 286). The power and frequency of these thermal anomalies significantly decreased between August to mid-September. The pulse of activity in mid-September reflected a lava flow from the VOR Crater (BGVN 44:10). By late October through November, thermal anomalies were relatively weaker and less frequent. The next pulse in thermal activity reflected in the MIROVA graph occurred in early December, followed by another shortly after in early January, both of which were due to new lava flows from the VOR Crater. After 9 January the thermal anomalies remained frequent and strong; active lava flows continued through March accompanied by Strombolian explosions, gas-and-steam, SO2, and ash emissions. The most recent distinct pulse in thermal activity was seen in mid-March; on 13 March, another lava flow formed, accompanied by an increase in seismicity. This lava flow, like the previous ones, also originated in the VOR Crater and traveled W toward the BN Crater.

Figure (see Caption) Figure 286. Multiple episodes of varying activity at Etna from 22 June 2019 through March 2020 were reflected in the MIROVA thermal energy data (Log Radiative Power). Courtesy of MIROVA.

Activity during October-December 2019. During October 2019, VONA (Volcano Observatory Notice for Aviation) notices issued by INGV reported ash plumes rose to a maximum altitude of 5 km on 1, 17, and 19 October. Strombolian explosions occurred frequently. Explosions were detected primarily in the VOR-BN Craters, ejecting coarse pyroclastic material that fell back into the crater area and occasionally rising above the crater rim. Ash emissions rose from the VOR-BN and NEC while intense gas-and-steam emissions were observed in the NSEC (figure 287). Between 10-12 and 14-20 October fine ashfall was observed in Pedara, Mascalucia, Nicolosi, San Giovanni La Punta, and Catania. In addition to these ash emissions, the explosive Strombolian activity contributed to significant SO2 plumes that drifted in different directions (figure 288).

Figure (see Caption) Figure 287. Webcam images of ash emissions from the NE Crater at Etna from the a) CUAD (Catania) webcam on 10 October 2019; b) Milo webcam on 11 October 2019; c) Milo webcam on 12 October 2019; d) M.te Cagliato webcam on 13 October 2019. Courtesy of INGV (Report 42/2019, ETNA, Bollettino Settimanale, 07/10/2019 - 13/10/2019, data emissione 15/10/2019).
Figure (see Caption) Figure 288. Strombolian activity at Etna contributed to significant SO2 plumes that drifted in multiple directions during the intermittent explosions in October 2019. Top left: 1 October 2019. Top right: 2 October 2019. Middle left: 15 October 2019. Middle right: 18 October 2019. Bottom left: 13 November 2019. Bottom right: 1 December 2019. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

The INGV weekly bulletin covering activity between 25 October and 1 November 2019 reported that Strombolian explosions occurred at intervals of 5-10 minutes from within the VOR-BN and NEC, ejecting incandescent material above the crater rim, accompanied by modest ash emissions. In addition, gas-and-steam emissions were observed from all the summit craters. Field observations showed the cone in the crater floor of VOR that began to grow in mid-September 2019 had continued to grow throughout the month. During the week of 4-10 November, Strombolian activity within the Bocca Nuova Crater was accompanied by gas-and-steam emissions. The explosions in the VOR Crater occasionally ejected incandescent ejecta above the crater rim (figures 289 and 290). For the remainder of the month Strombolian explosions continued in the VOR-BN and NEC, producing sporadic ash emissions. Isolated and discontinuous explosions in the New Southeast Crater (NSEC) also produced fine ash, though gas-and-steam emissions still dominated the activity at this crater. Additionally, the explosions from these summit craters were frequently accompanied by strong SO2 emissions that drifted in different directions as discrete plumes.

Figure (see Caption) Figure 289. Photo of Strombolian activity and crater incandescence in the Voragine Crater at Etna on 15 November 2019. Photo by B. Behncke, taken by Tremestieri Etneo. Courtesy of INGV (Report 47/2019, ETNA, Bollettino Settimanale, 11/11/2019 - 17/11/2019, data emissione 19/11/2019).
Figure (see Caption) Figure 290. Webcam images of summit crater activity during 26-29 November and 1 December 2019 at Etna. a) image recorded by the high-resolution camera on Montagnola (EMOV); b) and c) webcam images taken from Tremestieri Etneo on the southern slope of Etna showing summit incandescence; d) image recorded by the thermal camera on Montagnola (EMOT) showing summit incandescence at the NSEC. Courtesy of INGV (Report 49/2019, ETNA, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).

Frequent Strombolian explosions continued through December 2019 within the VOR-BN, NEC, and NSEC Craters with sporadic ash emissions observed in the VOR-BN and NEC. On 6 December, Strombolian explosions increased in the NSEC; webcam images showed incandescent pyroclastic material ejected above the crater rim. On the morning of 6 December a lava flow was observed from the base of the scoria cone in the VOR Crater that traveled toward the adjacent Bocca Nuova Crater. INGV reported that a new vent opened on the side of the saddle cone (NSEC) on 11 December and produced explosions until 14 December.

Activity during January-March 2020. On 9 January 2020 an aerial flight organized by RAI Linea Bianca and the state police showed the VOR Crater continuing to produce lava that was flowing over the crater rim into the BN Crater with some explosive activity in the scoria cone. Explosive Strombolian activity produced strong and distinct SO2 plumes (figure 291) and ash emissions through March, according to the weekly INGV reports, VONA notices, and satellite imagery. Several ash emissions during 21-22 January rose from the vent that opened on 11 December. According to INGV’s weekly bulletin for 21-26 January, the scoria cone in the VOR crater produced Strombolian explosions that increased in frequency and contributed to rapid cone growth, particularly the N part of the cone. Lava traveled down the S flank of the cone and into the adjacent Bocca Nuova Crater, filling the E crater (BN-2) (figure 292). The NEC had discontinuous Strombolian activity and periodic, diffuse ash emissions.

Figure (see Caption) Figure 291. Distinct SO2 plumes drifting in multiple directions from Etna were visible in satellite imagery as Strombolian activity continued through March 2020. Top left: 21 January 2020. Top right: 2 February 2020. Bottom left: 10 March 2020. Bottom right: 19 March 2020. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 292. a) A map of the lava field at Etna showing cooled flows (yellow) and active flows (red). The base of the scoria cone is outlined in black while the crater rim is outlined in red. b) Thermal image of the Bocca Nuova and Voragine Craters. The bright orange is the warmest temperature measure in the flow. Courtesy of INGV, photos by Laboratorio di Cartografia FlyeEye Team (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

Strombolian explosions continued into February 2020, accompanied by ash emissions and lava flows from the previous months (figure 293). During 17-23 February, INGV reported that some subsidence was observed in the central portion of the Bocca Nuova Crater. During 24 February to 1 March, the Strombolian explosions ejected lava from the VOR Crater up to 150-200 m above the vent as bombs fell on the W edge of the VOR crater rim (figure 294). Lava flows continued to move into the W part of the Bocca Nuova Crater.

Figure (see Caption) Figure 293. Webcam images of A) Strombolian activity and B) effusive activity fed by the scoria cone grown inside the VOR Crater at Etna taken on 1 February 2020. C) Thermal image of the lava field produced by the VOR Crater taken by L. Lodato on 3 February (bottom left). Image of BN-1 taken by F. Ciancitto on 3 February in the summit area (bottom right). Courtesy of INGV; Report 06/2020, ETNA, Bollettino Settimanale, 27/01/2020 - 02/02/2020, data emissione 04/02/2020 (top) and Report 07/2020, ETNA, Bollettino Settimanale, 03/02/2020 - 09/02/2020, data emissione 11/02/2020 (bottom).
Figure (see Caption) Figure 294. Photos of the VOR intra-crater scoria cone at Etna: a) Strombolian activity resumed on 25 February 2020 from the SW edge of BN taken by B. Behncke; b) weak Strombolian activity from the vent at the base N of the cone on 29 February 2020 from the W edge of VOR taken by V. Greco; c) old vent present at the base N of the cone, taken on 17 February 2020 from the E edge of VOR taken by B. Behncke; d) view of the flank of the cone, taken on 24 February 2020 from the W edge of VOR taken by F. Ciancitto. Courtesy of INGV (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

During 9-15 March 2020 Strombolian activity was detected in the VOR Crater while discontinuous ash emissions rose from the NEC and NSEC. Bombs were found in the N saddle between the VOR and NSEC craters. On 9 March, a small scoria cone that had formed in the Bocca Nuova Crater and was ejecting bombs and lava tens of meters above the S crater rim. The lava flow from the VOR Crater was no longer advancing. A third scoria cone had formed on 13 March NE in the main VOR-BN complex due to the Strombolian explosions on 29 February. Another lava flow formed on 13 March, accompanied by an increase in seismicity. The weekly report for 16-22 March reported Strombolian activity detected in the VOR Crater and gas-and-steam and rare ash emissions observed in the NEC and NSEC (figure 295). Explosions in the Bocca Nuova Crater ejected spatter and bombs 100 m high.

Figure (see Caption) Figure 295. Map of the summit crater area of Etna showing the active vents and lava flows during 16-22 March 2020. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Courtesy of INGV (Report 13/2020, ETNA, Bollettino Settimanale, 16/03/2020 - 22/03/2020, data emissione 24/03/2020).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/aeroweb/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Boris Behncke, Sonia Calvari, and Marco Neri, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: https://twitter.com/etnaboris, Image at https://twitter.com/etnaboris/status/1183640328760414209/photo/1).


Merapi (Indonesia) — April 2020 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020

Merapi is a highly active stratovolcano located in Indonesia, just north of the city of Yogyakarta. The current eruption episode began in May 2018 and was characterized by phreatic explosions, ash plumes, block avalanches, and a newly active lava dome at the summit. This reporting period updates information from October 2019-March 2020 that includes explosions, pyroclastic flows, ash plumes, and ashfall. The primary reporting source of activity comes from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG) and Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

Some ongoing lava dome growth continued in October 2019 in the NE-SW direction measuring 100 m in length, 30 m in width, and 20 m in depth. Gas-and-steam emissions were frequent, reaching a maximum height of 700 m above the crater on 31 October. An explosion at 1631 on 14 October removed the NE-SW trending section of the lava dome and produced an ash plume that rose 3 km above the crater and extended SW for about 2 km (figures 90 and 91). The plume resulted in ashfall as far as 25 km to the SW. According to a Darwin VAAC notice, a thermal hotspot was detected in HIMAWARI-8 satellite imagery. A pyroclastic flow associated with the eruption traveled down the SW flank in the Gendol drainage. During 14-20 October lava flows from the crater generated block-and-ash flows that traveled 1 km SW, according to BPPTKG.

Figure (see Caption) Figure 90. An ash plume rising 3 km above Merapi on 14 October 2019.
Figure (see Caption) Figure 91. Webcam image of an ash plume rising above Merapi at 1733 on 14 October 2019. Courtesy of BPPTKG via Jaime S. Sincioco.

At 0621 on 9 November 2019, an eruption produced an ash plume that rose 1.5 km above the crater and drifted W. Ashfall was observed in the W region as far as 15 km from the summit in Wonolelo and Sawangan in Magelang Regency, as well as Tlogolele and Selo in Boyolali Regency. An associated pyroclastic flow traveled 2 km down the Gendol drainage on the SE flank. On 12 November aerial drone photographs were used to measure the volume of the lava dome, which was 407,000 m3. On 17 November, an eruption produced an ash plume that rose 1 km above the crater, resulting in ashfall as far as 15 km W from the summit in the Dukun District, Magelang Regency (figure 92). A pyroclastic flow accompanying the eruption traveled 1 km down the SE flank in the Gendol drainage. By 30 November low-frequency earthquakes and CO2 gas emissions had increased.

Figure (see Caption) Figure 92. An ash plume rising 1 km above Merapi on 17 November 2019. Courtesy of BPPTKG.

Volcanism was relatively low from 18 November 2019 through 12 February 2020, characterized primarily by gas-and-steam emissions and intermittent volcanic earthquakes. On 4 January a pyroclastic flow was recorded by the seismic network at 2036, but it wasn’t observed due to weather conditions. On 13 February an explosion was detected at 0516, which ejected incandescent material within a 1-km radius from the summit (figure 93). Ash plumes rose 2 km above the crater and drifted NW, resulting in ashfall within 10 km, primarily S of the summit; lightning was also seen in the plume. Ash was observed in Hargobinangun, Glagaharjo, and Kepuharjo. On 19 February aerial drone photographs were used to measure the change in the lava dome after the eruption; the volume of the lava had decreased, measuring 291,000 m3.

Figure (see Caption) Figure 93. Webcam image of an ash plume rising from Merapi at 0516 on 13 February 2020. Courtesy of MAGMA Indonesia and PVMBG.

An explosion on 3 March at 0522 produced an ash plume that rose 6 km above the crater (figure 94), resulting in ashfall within 10 km of the summit, primarily to the NE in the Musuk and Cepogo Boyolali sub-districts and Mriyan Village, Boyolali (3 km from the summit). A pyroclastic flow accompanied this eruption, traveling down the SSE flank less than 2 km. Explosions continued to be detected on 25 and 27-28 March, resulting in ash plumes. The eruption on 27 March at 0530 produced an ash plume that rose 5 km above the crater, causing ashfall as far as 20 km to the W in the Mungkid subdistrict, Magelang Regency, and Banyubiru Village, Dukun District, Magelang Regency. An associated pyroclastic flow descended the SSE flank, traveling as far as 2 km. The ash plume from the 28 March eruption rose 2 km above the crater, causing ashfall within 5 km from the summit in the Krinjing subdistrict primarily to the W (figure 94).

Figure (see Caption) Figure 94. Images of ash plumes rising from Merapi during 3 March (left) and 28 March 2020 (right). Images courtesy of BPPTKG (left) and PVMBG (right).

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Jamie S. Sincioco, Phillipines (Twitter: @jaimessincioco, Image at https://twitter.com/jaimessincioco/status/1227966075519635456/photo/1).


Erta Ale (Ethiopia) — May 2020 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Continued lava flow outbreaks and thermal anomalies during November 2019 to early April 2020

Erta Ale is a shield volcano located in Ethiopia and contains multiple active pit craters in the summit and southeastern caldera. Volcanism has been characterized by lava flows and large lava flow fields since 2017. Surficial lava flow activity continued within the southeastern caldera during November 2019 until early April 2020; source information was primarily from various satellite data.

The number of days that thermal anomalies were detected using MODIS data in MODVOLC and NASA VIIRS satellite data was notably higher in November and December 2019 (figure 96); the number of thermal anomalies in the Sentinel-2 thermal imagery was substantially lower due to the presence of cloud cover. Across all satellite data, thermal anomalies were identified for 29 days in November, followed by 30 days in December. After December 2019, the number of days thermal anomalies were detected decreased; hotspots were detected for 17 days in January 2020 and 20 days in February. By March, these thermal anomalies became rare until activity ceased. Thermal anomalies were identified during 1-4 March, with weak anomalies seen again during 26 March-8 April 2020.

Figure (see Caption) Figure 96. Graph comparing the number of thermal alerts using calendar dates using MODVOLC, NASA VIIRS, and Sentinel-2 satellite data for Erta Ale during November 2019-March 2020. Data courtesy of HIGP - MODVOLC Thermal Alerts System, NASA Worldview using the “Fire and Thermal Anomalies” layer, and Sentinel Hub Playground.

MIROVA (Middle Infrared Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent strong thermal anomalies from 18 April through December 2019 (figure 97). Between early August 2019 and March 2020, these thermal signatures were detected at distances less than 5 km from the summit. In late December the thermal intensity dropped slightly before again increasing, while at the same time moving slightly closer to the summit. Thermal anomalies then became more intermittent and steadily decreased in power over the next two months.

Figure (see Caption) Figure 97. Two time-series plots of thermal anomalies from Erta Ale from 18 April 2019 through 18 April 2020 as recorded by the MIROVA system. The top plot (A) shows that the thermal anomalies were consistently strong (measured in log radiative power) and occurred frequently until early January 2020 when both the power and frequency visibly declined. The lower plot (B) shows these anomalies as a function of distance from the summit, including a sudden decrease in distance (measured in kilometers) in early August 2019, reflecting a change in the location of the lava flow outbreak. A smaller distance change can be identified at the end of December 2019. Courtesy of MIROVA.

Unlike the obvious distal breakouts to the NE seen previously (BGVN 44:04 and 44:11), infrared satellite imagery during November-December 2019 showed only a small area with a thermal anomaly near the NE edge of the Southeast Caldera (figure 98). A thermal alert was seen at that location using the MODVOLC system on 28 December, but the next day it had been replaced by an anomaly about 1.5 km WSW near the N edge of the Southeast Caldera where the recent flank eruption episode had been centered between January 2017 and January 2018 (BGVN 43:04). The thermal anomaly that was detected in the summit caldera was no longer visible after 9 January 2020, based on Sentinel-2 imagery. The exact location of lava flows shifted within the same general area during January and February 2020 and was last detected by Sentinel-2 on 4 March. After about two weeks without detectable thermal activity, weak unlocated anomalies were seen in VIIRS data on 26 March and in MODIS data on the MIROVA system four times between 26 March and 8 April. No further anomalies were noted through the rest of April 2020.

Figure (see Caption) Figure 98. Sentinel-2 thermal satellite imagery of Erta Ale volcanism between November 2019 and March 2020 showing small lava flow outbreaks (bright yellow-orange) just NE of the southeastern calderas. A thermal anomaly can be seen in the summit crater on 15 November and very faintly on 20 December 2019. Imagery on 19 January 2020 showed a small thermal anomaly near the N edge of the Southeast Caldera where the recent flank eruption episode had been centered between January 2017 and January 2018. The last weak thermal hotspot was detected on 4 March (bottom right). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Rincon de la Vieja (Costa Rica) — April 2020 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Weak phreatic explosions during August 2019-March 2020; ash and lahars reported in late January

Rincón de la Vieja is a remote volcanic complex in Costa Rica containing an acid lake that has regularly generated weak phreatic explosions since 2011 (BGVN 44:08). The most recent eruptive period occurred during late March-early June 2019, primarily consisting of small phreatic explosions, minor deposits on the N crater rim, and gas-and-steam emissions. The report period of August 2019-March 2020 was characterized by similar activity, including small phreatic explosions, gas-and-steam plumes, ash and lake sediment ejecta, and volcanic tremors. The most significant activity during this time occurred on 30 January, where a phreatic explosion ejected ash and lake sediment above the crater rim, resulting in a pyroclastic flow which gradually turned into a lahar. Information for this reporting period of August 2019-March 2020 comes from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins.

According to OVSICORI-UNA, a small hydrothermal eruption was recorded on 1 August 2019. The seismicity was low with a few long period (LP) earthquakes around 1 August and intermittent background tremor. No explosions or emissions were reported through 11 September; seismicity remained low with an occasional LP earthquake and discontinuous tremor. The summit’s extension that has been recorded since the beginning of June stopped, and no significant deformation was observed in August.

Starting again in September 2019 and continuing intermittently through the reporting period, some deformation was observed at the base of the volcano as well as near the summit, according to OVSICORI-UNA. On 12 September an eruption occurred that was followed by volcanic tremors that continued through 15 September. In addition to these tremors, vigorous sustained gas-and-steam plumes were observed. The 16 September weekly bulletin did not describe any ejecta produced as a result of this event.

During 1-3 October small phreatic eruptions were accompanied by volcanic tremors that had decreased by 5 October. In November, volcanism and seismicity were relatively low and stable; few LP earthquakes were reported. This period of low activity remained through December. At the end of November, horizontal extension was observed at the summit, which continued through the first half of January.

Small phreatic eruptions were recorded on 2, 28, and 29 January 2020, with an increase in seismicity occurring on 27 January. On 30 January at 1213 a phreatic explosion produced a gas column that rose 1,500-2,000 m above the crater, with ash and lake sediment ejected up to 100 m above the crater. A news article posted by the Universidad de Costa Rica (UCR) noted that this explosion generated pyroclastic flows that traveled down the N flank for more than 2 km from the crater. As the pyroclastic flows moved through tributary channels, lahars were generated in the Pénjamo river, Zanjonuda gorge, and Azufrosa, traveling N for 4-10 km and passing through Buenos Aires de Upala (figure 29). Seismicity after this event decreased, though there were still some intermittent tremors.

Figure (see Caption) Figure 29. Photo of a lahar generated from the 30 January 2020 eruption at Rincon de la Vieja. Photo taken by Mauricio Gutiérrez, courtesy of UCR.

On 17, 24, and 25 February and 11, 17, 19, 21, and 23 March, small phreatic eruptions were detected, according to OVSICORI-UNA. Geodetic measurements observed deformation consisting of horizontal extension and inflation near the summit in February-March. By the week of 30 March, the weekly bulletin reported 2-3 small eruptions accompanied by volcanic tremors occurred daily during most days of the week. None of these eruptions produced solid ejecta, pyroclastic flows, or lahars, according to the weekly OVSICORI-UNA bulletins during February-March 2020.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Luis Enrique Brenes Portuguéz, University of Costa Rica, Ciudad Universitaria Rodrigo Facio Brenes, San José, San Pedro, Costa Rica (URL: https://www.ucr.ac.cr/noticias/2020/01/30/actividad-del-volcan-rincon-de-la-vieja-es-normal-segun-experto.html).


Manam (Papua New Guinea) — May 2020 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Minor explosive activity, continued thermal activity, and SO2 emissions, October 2019-March 2020.

Manam is a basaltic-andesitic stratovolcano that lies 13 km off the northern coast of mainland Papua New Guinea; it has a 400-year history of recorded evidence for recurring low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption, ongoing since June 2014, produced multiple large explosive eruptions during January-September 2019, including two 15-km-high ash plumes in January, repeated SO2 plumes each month, and another 15.2 km-high ash plume in June that resulted in ashfall and evacuations of several thousand people (BGVN 44:10).

This report covers continued activity during October 2019 through March 2020. Information about Manam is primarily provided by Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM). This information is supplemented with aviation alerts from the Darwin Volcanic Ash Advisory Center (VAAC). MODIS thermal anomaly satellite data is recorded by the University of Hawai'i's MODVOLC thermal alert recording system, and the Italian MIROVA project; sulfur dioxide monitoring is done by instruments on satellites managed by NASA's Goddard Space Flight Center. Satellite imagery provided by the Sentinel Hub Playground is also a valuable resource for information about this remote location.

A few modest explosions with ash emissions were reported in early October and early November 2019, and then not again until late March 2020. Although there was little explosive activity during the period, thermal anomalies were recorded intermittently, with low to moderate activity almost every month, as seen in the MODIS data from MIROVA (figure 71) and also in satellite imagery. Sulfur dioxide emissions persisted throughout the period producing emissions greater than 2.0 Dobson Units that were recorded in satellite data 3-13 days each month.

Figure (see Caption) Figure 71. MIROVA thermal anomaly data for Manam from 17 June 2019 through March 2020 indicate continued low and moderate level thermal activity each month from August 2019 through February 2020, after a period of increased activity in June and early July 2019. Courtesy of MIROVA.

The Darwin VAAC reported an ash plume in visible satellite imagery moving NW at 3.1 km altitude on 2 October 2019. Weak ash emissions were observed drifting N for the next two days along with an IR anomaly at the summit. RVO reported incandescence at night during the first week of October. Visitors to the summit on 18 October 2019 recorded steam and fumarolic activity at both of the summit craters (figure 72) and recent avalanche debris on the steep slopes (figure 73).

Figure (see Caption) Figure 72. Steam and fumarolic activity rose from Main crater at Manam on 18 October 2019 in this view to the south from a ridge north of the crater. Google Earth inset of summit shows location of photograph. Courtesy of Vulkanologische Gesellschaft and Claudio Jung, used with permission.
Figure (see Caption) Figure 73. Volcanic debris covered an avalanche chute on the NE flank of Manam when visited by hikers on 18 October 2019. Courtesy of Vulkanologische Gesellschaft and Claudio Jung, used with permission.

On 2 November, a single large explosion at 1330 local time produced a thick, dark ash plume that rose about 1,000 m above the summit and drifted NW. A shockwave from the explosion was felt at the Bogia Government station located 40 km SE on the mainland about 1 minute later. RVO reported an increase in seismicity on 6 November about 90 minutes before the start of a new eruption from the Main Crater which occurred between 1600 and 1630; it produced light to dark gray ash clouds that rose about 1,000 m above the summit and drifted NW. Incandescent ejecta was visible at the start of the explosion and continued with intermittent strong pulses after dark, reaching peak intensity around 1900. Activity ended by 2200 that evening. The Darwin VAAC reported a discrete emission observed in satellite imagery on 8 November that rose to 4.6 km altitude and drifted WNW, although ground observers confirmed that no eruption took place; emissions were only steam and gas. There were no further reports of explosive activity until the Darwin VAAC reported an ash emission in visible satellite imagery on 20 March 2020 that rose to 3.1 km altitude and drifted E for a few hours before dissipating.

Although explosive activity was minimal during the period, SO2 emissions, and evidence for continued thermal activity were recorded by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite captured evidence each month of SO2 emissions exceeding two Dobson Units (figure 74). The most SO2 activity occurred during October 2019, with 13 days of signatures over 2.0 DU. There were six days of elevated SO2 each month in November and December, and five days in January 2020. During February and March, activity was less, with smaller SO2 plumes recording more than 2.0 DU on three days each month. Sentinel-2 satellite imagery recorded thermal anomalies at least once from one or both of the summit craters each month between October 2019 and March 2020 (figure 75).

Figure (see Caption) Figure 74. SO2 emissions at Manam exceeded 2 Dobson Units multiple days each month between October 2019 and March 2020. On 3 October 2019 (top left) emissions were also measured from Ulawun located 700 km E on New Britain island. On 30 November 2019 (top middle), in addition to a plume drifting N from Manam, a small SO2 plume was detected at Bagana on Bougainville Island, 1150 km E. The plume from Manam on 2 December 2019 drifted ESE (top right). On 26 January 2020 the plume drifted over 300 km E (bottom left). The plumes measured on 29 February and 4 March 2020 (bottom middle and right) only drifted a few tens of kilometers before dissipating. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 75. Sentinel-2 satellite imagery with Atmospheric penetration rendering (bands 12, 11, and 8a) showed thermal anomalies at one or both of Manam’s summit craters each month during October 2019-March 2020. On 17 October 2019 (top left) a bright anomaly and weak gas plume drifted NW from South crater, while a dense steam plume and weak anomaly were present at Main crater. On 25 January 2020 (top right) the gas and steam from the two craters were drifting E; the weaker Main crater thermal anomaly is just visible at the edge of the clouds. A clear image on 5 March 2020 (bottom left) shows weak plumes and distinct thermal anomalies from both craters; on 20 March (bottom right) the anomalies are still visible through dense cloud cover that may include steam from the crater vents as well. Courtesy of Sentinel Hub Playground.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Vulkanologische Gesellschaft (URL: https://twitter.com/vulkanologen/status/1194228532219727874, https://twitter.com/vulkanologen/status/1193788836679225344); Claudio Jung, (URL: https://www.facebook.com/claudio.jung.1/posts/10220075272173895, https://www.instagram.com/jung.claudio/).


Stromboli (Italy) — April 2020 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian activity continues at both summit crater areas, September-December 2019

Near-constant fountains of lava at Stromboli have served as a natural beacon in the Tyrrhenian Sea for at least 2,000 years. Eruptive activity at the summit consistently occurs from multiple vents at both a north crater area (N area) and a southern crater group (CS area) on the Terrazza Craterica at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island (figure 168). Periodic lava flows emerge from the vents and flow down the scarp, sometimes reaching the sea; occasional large explosions produce ash plumes and pyroclastic flows. Thermal and visual cameras that monitor activity at the vents are located on the nearby Pizzo Sopra La Fossa, above the Terrazza Craterica, and at multiple locations on the flanks of the volcano. Detailed information for Stromboli is provided by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) as well as other satellite sources of data; September-December 2019 is covered in this report.

Figure (see Caption) Figure 168. This shaded relief map of Stromboli’s crater area was created from images acquired by drone on 9 July 2019 (In collaboration with GEOMAR drone group, Helmholtz Center for Ocean Research, Kiel, Germany). Inset shows Stromboli Island, the black rectangle indicates the area of the larger image, the black curved and the red hatched lines indicate, respectively, the morphological escarpment and the crater edges. Courtesy of INGV (Rep. No. 50/2019, Stromboli, Bollettino Settimanale, 02/12/2019 - 08/12/2019, data emissione 10/12/2019).

Activity was very consistent throughout the period of September-December 2019. Explosion rates ranged from 2-36 per hour and were of low to medium-high intensity, producing material that rose from less than 80 to over 150 m above the vents on occasion (table 7). The Strombolian activity in both crater areas often sent ejecta outside the crater rim onto the Terrazza Craterica, and also down the Sciara del Fuoco towards the coast. After the explosions of early July and late August, thermal activity decreased to more moderate levels that persisted throughout the period as seen in the MIROVA Log Radiative Power data (figure 169). Sentinel-2 satellite imagery supported descriptions of the constant glow at the summit, revealing incandescence at both summit areas, each showing repeating bursts of activity throughout the period (figure 170).

Table 7. Monthly summary of activity levels at Stromboli, September-December 2019. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
Sep 2019 Explosion rates varied from 11-36 events per hour and were of low- to medium intensity (producing 80-120 m high ejecta). Lapilli and bombs were typical from the N area, and coarse and finer-grained tephra (lapilli and ash) were most common in the CS area. The Strombolian activity in both crater areas often sent ejecta outside the crater rim onto the terrace, and also down the Sciara del Fuoco towards the coast.
Oct 2019 Typical Strombolian activity and degassing continued. Explosions rates varied from 2-21 events per hour. Low intensity activity was common in the N area (ejecta less than 80 m high) and low to moderate intensity activity was typical in the CS area, with a few explosions rising over 150 m high. Lapilli and bombs were typical from the N area, and coarse and finer-grained tephra (lapilli and ash) were most common in the CS area. Some of the explosions sent ejecta down the Sciara del Fuoco.
Nov 2019 Typical Strombolian activity and degassing continued. Explosion rates varied from 11-23 events per hour with ejecta rising usually 80-150 m above the vents. Occasional explosions rose 250 m high. In the N area, explosions were generally low intensity with coarse material (lapilli and bombs). In many explosions, ejecta covered the outer slopes of the area overlooking the Sciara del Fuoco, and some blocks rolled for a few hundred meters before stopping. In the CS area, coarse material was mixed with fine and some explosions sent ejecta onto the upper part of the Sciara del Fuoco.
Dec 2019 Strombolian activity and degassing continued. Explosion rates varied from 12-26 per hour. In the N area, explosion intensity was mainly medium-low (less than 150 m) with coarse ejecta while in the CS area it was usually medium-high (more than 150 m) with both coarse and fine ejecta. In many explosions, debris covered the outer slopes of the area overlooking the Sciara del Fuoco, and some blocks rolled for a few hundred meters before stopping. Spattering activity was noted in the southern vents of the N area.
Figure (see Caption) Figure 169. Thermal activity at Stromboli was high during July-August 2019, when two major explosions occurred. Activity continued at more moderate levels through December 2019 as seen in the MIROVA graph of Log Radiative Power from 8 June through December 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 170. Stromboli reliably produced strong thermal signals from both of the summit vents throughout September-December 2019 and has done so since long before Sentinel-2 satellite imagery was able to detect it. Image dates are (top, l to r) 5 September, 15 October, 20 October, (bottom l to r) 14 November, 14 December 2019, and 3 January 2020. Sentinel-2 imagery uses Atmospheric penetration rendering with bands 12, 11, and 8A, courtesy of Sentinel Hub Playground.

After a major explosion with a pyroclastic flow on 28 August 2019, followed by lava flows that reached the ocean in the following days (BGVN 44:09), activity diminished in early September to levels more typically seen in recent times. This included Strombolian activity from vents in both the N and CS areas that sent ejecta typically 80-150 m high. Ejecta from the N area generally consisted of lapilli and bombs, while the material from the CS area was often finer grained with significant amounts of lapilli and ash. The number of explosive events remained high in September, frequently reaching 25-30 events per hour. The ejecta periodically landed outside the craters on the Terrazza Craterica and even traveled partway down the Sciara del Fuoco. An inspection on 7 September by INGV revealed four eruptive vents in the N crater area and five in the S crater area (figure 171). The most active vents in the N area were N1 with mostly ash emissions and N2 with Strombolian explosions rich in incandescent coarse material that sometimes rose well above 150 m in height. In the S area, S1 and S2 produced jets of lava that often reached 100 m high. A small cone was observed around N2, having grown after the 28 August explosion. Between 11 and 13 September aerial surveys with drones produced detailed visual and thermal imagery of the summit (figure 172).

Figure (see Caption) Figure 171. Video of the Stromboli summit taken with a thermal camera on 7 September 2019 from the Pizzo sopra la Fossa revealed four active vents in the N area and five active vents in the S area. Images prepared by Piergiorgio Scarlato, courtesy of INGV (Rep. No. 37.2/2019, Stromboli, Bollettino Giornaliero del 10/09/2019).
Figure (see Caption) Figure 172. An aerial drone survey on 11 September 2019 at Stromboli produced a detailed view of the N and CS vent areas (left) and thermal images taken by a drone survey on 13 September (right) showed elevated temperatures down the Sciara del Fuoco in addition to the vents in the N and CS areas. Images by E. De Beni and M. Cantarero, courtesy of INGV (Rep. No. 37.5/2019, Stromboli, Bollettino Giornaliero del 13/09/2019).

Strombolian activity from the N crater on 28 September and 1 October 2019 produced blocks and debris that rolled down the Sciara del Fuoco and reached the ocean (figure 173). Explosive activity from the CS crater area sometimes produced ejecta over 150 m high (figure 174). A survey on 26 November revealed that a layer of ash 5-10 cm thick had covered the bombs and blocks that were deposited on the Pizzo Sopra la Fossa during the explosions of 3 July and 28 August (figure 175). On the morning of 27 December a lava flow emerged from the CS area and traveled a few hundred meters down the Sciara del Fuoco. The frequency of explosive events remained relatively constant from September through December 2019 after decreasing from higher levels during July and August (figure 176).

Figure (see Caption) Figure 173. Strombolian activity from vents in the N crater area of Stromboli produced ejecta that traveled all the way to the bottom of the Sciara del Fuoco and entered the ocean. Top images taken 28 September 2019 from the 290 m elevation viewpoint by Rosanna Corsaro. Bottom images captured on 1 October from the webcam at 400 m elevation. Courtesy of INGV (Rep. No. 39.0/2019 and Rep. No. 40.3, Stromboli, Bollettino Giornaliero del 29/09/2019 and 02/10/2019).
Figure (see Caption) Figure 174. Ejecta from Strombolian activity at the CS crater area of Stromboli rose over 150 m on multiple occasions. The webcam located at the 400 m elevation site captured this view of activity on 8 November 2019. Courtesy of INGV (Rep. No. 45.5/2019, Stromboli, Bollettino Giornaliero del 08/11/2019).
Figure (see Caption) Figure 175. The Pizzo Sopra la Fossa area at Stromboli was covered with large blocks and pyroclastic debris on 6 September 2019, a week after the major explosion of 28 August (top). By 26 November, 5-10 cm of finer ash covered the surface; the restored webcam can be seen at the far right edge of the Pizzo (bottom). Courtesy of INGV (Rep. No. 49/2019, Stromboli, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).
Figure (see Caption) Figure 176. The average hourly frequency of explosive events at Stromboli captured by surveillance cameras from 1 June 2019 through 5 January 2020 remained generally constant after the high levels seen during July and August. The Total value (blue) is the sum of the average daily hourly frequency of all explosive events produced by active vents.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Semeru (Indonesia) — April 2020 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Ash plumes and thermal anomalies continue during September 2019-February 2020

Semeru is a stratovolcano located in East Java, Indonesia containing an active Jonggring-Seloko vent at the Mahameru summit. Common activity has consisted of ash plumes, pyroclastic flows and avalanches, and lava flows that travel down the SE flank. This report updates volcanism from September 2019 to February 2020 using primary information from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

The dominant activity at Semeru for this reporting period consists of ash plumes, which were frequently reported by the Darwin VAAC. An eruption on 10 September 2019 produced an ash plume rising 4 km altitude drifting WNW, as seen in HIMAWARI-8 satellite imagery. Ash plumes continued to rise during 13-14 September. During the month of October the Darwin VAAC reported at least six ash plumes on 13, 14, 17-18, and 29-30 October rising to a maximum altitude of 4.6 km and moving primarily S and SW. Activity in November and December was relatively low, dominated mostly by strong and frequent thermal anomalies.

Volcanism increased in January 2020 starting with an eruption on 17 and 18 January that sent a gray ash plume up to 4.6 km altitude (figure 38). Eruptions continued from 20 to 26 January, producing ash plumes that rose up to 500 m above the crater that drifted in different directions. For the duration of the month and into February, ash plumes occurred intermittently. On 26 February, incandescent ejecta was ejected up to 50 m and traveled as far as 1000 m. Small sulfur dioxide emissions were detected in the Sentinel 5P/TROPOMI instrument during 25-27 February (figure 39). Lava flows during 27-29 February extended 200-1,000 m down the SE flank; gas-and-steam and SO2 emissions accompanied the flows. There were 15 shallow volcanic earthquakes detected on 29 February in addition to ash emissions rising 4.3 km altitude drifting ESE.

Figure (see Caption) Figure 38. Ash plumes rising from the summit of Semeru on 17 (left) and 18 (right) January 2020. Courtesy of MAGMA Indonesia and via Ø.L. Andersen's Twitter feed (left).
Figure (see Caption) Figure 39. Small SO2 plumes from Semeru were detected by the Sentinel 5P/TROPOMI instrument during 25 (left) and 26 (right) February 2020. Courtesy of NASA Goddard Space Flight Center.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively weak and intermittent thermal anomalies occurring during May to August 2019 (figure 40). The frequency and power of these thermal anomalies significantly increased during September to mid-December 2019 with a few hotspots occurring at distances greater than 5 km from the summit. These farther thermal anomalies to the N and NE of the volcano do not appear to be caused by volcanic activity. There was a brief break in activity during mid-December to mid-January 2020 before renewed activity was detected in early February 2020.

Figure (see Caption) Figure 40. Thermal anomalies were relatively weak at Semeru during 30 April 2019-August 2019, but significantly increased in power and frequency during September to early December 2019. There was a break in activity from mid-December through mid-January 2020 with renewed thermal anomalies around February 2020. Courtesy of MIROVA.

The MODVOLC algorithm detected 25 thermal hotspots during this reporting period, which took place during 25 September, 18 and 21 October 2019, 29 January, and 11, 14, 16, and 23 February 2020. Sentinel-2 thermal satellite imagery shows intermittent hotspots dominantly in the summit crater throughout this reporting period (figure 41).

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite imagery detected intermittent thermal anomalies (bright yellow-orange) at the summit of Semeru, which included some lava flows in late January to early February 2020. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com).


Popocatepetl (Mexico) — April 2020 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Dome growth and destruction continues along with ash emissions and ejecta, September 2019-February 2020

Frequent historical eruptions have been reported from Mexico's Popocatépetl going back to the 14th century. Activity increased in the mid-1990s after about 50 years of quiescence, and the current eruption, ongoing since January 2005, has included numerous episodes of lava-dome growth and destruction within the 500-m-wide summit caldera. Multiple emissions of steam and gas occur daily, rising generally 1-3 km above the summit at about 5,400 m elevation; many contain small amounts of ash. Larger, more explosive events with ash plumes and incandescent ejecta landing on the flanks occur frequently. Activity through August 2019 was typical of the ongoing eruption with near-constant emissions of water vapor, gas, and minor ash, as well as multiple explosions with ash plumes and incandescent blocks scattered on the flanks (BGVN 44:09). This report covers similar activity from September 2019 through February 2020. Information comes from daily reports provided by México's Centro Nacional de Prevención de Desastres (CENAPRED); ash plumes are reported by the Washington Volcanic Ash Advisory Center (VAAC). Satellite visible and thermal imagery and SO2 data also provide helpful observations of activity.

Activity summary. Activity at Popocatépetl during September 2019-February 2020 continued at the high levels that have been ongoing for many years, characterized by hundreds of daily low-intensity emissions that included steam, gas, and small amounts of ash, and periods with multiple daily minor and moderate explosions that produce kilometer-plus-high ash plumes (figure 140). The Washington VAAC issued multiple daily volcanic ash advisories with plume altitudes around 6 km for many, although some were reported as high as 8.2 km. Hundreds of minutes of daily tremor activity often produced ash emissions as well. Incandescent ejecta landed 500-1,000 m from the summit frequently. The MIROVA thermal anomaly data showed near-constant moderate to high levels of thermal energy throughout the period (figure 141).

Figure (see Caption) Figure 140. Emissions continued at a high rate from Popocatépetl throughout September 2019-February 2020. Daily low-intensity emissions numbered usually in the hundreds (blue, left axis), while less frequent minor (orange) and moderate (green) explosions, plotted on the right axis, occurred intermittently through November 2019, and increased again during February 2020. Data was compiled from CENAPRED daily reports.
Figure (see Caption) Figure 141. MIROVA log radiative power thermal data for Popocatépetl from 1 May 2019 through February 2020 showed a constant output of moderate energy the entire time. Courtesy of MIROVA.

Sulfur dioxide emissions were measured with satellite instruments many days of each month from September 2019 thru February 2020. The intensity and drift directions varied significantly; some plumes remained detectable hundreds of kilometers from the volcano (figure 142). Plumes were detected almost daily in September, and on most days in October. They were measured at lower levels but often during November, and after pulses in early and late December only small plumes were visible during January 2020. Intermittent larger pulses returned in February. Dome growth and destruction in the summit crater continued throughout the period. A small dome was observed inside the summit crater in late September. Dome 85, 210-m-wide, was observed inside the summit crater in early November. Satellite imagery captured evidence of dome growth and ash emissions throughout the period (figure 143).

Figure (see Caption) Figure 142. Sulfur dioxide emissions from Popocatépetl were frequent from September 2019 through February 2020. Plumes drifted SW on 7 September (top left), 30 October (top middle), and 21 February (bottom right). SO2 drifted N and NW on 26 November (top right). On 2 December (bottom left) a long plume of sulfur dioxide hundreds of kilometers long drifted SW over the Pacific Ocean while the drift direction changed to NW closer to the volcano. The SO2 plumes measured in January (bottom center) were generally smaller than during the other months covered in this report. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 143. Sentinel-2 satellite imagery of Popocatépetl during November 2019-February 2020 provided evidence for ongoing dome growth and explosions with ash emissions. Top left: a ring of incandescence inside the summit crater on 8 November 2019 was indicative of the growth of dome 85 observed by CENAPRED. Top middle: incandescence on 8 December inside the summit crater was typical of that observed many times during the period. Top right: a dense, narrow ash plume drifted N from the summit on 17 January 2020. Bottom left: Snow cover made ashfall on 6 February easily visible on the E flank. On 11 February, the summit crater was incandescent and nearly all the snow was covered with ash. Bottom right: a strong thermal anomaly and ash emission were captured on 21 February. Bottom left and top right images use Natural color rendering (bands 4, 3, 2); other images use Atmospheric penetration rendering to show infrared signal (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Activity during September-November 2019. On 1 September 2019 minor ashfall was reported in the communities of Atlautla, Ozumba, Juchitepec, and Tenango del Aire in the State of Mexico. The ash plumes rose less than 2 km above the summit and incandescent ejecta traveled less than 100 m from the summit crater. Twenty-two minor and three moderate explosions were recorded on 4-5 September along with minor ashfall in Juchitepec, Tenango del Aire, Tepetlixpa, and Atlautla. During a flyover on 5 September, officials did not observe a dome within the crater, and the dimensions remained the same as during the previous visit (350 m in diameter and 150 m deep) (figure 144). Ashfall was reported in Tlalmanalco and Amecameca on 6 September. The following day incandescent ejecta was visible on the flanks near the summit and ashfall was reported in Amecameca, Ayapango, and Tenango del Aire. The five moderate explosions on 8 September produced ash plumes that rose as high as 2 km above the summit, and incandescent ejecta on the flanks. Explosions on 10 September sent ejecta 500 m from the crater. Eight explosions during 20-21 September produced ejecta that traveled up to 1.5 km down the flanks (figure 145). During an overflight on 27 September specialists from the National Center for Disaster Prevention (CENAPRED ) of the National Coordination of Civil Protection and researchers from the Institute of Geophysics of UNAM observed a new dome 30 m in diameter; the overall crater had not changed size since the overflight in early September.

Figure (see Caption) Figure 144. CENAPRED carried out overflights of Popocatépetl on 5 (left) and 27 September (right) 2019; the crater did not change in size, but a new dome 30 m in diameter was visible on 27 September. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 05 y 27 de septiembre).
Figure (see Caption) Figure 145. Ash plumes at Popocatépetl on 19 (left) and 20 (right) September 2019 rose over a kilometer above the summit before dissipating. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 19 y 20 de septiembre).

Fourteen explosions were reported on 2 October 2019. The last one produced an ash plume that rose 2 km above the summit and sent incandescent ejecta down the E slope (figure 146). Ashfall was reported in the municipalities of Atlautla Ozumba, Ayapango and Ecatzingo in the State of Mexico. Explosions on 3 and 4 October also produced ash plumes that rose between 1 and 2 km above the summit and sent ejecta onto the flanks. Additional incandescent ejecta was reported on 6, 7, 15, and 19 October. The communities of Amecameca, Tenango del Aire, Tlalmanalco, Cocotitlán, Temamatla, and Tláhuac reported ashfall on 10 October; Amecameca reported more ashfall on 12 October. On 22 October slight ashfall appeared in Amecameca, Tenango del Aire, Tlalmanalco, Ayapango, Temamatla, and Atlautla.

Figure (see Caption) Figure 146. Incandescent ejecta at Popocatépetl traveled down the E slope on 2 October 2019 (left); an ash plume two days later rose 2 km above the summit (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 2 y 4 de octubre).

During 2-3 November 2019 there was 780 minutes of tremor reported in four different episodes. The seismicity was accompanied by ash emissions that drifted W and NW and produced ashfall in numerous communities, including Amecameca, Juchitepec, Ozumba, Tepetlixpa, and Atlautla in the State of México, in Ayapango and Cuautla in the State of Morelos, and in the municipalities of Tlahuac, Tlalpan, and Xochimilco in Mexico City. A moderate explosion on 4 November sent incandescent ejecta 2 km down the slopes and produced an ash plume that rose 1.5 km and drifted NW. Minor ashfall was reported in Tlalmanalco, Amecameca, and Tenango del Aire, State of Mexico. Similar ash plumes from explosions occurred the following day. Scientists from CENAPRED and the Institute of Geophysics of UNAM observed dome number 85 during an overflight on 5 November 2019. It had a diameter of 210 m and was 80 m thick, with an irregular surface (figure 147). Multiple explosions on 6 and 7 November produced incandescent ejecta; a moderate explosion late on 11 November produced ejecta that traveled 1.5 km from the summit and produced an ash plume 2 km high (figure 148). A lengthy period of constant ash emission that drifted E was reported on 18 November. A moderate explosion on 28 November sent incandescent fragments 1.5 km down the slopes and ash one km above the summit.

Figure (see Caption) Figure 147. A new dome was visible inside the summit crater at Popocatépetl during an overflight on 5 November 2019. It had a diameter of 210 m and was 80 m thick. Courtesy of CENAPRED (Sobrevuelo al volcán Popocatépetl, 05 de noviembre).
Figure (see Caption) Figure 148. Ash emissions and explosions with incandescent ejecta continued at Popocatépetl during November 2019. The ash plume on 1 November changed drift direction sharply a few hundred meters above the summit (left). Incandescent ejecta traveled 1.5 km down the flanks on 11 November (right). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 1 y 12 de noviembre).

Activity during December 2019-February 2020. Throughout December 2019 weak emissions of steam and gas were reported daily, sometimes with minor amounts of ash, and minor explosions were only reported on 21 and 27 December. On 21 December two new high-resolution webcams were installed around Popocatépetl, one 5 km from the crater at the Tlamacas station, and the second in San Juan Tianguismanalco, 20 km away. Ash emissions and incandescent ejecta 800 m from the summit were observed on 25 December (figure 149). Incandescence at night was reported during 27-29 December.

Figure (see Caption) Figure 149. Incandescent ejecta moved 800 m down the flanks of Popocatépetl during explosions on 25 December 2019 (left); weak emissions of steam, gas, and minor ash were visible on 27 December and throughout the month. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 25 y 27 de diciembre).

Continuous emissions of water vapor and gas with low ash content were typical daily during January 2020. A moderate explosion on 9 January produced an ash plume that rose 3 km from the summit and drifted NE. In addition, incandescent ejecta traveled 1 km from the crater rim. A minor explosion on 21 January produced a 1.5-km-high plume with low ash content and incandescent ejecta that fell near the crater (figure 150). The first of two explosions late on 27 January produced ejecta that traveled 500 m and a 1-km-high ash plume. Constant incandescence was observed overnight on 29-30 January.

Figure (see Caption) Figure 150. Although fewer explosions were recorded at Popocatépetl during January 2020, activity continued. An ash plume on 19 January rose over a kilometer above the summit (top left). A minor explosion on 21 January produced a 1.5-km-high plume with low ash content and incandescent ejecta that fell near the crater (top right). Smaller emissions with steam, gas, and ash were typical many days, including on 22 (bottom left) and 31 (bottom right) January 2019. Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl 19, 21, 22 y 31 de enero).

A moderate explosion on 5 February 2020 produced an ash plume that rose 1.5 km and drifted NNE. Explosions on 10 and 13 February sent ejecta 500 m down the flanks (figure 151). During an overflight on 18 February scientists noted that the internal crater maintained a diameter of 350 m and its approximate depth was 100-150 m; the crater was covered by tephra. For most of the second half of February the volcano had a continuous emission of gases with minor amounts of ash. In addition, multiple explosions produced ash plumes that rose 400-1,200 m above the crater and drifted in several different directions.

Figure (see Caption) Figure 151. Ash emissions and explosions continued at Popocatépetl during February 2020. Dense ash drifted near the snow-covered summit on 6 February (top left). Incandescent ejecta traveled 500 m down the flanks on 13 February (top right). Ash plumes billowed from the summit on 18 and 22 February (bottom row). Courtesy of CENAPRED (Reporte del monitoreo de CENAPRED al volcán Popocatépetl, 6, 15, 18 y 22 de febrero).

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: http://www.cenapred.unam.mx/), Daily Report Archive http://www.cenapred.unam.mx:8080/reportesVolcanGobMX/BuscarReportesVolcan); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Santa Maria (Guatemala) — April 2020 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Daily explosions with ash plumes and block avalanches continue, September 2019-February 2020

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing and actively erupting since 1922. Ash explosions, pyroclastic, and lava flows have emerged from Caliente, the youngest of the four vents in the complex, for more than 40 years. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Daily explosions with ash plumes and block avalanches continued during September 2019-February 2020, the period covered in this report, with information primarily from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center).

Constant fumarolic activity with steam and gas persisted from the Caliente dome throughout September 2019-February 2020. Explosions occurred multiple times per day, producing ash plumes that rose to altitudes of 3.1-3.5 km and usually drifted a few kilometers before dissipating. Several lahars during September and October carried volcanic blocks, ash, and debris down major drainages. Periodic ashfall was reported in communities within 10 km of the volcano. An increase in thermal activity beginning in November (figure 101) resulted in an increased number of observations of incandescence visible at night from the summit of Caliente through February 2020. Block avalanches occurred daily on the flanks of the dome, often reaching the base, stirring up small clouds of ash that drifted downwind.

Figure (see Caption) Figure 101. The MIROVA project graph of thermal activity at Santa María from 12 May 2019 through February 2020 shows a gradual increase in thermal energy beginning in November 2019. This corresponds to an increase in the number of daily observations of incandescence at the summit of the Caliente dome during this period. Courtesy of MIROVA.

Constant steam and gas fumarolic activity rose from the Caliente dome, drifting W, usually rising to 2.8-3.0 km altitude during September 2019. Multiple daily explosions with ash plumes rising to 2.9-3.4 km altitude drifted W or SW over the communities of San Marcos, Loma Linda Palajunoj, and Monte Claro (figure 102). Constant block avalanches fell to the base of the cone on the NE and SE flanks. The Washington VAAC reported an ash plume visible in satellite imagery on 10 September at 3.1 km altitude drifting W. On 14 September another plume was spotted moving WSW at 4.6 km altitude which dissipated quickly; the webcam captured another plume on 16 September. Ashfall on 27 September reached about 1 km from the volcano; it reached 1.5 km on 29 September. Lahars descended the Rio Cabello de Ángel on 2 and 24 September (figure 102). They were about 15 m wide, and 1-3 m deep, carrying blocks 1-2 m in diameter.

Figure (see Caption) Figure 102. A lahar descended the Rio Cabello de Ángel at Santa Maria and flowed into the Rio Nima 1 on 24 September 2019. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 21 al 27 de septiembre de 2019).

Througout October 2019, degassing of steam with minor gases occurred from the Caliente summit, rising to 2.9-3.0 km altitude and generally drifting SW. Weak explosions took place 1-5 times per hour, producing ash plumes that rose to 3.2-3.5 km altitude. Ashfall was reported in Monte Claro on 2 October. Nearly constant block avalanches descended the SE and S flanks, disturbing recent layers of fine ash and producing local ash clouds. Moderate explosions on 11 October produced ash plumes that rose to 3.5 km altitude and drifted W and SW about 1.5 km towards Río San Isidro (figure 103). The following day additional plumes drifted a similar distance to the SE. The Washington VAAC reported an ash emission visible in satellite imagery at 4.9 km altitude on 13 October drifting NNW. Ashfall was reported in Parcelamiento Monte Claro on 14 October. Some of the block avalanches observed on 14 October on the SE, S, and SW flanks were incandescent. Ash drifted 1.5 km W and SW on 17 October. Ashfall was reported near la finca Monte Claro on 25 and 28 October. A lahar descended the Río San Isidro, a tributary of the Río El Tambor on 7 October carrying blocks 1-2 m in diameter, tree trunks, and branches. It was about 16 m wide and 1-2 m deep. Additional lahars descended the rio Cabello de Angel on 23 and 24 October. They were about 15 m wide and 2 m deep, and carried ash and blocks 1-2 m in diameter, tree trunks, and branches.

Figure (see Caption) Figure 103. Daily ash plumes were reported from the Caliente cone at Santa María during October 2019, similar to these from 30 September (left) and 11 October 2019 (right). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 28 de septiembre al 04 de octubre de 2019; Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 05 al 11 de octubre de 2019).

During November 2019, steam plumes rose to 2.9-3.0 km altitude and generally drifted E. There were 1-3 explosions per hour; the ash plumes produced rose to altitudes of 3.1-3.5 km and often drifted SW, resulting in ashfall around the volcanic complex. Block avalanches descended the S and SW flanks every day. On 4 November ashfall was reported in the fincas (ranches) of El Faro, Santa Marta, El Viejo Palmar, and Las Marías, and the odor of sulfur was reported 10 km S. Incandescence was observed at the Caliente dome during the night of 5-6 November. Ash fell again in El Viejo Palmar, fincas La Florida, El Faro, and Santa Marta (5-6 km SW) on 7 November. Sulfur odor was also reported 8-10 km S on 16, 19, and 22 November. Fine-grained ash fell on 18 November in Loma Linda and San Marcos Palajunoj. On 29 November strong block avalanches descended in the SW flank, stirring up reddish ash that had fallen on the flanks (figure 104). The ash drifted up to 20 km SW.

Figure (see Caption) Figure 104. Ash plumes rose from explosions multiple times per day at Santa Maria’s Santiaguito complex during November 2019, and block avalanches stirred up reddish clouds of ash that drifted for many kilometers. Courtesy of INSIVUMEH. Left, 11 November 2019, from Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 09 al 15 de noviembre de 2019. Right, 29 November 2019 from BOLETÍN VULCANOLÓGICO ESPECIAL BESTG# 106-2019, Guatemala 29 de noviembre de 2019, 10:50 horas (Hora Local).

White steam plumes rising to 2.9-3.0 km altitude drifted SE most days during December 2019. One to three explosions per hour produced ash plumes that rose to 3.1-3.5 km altitude and drifted W and SW producing ashfall on the flanks. Several strong block avalanches sent material down the SW flank. Ash from the explosions drifted about 1.5 km SW on 3 and 7 December. The Washington VAAC reported a small ash emission that rose to 4.9 km altitude and drifted WSW on 8 December, and another on 13 December that rose to 4.3 km altitude. Ashfall was reported up to 10 km S on 24 December. Incandescence was reported at the dome by INSIVUMEH eight times during the month, significantly more than during the recent previous months (figure 105).

Figure (see Caption) Figure 105. Strong thermal anomalies were visible in Sentinel-2 imagery at the summit of the Caliente cone at Santa María’s Santiaguito’s complex on 19 December 2019. Image uses Atmospheric Penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Activity during January 2020 was similar to that during previous months. White plumes of steam rose from the Caliente dome to altitudes of 2.7-3.0 km and drifted SE; one to three explosions per hour produced ash plumes that rose to 3.2-3.4 km altitude and generally drifted about 1.5 km SW before dissipating. Frequent block avalanches on the SE flank caused smaller plumes that drifted SSW often over the ranches of San Marcos and Loma Linda Palajunoj. On 28 January ash plumes drifted W and SW over the communities of Calaguache, El Nuevo Palmar, and Las Marías. In addition to incandescence observed at the crater of Caliente dome at least nine times, thermal anomalies in satellite imagery were detected multiple times from the block avalanches on the S flank (figure 106).

Figure (see Caption) Figure 106. Incandescence at the summit and in the block avalanches on the S flank of the Caliente cone at Santa María’s Santiaguito’s complex was visible in Sentinel-2 satellite imagery on 8 and 13 January 2020. Atmospheric penetration rendering images (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

The Washington VAAC reported an ash plume visible in satellite imagery at 4.6 km altitude drifting W on 3 February 2020. INSIVUMEH reported constant steam degassing that rose to 2.9-3.0 km altitude and drifted SW. In addition, 1-3 weak to moderate explosions per hour produced ash plumes to 3.1-3.5 km altitude that drifted about 1 km SW. Small amounts of ashfall around the volcano’s perimeter was common. The ash plumes on 5 February drifted NE over Santa María de Jesús. On 8 February the ash plumes drifted E and SE over the communities of Calaguache, El Nuevo Palmar, and Las Marías. Block avalanches on the S and SE flanks of Caliente dome continued, creating small ash clouds on the flank. Incandescence continued frequently at the crater and was also observed on the S flank in satellite imagery (figure 107).

Figure (see Caption) Figure 107. Incandescence at the summit and on the S flank of the Caliente cone at Santa María’s Santiaguito’s complex was frequent during February 2020, including on 2 (left) and 17 (right) February 2020 as seen in Sentinel-2 imagery. Atmostpheric Penetration rendering imagery (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 16, Number 05 (May 1991)

Managing Editor: Lindsay McClelland

Aira (Japan)

Frequent explosions continue

Arenal (Costa Rica)

Strombolian activity and seismicity increase, then decline; block lava flows on S and SW flanks

Barren Island (India)

Explosions and lava flows from NE flank vent

Colima (Mexico)

Continued lava dome growth; increased avalanching follows earthquakes and tremor episodes

Deception Island (Antarctica)

Stronger earthquakes; anomalous water temperature in caldera center

Etna (Italy)

Strong degassing

Galeras (Colombia)

More seismic events but lower energy release; thermal activity remains moderate

Gede-Pangrango (Indonesia)

Brief earthquake swarm

Guallatiri (Chile)

Strong fumarolic activity

Irazu (Costa Rica)

Tectonic earthquake swarm

Kavachi (Solomon Islands)

Continued explosions from new island

Kilauea (United States)

E rift lava continues to flow through tubes into the ocean

Langila (Papua New Guinea)

Ash emission resumes; steady glow

Lascar (Chile)

High crater temperatures detected by satellite

Lewotobi (Indonesia)

Ash emission follows increased seismicity

Lokon-Empung (Indonesia)

Increased gas emission, then ash eruption

Manam (Papua New Guinea)

Ash ejection declines to weak vapor emission

Merapi (Indonesia)

Continued seismicity but lava dome unchanged

Obituary Notices (Unknown)

Deaths of three volcanologists (Maurice and Katia Krafft, Harry Glicken) at Unzen

Ontakesan (Japan)

Earthquake swarms and tremor; renewed steam emission from 1979 vent

Pinatubo (Philippines)

Major stratospheric cloud, pyroclastic flows, and new summit caldera; >300 killed by eruption and typhoon

Poas (Costa Rica)

Strong gas emission; rain adds water to nearly dry crater lake

Rabaul (Papua New Guinea)

Continued low-level seismicity; slight uplift

Rincon de la Vieja (Costa Rica)

More details on 8 May eruption and deposits

Ruiz, Nevado del (Colombia)

Frequent lithic ash emissions; occasional vigorous earthquake swarms

Sabancaya (Peru)

Vigorous Vulcanian activity; mudflows force daily clearing of river channel

San Jose (Chile-Argentina)

New fumarole field on upper S flank

Soputan (Indonesia)

Explosion sounds and incandescence; frequent seismicity

Stromboli (Italy)

More frequent explosions

Ulawun (Papua New Guinea)

Large gas plume and numerous weak earthquakes

Unzendake (Japan)

41 killed by pyroclastic flow from lava dome

Whakaari/White Island (New Zealand)

Ash emission from new vent; continued deformation



Aira (Japan) — May 1991 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Frequent explosions continue

Frequent explosions continued through mid-June, with 17 recorded in May and 20 as of 19 June, bringing the year's total to 142. The highest ash clouds rose 3,000 m on 3 May and 2300 m on 18 June. An air shock from a 10 May explosion broke a window, the first explosion damage since December 1990.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA.


Arenal (Costa Rica) — May 1991 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Strombolian activity and seismicity increase, then decline; block lava flows on S and SW flanks

On 20 April, seismic explosion signals became moderately more frequent, and seismicity increased to >40 recorded earthquakes/day (RSN network). Seismicity was similar in May, with a daily average of 20 recorded earthquakes and a maximum of 43 (Univ Nacional network). Strombolian explosive activity was stronger, more voluminous, and more frequent, especially on 19-26 May when explosions vibrated windows and were heard 34 km SE (in Quesada). Several explosions were recorded at a seismic station 98 km away (Juan Diaz). Plumes rose to 1 km height above Crater C, depositing ash to Chambacú (17.5 km NE) and La Palma (4 km N). After 26 May, seismic and eruptive activity returned to normal levels. Gas emission continued with periodic, smaller explosions; plumes were carried predominantly to the NE, W, and SW. Block lava flows continued down the SW and S flanks, reaching 700 m elevation by the end of April.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernández, J. Brenes, V. Barboza, and T. Marino, OVSICORI; R. Barquero, ICE.


Barren Island (India) — May 1991 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Explosions and lava flows from NE flank vent

Reports of strong emissions of "thick smoke" on 30 April prompted a visit to the island on 16 May by geologists from the GSI [see additional information about the start of the eruption in 16:10]. Lava poured continuously from a subsidiary vent on the NE face of the central volcanic cone, travelling N into a valley, then W along the course of the 1803 lava flow (figure 1). An area of ~800 x 200 m had been covered by fresh lava, with an average thickness of 5-6 m. Explosions at the vent occurred at intervals of several seconds, ejecting bombs, lapilli, and ash to heights >50 m.

Figure (see Caption) Figure 1. Geologic sketch map of Barren Island, by D. Haldar, T. Laskar, and J.K. Biswas. Courtesy of the GSI.

On 7 June at 1602, John Deed, pilot of Thai Airways International flight 307, observed a gray to dark-gray plume rising ~3 km above the summit and extending roughly 90 km NE. No lava was visible.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: Director General, GSI; Deputy Director General, GSI Eastern Region; T. Fox, ICAO.


Colima (Mexico) — May 1991 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Continued lava dome growth; increased avalanching follows earthquakes and tremor episodes

During the weeks preceding 5 June, volcanic seismicity recorded by RESCO remained at low levels, showing only a few avalanches/day. Poor visibility prevented daily visual observations from the city of Colima, but sporadic observations from sites near the volcano (Yerbabuena and La Joya) have shown strong fumarolic activity (mainly vapor and a small grayish plume) and continued growth of the dome extrusion.

On 6 June between about 0000 and 0200, a tremor episode was clearly recorded by station EZV7 (at Volcancito, ~1 km NE of the summit), but was barely detectable at other stations. Activity then returned to previous levels. A second tremor episode, much stronger and clearly recorded by several stations, occurred between about 1800 and 2100, after which seismicity again returned to relative quiet. The activity was interpreted as probably being of phreatic origin, given recent rainfall in the region. Witnesses about 13 km from the volcano (in the Tonila area) reported conspicuous incandescence at the crater.

A third seismic episode, on 8 June between about 2000 and 2200, consisted of four large, complex shallow earthquakes followed by almost monochromatic harmonic tremor. The caretaker at nearby La Joya reported hearing four explosions followed by strong sustained whistling. On 9 June, a few small closely-spaced B-type earthquakes seemed to mark the onset of another tremor episode, but it did not materialize and no further tremor activity had been recorded as of 13 June.

During the evening of 9 June, there was an increase in both the number and duration of avalanche events, which remained of small magnitude. Long-duration avalanches continued as of 13 June, but their numbers had decreased. Geophysicists noted that the increased number and duration of avalanches on 9 June was similar to that observed before the 16 April dome collapse. No deep seismicity, indicating stress at depth, has been detected, but the tremor, not previously observed, suggested changes in activity requiring careful monitoring.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: F. Alejandro Nava, Francisco Núñez-Cornú, Gilberto Ornelas-Arciniega, Ariel Ramírez-Vázquez, G.A. Reyes-Dávila, Hector Tamez, and R. García, CICT, Universidad de Colima; Z. Jiménez, I. Yokoyama, and S. de la Cruz-Reyna, UNAM.


Deception Island (Antarctica) — May 1991 Citation iconCite this Report

Deception Island

Antarctica

63.001°S, 60.652°W; summit elev. 602 m

All times are local (unless otherwise noted)


Stronger earthquakes; anomalous water temperature in caldera center

"Spanish-Argentine volcanological, geophysical, and geodetic scientists visited Deception Island during the 1990-91 austral summer (28 November 1990-13 March 1991) to provide measurements of the background activity. The present activity generally has remained unchanged from previous years.

"A digital microseismic network was installed to record the local and regional seismic activity for 3 months (figure 3). On 14 January, a M 3.2 earthquake was recorded on the NE sector of the island. After this event the seismic activity changed dramatically compared to that recorded during the previous 4 summers, increasing in magnitude and decreasing in frequency. In general, the epicenters are related to the 1970 eruption vents and they are associated with the fissure system (figure 4). Episodes of volcanic tremors were also recorded in Fumarole Bay.

Figure (see Caption) Figure 3. Daily number of seismic events recorded by a temporary digital microseismic network at Deception Island, 14 December 1990-23 February 1991. Courtesy of Ramón Ortiz.
Figure (see Caption) Figure 4. Epicenters of earthquakes (mb >1.2) recorded at Deception Island, 1 December 1990-23 February 1991. Courtesy of Ramón Ortiz.

"During the 1990-91 fieldwork, more than 300 gravimetric measurements were carried out, the magnetic map of the island was completed, and temperatures in fumaroles and hot soils were monitored. A volcanologically oriented GPS network was established and four GPS benchmarks (Argentine Station, Pendulum Cove, Fumarole Bay, and Whalers Bay) were measured with double-frequency receivers. Finally, three dry-tilt stations were installed in Telefon Bay (1970 eruption area), Crater Lake (1842 eruption sector), and Fumarole Bay.

"The Spanish Oceanographic vessel Las Palmas recorded water temperature and salinity distribution in Port Foster. An area of anomalous temperature was detected in the central part of the caldera."

Geologic Background. Ring-shaped Deception Island, one of Antarctica's most well known volcanoes, contains a 7-km-wide caldera flooded by the sea. Deception Island is located at the SW end of the Shetland Islands, NE of Graham Land Peninsula, and was constructed along the axis of the Bransfield Rift spreading center. A narrow passageway named Neptunes Bellows provides entrance to a natural harbor that was utilized as an Antarctic whaling station. Numerous vents located along ring fractures circling the low, 14-km-wide island have been active during historical time. Maars line the shores of 190-m-deep Port Foster, the caldera bay. Among the largest of these maars is 1-km-wide Whalers Bay, at the entrance to the harbor. Eruptions from Deception Island during the past 8700 years have been dated from ash layers in lake sediments on the Antarctic Peninsula and neighboring islands.

Information Contacts: R. Ortiz, Museo Nacional de Ciencias Naturales, Spain; J. Viramonte, Univ Nacional de Salta, Argentina; R. Soto, Real Instituto y Observatorio de la Armada, Spain.


Etna (Italy) — May 1991 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strong degassing

Nearly continuous degassing was observed ... on 24 May. Northeast Crater's active vent was slightly incandescent and weakly emitting gas. Normal degassing, with sporadic rumbling, occurred at La Voragine, whose elliptical vent E of the central crater floor had reopened. The floors of Bocca Nuova and Southeast Crater were not visible due to their strong degassing.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: H. Gaudru, EVS, Switzerland; Franco Emmi, Etna guide.


Galeras (Colombia) — May 1991 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


More seismic events but lower energy release; thermal activity remains moderate

The number of seismic events (high-frequency, low-frequency, and long-period) increased during May, while seismic energy release and reduced displacement decreased from April values (figures 40 and 41). The high-frequency activity (M 0.5-1.9) was centered W of the crater at 2-8 km depth. Tremor episodes were less frequent and had lower reduced displacements than in April. The tiltmeter 0.9 km E of the crater (Crater Station) continued to show deformation, with 20 µrad inflation (tangential component) in May, for a total inflation since September of 102 µrad. Other stations showed oscillations or only very low cumulative inflation.

Figure (see Caption) Figure 40. Daily number of high-frequency events (bottom) and energy release (top) at Galeras, May 1991. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 41. Daily number of long-period events (bottom) and reduced displacement (top) at Galeras, May 1991. Courtesy of INGEOMINAS.

SO2 flux, measured by COSPEC, varied between low and moderate levels. Fumarole temperatures in Besolima fissure continued to decrease (436°C in May compared to 468°C in April), while temperatures remained fairly constant at Deformes (254°C compared to 250-265°C since December 1990) and Calvache (89°C compared to 88-92°C since December 1989).

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS-OVP.


Gede-Pangrango (Indonesia) — May 1991 Citation iconCite this Report

Gede-Pangrango

Indonesia

6.77°S, 106.965°E; summit elev. 3008 m

All times are local (unless otherwise noted)


Brief earthquake swarm

Three shocks were felt (intensities I-III) on 30 April. Seismicity later returned to normal levels (10-15 events/day) during the second week of May (table 1).

Table 1. Number of earthquakes at Gede, May 1991. Courtesy of VSI.

Dates Deep Volcanic (VT) Shallow Volcanic Tectonic
01-04 May 1991 22 51 47
05-11 May 1991 197 635 9
12-18 May 1991 8 16 20
19-25 May 1991 23 8 9
26-31 May 1991 9 8 13

Geologic Background. Gede volcano is one of the most prominent in western Java, forming a twin volcano with Pangrango volcano to the NW. The major cities of Cianjur, Sukabumi, and Bogor are situated below the volcanic complex to the E, S, and NW, respectively. Gunung Pangrango, constructed over the NE rim of a 3 x 5 km caldera, forms the high point of the complex at just over 3000 m elevation. Many lava flows are visible on the flanks of the younger Gunung Gede, including some that may have been erupted in historical time. The steep-walled summit crater has migrated about 1 km NNW over time. Two large debris-avalanche deposits on its flanks, one of which underlies the city of Cianjur, record previous large-scale collapses. Historical activity, recorded since the 16th century, typically consists of small explosive eruptions of short duration.

Information Contacts: W. Modjo, VSI.


Guallatiri (Chile) — May 1991 Citation iconCite this Report

Guallatiri

Chile

18.42°S, 69.092°W; summit elev. 6071 m

All times are local (unless otherwise noted)


Strong fumarolic activity

Two strongly active zones of fumaroles were observed during a summit visit on 2 November 1990. The more intense fumaroles, 80 m below the . . . summit, produced a plume 200 m high accompanied by a jet-engine noise. Some boiling mud pools were also seen. The second zone, on the S side of the volcano at ~3,000 m elev, contained about 10 fumaroles. The volcano was otherwise snow-covered.

Geologic Background. One of northern Chile's most active volcanoes, Volcán Guallatiri is a symmetrical ice-clad stratovolcano at the SW end of the Nevados de Quimsachata volcano group. It lies just W of the border with Bolivia and is capped by a central dacitic dome or lava complex, with the active vent situated on its S side. Thick lava flows are prominent on the lower N and W flanks of the andesitic-to-rhyolitic volcano. Minor explosive eruptions have been reported since the beginning of the 19th century. Intense fumarolic activity with "jet-like" noises continues, and numerous solfataras extend more than 300 m down the W flank.

Information Contacts: P. Vetsch and R. Haubrichs, SVG, Switzerland.


Irazu (Costa Rica) — May 1991 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


Tectonic earthquake swarm

A large swarm of tectonic earthquakes was recorded just S of the crater from 2 January through the end of February. On 25 May, a rapid increase in the number of tectonic earthquakes marked the start of a second swarm in the same zone. A shock located about 1 km E of the crater was felt on 28 May (M 3.5), and two others centered near the crater were felt on 5 June at 0534 (M 3.5) and 0540 (M 3.2). Scientists believe that the seismicity may represent reactivation of the fault zone involved in the M [7.6] earthquake that occurred about 90 km ESE on 22 April. No changes in surface activity at the volcano were reported.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: R. Barquero, ICE; Mario Fernández, Red Sismológica Nacional (RSN), Univ de Costa Rica; ACAN news service, Panamá City, Panamá.


Kavachi (Solomon Islands) — May 1991 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Continued explosions from new island

Pilots from Solomon Islands Airways reported that "the volcano is still active and increasing in size, though slowly" as of 14 June. Photographs taken on 12 May (by Rod Marsland, a Rabaul-based pilot) show the island to have been ~110 m in diameter, with a 15-m-diameter crater (assuming a height of 25 m based on an average of several visual estimates). Lava was being ejected to 30 m height in the photos. The new island's exact location remains uncertain.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island about 30 km N of the site of subduction of the Indo-Australian plate beneath the Pacific plate. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: P. de Saint-Ours, RVO.


Kilauea (United States) — May 1991 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


E rift lava continues to flow through tubes into the ocean

Lava . . . continued to flow into the sea at two sites on the W side of the flow field (figure 79). More than 95% of the lava advanced through the Wahaula tube system, which divided a few hundred meters from the coast and fed the W and E entry points in the Poupou area. The W Poupou entry has been persistently explosive, continuing to throw tephra onto a large littoral cone on the old sea cliff. Growth of the littoral cone halted in May as erosional mechanisms (weather and cliff collapse) kept pace with explosive activity at the lava/sea interface. Below the old sea cliff, the W entry had built a small bench that extended <10-15 m into the ocean and was easily broken up by high surf. The E branch of the tube continued to feed the E Poupou entry points, which in previous months had built a sizeable 2-level bench below the old sea cliff. Throughout May, there were at least two major entry points off this bench. In early May, fluid lava flows broke out onto the E bench from its junction with the old sea cliff, covering the W side of the bench and entering the ocean. Successive overflows and inflation (perhaps caused by lava underplating) continued to build the lower bench, and by the end of the month it was within 1-2 m of the upper bench.

Figure (see Caption) Figure 79. Lava produced by Kilauea's Kupaianaha vent, 1983-91. Arrows indicate flow in tubes and crosses at the coast mark sites where lava was entering the ocean in May 1991. Surface flows are shown above the tube's E and W branches. Courtesy of HVO.

Small lava flows broke out during May from the Wahaula tube between ~180 m (600 ft) elevation and the flat area near the coast. Two large flows were active. One (Waiaka) moved downslope atop the Wahaula tube in April, turning E off the tube near the coast and entering the ocean 17 April-2 May. This flow's activity declined during the first 2 weeks in May, and the flow was stagnant by the 16th. In mid-May, a new (Paradise) flow broke away from the Wahaula tube between 150 and 180 m elevation (500-600 ft) and established a new tube to the E. By the end of May, this flow was entering the ocean at the same site as the Waiaka flow.

A lava pond remained in the bottom of Pu`u `O`o crater through May. Kupaianaha's lava pond remained completely crusted over. Fume from the pond area diminished significantly, and the primary area of degassing shifted from the Kupaianaha shield area to a skylight in the tube system near 620 m (2,050 ft) elevation. In early May, all of the skylights along the Wahaula tube overflowed, closing some of those at lower elevations. The upper skylights remained open, and observations of times required for logs thrown into the upper skylight to reach the lower skylight yielded lava velocities of 1.4 m/s.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: T. Moulds, HVO.


Langila (Papua New Guinea) — May 1991 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Ash emission resumes; steady glow

"After 7 months of quiescence, Crater 3 was reactivated. Resumption of activity, which started on 16 May, was manifested by the release of moderately thick white-to-grey vapour clouds with occasional blue vapours, and the recording of explosion earthquakes (2-20/day). After 18 May, deep rumbling noises and/or loud Vulcanian explosions were heard at the Cape Gloucester observation post . . . and light ashfalls occurred on the NW flank of the volcano. A weak steady red glow was observed over this crater at the end of the month.

"Activity at Crater 2 . . . did not seem to be affected. This crater kept on releasing moderate to weak emissions of white vapour and displayed a steady weak night glow."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: D. Lolok and P. de Saint-Ours, RVO.


Lascar (Chile) — May 1991 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


High crater temperatures detected by satellite

On 8 January, radiant flux from the crater was near the highest levels since 1984, as demonstrated by Open Univ researchers using data from Landsat TM bands 5 and 7 (1.55-1.75 and 2.08-2.35 µm wavelength, respectively) (figure 8). The January images are the third in a set of three night images that have been used to provide improved estimates of radiated power output at Lascar. Previous estimates were based on daylight images (Glaze and others, 1989). No reflected sunlight is mingled with the thermal signal in night images, yielding more reliable thermal radiance values.

Figure (see Caption) Figure 8. Spectral radiance from Lascar measured in 2 short-wavelength infrared bands, 2 December 1984-8 January 1991. Solid line, Landsat TM band 7 (2.08-2.35 µm); dashed line, Landsat TM band 5 (1.55-1.75 µm). Courtesy of D. Rothery and C. Oppenheimer.

The following is from D. Rothery and C. Oppenheimer. "Two of the night images are shown in figure 9. The 12 November 1989 image shows a strong equidimensional radiant anomaly in a position that corresponds to the lava dome, with some isolated radiant pixels just beyond the edges that are probably sites of fumaroles. The 26 March 1990 image shows a much reduced radiant anomaly, following the 20 February 1990 explosive eruption.

Figure (see Caption) Figure 9. Night images of Lascar's active dome on 12 November 1989 (left) and 26 March 1990 (right), recorded at 2.08-2.35 µm wavelengths (Landsat TM band 7). N is toward the top. The individual pixels are ~30 m across. An image recorded on 8 January 1991 is almost identical to the 12 November 1989 image. Courtesy of D. Rothery and C. Oppenheimer.

"Field observations at the summit of Lascar on 23-24 March and 4 April 1990 showed that there were sites of incandescence over regions of the collapsed dome, and that some fumaroles elsewhere were also incandescent. Temperatures of up to 940°C were estimated by the use of an infrared thermometer.

"The most recent image (8 January 1991, not shown here) is almost indistinguishable from the 12 November 1989 image, which suggests a return to earlier conditions."

Reference. Glaze, L.S., Francis, P.W., and Rothery, D.A., 1989, Measuring Thermal Budgets of Active Volcanoes; Nature, v. 338, p. 144-146.

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: D. Rothery and C. Oppenheimer, Open Univ.


Lewotobi (Indonesia) — May 1991 Citation iconCite this Report

Lewotobi

Indonesia

8.542°S, 122.775°E; summit elev. 1703 m

All times are local (unless otherwise noted)


Ash emission follows increased seismicity

Ash was erupted to 800 m height, and deposited to 7 km NE and 4 km NW, on 11-13 May. Gas emission continued through the end of May, with 84 emission events recorded during the last week. Twelve shallow and seven deep volcanic earthquakes were also recorded during the last week in May.

Geologic Background. The Lewotobi "husband and wife" twin volcano (also known as Lewetobi) in eastern Flores Island is composed of the Lewotobi Lakilaki and Lewotobi Perempuan stratovolcanoes. Their summits are less than 2 km apart along a NW-SE line. The conical Lakilaki has been frequently active during the 19th and 20th centuries, while the taller and broader Perempuan has erupted only twice in historical time. Small lava domes have grown during the 20th century in both of the crescentic summit craters, which are open to the north. A prominent flank cone, Iliwokar, occurs on the E flank of Perampuan.

Information Contacts: W. Modjo, VSI.


Lokon-Empung (Indonesia) — May 1991 Citation iconCite this Report

Lokon-Empung

Indonesia

1.358°N, 124.792°E; summit elev. 1580 m

All times are local (unless otherwise noted)


Increased gas emission, then ash eruption

Gas emissions to 450 m height were observed during the morning and afternoon of 10 May. One week later (17-18 May), ash was erupted to 200-400 m height. Seismicity then decreased, with one deep and three shallow volcanic earthquakes recorded during the last week of May, down from six deep and nine shallow events the second week of the month.

Geologic Background. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2 km apart), has a flat, craterless top. The morphologically younger Empung volcano to the NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred. A ridge extending WNW from Lokon includes Tatawiran and Tetempangan peak, 3 km away.

Information Contacts: W. Modjo, VSI.


Manam (Papua New Guinea) — May 1991 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Ash ejection declines to weak vapor emission

". . . Manam has returned to the low non-erupting pattern displayed since early 1989. Both Main and Southern Craters released thin white vapour emissions. Grey ash-laden clouds commonly rose over Southern Crater until 20 May, associated with weak rumbling noises, presumably due to rockfalls within that crater. No night glow was reported from either crater. Tiltmeter measurements showed a slight radial inflation of ~1 µrad."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: D. Lolok and P. de Saint-Ours, RVO.


Merapi (Indonesia) — May 1991 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Continued seismicity but lava dome unchanged

Seismic activity remained unchanged, with three volcanic earthquakes recorded during the first week in May, and seven during the last week in May. No changes were visible at the summit dome.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: W. Modjo, VSI.


Obituary Notices (Unknown) — May 1991 Citation iconCite this Report

Obituary Notices

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Deaths of three volcanologists (Maurice and Katia Krafft, Harry Glicken) at Unzen

Volcanology has lost three of its most valuable professionals and our network has lost three of our most faithful contributors. Maurice and Katia Krafft, 45 and 44, were natives of Alsace who blended art and science in unique ways. They were famous not only for their superb photography and books, but for the enthusiasm and humor that made friends for them throughout the world. Always a close team, they were scholarly, selective collectors of volcanological literature and art. They had recently compiled guidebooks to the Comores and Zaire, a history of volcanology, a beautiful book of still photographs, and an informative IAVCEI video on volcanic hazards.

Harry Glicken, 33, was a Californian working as a post-doctoral fellow at Tokyo Metropolitan University. His study of the 1980 debris avalanche at Mt. St. Helens was a landmark. His brief but geographically diverse research career took him to Indonesia, Alaska, the Caribbean, and Japan, where he worked on the 1888 Bandai eruption, and most recently on pyroclastic surge deposits from Oshima volcano. All three of these fine people had much yet to give to volcanology, and we mourn their loss.

Geologic Background. Obituary notices for volcanologists are sometimes written when scientists are killed during an eruption or have had a special relationship with the Global Volcanism Program.

Information Contacts:


Ontakesan (Japan) — May 1991 Citation iconCite this Report

Ontakesan

Japan

35.893°N, 137.48°E; summit elev. 3067 m

All times are local (unless otherwise noted)


Earthquake swarms and tremor; renewed steam emission from 1979 vent

Many earthquakes and tremor episodes have been detected by a seismometer near the volcano since April, bringing seismicity to its highest levels since the start of regular seismic monitoring in 1988. Earthquake swarms were recorded on 20, 23, and 27 April, and 12 and 13 May, with tremor on 27 and 28 April, and 2 and 12-16 May (figure 8). In mid-May, steam began to emerge from a vent formed in the last eruption (in 1979) that had remained quiet since soon after the eruption ended. Similar seismicity continued in June, and as of the 19th, 170 earthquakes and eight tremor episodes had been recorded.

Figure (see Caption) Figure 8. Daily number of earthquakes (top) and tremor episodes (bottom) at On-take, January-May, 1991.

Geologic Background. The massive Ontakesan stratovolcano, the second highest volcano in Japan, lies at the southern end of the Northern Japan Alps. Ascending this volcano is one of the major objects of religious pilgrimage in central Japan. It is constructed within a largely buried 4 x 5 km caldera and occupies the southern end of the Norikura volcanic zone, which extends northward to Yakedake volcano. The older volcanic complex consisted of at least four major stratovolcanoes constructed from about 680,000 to about 420,000 years ago, after which Ontakesan was inactive for more than 300,000 years. The broad, elongated summit of the younger edifice is cut by a series of small explosion craters along a NNE-trending line. Several phreatic eruptions post-date the roughly 7300-year-old Akahoya tephra from Kikai caldera. The first historical eruption took place in 1979 from fissures near the summit. A non-eruptive landslide in 1984 produced a debris avalanche and lahar that swept down valleys south and east of the volcano. Very minor phreatic activity caused a dusting of ash near the summit in 1991 and 2007. A significant phreatic explosion in September 2014, when a large number of hikers were at or near the summit, resulted in many fatalities.

Information Contacts: JMA.


Pinatubo (Philippines) — May 1991 Citation iconCite this Report

Pinatubo

Philippines

15.13°N, 120.35°E; summit elev. 1486 m

All times are local (unless otherwise noted)


Major stratospheric cloud, pyroclastic flows, and new summit caldera; >300 killed by eruption and typhoon

After more than 2 months of increasing seismicity, deformation, and emission of small plumes, a series of strong explosions culminated in one of the largest eruptions of this century. The 15-16 June climactic phase lasted more than 15 hours, sending tephra to 30 km altitude, generating voluminous pyroclastic flows, and leaving a small caldera in the former summit region. Ten days later, the aerosol cloud formed a nearly continuous band that stretched 11,000 km from Indonesia to Central Africa. Timely evacuations saved many lives, but the combined effects of the eruption and a typhoon killed more than 300 people.

Figure (see Caption) Figure 4. Map of southern Luzon Is., showing some towns and river valleys.

Minor activity, April-May. Renewed activity was signaled by an explosion on 2 April, at the E end of Pinatubo's geothermal area, about 1.5 km NW of the summit (see 16:4). The explosion devastated about 1 km2 of forested land, stripped leaves and vegetation over several square kilometers, and ejected small steam/ash clouds, depositing ash 10 km away. About 2,000 people were evacuated from a zone of 10-km radius. After the explosion, a line of new fumaroles, roughly 1 km long with six main vents, had developed. Emissions, voluminous and at extremely high pressure, were carried W onto a zone of dead and dying vegetation. Respiratory and eye irritation forced about 5,000 W-flank residents to leave the area.

A seismometer installed on 5 April recorded 50-90 events/day through 10 May. Earthquakes (located beginning 6 May) were dominantly centered 4-8 km NW of the summit (figure 5) at 3-6 km depth, and had magnitudes of 0.1-1.5 (averaging about M 1.0).

Figure (see Caption) Figure 5. Epicenters of earthquakes (crosses) recorded near Pinatubo (dotted outline), 6-24 May (top), 25 May-5 June (middle), and 6-9 June (bottom) 1991. Courtesy of David Harlow.

Increased activity, late May-early June. Emissions from the vents increased in volume, with two large pulses observed on 25 and 26 May. Some ash was reported. SO2 flux, measured by COSPEC, rose from 500 t/d on 13 May to 5,000 t/d on 28 May, but dropped again to 1,700 t/d on 30 May and 1,800 t/d on 3 June. Seismicity continued slightly NW of the fumaroles (at 2-6 km depth), and an increasing number of earthquakes were recorded directly beneath the fumaroles (at 0-2 km depth) at the end of May. A "blast event" during the evening of 3 June produced ash and was immediately followed by harmonic tremor lasting 30 minutes. A similar tremor event was recorded the next day at around 1200. The SO2 flux had dropped to 280 t/d by 4 June.

Increased earthquake amplitudes and more frequent tremor were noted in early June. PHIVOLCS issued an Alert Level 3 announcement (indicating a possible major pyroclastic eruption within 2 weeks) on 5 June. Geologists interpreted the shallow seismicity and harmonic tremor to be caused by the upward movement of magma, and the drop in gas flux to suggest a blockage of escaping gas and an accompanying pressure buildup.

Seismicity increased over the next few days, from about 1,000 to 2,000 recorded earthquakes/day, associated with 25 microradians of tilt recorded on the upper E flank. Most epicenters were just NW of the summit. An explosion at 1640 on 7 June from the main vent near the center of the line of fumaroles (at the head of the Maronut River) ejected ash to 8,000 m height. The explosion occurred about 40 minutes into an hour-long episode of harmonic tremor. At 1700, PHIVOLCS announced an increase to Alert Level 4 (eruption possible within 24 hours) and ordered the evacuation of an area up to 21 km from the summit. About 12,000 residents were evacuated (from Zambales, Tarlac, and Pampanga Provinces).

Ash emission continued the next day, producing plumes about 5,000 m high and depositing ash to 25 km W. Helicopter reconnaissance in the morning confirmed the extrusion of a lava dome (100 x 60 m, and 30 m high) near the main vent on the volcano's N flank. The press reported that ash emission was continuing on 9 June (table 1) from two craters, with ash falling as far as the South China Sea (~35 km W). Seismographs near the volcano recorded continuous harmonic tremor.

Table 1. Eruptive episodes from Pinatubo, 9-17 June 1991. Times of eruption onsets are from PHIVOLCS and the USGS; times of initial satellite observations of eruptive episodes are shown in the second column. Plume altitudes are from NOAA. Altitudes given in the text are generally ground-based, and often higher than the NOAA estimates. Satellite data were compiled by James Lynch, NOAA/NESDIS, based on analysis of visible/infrared weather satellite imagery. Data in this table are very preliminary and will change as analyses of ground and satellite observations continue.

Date Eruption Time Detection Time Maximum Plume Altitude Direction of Movement Horizontal Extent (time after eruption)
09 Jun 1991 -- 0931 2 km NW less than 1 x 104 km2 (2 hrs)
11 Jun 1991 -- 1631 3.5 km WSW less than 1 x 104 km2 (2 hrs)
12 Jun 1991 0851 0931 17-19 km WSW 5.5 x 104 km2 (8 hrs)
12 Jun 1991 2250 2331 17-19 km WSW 1.1 x 105 km2 (8 hrs)
13 Jun 1991 0840 0931 17-19 km WSW 1 x 105 km2 (6 hrs)
14 Jun 1991 1309 1331 20-22 km WSW 5 x 104 km2 (4 hrs)
14 Jun 1991 1408 1431 20-22 km WSW 6 x 104 km2 (5 hrs)
14 Jun 1991 1853 1931 23-25 km WSW 7.5 x 104 km2 (6 hrs)
14 Jun 1991 2018 Indistinguishable from 1853 eruption on satellite images.
14 Jun 1991 2321 2331 23-25 km WSW 5 x 104 km2 (3 hrs)
15 Jun 1991 0114 0131 23-25 km WSW 1.5 x 105 km2 (4 hrs)
15 Jun 1991 0220 Indistinguishable from 0114 eruption on satellite images.
15 Jun 1991 0555 0631 20-22 km WSW 1.1 x 105 km2 (3 hrs)
15 Jun 1991 0611 Indistinguishable from 0555 eruption on satellite images.
15 Jun 1991 0809 0831 20-22 km WSW 1.1 x 105 km2 (3 hrs)
15 Jun 1991 0831 Indistinguishable from 0809 eruption on satellite images.
15 Jun 1991 1027 1031 35-40 km WSW 1 x 106 km2 (12 hrs)
15 Jun 1991 1027 1031 35-40 km WSW 1.5 x 106 km2 (18 hrs)
15 Jun 1991 1027 1031 35-40 km WSW 2.2 x 106 km2 (24 hrs)
15 Jun 1991 1027 1031 35-40 km WSW 2.7 x 106 km2 (36 hrs)
Initial, strongest phase of the climactic eruption, apparent on infrared imagery until 2131; column over the volcano reached 35-40 km height; extensive ash plume at 25-30 km. Ash from this phase comprised >95% of the extensive plume.
15 Jun 1991 1117 Indistinguishable from the 1027 eruption on satellite images.
15 Jun 1991 1221 Indistinguishable from the 1027 eruption on satellite images.
15 Jun 1991 1252 Indistinguishable from the 1027 eruption on satellite images.
15 Jun 1991 1342 Indistinguishable from the 1027 eruption on satellite images.
15 Jun 1991 1342 2231 26-28 km WSW --
The second phase of the climactic eruption continued until 0231 on 16 Jun, with a ball-shaped column over the volcano.
16 Jun 1991 -- 0331 23-25 km WSW --
The third phase, smaller than the second,, was characterized by a wedge-shaped plume from the volcano; apparent on satellite imagery until 0731.
16 Jun 1991 -- 1031 5-6 km WSW 1.5 x 104 km2 (3 hrs)
16 Jun 1991 -- 1231 5-6 km WSW less than 1 x 104 km2 (2 hrs)
16 Jun 1991 -- 1431 5-6 km WSW 1.5 x 104 km2 (3 hrs)
16 Jun 1991 -- 2031 4-5 km WSW less than 1 x 104 km2 (2 hrs)
17 Jun 1991 1300 1300 3.5 km WSW less than 1 x 104 km2 (2 hrs)

The evacuation of Clark Air Base (~15 km E of the volcano) was ordered by the U.S. Air Force at 0500 on 10 June. Almost 14,500 servicemen and their families were moved to Subic Bay Naval Base (30 km SSW), while 1,500 personnel remained at Clark. Preliminary hazard maps placed Clark Air Base at the E edge of pyroclastic-flow hazard zones, and flanked by potential mudflow hazard zones. Voluminous ash-laden steam clouds were emitted on 11 June.

Initial strong explosions, 12-early 15 June. A tephra column rose to about 20 km on 12 June, as an explosive episode at 0851 signalled the start of a major pyroclastic phase. The explosions were preceded by around 12-16 hours of continuous tremor and several smaller explosions. Numerous shocks had been felt by scientists working on the volcano earlier in the morning. Pyroclastic flows advanced at least 5 km and perhaps as much as 15 km down the Maronut, O'Donnell, and Marella Rivers on the NW, N, and SW flanks of the volcano, respectively. Six hundred of the remaining 1,500 military personnel at Clark Air Base were evacuated and thousands of people fled adjacent Angeles (population 300,000). All residents within a 20-km radius of the volcano were warned to leave.

The press reported that a smaller explosion occurred at 1149, then explosive activity declined after a few hours. Prevailing winds carried the eruption plume WSW, depositing ash more than 30 km away, but ashfall also apparently occurred N of the volcano, reportedly covering an aerial gunnery range. A small rain-induced mudflow occurred in the Maronut River valley at about 1830 on 12 June.

Weather satellite images showed that the eruption plume had separated from the volcano by 1330, after reaching about 330 km length (figure 6). By 1830, winds had sheared the plume into three different layers; material at 15-18 km altitude traveling WSW at 100 km/hour; at 6-9 km altitude, W at 55 km/hour; and at 6-9 km altitude, WNW at 35 km/hour. The Nimbus-7 satellite's TOMS instrument detected a significant amount of SO2 during its pass over the area about 2.5 hours after the onset of the explosion. Aviation authorities warned aircraft to avoid the plumes and closed several air routes W of the volcano (A461, A583, B460, R77, R93, R468, and R471).

Figure (see Caption) Figure 6. Infrared image from the NOAA 10 polar-orbiting weather satellite on 15 June at about 1830, showing the massive cloud from the climactic explosive phase. Temperature estimates suggest that the main body of the plume is at about 30 km altitude, with the eruption column directly over the volcano rising to 35-40 km. The apparent boundary between sections of the cloud is probably a sampling artifact. Material NE of the volcano is probably at a lower altitude than the bulk of the cloud to the W and SW. Numerous faint bands are evident within the plume in false-color versions of the image. Courtesy of NOAA/NESDIS.

Another large explosive pulse occurred between 2250 and 2305 on 12 June, producing an eruption column that briefly rose to 25 km altitude before declining to a sustained elevation of about 20 km. Tephra fell to the W, NW, and SW, with pumice lapilli falling to 15 km distance, and coarse sand-sized tephra to more than 20 km from the volcano. A similar explosion at 0840 on 13 June lasted for 8 minutes and sent an ash column to 25 km altitude, following about an hour of long-period earthquakes. Satellite images showed large plumes extending [WSW] from the volcano after both explosions.

After a lull of about 28 hours, explosions resumed at 1309 on 14 June, ejecting tephra to 25 km altitude. Intermittent small pulses occurred at 1353 and 1408. Pyroclastic flows in the NW flank's Maronut valley extended 15 km to Sitio Ugik, site of an evacuation camp until increased shallow seismicity prompted additional warnings just before the start of the latest series of explosions. Ash fell to the S, SE, and SW. Another explosion at 1853 sent ash to 24 km altitude and additional pyroclastic flows to the NW. Strong rains during several of the explosive pulses generated mudflows in drainages where pyroclastic-flow deposits and airfall tephra had previously been emplaced.

By 14 June, 79,000 people had been evacuated, including about 15,000 from Clark Air Base. Civil Defense officials reported that four people had been killed, 24 injured, and four were missing in the series of explosions.

A small explosion at 2018 on 14 June sent an ash cloud to 6 km. A period of harmonic tremor preceded a strong explosion at 2321 that produced a column to >20 km [see also 16:6]. Ashfall was reported in San Marcelino (25 km SW) and San Narciso (30 km WSW). Explosions on 15 June at 0114 and about 0220 produced pyroclastic flows that moved down the SW flank.

Climactic explosions, 15-16 June. An explosion at 0555 on 15 June fed a 20-22 km-high ash column [see also 16:6], marking the onset of strong sustained activity that included the climactic explosions and lasted until early 16 June. Effects of the eruption were exacerbated by heavy rains and strong winds from typhoon Yunya. Much of the summit region was removed by explosions or collapse, leaving a caldera 2-3 km in diameter centered slightly north of the former summit.

Pyroclastic flows generated by the first 15 June explosion extended 8-10 km down the N, NNE, NNW flanks. Additional explosions were reported at 0611, 0809, and 0831. Before the strongest activity began, PHIVOLCS expanded the radius of the official danger zone from 30 to 40 km and expressed concern about the possibility of a caldera-forming eruption. The expanded danger zone included Clark Air Base, Subic Naval Base, and their neighboring cities of Angeles and Olongapo. Additional evacuees brought the total to about 200,000. Several thousand military dependents were sent back to the United States.

Satellite data suggested that the climactic phase began with an explosion detected by a nearby barograph at 1027, and continued with recorded explosions at 1117, 1221, and 1252, although ground reports indicated that the strongest activity started with an explosion at 1342 (table 1). A column remained fixed over the volcano through 2131, feeding a massive cloud (figure 7). Comparison of satellite-derived eruption column temperatures with atmospheric temperature profiles from nearby radiosondes yielded an altitude of 25-30 km as the cloud spread WSW toward mainland Asia, and elevations of 35-40 km for the eruption column over the volcano. The maximum altitude of a plume can be underestimated by this technique if its temperature has not fully equilibrated with that of the surrounding air, or if more diffuse material extends above the plume's densest region. Satellite data suggest that more than 95% of the cloud was produced by this 12-hour phase. Visible-band images showed ejection of very dark-colored material throughout the day (from 0631 until 1631), in contrast to the light-colored plumes generated by other phases of the eruption. Noticeably less violent activity, seen on images from 2231 on 15 June until 0231 on 16 June, sustained a ball-shaped cloud over Pinatubo at 26-28 km altitude. Activity had declined further during a third period, from 0331 through 0731, when a wedge-shaped plume extended from the volcano.

Figure (see Caption) Figure 7. Infrared image from the NOAA 10 polar orbiting weather satellite on 15 June at about 1830, showing the massive cloud from the climactic explosive phase. Temperature estimates suggest that the main body of the plume is at about 30 km altitude, with the eruption column directly over the volcano rising to 35-40 km. The apparent boundary between sections of the cloud is probably a sampling artifact. Material NE of the volcano is probably at lower altitude than the bulk of the cloud to the W and SW (figure 7-19). Numerous faint concentric bands are evident within the plume in false-color versions of the image.

The bulk of the tephra fell to the SE, S, and SW, but airfall distribution was complicated by the typhoon's winds. Ash was carried by the typhoon to Palawan Island, 500 km SSW of the volcano. The press reported slight ashfall 150 km S (in Batangas Province) and clumps of mud fell on Clark Air Base, Angeles, and the volcano's W flank. Some falling pumice was reportedly apricot-sized. Pumice the size of marbles fell 33 km SSW (at Olongapo) where tephra fall reached 15-30 cm and more than 30 injuries and some deaths were reported. The cloud darkened Manila by 1545, 3 hours before its usual nightfall, although most ashfall amounts there were less than about 1 cm [see also 16:6].

The stratospheric cloud expanded rapidly WSW, and by 1030 the next day, its leading edge had reached the Bangkok area, more than 2,000 km away (figure 8). Preliminary Nimbus-7 satellite data showed very high concentrations of SO2 over a broad area (figure 9), with a total mass that appeared to be approximately double that of the 1982 injection from El Chichón. Light ashfalls were reported in southern Vietnam (from Da Nang to the Mekong Delta, 1,400 km W-1,800 km WSW), northern Borneo (Sabah and Sarawak, 1,000-2,000 km SW), and Singapore (2,500 km SW). By 23 June, a nearly continuous zone of enhanced SO2 as much as 30° wide extended from south of Indochina about 11,000 km to central Africa (figure 10). A small zone of apparent aerosol material had reached about 40°W. [See the Atmospheric Effects chapter for more information about the stratospheric cloud].

Figure (see Caption) Figure 8. Sketch of the major eruption cloud from Pinatubo as seen on satellite imagery on 16 June at about 1030, about 21 hours after the onset of strongest activity, and 1 hour before the SO2 data in figure 7-20. Courtesy of SAB.
Figure (see Caption) Figure 9. Preliminary SO2 data from the Total Ozone Mapping Spectrometer on the Nimbus-7 satellite, showing the major eruption cloud from Pinatubo on 16 June at about 1130, 22 hours after the start of the climactic explosions. Each number or letter represents the average SO2 value within an area 50 km across. 0 = 10-35 milliatmosphere-cm (100-350 ppm-m), 1 = 36-60 matm-cm, 2 = 61-85 matm-cm, etc.; 9 is followed by A, B, etc. Data were lost in the barred zone. Courtesy of Scott Doiron.
Figure (see Caption) Figure 10. Preliminary SO2 data from the Total Ozone Mapping Spectrometer on the Nimbus-7 satellite, showing the major eruption cloud from Pinatubo on 23 June, eight days after the climactic phase. The main body of the cloud, 11,000 km long, has reached central Africa, but a smaller advance segment apparently extended over the eastern Atlantic Ocean, bisected by the 30°W meridian. Only values > 18 matm-cm are shown. Highest values within the dense cloud reached about 75 matm-cm (over Saudi Arabia). Courtesy of Scott Doiron.

Smaller explosions continued during the next several days, but the strongest activity appeared to have ended, and people began to return to their homes. PHIVOLCS reported three periods of ash emission accompanied by tremor on 17 June. Satellite data revealed a small explosion at 1300 and a column to 5-6 km altitude was observed.The Worldwide Standardized Seismic Net detected shallow earthquakes near Pinatubo on 15 June at 1539 (M 4.9), 1831 (M 4.4), 1841 (M 5.4), 1911 (M 4.6), 1915 (M 5.5), and 2026 (M 4.7), on 16 June at 0349 (M 4.9), 0359 (M 4.8), 1008 (M 5.6), 1458 (M 4.9), 1751 (M 5.1), and 2127 (M 4.9), on 17 June at 0441 (M 5.3) and 2333 (M 4.6), and on 18 June at 1120 (M 4.6).

On 18 June geologists reported preliminary cumulative ashfall thicknesses of 15-30 cm at Clark Air Base, 15-30 cm in Olongapo, and an unconfirmed 35.5 cm in some parts of SW Luzon. At a site along the Abacan River, 37 km E of the summit, debris-flow deposits were sandwiched between a coarse basal layer and finer, sand-sized tephra. Several homes at this site had been inundated, and several others swept away by lateral stream erosion, with some resulting casualties. A similar situation was found at a second site along the Baluyot River, 34 km ESE of the summit. Several homes had been lost or buried by mud, but no deaths had occurred.

The leading edge of typhoon Yunya had reached the area by 14 June at about 2000, and strong storms began moving over the volcano at about 0500 on 15 June. The storm had weakened to light-moderate showers 24 hours later, but these persisted through the 16th. Heavy rains soaked the recently fallen tephra, adding substantially to its weight, and the wet tephra soon hardened to a concrete-like material, making it very difficult to remove. Numerous roof and building collapses resulted, and were responsible for many of the casualties from the combined effects of the eruption and typhoon. As of 19 June, the death toll had risen to more than 300.

The 15 June activity forced closure of Manila's international and domestic airports, which remained closed to arriving jet aircraft through 18 June. A limited number of outgoing flights were permitted beginning early 19 June, and propeller-driven aircraft, less vulnerable to the effects of ash clouds, offered limited air service to and from Manila. Preliminary reports indicate that [14] jets encountered ash during the eruption, most on 15 June (table 2). All landed safely, but some sustained engine and/or exterior damage.

Table 2. Preliminary summary of aircraft encounters with clouds from Pinatubo, 12-18 June 1991. Courtesy of T. Casadevall. [Including additional encounters reported in BGVN 16:07.]

Date Time Duration Location Comments
12 Jun 1991 -- 3 minutes Descent into Manila --
13 Jun 1991 0030 20 minutes S China Sea Electrostatic discharge on windscreen; no damage.
14 Jun 1991 early AM 15 minutes 750 km W of Pinatubo, 11 km altitude No significant damage.
14 or 15 Jun 1991 -- 29 minutes -- Two engines replaced; impact damage and ash buildup on engines.
15 Jun 1991 -- 15-20 minutes -- Flew through "heavy ash;" cockpit and cabin contaminated by ash.
15 Jun 1991 early AM -- 1,100 km W, 9 km altitude All four engines damaged.
15 Jun 1991 -- 12 minutes 10.5 km altitude Temperatures of all four engines rose and fluctuated; sparks from windows; ash hit aircraft; no significant exterior or engine damage.
15 Jun 1991 1600 -- Approach to Manila from S Vietnam Much ash in engines; exterior abrasion.
15 Jun 1991 evening -- Leaving Manila Black marks on exterior of left wing.
15 Jun 1991 2347 -- Approach to Manila from S Vietnam Ash, sulfur odor, electrostatic discharge, and blue-green light. No significant damage
16 Jun 1991 0130 25 minutes S China Sea Electrostatic discharge on windscreen; no damage.
16 Jun 1991 0310 30 minutes S China Sea Electrostatic discharge on windscreen; no damage.
17 Jun 1991 -- -- -- Engine 3 shutdown; heavy ash buildup in engines.
18 Jun 1991 0200 -- 11 km altitude Engine 1 stalled, engine 4 lost power; descended to 9 km to restart. Engine 1 replaced.

Further References. Pinatubo Volcano Observatory Team, 1991, Lessons from a major eruption: Mt. Pinatubo, Phillipines: EOS, v. 72, p. 545, 552-3, 555.

Woods, A. and Self, S., 1992, Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height: Nature, v. 355, p. 628-630.

Geologic Background. Prior to 1991 Pinatubo volcano was a relatively unknown, heavily forested lava dome complex located 100 km NW of Manila with no records of historical eruptions. The 1991 eruption, one of the world's largest of the 20th century, ejected massive amounts of tephra and produced voluminous pyroclastic flows, forming a small, 2.5-km-wide summit caldera whose floor is now covered by a lake. Caldera formation lowered the height of the summit by more than 300 m. Although the eruption caused hundreds of fatalities and major damage with severe social and economic impact, successful monitoring efforts greatly reduced the number of fatalities. Widespread lahars that redistributed products of the 1991 eruption have continued to cause severe disruption. Previous major eruptive periods, interrupted by lengthy quiescent periods, have produced pyroclastic flows and lahars that were even more extensive than in 1991.

Information Contacts: R. Punongbayan, PHIVOLCS; R. Janda and J. Ewert, CVO; SAB; Scott Doiron, GSFC; Chris Newhall and Ellen Limburg-Santistevan, USGS Reston; David Harlow, USGS Menlo Park; T. Casadevall, USGS Denver; Nicholas Krull, FAA; Tom Fox, ICAO; NEIC; AP; UPI; Reuters.


Poas (Costa Rica) — May 1991 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Strong gas emission; rain adds water to nearly dry crater lake

Strong sulfur-gas emission continued from crater fumaroles in May. The crater lake, nearly dry since March, began to refill during the third week of May because of increased rainfall. Small pools coalesced to cover the entire crater floor, and warm mud was frequently ejected to several meters height from the center of the lake. The largest fumarole was in the crater's N sector, and other smaller ones were in the W and SE. Microseismicity decreased at the end of May and the volcano was considered by geologists to have returned to normal rainy season conditions. A new network of five digital seismometers was installed near the volcano by a joint RSN-French group.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: R. Barquero, ICE.


Rabaul (Papua New Guinea) — May 1991 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Continued low-level seismicity; slight uplift

"Seismicity was at a low level in May. The month's total number of earthquakes was 102 (compared to 126-140 over the last 3 months). Only five earthquakes were locatable, distributed on the NE and W sides of the caldera seismic zone. Levelling measurements on 24 May showed a slight uplift (3.5 mm at the SE end of Matupit Island)."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: D. Lolok and P. de Saint-Ours, RVO.


Rincon de la Vieja (Costa Rica) — May 1991 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


More details on 8 May eruption and deposits

The following, from the Univ Nacional, supplements last month's report from ICE.

A phreatic eruption on 8 May ejected lake sediments and ash, and produced small mudflows. The eruption followed several low-frequency earthquakes during the night of 6-7 May, and a low-frequency earthquake with a 155-second duration at 0811 on 7 May. Reports from residents of Dos Ríos de Upala (8 km NW) and from guards at Parque Nacional Rincón de la Vieja described an accompanying explosion and a 1-km-high light-colored plume with ash that traveled NW.

Seven low-frequency microearthquakes preceded the 8 May phreatic eruption. An earthquake that lasted 120 seconds, possibly associated with a small explosion, occurred 18 minutes prior to the eruption, and low-frequency tremor began 7 minutes before it.

The sound wave of the main explosion arrived at the seismometer (6 km SW) 6 seconds after the start of the eruption signal at 1017, and the instrument was saturated for 25 seconds. The subsequent 150-second signal was interpreted to record strong degassing and the initiation of mudflows. Low-frequency harmonic tremor was recorded for 30 minutes, gradually decreasing below detection limits. The main explosion produced a gray ash cloud, 5 km high, that was carried NW. Ash was deposited to 14 km NW from this (figure 1) and the approximately 10 small (columns

Figure (see Caption) Figure 1. Map showing deposits from the 8 May 1991 phreatic eruption at Rincón de la Vieja. Site numbers correspond to cross-sections in figures 2 and 3, and table 1. Courtesy of OVSICORI.

Table 1. Field observations of 8 May 1991 mudflow deposits from Rincón de la Vieja. Sites correspond to locations in figure 1. Courtesy of OVSICORI.

Site Distance Deposit width Channel width Max. flow height Deposit description
1 7.2 km 41 m 10 m 4-6 m 1.65 m of erosion.
2 6.6 km 185 m 12 m 2-3 m ~8 m deposited.
3 7.0 km 239 m -- 4-5 m 2-60 cm of fine (2-16 mm) material.
4 16.6 km -- -- 2.15 m Blocks (to 1.5 x 2.0 m) and tree trunks (50 cm diameter); 10-50-cm mantle of fine sediment.

Mudflows traveled down the N flank (along the Quebrada Azufrosa, and Río Pénjamo), destroying two small bridges and cutting off access to the towns of Buenos Aires (~12 km NE) and Gavilán. Several smaller mudflows traveled down tributaries to the Río Azul (also to the N). Erosion occurred predominantly between 1,500 and 500 m elevation. Field observations of the mudflow deposits were made at several sites (figures 2 and 3; table 1). Park guards reported small quantities of sediment transported by the Río Colorado (S flank), but no effects on the ecosystem were observed.

Figure (see Caption) Figure 2. Cross-section of 8 May 1991 Rincón de la Vieja mudflow deposits near a bridge over the Río Azul. Site location is marked in figure 1. Courtesy of OVSICORI.
Figure (see Caption) Figure 3. Cross-section of 8 May 1991 Rincón de la Vieja mudflow deposits near a bridge over the Río Pénjamo. Site location is marked in figure 1. Courtesy of OVSICORI.

Blocks (to 40 x 50 cm) with impact craters and ejected lake sediments were found near the summit during a 9 May visit. Acidity and sediment-fall had variable impacts on nearby vegetation, ranging to complete defoliation. Fumarolic activity continued, as evidenced by a strong sulfur odor, eye irritation, and breathing difficulties near the crater. Rain collected 3 km S had a pH of 3.85.

Seismicity declined to 9 low-frequency recorded earthquakes/day (9 May), with only sporadic (1-2/day) events on later days.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernández S., Jorge Brenes M., V. Barboza M., and Tomás Marino H., Observatorio Vulcanológico y Sismológico de Costa Rica, Univ Nacional.


Nevado del Ruiz (Colombia) — May 1991 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Frequent lithic ash emissions; occasional vigorous earthquake swarms

Lithic ash emissions were frequent during May, depositing material to Manizales (30 km WNW) on 1 May. Short pulses of shallow tremor were associated with the emissions. High-frequency seismicity reached very high levels during a swarm on 8 May (figure 45), which included a M 2.1 earthquake, 2.5 km N of Arenas crater at 5 km depth. A similar swarm occurred on 14 May. Low-frequency seismicity was at a moderate level in May, with peaks of vigorous seismicity on 4 days. Deformation measurements showed no significant changes. The SO2 flux was low; the monthly average was 930 t/d, compared to ~2,740 t/d in April.

Figure (see Caption) Figure 45. Daily number of seismic events (bottom) and energy release (top) at Ruiz, May 1991. Solid line, high-frequency events; dashed line, low-frequency events. Courtesy of INGEOMINAS.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: C. Carvajal, INGEOMINAS, Manizales.


Sabancaya (Peru) — May 1991 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Vigorous Vulcanian activity; mudflows force daily clearing of river channel

Strong Vulcanian explosions were observed during a visit on 13-19 April. The explosions, occurring every 20-30 minutes, lasted ~ 1 minute and produced 3-4-km-high, medium-gray ash clouds. Small avalanches were produced by falling blocks at the base of the eruptive columns. Quiet degassing continued between explosions. Light-gray ashfall was frequent during the visit, depositing 2 mm one night ~9.5 km SE of the summit (at Cajamarcana).

The volcano began erupting in late May 1990, reportedly ejecting ash to 7 km. By late June 1990 (15:7), activity had decreased to periodic explosions with weak ash columns 2-3 km high, but then increased slowly through November. High-frequency seismicity (>122 events recorded over one 2-week period) was usually centered ~ 10 km NE, although two earthquakes occurred under the crater. Several tremor episodes were recorded, starting in October.

The plume was black and heavy with ash during an overflight on 10 November, rising an estimated 5-8 km in distinct, but almost continuous pulses. Ash deposited on Hualca Hualca (4 km N) caused increased melting of the glaciers (estimated 20 cm of snow above the ice and berm) producing numerous mudflows. These moved down the N flank nightly, dumping an estimated 13,000 m3 of debris/day into the Majes River drainage system ~ 5 km N of the volcano. Construction crews cleared the channel daily. Airfall deposits were composed of 80% lithics and 20% glassy fragments and breadcrusted material. At one outcrop, the 1990 ash accumulations were 1 cm thick, overlying at progressively greater depth 30 cm soil, 2 cm ash, 40 cm soil, and another 2 cm ash. Eruptive activity observed on 22 December appeared about the same as it was on 10 November.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: P. Vetsch and R. Haubrichs, SVG, Switzerland; N. Banks, CVO; Instituto Geofísico del Perú, Lima.


San Jose (Chile-Argentina) — May 1991 Citation iconCite this Report

San Jose

Chile-Argentina

33.789°S, 69.895°W; summit elev. 6070 m

All times are local (unless otherwise noted)


New fumarole field on upper S flank

A new fumarole field, 150 m below the rim on the S flank . . . was first observed in late February (figures 1 and 2). On 14 May, geologists from the Univ de Chile noted that the new activity was similar to that of earlier fumaroles associated with a small andesitic dome within the central crater.

Figure (see Caption) Figure 1.Sketch of view looking E at the San José complex, 14 May 1991. Vapor rises from within the crater and from the February 1991 fumarole field. Courtesy of O. González-Ferrán.
Figure (see Caption) Figure 2. Sketch map showing the summit region and craters of the San José complex, May 1991. Courtesy of O. González-Ferrán.

Although no earthquakes were detected at the volcano, an increase in seismicity was recorded by the Univ de Chile's seismic network throughout the roughly N-S fault zone that separates the Valle Central and the Cordillera Andina. Four events were recorded in February, 8 in March, 9 in April, and 14 in May, the largest (M 4.0 and M 3.5) on 8 and 11 April, respectively (figure 3).

Figure (see Caption) Figure 3. Sketch showing the location of San José and the epicenters of two large earthquakes, April 1991. Courtesy of O. González-Ferrán.

Geologic Background. Volcán San José lies along the Chile-Argentina border at the southern end of a volcano group that includes the Pleistocene volcanoes of Marmolejo and Espíritu Santo. The glaciated 6070-m-high Marmolejo stratovolcano is truncated by a 4-km-wide caldera, breached to the NW, that has been the source of a massive debris avalanche. San José is a 5856-m-high stratovolcano of Pleistocene-Holocene age with a broad 2 km x 0.5 km summit region containing overlapping and nested craters, pyroclastic cones, and blocky lava flows. Volcán la Engorda and Volcán Plantat, located SW of Marmolejo and NW of San Jose, have also been active during the Holocene. An 8-km-long lava flow traveled to the SW from the 1-km-wide summit crater of Espíritu Santo volcano, which overlaps the southern slope of Marmolejo. Mild phreatomagmatic eruptions were recorded from San José in the 19th and 20th centuries.

Information Contacts: O. González-Ferrán, Univ de Chile; P. Acevedo, Univ de la Frontera, Temuco.


Soputan (Indonesia) — May 1991 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Explosion sounds and incandescence; frequent seismicity

On 22-24 May... loud booming sounds and night glow were reported from the main crater. Up to 100 seismic events were recorded/6-hour period on 28 May.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: W. Modjo, VSI.


Stromboli (Italy) — May 1991 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


More frequent explosions

The number of seismically recorded explosions increased briefly in late March and persistently from mid-April (figure 13). After mid-April, the number of earthquakes exceeding instrument saturation level decreased from an average of ~20/day since January to

Figure (see Caption) Figure 13. Average number of seismically recorded explosion events/hour at Stromboli, 15 March-15 May 1991. The mean value for the period is shown. Courtesy of M. Riuscetti.
Figure (see Caption) Figure 14. Daily number of seismometer-saturating events (lower curve); and average tremor amplitude (upper curve) at Stromboli, 15 March-15 May 1991. Courtesy of M. Riuscetti.

Volcano guides reported infrequent small explosive activity at the 3 craters during visits to the summit on 10, 15, and 16 April, and 1 May. In early May, the first complete gas sampling at Stromboli was made during an inter-explosive phase at fumaroles (410°C) on the NW rim of the active crater complex (table 1).

Table 1. Chemical composition (in volume %) of fumarolic gases from Stromboli, early May 1991. Courtesy of M. Martini.

Gas Volume %
H2O 60.29
CO2 29.68
H2S --
HCl 0.28
HF 0.041
H2 --
N2 6.90
O2 1.29
B 0.0014
Br 0.00017
CO 0.00007
NH4 0.00006
CH4 --

Local residents reported a significant increase in the number of explosions on 19 May, after several weeks of weak activity. During a visit to the summit on the evening of 21 May, frequent strong explosions were observed at craters 1 and 3, with large ejections of incandescent material. Thirty explosions were counted between 2000 on the 21st and 0600 the next day. Many ejecta fell onto the N flank's Sciara del Fuoco. Crater 2 and the small cones continuously emitted gas and vapor.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: M. Riuscetti, Univ di Udine; M. Martini, Univ di Firenze; H. Gaudru, Société Volcanologique Européenne (SVE), Switzerland.


Ulawun (Papua New Guinea) — May 1991 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Large gas plume and numerous weak earthquakes

"Activity remained at the low, non-erupting level displayed since January 1990, gently releasing a white vapour plume and generating an average of ~200 very small low-frequency earthquakes/day.

"An aerial inspection and ground deformation survey was carried out 14-16 May. The plume emitted by the crater, although of moderate volume, seemed rich in SO2 and could distinctly be seen stretching horizontally >40 km downwind. No significant changes were noted in summit crater morphology since the last inspection in May 1990, apart from a series of cracks on the terminal cone's upper W flank, suggesting a slight inward sagging of this side of the crater rim.

"EDM and dry tilt measurements suggest that no significant deformation has occurred over the last 12 months."

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: D. Lolok and P. de Saint-Ours, RVO.


Unzendake (Japan) — May 1991 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


41 killed by pyroclastic flow from lava dome

On 3 June a large pyroclastic flow formed near the summit of Fugen-dake cone and moved down the E flank, reaching the outskirts of Kita-Kamikoba, 3 km from the 20 May lava dome. Forty people were killed, including volcanologists Harry Glicken, and Maurice and Katia Krafft. The pyroclastic flow and accompanying fires destroyed more than 56 houses and portions of Shimabara were blanketed with wet ash. A larger pyroclastic flow, on 8 June, destroyed an additional 73 houses in Shimabara and Fukae, but no injuries were reported. On 11 June, ejecta from an explosive event, not associated with pyroclastic-flow activity, damaged houses and car windows in Shimabara. Ashfall was reported 250 km to the NE. Dome extrusion and pyroclastic-flow activity at Unzen continued as of 24 June.

Premonitory activity and small ash emission. Increased seismicity was initially centered in Chijiiwa Bay, 13 km W, in November 1989, and gradually migrated E in July-October 1990, when seismicity increased further and the first volcanic tremor was recorded. Following several earthquake swarms, including one on 13-14 November (centered 5 km W of the summit at shallow depth), the volcano erupted on 17 November, weakly emitting ash to heights of 300-400 m from two newly formed vents (Jigoku-ato and Tsukumo-jima) within existing craters roughly 650 m E of the summit (figure 17). Ash emissions, tremor, and swarm activity quickly ceased, but steam emission continued and seismicity remained at high levels. An earthquake swarm occurred on 15 January and tremor resumed on 25 January (figure 18).

Figure (see Caption) Figure 17. Map showing the distribution of the three facies of the 3 June pyroclastic flow at Unzen. Crosses represent locations of recovered bodies. Data from Kyushu and Kagoshima universities. Body locations from The Japan Times. Courtesy of JMA.
Figure (see Caption) Figure 18. Daily number of earthquakes (top) and tremor episodes (bottom) at Unzen, January-18 June 1991. Arrows represent resumption of explosive activity on 12 February and dome appearance on 20 May 1991. Courtesy of JMA.

Phreato-magmatic activity, February-May. A second eruption on 12 February produced 500-m ash plumes from a new 50-m-long line of small vents (named Byobu-iwa) 170 m WSW of Jigoku-ato crater and 500 m E of the summit. Deposits of ash and lapilli reached 30 cm thick (10 m E of the vent) but no incandescence was seen and no juvenile material was detected in the ash. Frequent small ash emissions continued from Byobu-iwa vent and seismicity remained at high levels.

In early April, ash emissions resumed at Jigoku-ato vent, which widened and began to eject bombs. By mid-April, Jigoku-ato was the site of the most intense activity. The Geographic Survey Institute detected a summit offset of 11 cm to the W on 12 April.

Juvenile volcanic glass was first recognized on 12 May, although emissions remained small. Shallow microseismicity beneath Jigoku-ato rose sharply the next day, and EDM measurements showed rapid inflation of the summit region.

Debris flows, 15 and 19 May. Heavy rains on accumulated ash deposits triggered debris flows along the Mizunashi River on 15 and 19 May that destroyed two bridges and caused the temporary evacuation of about 1,300 people from Shimabara.

Lava extrusion, 20-23 May. On 20 May, high-silica dacite (table 6) lava extrusion began in Jigoku-ato crater. By the following day large fractures had appeared and the dome had separated into four parts. Debris flows along the Mizunashi River continued; after the fourth debris flow, at 0252 on 21 May, about 1,100 people were evacuated. Water level in the river dropped following a debris flow at 0445, and people were allowed to return home at 0555.

Table 6. Chemical composition of eruptive products from Unzen. Sample 1 - block from 24 May 1991 pyroclastic flow. Sample 2 - surface of lava dome 1 June 1991. Sample 3 - pumice block from 8 June 1991 pyroclastic flow. Sample 4 - 1792 lava flow. Total Fe as Fe2O3. Analyses performed by XRF at Kyushu Univ, normalized anhydrous.

Component Sample 1 Sample 2 Sample 3 Sample 4
SiO2 65.92 66.03 66.18 66.1
TiO2 0.66 0.64 0.65 0.65
Al2O3 15.46 15.47 15.46 15.8
Fe2O3* 4.18 4.14 4.07 4.28
MnO 0.09 0.08 0.08 0.09
MgO 2.39 2.37 2.34 2.24
CaO 4.90 4.98 4.86 4.56
Na2O 3.85 3.77 3.80 3.78
K2O 2.39 2.35 2.41 2.39
P2O5 0.16 0.17 0.16 0.13
Total 100.02 100.00 100.01 100.02

The dome continued to grow, reaching about 110 m diameter and 44 m height (a few tens of meters above the crater rim) on 23 May, when material began spalling from its margins down the steep outer slopes. Large blocks, to 5 m in diameter (60-70 m3 volume), were observed falling from the dome, and explosive events produced grayish clouds to 100 m height. The Geological Society of Japan reported that Fugen-dake cone had expanded 89 cm from 10 to 22 May (figure 19), and that the lava dome front was moving E at 70-80 cm/hour.

Figure (see Caption) Figure 19. Results of EDM measurements between points T1 and F2 on the S flank of Fugen-dake cone at Unzen, 10 May-8 June. Shortening of this line reflects expansion of the cone as F2 moves toward T1. Data from the GSJ. Courtesy of JMA.

Pyroclastic flows begin, 24 May. At 0810 on 24 May, a large explosion was heard as a portion of the lava dome collapsed, producing a pyroclastic flow that traveled about 1 km down the E flank to within 2 km of Kita-Kamikoba. The flow discolored trees and transported blocks 10 m in diameter. Smaller collapse/pyroclastic flow events occurred at 1755 and 1920.

About 1,300 people were evacuated on 24 May because of increasing mudflow hazard along the Mizunashi River, as volcanic debris accumulated and heavy rains continued. During the evening, workers dredged material from above a dam (2 km from the summit) constructed after the November 1990 eruption to reduce the mudflow danger. By 0600 the following morning the evacuation recommendation was withdrawn and residents were allowed to return home.

Heavy rain on 25 May made observation difficult, but dust and ash from a pyroclastic flow was seen at around 1145. The lava dome continued to grow at an estimated rate of 80,000 m3/day. Rain continued on 26 May, and ash plumes 600 m high were reported, but little is known about activity at the dome.

At 1130 on 26 May, a pyroclastic flow traveled into the Mizunashi valley, injuring a worker (2.6 km from the crater) who had climbed up from the dredging area for better views of the volcano. The flow traveled 3 km, to within 600 m of Kita-Kamikoba, and deposited ash 5 km E on Shimabara. Bursts of tremor accompanied this flow and the prior pyroclastic flow at 1113, suggesting that the tremor signal could be used to detect and count pyroclastic flows (figure 20).

Figure (see Caption) Figure 20. Daily number of pyroclastic flows determined seismically at Unzen, 20 May-18 June 1991. Number represents counts of tremor lasting >30 seconds with amplitudes larger than an empirical threshold. Courtesy of JMA.

The 1130 pyroclastic flow, and the continued accumulation of debris in the river channel, prompted the evacuation of around 3,500 people from the surrounding valley. Several mudflows were reported during that evening, and rain soaked previously-deposited dust and ash to create more mud. Many people were allowed to return home the next day when the rain ceased.

Observations of the dome (27 May) revealed a v-shaped vent, from which a 60-m-wide tongue of lava was being extruded. Pyroclastic flows spawned from the margins of the lava tongue traveled along E and SE paths that joined at mid-flank. On 28 May, fluid (no longer blocky) lava overflowed the crater's E rim and moved down the outer flank, reaching about 700 m elevation by midnight.

The 26 May evacuation order was extended. Pyroclastic flows continued to form, reaching to within 500 m of Kita-Kamikoba on the 29th, and within 200 m on the 30th. Trees in the valley were burned to charcoal, suggesting that flow temperatures had increased. On 31 May, lava was observed emerging from the vent, and then avalanching 1 km down the steep slope in 30 seconds, producing a roaring sound that was heard 6 km E in Shimabara.

Pyroclastic flow kills 41, 3 June. At about 1610 on 3 June, an audible explosion and 6 minutes of recorded tremor signaled the collapse of a portion of the summit dome and lava flow. The resulting large pyroclastic flow moved down the Mizunashi River at reported speeds of up to 100 km/hour and entered Kita-Kamikoba. The core of the pyroclastic flow traveled about 3.2 km (figure 17) over a vertical drop of 1,000 m. An ash cloud surge apparently detached from the flow and traveled an additional 0.8 km, knocking down trees, burning houses, and leaving deposits up to 30 cm thick. Blasted zones occurred in places along the margins of the flow and surge. The volume of the deposits was estimated to be 7.3 x 105 m3.

All of the casualties were within an evacuated "forbidden" zone and all were caused by the detached surge. The victims consisted of: 15 members of the Japanese press, three volcanologists, four taxi drivers, a few local residents, and members of police and fire brigades. Of the 41 people listed dead, 27 bodies were recovered, four remain missing and are presumed dead, and 10 died in hospitals from burns.

Pyroclastic flows continued over the next several days, hampering rescue and recovery efforts, but were less frequent. Lava effusion occurred at a constant rate of around 105 m3/day, producing a tongue 70-80 m wide and 100 m long by 5 June. Periodic explosions produced gas/ash columns 100 m high. One helicopter was grounded due to ash-related engine problems on 6 June. On 7 June, the evacuated zone was widened to include an additional 1,500 people, bringing the total number of evacuees to more than 7,200, and a fine of $75 was imposed on people entering the evacuated area. Observers reported that despite continued growth of the dome it had not yet recovered half of its pre-3 June size.

Large pyroclastic flow, 8 June. An increase in pyroclastic flow activity occurred in the afternoon of 8 June, with numerous small flows over a 5-hour period leading to a larger flow at 1723. The evacuation zone was again widened, to include parts of Fukae, bringing the total number evacuated to about 8,500. Multiple pyroclastic flows began at 1930. Finally, from 1951 to 2016, a continuous series of pyroclastic flows traveled 5.5 km down the Mizunashi River, through parts of Shimabara and Fukae, to within 50 m of Highway 57 (2 km from the sea). Deposits reached 100 m wide and had an estimated volume of ~1.0 x 106 m3. The flows destroyed 73 houses, but no injuries were reported.

Activity continued, with an explosion (detected by infrared camera) at 2007 and a small pyroclastic flow at 2120. Ashfall from the explosion was deposited 90 km NE (in Hida) and 80 km N (in Fukuoka). Clasts 5 cm in diameter fell to 5 km.

Evacuation zones were expanded on 9 June and again on 10 June, to a total of 9,800 people. Mudflow hazards were considered high given the more than 1 x 106 m3 of debris that completely filled the Mizunashi River channel and covered the surrounding valley.

Large explosive event, 11 June. By 11 June, a 50-m-wide dome partly filled the large horseshoe-shaped depression that formed 8 June on the E side of the summit dome. A large explosive ash emission, not associated with pyroclastic-flow formation, occurred at 2359-0003, accompanied by strong tremor and sharp deflation (10 µrad; figure 21). Houses, car windows, and two helicopters were damaged by tephra clasts (d = 1.0-2.0 g/cm3) >=15 cm in diameter that fell to 3.5 km (figure 22). Ash was deposited to 130 km NE (Oita) and 250 km NE (Matsuyama, Shikoku Is.). Two hours after the explosion, 25 µrad of inflation was recorded over a 10-hour period, suggesting rising magma.

Figure (see Caption) Figure 21. Change of ground tilt 850 m W of Unzen's dome, 6-15 June, 1991. Arrows represent large eruptive events on 8 and 11 June. E up corresponds to inflation of the summit area. Data from the Joint Monitoring Group of National Universities. Courtesy of JMA.
Figure (see Caption) Figure 22. Isopleth map of maximum pumice clast sizes from the explosion at Unzen on 11 June at 2359. Data from Kyushu and Kagoshima universities. Courtesy of JMA.

Continued activity. Dome extrusion and pyroclastic-flow formation continued at Unzen as of 24 June. On 14 June, the dome was 100 m wide and 50 m high; it grew another 20 m in height by 16 June. Cracks in the dome emitted gas to 200-300 m height, and periodic explosions produced 1-km-high ash columns. The evacuation area was again expanded on 17 June, bringing the total number of evacuees to more than 10,000.

Actions by Coordinating Committee. The following is from Daisuke Shimozuru, Chairman of the Coordinating Committee for the Prediction of Volcanic Eruptions. "The Japan Meteorological Agency (JMA) dispatched an observation team in mid-October to intensify seismic observation, assisting JMA's local observatory. Early in November, volcanic tremors were observed. We were very worried about an impending eruption, and asked the Ministry for financial aid for observations by university scientists. On 9 November, the Ministry decided to provide financial aid for observations by 6 universities. The university team set up seismic and deformation nets, in cooperation with Shimabara Volcano Observatory of Kyushu Univ." A chronology of Unzen's activity and statements and warnings issued by the Coordinating Committee is shown in table 7 (see following report).

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: JMA; D. Shimozuru, Tokyo Univ of Agriculture; H. Kamata, GSJ; Public Works Research Institute, Ministry of Construction; K. Uto, USGS; M. Takahashi, SI; Kyodo News Service; The Japan Times; Asahi Shinbun; Yomiuri Shinbun; AP; UPI; Reuters.


Whakaari/White Island (New Zealand) — May 1991 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Ash emission from new vent; continued deformation

Ash-laden steam emission was reported starting 23 April and continued as of 27 May. An 18 May visit revealed that activity was centered at a newly formed vent in the NE part of 1978/91 Crater (figure 13), near a zone of hot ground first observed on 21 April. Considerable ash accumulation had already occurred in the surrounding area.

Figure (see Caption) Figure 13. Sketch map of White Island on 27 May 1991, showing the new May 91 Vent. Dots mark deformation bench marks. Contour interval, 40 m. Courtesy of DSIR.

During 27May fieldwork, the new vent (named May 91) almost continuously (>=1 pulse/second) emitted a column of gas and minor ash 500-600 m high, depositing dry material, plus some moist sub-millimeter aggregates. The vent, against the NE crater wall, was surrounded by a tuff cone 35-40 m in diameter and 8-10 m high, but no ballistic ejecta were visible. Orca and TV1 Craters quietly emitted weak steam.

Up to 95 mm of ash had accumulated since 21 May at a site 125 m SSE of May 91 vent, of which at least 25 mm was from the new vent. Tephra had infilled the small lake in the vicinity of R.F. Vent (near the SE wall of 1978/90 Crater), and small mudflows traveled across the crater floor. Ash contained a high proportion of fresh material, but lacked vesiculated clasts.

Little change was observed at the 40-45-m-deep collapse pit NW of formerly active Donald Duck Crater. Two passages (20-30 m wide) led from the pit; one connected to Donald Duck Crater (to the SE), and the other headed at least 50-60 m N towards Noisy Nellie. The SE passage contained large sulfur stalactites and stalagmites.

Deformation measurements on 27 May showed that subsidence centered at Donald Mound and Noisy Nellie continued, but at lower rates than the last measurements on 13 February. Minor uplift was measured ~200 m S of Donald Mound.

Seismicity (typically small A- and B-type earthquakes) remained at low levels since 21 April, with periods of 2-3 days without recorded events. One uncharacteristically large E-type event, similar to an event preceding the formation of TV1 Crater (BGVN 15:09) was recorded at 0538 on 23 May. Weak low-frequency tremor has been recorded since 10 May.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: B. Scott and B. Houghton, DSIR Geology & Geophysics, Rotorua; J. Cole, Univ of Canterbury, Christchurch.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports