Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Klyuchevskoy (Russia) Renewed activity in October 2020 with explosions, lava flows, and ash plumes

Kadovar (Papua New Guinea) Occasional ash and gas-and-steam plumes along with summit thermal anomalies

Tinakula (Solomon Islands) Intermittent gas-and-steam plumes and weak thermal anomalies during July-December 2020

Erebus (Antarctica) Fewer thermal anomalies during 2020 compared to recent years

Aira (Japan) Intermittent explosions continue during July through December 2020

Nishinoshima (Japan) Eruption ends in late August 2020; lengthy cooling from extensive lava flows and large crater

Nyiragongo (DR Congo) Strong thermal anomalies and gas emission from lava lake through November 2020

Whakaari/White Island (New Zealand) Gas-and-steam emissions with some re-suspended ash in November 2020

Kerinci (Indonesia) Intermittent ash plumes and gas-and-steam emissions during June-November 2020

Suwanosejima (Japan) Explosion rate increases during July-December 2020, bomb ejected 1.3 km from crater on 28 December

Karangetang (Indonesia) Hot material on the NW flank in November 2020; intermittent crater thermal anomalies

Nevado del Ruiz (Colombia) Dome growth and ash emissions continue during July-December 2020



Klyuchevskoy (Russia) — January 2021 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Renewed activity in October 2020 with explosions, lava flows, and ash plumes

Klyuchevskoy, located in northern Kamchatka, has had historical eruptions dating back 3,000 years characterized by major explosive and effusive eruptions from the flank craters. The current eruption began in April 2019 and has recently consisted of Strombolian activity, ash plumes, and an active lava flow descending the SE flank (BGVN 45:09). This report covers September-December 2020 and describes similar activity of Strombolian explosions, ash plumes, and active lava flows beginning in early October. Information primarily comes from weekly and daily reports from the Kamchatkan Volcanic Eruption Response Team (KVERT), the Tokyo Volcanic Ash Advisory (VAAC), and satellite data.

Activity from July through September was relatively low, with no thermal activity detected during August-September. On 2 October renewed Strombolian explosions began at 1003, ejecting ash 300-400 m above the summit and producing gas-and-steam plumes with some ash that drifted down the E flank (figure 48). That night, crater incandescence was visible. On 5 October KVERT reported that a lava flow began to effuse along the Apakhonchich chute at 0100. During 7-8 October activity intensified and was characterized by strong explosions, collapses of the sides of the drainage, strong thermal anomalies, and ash plumes that extended over 200 km SE from the crater; the lava flow remained active and continued to descend the SE flank. A Tokyo VAAC advisory issued on 7 October reported that an ash plume rose to 8.8 km altitude and drifted E and SE; during 8-9 October ash plumes rose to 5.5 km altitude and drifted as far as 270 km SE. A strong, bright, thermal anomaly was observed daily in satellite imagery, which represented the new lava flow. Strombolian explosions continued throughout the month, accompanied by gas-and-steam plumes containing some ash and an active lava flow advancing down the Apakhonchich chute on the SE flank (figure 49).

Figure (see Caption) Figure 48. Photos of a gray ash plume (left) and the beginning of the lava flow (right), represented as summit crater incandescence at Klyuchevskoy on 2 October 2020 at 1030 and 2100, respectively. Photos by Y. Demyanchuk; courtesy of Volkstat.
Figure (see Caption) Figure 49. Photo of Strombolian explosions at the summit of Klyuchevskoy accompanied by ash emissions and a lava flow advancing down the SE-flank Apakhonchich chute on 25 October 2020. Photo by Y. Demyanchuk (color corrected); courtesy of Volkstat.

Similar activity continued to be reported in November, consisting of Strombolian explosions, ash plumes, and a lava flow advancing down the SE flank. A bright thermal anomaly was observed in thermal satellite imagery each day during the month. During 16-19 November explosions recorded in satellite and video data showed ash plumes rising to 7.5 km altitude and drifting as far as 108 km to the NE, E, SE, and S (figure 50). On 19 November an ash cloud 65 x 70 km in size drifted 50 km SE, according to a KVERT VONA (Volcano Observatory Notice for Aviation). During 26-30 November video and satellite data showed that gas-and-steam plumes containing some ash rose to 7 km altitude and extended as far as 300 km NW and E, accompanied by persistent moderate explosive-effusive activity (figure 51).

Figure (see Caption) Figure 50. Photo of the Strombolian and Vulcanian explosions at Klyuchevskoy on 18 November 2020 which produced a dense gray ash plume. Photo by Yu. Demyanchuk, IVS FEB RAS, KVERT
Figure (see Caption) Figure 51. Photo of the summit of Klyuchevskoy (right foreground) showing incandescent Strombolian explosions, the lava flow descending the Apakhonchich chute on the SE flank, and a gray ash plume on 29 November 2020. Kamen volcano is the cone at back left. Photo by Y. Demyanchuk (color corrected); courtesy of Volkstat.

Moderate explosive-effusive activity continued through December; a strong daily thermal anomaly was visible in satellite images. During 2-3 December gas-and-steam plumes containing some ash rose to 7 km altitude and extended 300 km NW and E. Intermittent gas-and-ash plumes continued through the month. On 7 December KVERT reported that a new lava flow began to advance down the Kozyrevsky chute on the S flank, while the flow on the SE flank continued. Strombolian explosions in the crater ejected incandescent material up to 300 m above the crater on 8 December while hot material was deposited and traveled 350 m below the crater. A cinder cone was observed growing in the summit crater and measured 75 m tall.

Strombolian and Vulcanian activity continued during 11-25 December, accompanied by the lava flow on the S flank; according to Sentinel-2 thermal satellite images, the effusion on the SE flank had stopped around 13 December and had begun to cool. The lava flow in the Kozyrevsky chute spalled off incandescent material that continued to travel an additional 350 m. Gas-and-steam plumes that contained some ash rose to 6 km altitude and drifted up to 350 km generally E. On 24 December the Kamchatka Volcanological Station field team visited Klyuchevskoy to do work on the field stations. The scientists observed explosions that ejected incandescent material 300 m above the crater and the S-flank lava flow (figure 52). On 28 December KVERT reported that the moderate explosive-effusive eruption continued, but the intensity of the explosions had significantly decreased. The lava flow on the S flank continued to effuse, but its flow rate had already decreased.

Figure (see Caption) Figure 52. Photos of a dense ash plume (left) and a color corrected photo of the lava flow advancing on the S flank (right) of Klyuchevskoy on 24 December 2020, accompanied by incandescent Strombolian explosions and a gray ash plume. Photos by Y. Demyanchuk; courtesy of Volkstat.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent and strong thermal activity beginning in early October and continuing through December 2020, which is represented by the active lava flows reported in the summit crater (figure 53). According to the MODVOLC thermal algorithm, a total of 615 thermal alerts were detected at or near the summit crater from 1 October to 31 December; none were reported in September. Sentinel-2 thermal satellite imagery frequently showed the progression of the active lava flows as a strong thermal anomaly descending the SE flank during October through late November and the SW flank during December, sometimes even through weather clouds (figure 54). The thermal anomalies were commonly accompanied by a gas-and-steam plume that drifted mainly E and NE. A total of 164 VAAC advisories were issued from 2 October through 31 December.

Figure (see Caption) Figure 53. Strong and frequent thermal anomalies were detected in early October at Klyuchevskoy and continued through December 2020, as recorded by the MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 54. Sentinel-2 thermal satellite images showing the progression of two lava flows (bright yellow-orange) originating from the summit crater at Klyuchevskoy from 4 October through December 2020. Crater incandescence was visible on 4 October (top left), which marked the beginning of the lava flow. By 31 October (top right) the active flow had traveled down the Apakhonchich chute on the SE flank, accompanied by a gas-and-steam plume that drifted NE. On 10 November (bottom left) the lava flow continued down the SE flank; the darker black color represents parts of the lava flow that began to cool. The gas-and-steam plume drifted E from the summit. On 25 December (bottom right) a new lava flow was observed descending the SW flank, also accompanied by a strong gas-and-steam plume. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kadovar (Papua New Guinea) — January 2021 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Occasional ash and gas-and-steam plumes along with summit thermal anomalies

Kadovar is located in the Bismark Sea offshore from the mainland of Papua New Guinea about 25 km NNE from the mouth of the Sepik River. Its first confirmed eruption began in early January 2018, characterized by ash plumes and a lava extrusion that resulted in the evacuation of around 600 residents from the N side of the island (BGVN 43:03). Activity has recently consisted of intermittent ash plumes, gas-and-steam plumes, and thermal anomalies (BGVN 45:07). Similar activity continued during this reporting period of July-December 2020 using information from the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

RVO issued an information bulletin on 15 July reporting minor eruptive activity during 1-5 July with moderate light-gray ash emissions rising a few hundred meters above the Main Crater. On 5 July activity intensified; explosions recorded at 1652 and 1815 generated a dense dark gray ash plume that rose 1 km above the crater and drifted W. Activity subsided that day, though fluctuating summit crater incandescence was visible at night. Activity increased again during 8-10 July, characterized by explosions detected on 8 July at 2045, on 9 July at 1145 and 1400, and on 10 July at 0950 and 1125, each of which produced a dark gray ash plume that rose 1 km above the crater. According to Darwin VAAC advisories issued on 10, 16, and 30 July ash plumes were observed rising to 1.5-1.8 km altitude and drifting NW.

Gas-and-steam emissions and occasional ash plumes were observed in Sentinel-2 satellite imagery on clear weather days during August through December (figure 56). Ash plumes rose to 1.2 and 1.5 km altitude on 3 and 16 August, respectively, and drifted NW, according to Darwin VAAC advisories. On 26 August an ash plume rose to 2.1 km altitude and drifted WNW before dissipating within 1-2 hours. Similar activity was reported during September-November, according to several Darwin VAAC reports; ash plumes rose to 0.9-2.1 km altitude and drifted mainly NW. VAAC notices were issued on 12 and 22 September, 4, 7-8, and 18 October, and 18 November. A single MODVOLC alert was issued on 27 November.

Figure (see Caption) Figure 56. Sentinel-2 satellite data showing a consistent gas-and-steam plume originating from the summit of Kadovar during August-December 2020 and drifting NW. On 21 September (top right) a gray plume was seen drifting several kilometers from the island to the NW. Images with “Natural color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent low-power anomalies during July through December 2020 (figure 57). Some of this thermal activity in the summit crater was observed in Sentinel-2 thermal satellite imagery, accompanied by gas-and-steam emissions that drifted primarily NW (figure 58).

Figure (see Caption) Figure 57. Intermittent low-power thermal anomalies at Kadovar were detected in the MIROVA graph (Log Radiative Power) during July through December 2020. The island location is mislocated in the MIROVA system by about 5.5 km SE due to older mis-registered imagery; the anomalies are all on the island. Courtesy of MIROVA.
Figure (see Caption) Figure 58. Sentinel-2 satellite data showing thermal anomalies at the summit of Kadovar on 23 July (top left), 7 August (top right), 1 September (bottom left), and 21 September (bottom right) 2020, occasionally accompanied by a gas-and-steam plume drifting dominantly NW. Two thermal anomalies were visible on the E rim of the summit crater on 23 July (top left) and 7 August (top right). Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Tinakula (Solomon Islands) — January 2021 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam plumes and weak thermal anomalies during July-December 2020

Tinakula is located 100 km NE of the Solomon Trench at the N end of the Santa Cruz. The current eruption began in December 2018 and has recently been characterized by intermittent small thermal anomalies and gas-and-steam plumes (BGVN 45:07), which continued into the current reporting period of July-December 2020. Information primarily comes from various satellite data, as ground observations are rarely available.

Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) showed a total of ten low-power thermal anomalies during July through December; one anomaly was detected in early July, two in late August, three in November, and four in December (figure 44). A single MODVOLC alert was issued on 16 December, which was visible in Sentinel-2 thermal satellite imagery on 17 December (figure 45). Though clouds often obscured the view of the summit crater, Sentinel-2 satellite imagery showed intermittent dense gas-and-steam plumes rising from the summit that drifted in different directions (figure 45).

Figure (see Caption) Figure 44. Low-power thermal anomalies at Tinakula were detected intermittently during April-December 2020 by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 45. Sentinel-2 satellite imagery shows ongoing gas-and-steam plumes rising from Tinakula during July-December 2020. A small thermal anomaly (bright yellow-orange) is visible on 17 December (bottom right) using “Atmospheric penetration” (bands 12, 11, 8a) rendering. All other images using “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Erebus (Antarctica) — January 2021 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


Fewer thermal anomalies during 2020 compared to recent years

Erebus, located on Ross Island, Antarctica, and overlooking the McMurdo research station, is the southernmost active volcano in the world. The stratovolcano, which frequently has active lava lakes in its 250-m wide summit crater, is primarily monitored by satellite.

Thermal activity during 2020 was at lower levels than in recent years. The total number of thermal pixels, as recorded by MODIS thermal emission instruments aboard NASA’s Aqua and Terra satellites, was 76 (table 6), similar to low totals recorded in 2000 and 2015.

Table 6. Number of monthly MODIS-MODVOLC thermal alert pixels recorded at Erebus during 2017-2020. See BGVN 42:06 for data from 2000 through 2016. The table was compiled using data provided by the Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec SUM
2017 0 21 9 0 0 1 11 61 76 52 0 3 234
2018 0 21 58 182 55 17 137 172 103 29 0 0 774
2019 2 21 162 151 55 56 75 53 29 19 1 0 624
2020 0 2 16 18 4 4 1 3 18 3 1 6 76

Sentinel-2 satellite images showed two lava lakes, with one diminishing in size during the year (figure 29). Occasionally a gas plume could be observed. The volcano was frequently covered by atmospheric clouds on days when the satellite passed over.

Figure (see Caption) Figure 29. Infrared Sentinel-2 thermal images of the summit crater area of Erebus in 2020. Left: Image on 28 February 2020 showing two lava lakes in the summit crater. Right: Image on 4 October 2020 showing a single primary lake, with a much diminished second lake immediately SW. The main crater is 500 x 600 m wide. Both images are using the Atmospheric Penetration filter (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Aira (Japan) — January 2021 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Intermittent explosions continue during July through December 2020

Sakurajima is the active volcano within the Aira Caldera in Kyushu, Japan. With several craters historically active, the current activity is concentrated in the Minamidake summit crater. Activity usually consists of small explosions producing ashfall and ballistic ejecta, with occasional pyroclastic flows and lahars. The current eruption has been ongoing since 25 March 2017, but activity has been frequent over the past few hundred years. This bulletin summarizes activity that occurred during July through December 2020 and is largely based on reports by the Japan Meteorological Agency (JMA) and satellite data. The Alert Level remains at 3 on a 5-level scale. There was no activity at the Showa crater in 2020.

The number of recorded explosive and ash eruptions for 2020 at the Minamidake crater were 221 and 432, respectively (228 and 393 the previous year). Activity declined in July and remained low through the end of December. There was ash reported on 79 days of the year, most frequently in January, and only 26 of those days during August-December (table 24 and figure 104). The largest ash plumes during this time reached 5 km at 0538 on 9 August, 3 km at 1959 on 17 December, and 3.5 km at 1614 on 29 December. The decline in events was reflected in thermal data, with a decline in energy detected during June through October (figure 105). Recorded SO2 was generally high in the first half of the year then began to decrease from April to around 1,000 tons/day until around late May. Emissions increased after August and were extremely high in October. There were no notable changes in the geothermal areas around the craters.

Table 24. Number of monthly total eruptions, explosive eruptions, days of ashfall, and ashfall amounts from Sakurajima's Minamidake crater at Aira during 2020. Note that smaller events that did not reach the threshold of explosions or eruptions also occurred. Ashfall was measured at Kagoshima Local Meteorological Observatory; ash weights are rounded down to the nearest 0.5 g/m2 and zero values indicate that less than this amount was recorded. Data courtesy of JMA.

MonthExplosive EruptionsAsh EruptionsDays of AshfallAshfall Amount (g/m2)
Jan 2020 65 104 12 75
Feb 2020 67 129 14 21
Mar 2020 10 26 8 3
Apr 2020 14 51 2 0
May 2020 24 51 8 19
Jun 2020 16 28 9 71
Jul 2020 0 0 0 0
Aug 2020 1 1 1 0
Sep 2020 0 7 4 2
Oct 2020 0 2 6 2
Nov 2020 6 8 11 5
Dec 2020 18 25 4 14
Total 2020 221 432 79 212
Figure (see Caption) Figure 104. The total calculated observed ash erupted from Aira's Sakurajima volcano. Top: Annual values from January 1980 to November 2020. Bottom: the monthly values during January 2009 through November 2020. Courtesy of JMA (January 2021 Sakurajima monthly report).
Figure (see Caption) Figure 105. Thermal data detected at Aira's Sakurajima volcano during February through December 2020 by the MIROVA thermal detection system that uses MODIS satellite middle infrared data. There was a decline in activity during June-September, with energy emitted in November-December remaining lower than earlier in the year. Courtesy of MIROVA.

During July "very small" explosions were observed on the 1st, 2nd, and 8th, with the last explosion producing a plume up to 600 m above the crater. These events didn't generate enough of an ash plume to be counted as either a quiet or explosive eruption, leaving no eruptions reported during July. No incandescence was observed at the crater since 3 June. Field surveys on 2, 13, and 21 July detected 600 to 1,300 tons of SO2 per day.

An explosion occurred at 0538 on 9 August, producing an ash plume to 5 km above the crater, dispersing NE (figure 106). This was the largest explosion observed through the Sakurajima surveillance camera since 8 November 2019. Ashfall was reported in Kagoshima City, Aira City, Kirishima City, Yusui Town, and parts of Miyazaki and Kumamoto Prefectures. Ashfall measured to be 300 g/m2 in Shirahama on Sakurajima island (figure 106). No ballistic ejecta were observed due to clouds at the summit, but very small explosions were occasionally observed afterwards.

Figure (see Caption) Figure 106. An explosion at Aira's Sakurajima volcano at 0538 on 9 August 2020 (top, taken from the Ushine surveillance camera in Kagoshima) produced ashfall in Shirahama on Sakurajima (bottom). The plume contains a white steam-rich portion on the left, and a darker relatively ash-rich portion on the right. Images courtesy of JMA (Sakurajima August 2020 monthly report).

A small lake or pond in the eastern Minamidake crater was first observed in PlanetScope satellite imagery on 1 August (through light cloud cover) and intermittently observed when the summit was clear through to the 22nd (figure 107). The summit is obscured by cloud cover in many images before this date. An observation flight on 14 August confirmed weak gas emission from the inner southern wall of the Showa crater, and a 200-m-high gas plume rose from the Minamidake crater, dispersing SE (figure 108). Thermal imaging showed elevated temperatures within the crater. SO2 measurements were conducted during field surveys on the 3rd, 13th, 24th and 31st, with amounts similar to July at 600 to 1,400 tons per day.

Figure (see Caption) Figure 107. A crater lake is visible in the eastern part of the Minamidake summit crater at Aira's Sakurajima volcano on 5, 18, and 22 August 2020. Four-band PlanetScope satellite images courtesy of Planet Labs.
Figure (see Caption) Figure 108. Gas emissions from the Minamidake and Showa craters at Sakurajima in the Aira caldera on 14 August 2020. Photos taken from the from Kagoshima Prefecture disaster prevention helicopter at 1510-1513. Courtesy of JMA (Sakurajima August monthly report).

Activity continued at Minamidake crater throughout September with seven observed eruptions sending plumes up to 1.7 km above the crater, and additional smaller events (figure 109). An ash plume reached 1 km at 0810 on the 15th. Ashfall was reported on four days through the month with a total of 2 g/m2 measured. Incandescence was observed in nighttime surveillance cameras from the 9-10th for the first time since 2 June, then continued through the month. There was an increase in detected SO2, with measurements on the 11th and 25th ranging from 1,300 to 2,000 tons per day.

Figure (see Caption) Figure 109. Examples of activity at Aira's Sakurajima volcano on 4, 10, and 14 September 2020. The images show an ash plume reaching 1.7 km above the crater (top left), a gas-and-steam plume (bottom left), and incandescence at night visible in a gas-and steam plume (right). Images courtesy of JMA (September 2020 Sakurajima monthly report).

During October two eruptions and occasional smaller events occurred at the Minamidake crater and there were six days where ashfall occurred at the Kagoshima Local Meteorology Observatory (including remobilized ash). An ash plume rose to 1.7 km above the crater at 1635 on the 3rd and 1 km on the 30th. Incandescence was observed at night through the month (figure 110). Gas surveys on the 20th, 21st, 23rd, and 26th recorded 2,200-6,600 tons of SO2 per day, which are high to very high levels and a large increase compared to previous months. An observation flight on the 13th confirmed lava in the bottom of the Minamidake crater (figure 111). Gas emissions were rising to 300 m above the Minamidake crater, but no emissions were observed at the Showa crater (figure 112).

Figure (see Caption) Figure 110. Gas emissions and incandescence seen above the Sakurajima Minamidake crater at Aira on 10 and 23 October 2020. Courtesy of JMA (Sakurajima October 2020 monthly report).
Figure (see Caption) Figure 111. Lava was observed on the floor of the Minamidake summit crater at Aira's Sakurajima volcano on 13 October 2020, indicated by the yellow dashed line. Courtesy of JMA (Sakurajima October 2020 monthly report).
Figure (see Caption) Figure 112. An observation flight on 13 October 2020 noted gas emissions up to 300 m above the Minamidake crater at Sakurajima, but no emissions from the Showa crater. Courtesy of JMA (Sakurajima October 2020 monthly report).

Eight ash eruptions and six explosive eruptions occurred during November as well as additional very small events. At 1551 on the 3rd an ash plume reached 1.8 km above the crater and an event at 1335 on the 10th produced large ballistic ejecta out to 600-900 m from the crater (figure 113). Ashfall was reported on 11 days this month (including remobilized ash). Incandescence was observed at night and elevated temperatures in the Minamidake crater were detected by satellites (figure 114). Detected SO2 was lower this month, with amounts ranging between 1,300 and 2,200 on the 9th, 18th and 24th.

Figure (see Caption) Figure 113. Ash plumes at Aira's Sakurajima volcano rise from the Minamidake crater in November 2020. Left: an ash plume rose to 1.8 km above the crater at 1551 on the 3rd and drifted SE. on 3 (left) and 10 (right) November 2020. Right: An explosion at 1335 on the 10th produced an ash plume to 1.6 km above the crater and ballistic ejecta out to 600-900 m, with one projectile indicated by the red arrow. Courtesy of JMA (Sakurajima November 2020 monthly report).
Figure (see Caption) Figure 114. An ash plume drifts SE from the Minamidake crater at Aira's Sakurajima volcano on 8 November 2020. This thermal image also shows elevated temperatures in the crater. Sentinel-2 False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

During December there were 25 ash eruptions and 18 explosive eruptions recorded, with large ballistic ejecta reaching 1.3-1.7 km from the crater (figure 115). An explosion on the 2nd sent an ash plume up to 1 km above the crater and ballistic ejecta out to 1-1.3 km, and an event at 0404 on the 12th produced incandescent ballistic ejecta reached out to 1.3-1.7 km from the crater. At 1959 on 17 December an explosion generated an ash plume up to 3 km above the crater and ejecta out to 1.3-1.7 km. A photograph that day showed an ash plume with volcanic lightning and incandescent ejecta impacting around the crater (figure 116). On the 18th an ash plume reached 1.8 km and ejecta impacted out to 1-1.3 km. An event at 1614 on the 29th produced an ash plume reaching 3.5 km above the crater. Elevated temperatures within the Minamidake crater and plumes were observed intermittently in satellite data through the month (figure 117). This month there were four days where ashfall was recorded with a total of 14 g/m2. Incandescence continued to be observed at night through the month. High levels of gas emission continued, with field surveys on 2nd, 7th, 16th and 21st recording values ranging from 1,500 to 2,900 tons per day at the Observatory located 11 km SW.

Figure (see Caption) Figure 115. Explosions at Aira's Sakurajima volcano from the Minamidake summit crater in December 2020. Top: An explosion recorded at 0404 on the 12th produced incandescent ballistic ejecta out to 1.3-1.7 km from the crater, with an example indicated in the red circle. Bottom: An explosion at 1614 on the 29th produced an ash plume up to 3.5 km above the crater, and ballistic ejecta out to 1.3-1.7 km. Courtesy of JMA (top, from Sakurajima December 2020 monthly report) and Volcano Time Lapse (bottom).
Figure (see Caption) Figure 116. An explosion from Sakurajima's Minamidake crater at Aira produced an ash plume with volcanic lightning on 17 December 2020. Photograph taken from Tarumizu city, courtesy of Kyodo/via Reuters.
Figure (see Caption) Figure 117. Activity at Aira's Sakurajima volcano during December 2020. Top: Sentinel-2 thermal satellite image showing a diffuse gas-and-steam plume dispersing to the SE with elevated temperatures within the Minamidake summit crater on the 22nd. PlanetScope satellite image showing an ash plume dispersing between the N and E on the 26th. Sentinel-2 False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground. PlanetScope satellite image courtesy of Planet Labs.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Kyodo/via REUTERS, "Photos of the Week" (URL: https://www.reuters.com/news/picture/photos-of-the-week-idUSRTX8HYLR); Volcano Time-Lapse, YouTube (URL: https://www.youtube.com/watch?v=jTgd152oGVo).


Nishinoshima (Japan) — February 2021 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Eruption ends in late August 2020; lengthy cooling from extensive lava flows and large crater

Japan’s Nishinoshima volcano, located about 1,000 km S of Tokyo in the Ogasawara Arc, erupted above sea level in November 2013 after 40 years of dormancy. Activity lasted for two years followed by two brief eruptions in 2017 and 2018. The next eruption, from early December 2019 through August 2020, included ash plumes, incandescent ejecta, and lava flows; it produced a large pyroclastic cone with a wide summit crater and extensive lava flows that significantly enlarged the island. This report covers the end of the eruption and cooling during September 2020-January 2021. Information is provided primarily from Japan Meteorological Agency (JMA) monthly reports and the Japan Coast Guard (JCG), which makes regular observation overflights.

Ash emissions were last reported on 27 August 2020. The very high levels of thermal energy from numerous lava flows, ash, and incandescent tephra that peaked during early July decreased significantly during August and September. Continued cooling of the fresh lava and the summit crater lasted into early January 2021 (figure 107). Monthly overflights and observations by scientists confirmed areas of steam emissions at the summit and on the flanks and discolored water around the island, but no eruptive activity.

Figure (see Caption) Figure 107. High levels of thermal activity at Nishinoshima during June and July 2020 resulted from extensive lava flows and explosions of incandescent tephra. Although the last ash emission was reported on 27 August 2020, cooling of new material lasted into early January 2021. The MIROVA log radiative power graph of thermal activity covers the year ending on 3 February 2021. Courtesy of MIROVA.

Thermal activity declined significantly at Nishinoshima during August 2020 (BGVN 45:09). Only two days had two MODVOLC alerts (11 and 30), and four other days (18, 20, 21, 29) had single alerts. During JCG overflights on 19 and 23 August there were no ash emissions or lava flows observed, although steam plumes rose over 2 km above the summit crater during both visits. The last ash emission was reported by the Tokyo VAAC on 27 August 2020. No eruptive activity was observed by JMA during an overflight on 5 September, but steam plumes were rising from the summit crater (figure 108). No significant changes were observed in the shape of the pyroclastic cone or the coastline. Yellowish brown discolored water appeared around the western half of the island, and high temperature was still measured on the inner wall of the crater. Faint traces of SO2 plumes were present in satellite images in early September; the last plume identified was on 18 September. Six days with single MODVOLC alerts were recorded during 3-19 September, and the final thermal alert appeared on 1 October 2020.

Figure (see Caption) Figure 108. No eruptive activity was observed during a JMA overflight of Nishinoshima on 5 September 2020, but steam rose from numerous places within the enlarged summit crater (inset). Courtesy of JMA and JCG (Monthly report of activity at Nishinoshima, September 2020).

Steam plumes and high temperatures were noted at the summit crater on 28 October, and brown discolored water was present around the S coast of the island (figure 109), but there were no other signs of volcanic activity. Observations from the sea conducted on 2 November 2020 by researchers aboard the Maritime Meteorological Observatory marine weather observation ship "Ryofu Maru" confirmed there was no ongoing eruptive activity. In addition to steam plumes at the summit, they also noted steam rising from multiple cracks on the cooling surface of the lava flow area on the N side of the pyroclastic cone (figure 110). Only steam plumes from inside the summit crater were observed during an overflight on 24 November.

Figure (see Caption) Figure 109. On a JCG overflight above Nishinoshima on 28 October 2020 there were no signs of eruptive activity; steam plumes were present in the summit crater and brown discolored water was visible around the S coast of the island. Courtesy of JMA and JCG (Monthly report of activity at Nishinoshima, October 2020).
Figure (see Caption) Figure 110. Observations of Nishinoshima by staff aboard the Maritime Meteorological Observatory ship "Ryofu Maru" on 2 November 2020 showed a steam plume rising from the lava flow area on the N side of the pyroclastic cone (arrow) and minor steam above the cone. Courtesy of JMA (Monthly report of activity at Nishinoshima, November 2020).

JMA reduced the warning area around the crater on 18 December 2020 from 2.5 to 1.5 km due to decreased activity. On 7 December a steam plume rose from the inner wall of the summit crater and thermal imaging indicated the area was still hot. Brown discolored water was observed on the SE and SW coasts. Researchers aboard a ship from the Earthquake Research Institute at the University of Tokyo and the Marine Research and Development Organization reported continued steam plumes in the summit crater, around the lava flows on the N flank, and along the S coast during 15-29 December (figure 111). Steam plumes and elevated temperatures were still measured inside the summit crater during an overflight by the Japan Coast Guard on 25 January 2021, and discolored water persisted on the SE and SW coasts; there was no evidence of eruptive activity.

Figure (see Caption) Figure 111. Observations of Nishinoshima from the sea by researchers from the Earthquake Research Institute (University of Tokyo) and the Marine Research and Development Organization, which took place from 15-29 December 2020, showed fumarolic acitivity not only inside the summit crater, but also in the lava flow area on the N side of the pyroclastic cone (left, 20 December) and in places along the southern coast (right, 23 December). (Monthly report of activity at Nishinoshima, December 2020).

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: http://www.kaiho.mlit.go.jp/info/kouhou/h29/index.html); Volcano Research Center (VRC-ERI), Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/topics/ASAMA2004/index-e.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Nyiragongo (DR Congo) — December 2020 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Strong thermal anomalies and gas emission from lava lake through November 2020

Nyiragongo is a stratovolcano in the DR Congo with a deep summit crater containing a lava lake and a small active cone. During June 2018-May 2020, the volcano exhibited strong thermal signals primarily due to the lava lake, along with incandescence, seismicity, and gas-and-steam plumes (BGVN 44:05, 44:12, 45:06). The volcano is monitored by the Observatoire Volcanologique de Goma (OVG). This report summarizes activity during June-November 2020, based on satellite data.

Infrared MODIS satellite data showed almost daily strong thermal activity during June-November 2020 from MIROVA (Middle InfraRed Observation of Volcanic Activity), consistent with a large lava lake. Numerous hotspots were also identified every month by MODVOLC. Although clouds frequently obscured the view from space, a clear Sentinel-2 image in early June showed a gas-and-steam plume as well as a strong thermal anomaly (figure 76).

Figure (see Caption) Figure 76. Sentinel-2 satellite imagery of Nyiragongo on 1 June 2020. A gas-and-steam is visible in the natural color image (bands 4, 3, 2) rising from a pit in the center of the crater (left), while the false color image (bands 12, 11, 4) reveals a strong thermal signal from a lava lake (right). Courtesy of Sentinel Hub Playground.

During the first half of June 2020, OVG reported that SO2 levels had decreased compared to levels in May (7,000 tons/day); during the second half of June the SO2 flux began to increase again. High levels of sulfur dioxide were recorded almost every day in the region above or near the volcano by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite (figure 77). According to OVG, SO2 flux ranged from 819-5,819 tons/day during June. The number of days with a high SO2 flux decreased somewhat in July and August, with high levels recorded during about half of the days. The volume of SO2 emissions slightly increased in early July, based on data from the DOAS station in Rusayo, measuring 6,787 tons/day on 8 July (the highest value reported during this reporting period), and then declined to 509 tons/day by 20 July. The SO2 flux continued to gradually decline, with high values of 5,153 tons/day in August and 4,468 tons/day in September. The number of days with high SO2 decreased further in September and October but returned to about half of the days in November.

Figure (see Caption) Figure 77. TROPOMI image of SO2 plume on 27 June 2020 in the Nyiragongo-Nyamulagira area. The plume drifted SSE. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

During 12-13 July a multidisciplinary team of OVG scientists visited the volcano to take measurements of the crater using a TCRM1102 Plus2 laser. They noted that the crater had expanded by 47.3 mm in the SW area, due to the rise in the lava lake level since early 2020. The OVG team took photos of the small cone in the lava lake that has been active since 2014, recently characterized by white gas-and-steam emissions (figure 78). OVG noted that the active lava lake had subsided roughly 20 m (figure78).

Figure (see Caption) Figure 78. Photos (color corrected) of the crater at Nyiragongo showing the small active cone generating gas-and-steam emissions (left) and the active lava lake also characterized by white gas-and-steam emissions on 12 July 2020 (right). Courtesy of OVG (Rapport OVG Juillet 2020).

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Whakaari/White Island (New Zealand) — December 2020 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Gas-and-steam emissions with some re-suspended ash in November 2020

Whakaari/White Island, located in the Bay of Plenty 50 km offshore of North Island, has been New Zealand’s most active volcano since 1976. Activity has been previously characterized by phreatic activity, explosions, and ash emissions (BGVN 42:05). The most recent eruption occurred on 9 December 2019, which consisted of an explosion that generated an ash plume and pyroclastic surge that affected the entire crater area, resulting in 21 fatalities and many injuries (BGVN 45:02). This report updates information from February through November 2020, which includes dominantly gas-and-steam emissions along with elevated surface temperatures, using reports from the New Zealand GeoNet Project, the Wellington Volcanic Ash Advisory Centre (VAAC), and satellite data.

Activity at Whakaari/White Island has declined and has been dominated by white gas-and-steam emissions during the reporting period; no explosive eruptive activity has been detected since 9 December 2019. During February through 22 June, the Volcanic Activity Level (VAL) remained at a 2 (moderate to heightened volcanic unrest) and the Aviation Color Code was Yellow. GeoNet reported that satellite data showed some subsidence along the W wall of the Main Crater and near the 1914 landslide scarp, though the rate had reduced compared to previous months. Thermal infrared data indicated that the fumarolic gases and five lobes of lava that were first observed in early January 2020 in the Main Crater were 550-570°C on 4 February and 660°C on 19 February. A small pond of water had begun to form in the vent area and exhibited small-scale gas-and-steam-driven water jetting, similar to the activity during September-December 2019. Gas data showed a steady decline in SO2 and CO2 levels, though overall they were still slightly elevated.

Similar activity was reported in March and April; the temperatures of the fumaroles and lava in the Main Crater were 746°C on 10 March, the highest recorded temperature to date. SO2 and CO2 gas emissions remained elevated, though had overall decreased since December 2019. Small-scale water jetting continued to be observed in the vent area. During April, public reports mentioned heightened gas-and-steam activity, but no eruptions were detected. A GeoNet report issued on 16 April stated that high temperatures were apparent in the vent area at night.

Whakaari remained at an elevated state of unrest during May, consisting of dominantly gas-and-steam emissions. Monitoring flights noted that SO2 and CO2 emissions had increased briefly during 20-27 May. On 20 May, the lava lobes remained hot, with temperatures around 500°C; a nighttime glow from the gas emissions surrounding the lava was visible in webcam images. Tremor levels remained low with occasional slightly elevated episodes, which included some shallow-source volcanic earthquakes. Satellite-based measurements recorded several centimeters of subsidence in the ground around the active vent area since December 2019. During a gas observation flight on 28 May there was a short-lived gas pulse, accompanied by an increase in SO2 and CO2 emissions, and minor inflation in the vent area (figure 96).

Figure (see Caption) Figure 96. Photo of a strong gas-and-steam plume rising above Whakaari/White Island on 28 May 2020. Courtesy of GeoNet.

An observation flight made on 3 June reported a decline in gas flux compared to the measurements made on 28 May. Thermal infrared images taken during the flight showed that the lava lobes were still hot, at 450°C, and continued to generate incandescence that was visible at night in webcams. On 16 June the VAL was lowered to 1 (minor volcanic unrest) and on 22 June the Aviation Color Code had decreased to Green.

Minor volcanic unrest continued in July; the level of volcanic tremors has remained generally low, with the exception of two short bursts of moderate volcanic tremors in at the beginning of the month. Temperatures in the active vents remained high (540°C) and volcanic gases persisted at moderate rate, similar to those measured since May, according to an observation flight made during the week of 30 July. Subsidence continued to be observed in the active vent area, as well as along the main crater wall, S and W of the active vents. Recent rainfall has created small ponds of water on the crater floor, though they did not infiltrate the vent areas.

Gas-and-steam emissions persisted during August through October at relatively high rates (figures 97 and 98). A short episode of moderate volcanic tremor was detected in early August, but otherwise seismicity remained low. Updated temperatures of the active vent area were 440°C on 15 September, which had decreased 100°C since July. Rain continued to collect at the crater floor, forming a small lake; minor areas of gas-and-steam emissions can be seen in this lake. Ongoing subsidence was observed on the Main Crater wall and S and W of the 2019 active vents.

Figure (see Caption) Figure 97. Photo of an observation flight over Whakaari/White Island on 8 September 2020 showing white gas-and-steam emissions from the vent area. Photo courtesy of Brad Scott, GeoNet.
Figure (see Caption) Figure 98. Image of Whakaari/White Island from Whakatane in the North Island of New Zealand showing a white gas-and-steam plume on 26 October 2020. Courtesy of GeoNet.

Activity during November was primarily characterized by persistent, moderate-to-large gas-and-steam plumes that drifted downwind for several kilometers but did not reach the mainland. The SO2 flux was 618 tons/day and the CO2 flux was 2,390 tons/day. New observations on 11 November noted some occasional ash deposits on the webcams in conjunction with mainland reports of a darker than usual plume (figure 99). Satellite images provided by MetService, courtesy of the Japan Meteorological Agency, confirmed the ash emission, but later images showed little to no apparent ash; GNS confirmed that no eruptive activity had occurred. Initial analyses indicated that the ash originated from loose material around the vent was being entrained into the gas-and-steam plumes. Observations from an overflight on 12 November showed that there was no substantial change in the location and size of the active vents; rainfall continued to collect on the floor of the 1978/90 Crater, reforming the shallow lake. A small sequence of earthquakes was detected close to the volcano with several episodes of slightly increased volcanic tremors.

During 12-14 November the Wellington VAAC issued multiple advisories noting gas, steam, and ash plumes that rose to 1.5-1.8 km altitude and drifted E and SE, based on satellite data, reports from pilots, and reports from GeoNet. As a result, the VAL was increased to 2 and the Aviation Color Code was raised to Yellow. Scientists on another observation flight on 16 November reported that small amounts of ash continued to be present in gas-and-steam emissions, though laboratory analyses showed that this ash was resuspended material and not from new eruptive or magmatic activity. The SO2 and CO2 flux remained above background levels but were slightly lower than the previous week’s measurements: 710 tons/day and 1,937 tons/day. Seismicity was similar to the previous week, characterized by a sequence of small earthquakes, a larger than normal volcanic earthquake located near the volcano, and ongoing low-level volcanic tremors. During 16-17 November plumes with resuspended ash were observed rising to 460 m altitude, drifting E and NE, according to a VAAC advisory (figure 99). During 20-24 November gas-and-steam emissions that contained a minor amount of resuspended ash rose to 1.2 km altitude and drifted in multiple directions, based on webcam and satellite images and information from GeoNet.

Figure (see Caption) Figure 99. Left: Photo of a gas observation flight over Whakaari/White Island on 11 November 2020 showing some dark particles in the gas-and-steam plumes, which were deposited on some webcams. Photo has been color corrected and straightened. Courtesy of GeoNet. Right: Photo showing gas, steam, and ash emissions rising above the 2019 Main Crater area on 16 November 2020. Courtesy of GNS Science (17 November 2020 report).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a total of eleven low-power thermal anomalies during January to late March 2020; a single weak thermal anomaly was detected in early July (figure 100). The elevated surface temperatures during February-May 2020 were detected in Sentinel-2 thermal satellite images in the Main Crater area, occasionally accompanied by gas-and-steam emissions (figure 101). Persistent white gas-and-steam emissions rising above the Main Crater area were observed in satellite imagery on clear weather days and drifting in multiple directions (figure 102). The small lake that had formed due to rainfall was also visible to the E of the active vents.

Figure (see Caption) Figure 100. Low-power, infrequent thermal activity at Whakaari/White Island was detected during January through late March 2020, as reflected in the MIROVA data (Log Radiative Power). A single thermal anomaly was shown in early July. Courtesy of MIROVA.
Figure (see Caption) Figure 101. Sentinel-2 thermal satellite images in the Main Crater area of Whakaari/White Island show residual elevated temperatures from the December 2019 eruption, accompanied by gas-and-steam emissions and drifting in different directions during February-May 2020. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 102. Sentinel-2 images showing persistent white gas-and-steam plumes rising from Main Crater area of Whakaari/White Island during March-November 2020 and drifting in multiple directions. A small pond of water (light blue-green) is visible in the vent area to the E of the plumes. On 11 November (bottom right), the color of the plume is gray and contains a small amount of ash. Images using “Natural color” rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: New Zealand GeoNet Project, a collaboration between the Earthquake Commission and GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.geonet.org.nz/); GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brad Scott, GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: https://twitter.com/Eruptn).


Kerinci (Indonesia) — December 2020 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent ash plumes and gas-and-steam emissions during June-November 2020

Kerinci, located in Sumatra, Indonesia, has had numerous explosive eruptions since 1838, with more recent activity characterized by gas-and-steam and ash plumes. The current eruptive episode began in April 2018 and has recently consisted of intermittent brown ash emissions and white gas-and-steam emissions (BGVN 45:07); similar activity continued from June through November 2020. Information primarily comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data.

Activity has been characterized by dominantly white and brown gas-and-steam emissions and occasional ash plumes, according to PVMBG. Near daily gas-and-steam emissions were observed rising 50-6,400 m above the crater throughout the reporting period: beginning in late July and continuing intermittently though November. Sentinel-2 satellite imagery showed frequent brown emissions rising above the summit crater at varying intensities and drifting in different directions from July to November (figure 21).

Figure (see Caption) Figure 21. Sentinel-2 satellite imagery of brown emissions at Kerinci from July through November 2020 drifting in multiple directions. On 27 July (top left) the brown emissions drifted SW. On 31 August (top right) the brown emissions drifted W. On 2 September (bottom left) slightly weaker brown emissions drifting W. On 4 November (bottom right) weak brown emissions mostly remained within the crater, some of which drifted E. Images using “Natural Color” rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.

During June through July the only activity reported by PVMBG consisted of white gas-and-steam emissions and brown emissions. On 4 June white gas-and-steam emissions rose to a maximum height of 6.4 km above the crater. White-and-brown emissions rose to a maximum height of 700 m above the crater on 2 June and 28 July.

Continuous white-and-brown gas-and-steam emissions were reported in August that rose 50-1,000 m above the crater. The number of ash plumes reported during this month increased compared to the previous months. In a Volcano Observatory Notice for Aviation (VONA) issued on 7 August at 1024, PVMBG reported an ash plume that rose 600 m above the crater and drifted E, SE, and NE. In addition, the Darwin VAAC released two notices that described continuous minor ash emissions rising to 4.3 km altitude and drifting E and NE. On 9 August an ash plume rose 600 m above the crater and drifted ENE at 1140. An ash plume was observed rising to a maximum of 1 km above the crater, drifting E, SE, and NE on 12 August at 1602, according to a PVMBG VONA and Darwin VAAC advisory. The following day, brown emissions rose to a maximum of 1 km above the crater and were accompanied by a 600-m-high ash plume that drifted ENE at 1225. Ground observers on 15 August reported an eruption column that rose to 4.6 km altitude; PVMBG described brown ash emissions up to 800 m above the crater drifting NW at 0731 (figure 22). During 20-21 August pilots reported an ash plume rising 150-770 m above the crater drifting NE and SW, respectively.

Figure (see Caption) Figure 22. Webcam image of an ash plume rising above Kerinci on 15 August 2020. Courtesy of MAGMA Indonesia.

Activity in September had decreased slightly compared to the previous month, characterized by only white-and-brown gas-and-steam emissions that rose 50-300 m above the crater; solely brown emissions were observed on 30 September and rose 50-100 m above the crater. This low level of activity persisted into October, with white gas-and-steam emissions to 50-200 m above the crater and brown emissions rising 50-300 m above the crater. On 16 October PVMBG released a VONA at 0340 that reported an ash plume rising 687 m above the crater and drifting NE. On 17 October white, brown, and black ash plumes that rose 100-800 m above the crater drifted NE according to both PVMBG and a Darwin VAAC advisory (figure 23). During 18-19 October white, brown, and black ash emissions rose up to 400 m above the crater and drifted NE and E.

Figure (see Caption) Figure 23. Webcam image of a brown ash emission from Kerinci on 17 October 2020. Courtesy of MAGMA Indonesia.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Suwanosejima (Japan) — January 2021 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Explosion rate increases during July-December 2020, bomb ejected 1.3 km from crater on 28 December

Suwanosejima, an andesitic stratovolcano in Japan's northern Ryukyu Islands, was intermittently active for much of the 20th century, producing ash plumes, Strombolian explosions, and ashfall. Continuous activity since October 2004 has included intermittent explosions which generate ash plumes that rise hundreds of meters above the summit to altitudes between 1 and 3 km. Incandescence is often observed at night and ejecta periodically reaches over a kilometer from the summit. Ashfall is usually noted several times each month in the nearby community on the SW flank of the island. Ongoing activity for the second half of 2020, which includes significantly increased activity in December, is covered in this report with information provided by the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

A steady increase in activity was reported during July-December 2020. The number of explosions recorded increased each month from only six during July to 460 during December. The energy of the explosions increased as well; ejecta was reported 600 m from the crater during August, but a large bomb reached 1.3 km from the crater at the end of December. After an increased period of explosions late in December, JMA raised the Alert Level from 2 to 3 on a 5-level scale. The MIROVA graph of thermal activity indicated intermittent anomalies from July through December 2020, with a pulse of activity in the second half of December (figure 48).

Figure (see Caption) Figure 48. MIROVA thermal activity for Suwanosejima for the period from 3 February through December 2020 shows pulses of activity in February and April, with intermittent anomalies until another period of frequent stronger activity in December. Courtesy of MIROVA.

Six explosions were recorded during July 2020, compared with only one during June. According to JMA, the tallest plume rose 2,000 m above the crater rim. Incandescent ejecta was occasionally observed at night. The Tokyo VAAC reported a number of ash plumes that rose to 1.2-2.7 km altitude and drifted NW and W during the second half of the month (figure 49). Activity increased during August 2020 when thirteen explosions were reported. The Tokyo VAAC reported a few ash plumes during 1-6 August that rose to 1.8-2.4 km altitude and drifted NW; a larger pulse of activity during 18-22 August produced plumes that rose to altitudes ranging from 1.8 to over 2.7 km. Ashfall was reported on 19 and 20 August in the village located 4 km SSW of the crater; incandescence was visible at the summit and ash plumes drifted SW in satellite imagery on 19 August (figure 50). A MODVOLC thermal alert was issued on 19 August. On 21 August a large bomb was ejected 600 m from the Otake crater in an explosion early in the day; later that afternoon, an ash plume rose to more than 2,000 m above the crater rim. During 19-22 August, SO2 emissions were recorded each day by the TROPOMI instrument on the Sentinel-5P satellite (figure 51).

Figure (see Caption) Figure 49. An ash emission at Suwanosejima rose to 2.7 km altitude and drifted NW on 27 July 2020. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, July 2020).
Figure (see Caption) Figure 50. Ash drifted SW from the summit crater of Suwanosejima on 19 August 2020 and a bright thermal anomaly was present at the summit. Residents of the village 4 km SW reported ashfall that day and the next. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 51. A period of increased activity at Suwanosejima during 19-22 August 2020 produced SO2 emissions that were measured by the TROPOMI instrument on the Sentinel-5P satellite. Nishinoshima, was also producing significant SO2 at the same time. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Thirteen explosions were recorded during September 2020, with the highest ash plumes reaching 2,000 m above the crater rim, and bombs falling 400 m from the crater. Ashfall was recorded on 20 September in the community located 4 km SSW. The Tokyo VAAC reported intermittent ash plumes during the month that rose to 1.2-2.1 km altitude and drifted in several directions. Incandescence was frequently observed at night (figure 52). Explosive activity increased during October with 22 explosions recorded. Ash plumes rose over 2,000 m above the crater rim, and bombs reached 700 m from the crater. Steam plumes rose 2,300 m above the crater rim. Ashfall and loud noises were confirmed several times between 2 and 14 October in the nearby village. A MODVOLC thermal alert was issued on 6 October. The Tokyo VAAC reported multiple ash plumes throughout the month; they usually rose to 1.5-2.1 km altitude and drifted in many directions. The plume on 28 October rose to over 2.7 km altitude and was stationary.

Figure (see Caption) Figure 52. Incandescence at night and ash emissions were observed multiple times at Suwanosejima during September and October 2020 including on 21 and 26 September (top) and 29 October 2020. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, September and October 2020).

Frequent explosions occurred during November 2020, with a sharp increase in the number of explosions to 105 events compared with October. Ash plumes rose to 1,800 m above the crater rim and bombs were ejected 700 m. Occasional ashfall and loud noises were reported from the nearby community throughout the month. Scientists measured no specific changes to the surface temperature around the volcano during an overflight early on 5 November compared with the previous year. At 0818 on 5 November a small ash explosion at the summit crater was photographed by the crew during an observation flight (figure 53). On 12 and 13 November, incandescent ejecta fell 600 m from the crater and ash emissions rose 1,500 m above the crater rim (figure 54).

Figure (see Caption) Figure 53. A minor explosion produced a small ash plume at Suwanosejima during an overflight by JMA on the morning of 5 November 2020. The thermal activity was concentrated at the base of the explosion (inset). Image taken from off the E coast. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, November 2020).
Figure (see Caption) Figure 54. On 12 and 13 November 2020 incandescent ejecta from Suwanosejima reached 600 m from the crater (top) and ash emissions rose 1,500 m above the crater rim (bottom). Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, November 2020).

During December 2020 there were 460 explosions reported, a significant increase from the previous months. Ash plumes reached 1,800 m above the summit. Three MODVOLC thermal alerts were issued on 25 December and two were issued the next day. The number of explosions increased substantially at the Otake crater between 21 and 29 December, and early on 28 December a large bomb was ejected to 1.3 km SE of the crater (figure 55). A second explosion a few hours later ejected another bomb 1.1 km SE. An overflight later that day confirmed the explosion, and ash emissions were still visible (figure 56), although cloudy weather prevented views of the crater. Ashfall was noted and loud sounds heard in the nearby village. A summary graph of observations throughout 2020 indicated that activity was high from January through May, quieter during June, and then increased again from July through the end of the year (figure 57).

Figure (see Caption) Figure 55. Early on 28 December 2020 a large explosion at Suwanosejima sent a volcanic bomb 1.3 km SE from the summit (bright spot on left flank in large photo). Thermal imaging taken the same day showed the heat at the eruption site and multiple fragments of warm ejecta scattered around the crater area (inset). Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, December 2020).
Figure (see Caption) Figure 56. Ash emissions were still visible midday on 28 December 2020 at Suwanosejima during a helicopter overflight by the 10th Regional Coast Guard. Image taken from the SW flank of the volcano. Two large explosions earlier in the day had sent ejecta more than a kilometer from the crater. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, December 2020).
Figure (see Caption) Figure 57. Activity summary for Suwanosejima for January-December 2020 when 764 explosions were recorded. Black bars represent the height of steam, gas, or ash plumes in meters above the crater rim, gray volcano icons represent explosions, usually accompanied by an ash plume, red icons represent large explosions with ash plumes, orange diamonds indicate incandescence observed in webcams. Courtesy of JMA (Suwanosejima volcanic activity annual report, 2020).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Karangetang (Indonesia) — December 2020 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Hot material on the NW flank in November 2020; intermittent crater thermal anomalies

Karangetang (also known as Api Siau) is located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia and consists of two active summit craters: a N crater (Kawah Dua) and a S crater (Kawah Utama, also referred to as the “Main Crater”). More than 50 eruptions have been observed since 1675. The current eruption began in November 2018 and has recently been characterized by frequent incandescent block avalanches, thermal anomalies in the crater, and gas-and-steam plumes (BGVN 45:06). This report covers activity from June through November 2020, which includes dominantly crater anomalies, few ash plumes, and gas-and-steam emissions. Information primarily comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, and various satellite data.

Activity decreased significantly after mid-January 2020 and has been characterized by dominantly gas-and-steam emissions and occasional ash plumes, according to PVMBG. Daily gas-and-steam emissions were observed rising 25-600 m above the Main Crater (S crater) during the reporting period and intermittent emissions rising 25-300 m above Kawah Dua (N crater).

The only activity reported by PVMBG in June, August, and October was daily gas-and-steam emissions above the Main Crater and Kawah Dua (figure 47). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent low-power thermal anomalies during June through late July, which includes a slight increase in power during late July (figure 48). During 14-15 July strong rumbling from Kawah Dua was accompanied by white-gray emissions that rose 150-200 m above the crater. Crater incandescence was observed up to 10 m above the crater. According to webcam imagery from MAGMA Indonesia, intermittent incandescence was observed at night from both craters through 25 July. In a Volcano Observatory Notice for Aviation (VONA) issued on 5 September, PVMBG reported an ash plume that rose 800 m above the crater.

Figure (see Caption) Figure 47. Webcam image of gas-and-steam plumes rising above the two summit craters at Karangetang on 16 June 2020. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 48. Intermittent low-power thermal anomalies at Karangetang were reported during June through July 2020 with a slight increase in power in late July, according to the MIROVA graph (Log Radiative Power). No thermal activity was detected during August to late October; in mid-November a short episode of increased activity occurred. Courtesy of MIROVA.

Thermal activity increased briefly during mid-November when hot material was reported extending 500-1,000 m NW of the Main Crater, accompanied by gas-and-steam emissions rising 200 m above the crater. Corresponding detection of MODIS thermal anomalies was seen in MIROVA graphs (see figure 48), and the MODVOLC system showed alerts on 13 and 15 November. On 16 November blue emissions were observed above the Main Crater drifting W. Sentinel-2 thermal images showed elevated temperatures in both summit craters throughout the reporting period, accompanied by gas-and-steam emissions and movement of hot material on the NW flank on 19 November (figure 49). White gas-and-steam emissions rose to a maximum height of 300 m above Kawah Dua on 22 November and 600 m above the Main Crater on 28 November.

Figure (see Caption) Figure 49. Persistent thermal anomalies (bright yellow-orange) at Karangetang were detected in both summit craters using Sentinel-2 thermal satellite imagery during June through November 2020. Gas-and-steam emissions were also occasionally detected in both craters as seen on 17 June (top left) and 20 September (bottom left) 2020. On 19 November (bottom right) the Main Crater (S) showed a hot thermal signature extending NW. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevado del Ruiz (Colombia) — January 2021 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Dome growth and ash emissions continue during July-December 2020

Colombia’s broad, glacier-capped Nevado del Ruiz has an eruption history documented back 8,600 years, including documented observations since 1570. Ruiz remained quiet for 20 years after the deadly September 1985-July 1991 eruption until a period of explosive activity from February 2012 into 2013. Renewed activity beginning in November 2014 included ash and gas-and-steam plumes, ashfall, and the appearance of a slowly growing lava dome inside the Arenas crater in August 2015. Additional information has caused a revision to earlier reporting that eruptive activity ended in May 2017 and began again that December (BGVN 44:12); activity appears to have continued throughout 2017 with intermittent ash emissions and thermal evidence of dome growth. Periods of increased thermal activity alternated with periods of increased explosive activity during 2018-2019 and into 2020; SO2 emissions persisted at significant levels. The lava dome has continued to grow through 2020. This report covers ongoing activity from July-December 2020 using information from reports by the Servicio Geologico Colombiano (SGC) and the Observatorio Vulcanológico y Sismológico de Manizales, the Washington Volcanic Ash Advisory Center (VAAC) notices, and various sources of satellite data.

Gas and ash emissions continued throughout July-December 2020; they generally rose to 5.8-6.1 km altitude with the highest reported plume at 6.7 km altitude on 7 December. SGC interpreted repeated episodes of “drumbeat seismicity” as an indication of continued dome growth throughout the period. Satellite thermal anomalies also suggested that dome growth continued. The MIROVA graph of thermal activity suggests that the dome was quiet in July and early August, but small pulses of thermal energy were recorded every few weeks for the remainder of 2020 (figure 115). Plots of the cumulative number and magnitude of seismic events at Nevado del Ruiz between January 2010 and November 2020 show a stable trend with periodic sharp increases in activity or magnitude throughout that time. SGC has adjusted the warning levels over time according to changes in the slope of the curves (figure 116).

Figure (see Caption) Figure 115. Thermal energy shown in the MIROVA graph of log radiative power at Nevado del Ruiz from 3 February 2020 through the end of the year indicates that higher levels of thermal energy lasted through April 2020; a quieter period from late May-early August was followed by low-level persistent anomalies through the end of the year. Courtesy of MIROVA.
Figure (see Caption) Figure 116. Changes in seismic frequency and energy at Nevado del Ruiz have been monitored by SGC for many years. Left: the cumulative number of daily VT, LP-VLP, TR, and HB seismic events, recorded between 1 January 2010 and 30 November 2020. The arrows highlight the days with the highest number of seismic events; the number and type of event is shown under the date. Right: The cumulative VT and HB seismic energy recorded between 1 January 2010 and 30 November 2020. The arrows highlight the days with the highest energy; the local magnitude of the event is shown below the date. SGC has adjusted the warning levels over time (bar across the bottom of each graph) according to changes in the slope of the curves. Courtesy of SGC (INFORME TÉCNICO – OPERATIVO DE LA ACTIVIDAD VOLCÁNICA, SEGMENTO VOLCÁNICO NORTE DE COLOMBIA – NOVIEMBRE DE 2020).

Activity during July-December 2020. Seismic energy increased during July compared to June 2020 with events localized around the Arenas crater. The depth of the seismicity varied from 0.3-7.8 km. Some of these signals were associated with small emissions of gas and ash, which were confirmed through webcams and by reports from officials of the Los Nevados National Natural Park (NNNP). The Washington VAAC reported a possible ash emission on 8 July that rose to 6.1 km altitude and drifted NW. On 21 July a webcam image showed an ash emission that rose to the same altitude and drifted W; it was seen in satellite imagery possibly extending 35 km from the summit but was difficult to confirm due to weather clouds. Short- to moderate-duration (less than 40 minutes) episodes of drumbeat seismicity were recorded on 5, 13, 17, and 21 July. SCG interprets this type of seismic activity as related to the growth of the Arenas crater lava dome. Primarily WNW drifting plumes of steam and SO2 were observed in the webcams daily. The gas was occasionally incandescent at night. The tallest plume of gas and ash reached 1,000 m above the crater rim on 30 July and was associated with a low-energy tremor pulse; it produced ashfall in parts of Manizales and nearby communities (figure 117).

Figure (see Caption) Figure 117. Images captured by a traditional camera (top) and a thermal camera (bottom) at Nevado del Ruiz showed a small ash emission in the early morning of 30 July 2020. Ashfall was reported in Manizales. The cameras are located 3.7 km W of the Arenas crater. Courtesy of SGC (Emisión de ceniza Volcan Nevado del Ruiz Julio 30 de 2020).

Seismicity increased in August 2020 with respect to July. Some of the LP and TR (tremor) seismicity was associated with small emissions of gas and ash, confirmed by web cameras, park personnel, and the Washington VAAC. The Washington VAAC received a report from the Bogota MWO of an ash emission on 1 August that rose to 6.1 km altitude and drifted NW; it was not visible in satellite imagery. Various episodes of short duration drumbeat seismicity were recorded during the month. The tallest steam and gas plume reached 1,800 m above the rim on 31 August. Despite the fact that in August the meteorological conditions made it difficult to monitor the surface activity of the volcano, three ash emissions were confirmed by SGC.

Seismicity decreased during September 2020 with respect to August. Some of the LP and TR (tremor) seismicity was associated with small emissions of gas and ash, confirmed by web cameras, park personnel and the Washington VAAC. The Washington VAAC reported an ash emission on 16 September that rose to 6.1 km altitude and drifted NW. A minor ash emission on 20 September drifted W from the summit at 5.8 km altitude. A possible emission on 23 September drifted NW at 6.1 km altitude for a brief period before dissipating. Two emissions were reported drifting WNW of the summit on 26 September at 5.8 and 5.5 km altitude. Continuous volcanic tremors were registered throughout September, with the higher energy activity during the second half of the month. One episode of drumbeat seismicity on 15 September lasted for 38 minutes and consisted of 25 very low energy earthquakes. Steam and gas plumes reached 1,800 m above the crater rim during 17-28 September (figure 118). Five emissions of ash were confirmed by the webcams and park officials during the month, in spite of difficult meteorological conditions; three of them occurred between 15 and 20 September.

Figure (see Caption) Figure 118. A dense plume of steam rose from Nevado del Ruiz in the morning of 17 September 2020. Courtesy of Gonzalo.

Seismicity increased during October with respect to September. A few of the LP and tremor seismic events were associated with small emissions of gas and ash, confirmed by web cameras, park personnel, and the Washington VAAC. The Washington VAAC issued advisories of possible ash emissions on 2, 6, 9, 11, 15, 17, 18, and 21 October. The plumes rose to 5.6-6.4 km altitude and drifted primarily W and NW. Steam plumes were visible most days of the month (figure 119). Only a few were visible in satellite data, but most were visible in the webcams. Several episodes of drumbeat seismicity were recorded on 13, 22-25, and 27 October, which were characterized by being of short duration and consisting of very low energy earthquakes. The tallest plume during the month rose about 2 km above the crater rim on 18 October. Ash emissions were recorded eight times during the month by SGC.

Figure (see Caption) Figure 119. A steam plume mixed with possible ash drifted SE from Nevado del Ruiz on 7 October 2020. Courtesy of vlucho666.

During November 2020, the number of seismic events decreased relative to October, but the amount of energy released increased. Some of the seismicity was associated with small emissions of gas and ash, confirmed by webcams around the volcano. The Washington VAAC reported ash emissions on 22 and 30 November; the 22 November event was faintly visible in satellite images and was also associated with an LP seismic event. They rose to 5.8-6.1 km altitude and drifted W. Various episodes of drumbeat seismicity registered during November were short- to moderate-duration, very low energy, and consisted of seismicity associated with rock fracturing (VT). Multiple steam plumes were visible from communities tens of kilometers away (figure 120).

Figure (see Caption) Figure 120. Multiple dense steam plumes were photographed from communities around Nevado del Ruiz during November 2020, including on 18 (top) and 20 (bottom) November. Top image courtesy of Jose Fdo Cuartas, bottom image courtesy of Efigas Oficial.

Seismic activity increased in December 2020 relative to November. It was characterized by continuous volcanic tremor, tremor pulses, long-period (LP) and very long-period (VLP) earthquakes. Some of these signals were associated with gas and ash emissions, one confirmed through the webcams. The Washington VAAC reported ash emissions on 5 and 7 December. The first rose to 5.8 km altitude and drifted NW. The second rose to 6.7 km altitude and drifted W. A single discrete cloud was observed 35 km W of the summit; it dissipated within six hours. Drumbeat seismic activity increased as well in December; the episode on 3 December was the most significant. Steam and gas emissions continued throughout the month; a plume of gas and ash reached 1,700 m above the summit on 20 December, and drifted NW.

Sentinel-2 satellite data showed at least one thermal anomaly inside the Arenas crater each month during August-December 2020, corroborating the seismic evidence that the dome continued to grow throughout the period (figure 121). Sulfur dioxide emissions were persistent, with many days every month recording DU values greater than two with the TROPOMI instrument on the Sentinel 5-P satellite (figure 122).

Figure (see Caption) Figure 121. Thermal anomalies at Nevado del Ruiz were recorded at least once each month during August-December 2020 suggesting continued growth of the dome within the Arenas crater at the summit. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 122. Sulfur dioxide emissions were persistent at Nevado del Ruiz during August-December 2020, with many days every month recording DU values greater than two with the TROPOMI instrument on the Sentinel 5-P satellite. Ecuador’s Sangay had even larger SO2 emissions throughout the period. Dates are at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Additional reports of activity during 2017. Activity appears to have continued during June-December 2017. Ash emissions were reported by the Bogota Meteorological Weather Office (MWO) on 13 May, and by SGC on 28 May. During June, some of the recorded seismic events were associated with minor emissions of ash; these were confirmed by webcams and by field reports from both the staff of SGC and the Los Nevados National Natural Park (PNNN). Ash emissions were confirmed in webcams by park officials on 3, 16, and 17 June. Gas emissions from the Arenas crater during July 2017 averaged 426 m above the crater rim, generally lower than during June. The emissions were mostly steam with small amounts of SO2. Emissions were similar during August, with most steam and gas plumes drifting NW. No ash emissions were reported during July or August.

SGC reported steam and gas plumes during September that rose as high as 1,650 m above the crater rim and drifted NW. On 21 September the Washington VAAC received a report of an ash plume that rose to 6.4 km altitude and drifted NNW, although it was not visible in satellite imagery. Another ash emission rising to 6.7 km altitude was reported on 7 October; weather clouds prevented satellite observation. An episode of drumbeat seismicity was recorded on 9 October, the first since April 2017. While SGC did not explicitly mention ash emissions during October, several of the webcam images included in their report show plumes described as containing ash and gas (figure 123).

Figure (see Caption) Figure 123. Plumes of steam, gas, and ash rose from Arenas crater at Nevado del Ruiz most days during October 2017. Photographs were captured by the webcams installed in the Azufrado Canyon and Cerro Gualí areas. Courtesy of SGC (INFORME DE ACTIVIDAD VOLCANICA SEGMENTO NORTE DE COLOMBIA, OCTUBRE DE 2017).

The Washington VAAC received a report from the Bogota MWO of an ash emission that rose to 6.1 km altitude and drifted NE on 8 November 2017. A faint plume was visible in satellite imagery extending 15 km NE from the summit. SGC reported that plumes rose as high as 2,150 m above the rim of Arenas crater during November. The plumes were mostly steam, with minor amounts of SO2. A diffuse plume of ash was photographed in a webcam on 24 November. SGC did not report any ash emissions during December 2017, but the Washington VAAC reported “a thin veil of volcanic ash and gases” visible in satellite imagery and webcams on 18 December that dissipated within a few hours. In addition to the multiple reports of ash emissions between May and December 2017, Sentinel-2 thermal satellite imagery recorded at least one image each month during June-December showing a thermal anomaly at the summit consistent with the slowly growing dome first reported in August 2015 (figure 124).

Figure (see Caption) Figure 124. Thermal anomalies from the growing dome inside Arenas crater at the summit of Nevado del Ruiz appeared at least once each month from June-December 2017. A strong anomaly was slightly obscured by clouds on 3 June (top left). On 2 August, a steam plume obscured most of the crater, but a small thermal anomaly is visible in its SE quadrant (top right). Strong anomalies on 30 November and 20 December (bottom) have a ring-like form suggestive of a growing dome. Atmospheric penetration rendering (bands 12, 11, 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Gonzalo (URL: https://twitter.com/chaloc22/status/1306581929651843076); Jose Fdo Cuartas (URL: https://twitter.com/JoseFCuartas/status/1329212975434096640); Vlucho666 (URL: https://twitter.com/vlucho666/status/1313791959954268161); Efigas Oficial (URL: https://twitter.com/efigas_oficial/status/1329780287920873472).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 16, Number 09 (September 1991)

Managing Editor: Lindsay McClelland

Aira (Japan)

Continued explosions but decreased ashfall

Arenal (Costa Rica)

Continuous gas and lava emission; occasional explosions eject large blocks

Barren Island (India)

Eruption plume on satellite image

Etna (Italy)

Summit-area Strombolian activity apparently ends; continued degassing

Fukutoku-Oka-no-Ba (Japan)

Water discoloration over submarine vent

Galeras (Colombia)

Lava extrusion follows increased tephra emission, seismicity, and deformation

Hudson, Cerro (Chile)

New mudflow and gas emission; details of major mid-August tephra fall

Irazu (Costa Rica)

Continued fumarolic activity and seismicity; crater lake rises

Kilauea (United States)

Numerous surface flows break out from tubes, then lava stops entering ocean; lava lake active

Langila (Papua New Guinea)

Frequent tephra emission; tremor declines

Marchena (Ecuador)

Lava from circumferential fissure flows into caldera and ocean

Nyamulagira (DR Congo)

Lava flows and plumes reported

Pacaya (Guatemala)

Vigorous explosions and lava fountaining

Pinatubo (Philippines)

Small secondary explosions from pyroclastic-flow deposits; fewer mudflows with less rain

Poas (Costa Rica)

Small explosions and gas emission from crater lake; continued seismicity

Ruiz, Nevado del (Colombia)

Seismicity and SO2 flux at low levels

Stromboli (Italy)

Continued tephra ejection from several vents

Ulawun (Papua New Guinea)

Increased seismicity but surface activity limited to gas emission

Unzendake (Japan)

Dome collapse triggers large pyroclastic flow, then new dome extruded

Whakaari/White Island (New Zealand)

Continued explosions from May vent



Aira (Japan) — September 1991 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Continued explosions but decreased ashfall

Explosive activity continued . . . with September's 21 explosions . . . . The month's highest ash plume rose 2,000 m . . . and a total of 108 g/m2 of ash . . . was deposited [at KLMO]. No swarms of volcanic earthquakes were recorded. Similar activity continued through early October, with 13 explosions occurring by the 13th.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA.


Arenal (Costa Rica) — September 1991 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Continuous gas and lava emission; occasional explosions eject large blocks

In September, continuous gas and lava emission were accompanied by sporadic block and ash ejections from Crater C (300 m W of the summit). Blocks landed as much as 1.2 km away (at 850 m elevation), and impact craters on the W flank reached 50 cm in diameter. Explosion columns rose to 1 km height and were carried by wind predominantly to the NW, W, and SW. Fumarolic activity was visible in the summit crater. Vegetation on the NE, E, and SE flanks continued to be affected by acid rain. Resulting erosion problems included small debris flows, especially on the NE flank (Quebrada Guillermina), E flank (Quebrada Calle de Arenas), and SW flank (Río Agua Caliente).

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: J. Barquero, E. Fernández, V. Barboza, and J. Brenes, OVSICORI.


Barren Island (India) — September 1991 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Eruption plume on satellite image

The eruption was apparently continuing on 17 October, when a NOAA 11 satellite image (at 1354) showed a plume extending ~150 km WNW from a point source at the volcano.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: W. Gould, NOAA.


Etna (Italy) — September 1991 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Summit-area Strombolian activity apparently ends; continued degassing

Strombolian activity in Northeast Crater had decreased by mid-July, and was no longer apparent on 23 August. Strombolian activity was observed in Southeast Crater in mid-July. All four summit craters were in a state of almost continuous mild degassing through August.

The following is from a report on activity 10-14 July, by J.P. Kloster in LAVE Bulletin no. 33, p. 4.

A network of curvilinear fissures, up to 2 m wide, covered the N, E, and SE parts of Southeast Crater. In the NW part of the crater, a vent 15 m in diameter emitted puffs of gas roughly every 3 seconds. Every half hour, a more violent explosion ejected lava fragments to 200 m above the vent, covering the walls of the crater and occasionally sending projectiles outside of the crater. The largest projectiles were estimated at around 5 kg, and were fluid enough to deform on impact. Two vents emitted slightly incandescent plumes at night. Each explosion was preceded by ~12 seconds of increased incandescence at the non-exploding vent, and corresponding intensification of glow at the exploding vent. On one occasion, a roughly 100-kg block of lava was ejected to 50 m height.

In the S part of Northeast Crater, a long-persistent vent, 5 m in diameter, emitted puffs of gas. At night, the emission was incandescent to 30 m height, with small lava fragments ejected during the most violent explosions. No projectiles fell beyond the crater rim.

About 70 m below Bocca Nuova crater's S rim, gas was strongly emitted from an E-W fissure, several meters wide and 12 m long, that probably formed in October 1989 (14:10). Explosions were heard emanating from the fissure area, roughly every 4-5 minutes. Night glow was visible at the fissure and at the vents of two coalesced scoria cones in the S part of the crater floor.

Very little activity occurred in La Voragine crater. One 20-m-diameter vent, on a small cinder cone, degassed quietly to several meters, and had night glow. Snow on the cone was largely covered by scoriae, suggesting recent activity.

No Strombolian activity or lava emission were observed during a 23 August visit to the summit by J. Dehn and B. Behncke. The vent in Northeast Crater had strong gas emission, accompanied by loud roaring noises, but no solid material was ejected. A dense continuous gas column was rising from Southeast Crater.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: J. Kloster, LAVE; J. Dehn and B. Behncke, GEOMAR, Kiel.


Fukutoku-Oka-no-Ba (Japan) — September 1991 Citation iconCite this Report

Fukutoku-Oka-no-Ba

Japan

24.285°N, 141.481°E; summit elev. -29 m

All times are local (unless otherwise noted)


Water discoloration over submarine vent

A greenish water discoloration was observed during a 30 September overflight by the JMSA. No discoloration was present during a similar overflight on 21 August.

Geologic Background. Fukutoku-Oka-no-ba is a submarine volcano located 5 km NE of the pyramidal island of Minami-Ioto. Water discoloration is frequently observed from the volcano, and several ephemeral islands have formed in the 20th century. The first of these formed Shin-Ioto ("New Sulfur Island") in 1904, and the most recent island was formed in 1986. The volcano is part of an elongated edifice with two major topographic highs trending NNW-SSE, and is a trachyandesitic volcano geochemically similar to Ioto.

Information Contacts: JMA.


Galeras (Colombia) — September 1991 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Lava extrusion follows increased tephra emission, seismicity, and deformation

Increased tephra emission, seismicity, and deformation culminated in the extrusion of a summit-crater lava dome in mid-October.

Activity continued to increase in September, with the highest number of events, the greatest released energy, and largest reduced displacement of long-period earthquakes since the start of monitoring in February 1989 (figure 44), surpassing the previous highs recorded in August. Tremor episodes and long-period events were associated with explosions, continuous ash emission, and occasional block ejections to 200 m from the vent. The SO2 flux was relatively low, <=650 t/d, except on 20-25 September when values of 960-1,045 t/d were recorded. Low SO2 fluxes were also recorded during August (<=370 t/d). The electronic tiltmeter [at Crater Station] became saturated, after recording 231 µrad of inflation during the first 2 weeks of August. Two km E of the crater, the Peladitos electronic tiltmeter showed 46.2 µrad of inflation at 242° azimuth (figure 45), compared to 3.7 µrad at 183° azimuth during the first 2 weeks of August. A change in the inclination of the radial component was recorded 9-13 September.

Figure (see Caption) Figure 44. Daily number of earthquakes at Galeras, February 1989-September 1991. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 45. Radial component of deformation measured 2 km E of the crater ("Peladitos" electronic tiltmeter) at Galeras, September 1991. Courtesy of INGEOMINAS.

Fieldwork in mid-October revealed a lava dome in the main crater [but see 16:10]. [The dome was 30 m thick and 80-100 m in diameter by the 17th]. Incandescence was visible in cracks on the dome's surface, but bad weather prevented detailed observation.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS-OVP; S. Williams and M. Calvache, Arizona State Univ.


Cerro Hudson (Chile) — September 1991 Citation iconCite this Report

Cerro Hudson

Chile

45.9°S, 72.97°W; summit elev. 1905 m

All times are local (unless otherwise noted)


New mudflow and gas emission; details of major mid-August tephra fall

In the first new activity since the paroxysmal event of 12-15 August, a small eruption occurred several days before 6 October, emitting ash that was carried 8 km SE. The probable source was the new vent in the SW part of the caldera, which showed numerous fumaroles, especially along the S wall, during a helicopter overflight on 14 September. At about 2200 on 11 October, a mudflow, estimated to be 2-3 times larger than the 8 August mudflow (16:7), traveled 20 km NW down the Huemules valley, and SSW down the Cupquelán valley to reach the coast at Bahía Erasmo (45 km from the volcano). During the evening a brief ashfall was reported 60 km SSE (at Bahía Murta), and a strong degassing event occurred within the caldera. Sulfurous fumes were very intense in the Huemules valley, where some inhabitants became sick, vomiting and losing consciousness. On 12 October, a sulfur odor was detected in Cochrane (150 km S) and at Coyhaique (75 km NE), but it had disappeared by 13 October. Several small earthquake swarms were recorded between 0400 and 1130 on 12 October.

A 16 October helicopter overflight of the mudflow deposits showed them to include ash, snow (ice), and mud; five dead animals were observed together with some others trapped in the mud. Bad weather conditions hindered direct observation of the caldera in October, and as of the 21st it was not certain whether the mudflow was caused by fumarolic activity (which apparently triggered a mudflow in 1973) or new lava emission (as in 1971 and on 8 August 1991). Seismicity fluctuated below ~ 10 recorded earthquakes/day through mid-October (figure 6), typical of levels since a rapid decrease following the paroxysmal eruption 12-15 August.

Figure (see Caption) Figure 6. Daily number of earthquakes at Hudson, 17 August-17 October 1991. No data exist for 1-11 September or 1-10 October. A swarm recorded between 0400 and 1130 on 12 October is not included. Data for 11 October are for 1200-midnight; data for 17 October are for midnight-1020. August-September data are from Héctor Massone; October data are from Mario Villouta. All data were collected at a seismic station 50 km NE of the volcano near Lago Elizalde.

The following, from the Geological Team of the Santa Cruz Volcanic Emergency Commission, describes the impact of the Hudson eruption in Argentina.

The eruption's first effect in Argentina was reported on 9 August at 1600, when an Aerolineas Argentinas aircraft flew through a dense SO2-rich cloud at ~ 10.5 km altitude, near 40°S, 69°W. NOAA 10 and 11 satellite images of the eruption's basaltic phase on 8-9 August showed a narrow 550-km-long plume extending NE across the central area of Chubut Province (Argentina). The 12-15 August paroxysmal trachyandesitic eruptive phase produced a dense plume of gas and ash that was transported ESE by the jet stream at nearly 200 km/hour, at ~ 8 km altitude near the caldera and rising progressively to more than 12 km at the Chile-Argentina border. This dense, elongate plume traveled in the lower stratosphere (12-16 km) without great dispersion, spanning a horizontal angle of only 15° during 12-15 August. As a consequence, tephra fall was concentrated in a narrow fan-shaped sector of Patagonia, extending to Puerto Deseado (580 km ESE) and San Julián (550 km SE) on the Atlantic coast. By the end of the eruption, 100,000 km2 of Santa Cruz Province, Argentina, had been covered by an ash blanket 0.1-10 cm thick, and a 6.5-km-thick stratus cloud of suspended particles remained.

Deposits. On 16 August, shortly after tephra fall had effectively ceased, a strong wind began to blow (surface winds of up to 110 km/hour are common in Patagonia), lasting for a week. When the winds stopped, four multidisciplinary groups of the Santa Cruz Volcanic Emergency Commission were able to enter the affected area, employing specially dust-protected trucks. A survey was performed between 25 August and 1 September along access roads; the main technical problem in making isopach and volumetric estimations was correcting for remobilization of the primary tephra-fall deposits by the violent winds.

Sampling was performed, on individual layers or on the whole deposit, with an attempt to avoid remobilized materials. Isopach curves differ from the usual pattern, in which thickness rapidly decreases with distance from the vent. Instead, some maxima were found 500 km from the volcano, close to the Atlantic coast. This is probably a consequence of a special air-circulation condition: low-density pumice fragments transported by a powerful jet stream. In Santa Cruz Province, ash deposits originally ranged from 0.1 to 11 cm thick, but accumulations up to 150 cm thick were observed on the protected, downwind sides of obstacles in the zones affected by remobilization. The volume of the accumulated ash deposits was estimated at 2.8 km3, equivalent to ~ 2.3 x 1012 kg of ash deposited over a 100,000 km2 area.

Nature of the materials. Investigation of the internal structure of the deposits revealed strong grading with a sharp transition between sand-sized and silt-sized layers. Bimodality is also reflected in the grain-size distribution, with one mode for sand and one mode for silt, and a remarkably low content of very fine sand. The layers indicated at least 5 strong pulses of eruptive activity.

The proportion of fine material clearly increases with distance to the eruptive center. Following this trend, the maximum pumice-fragment size diminished from around 3 mm near Lago Buenos Aires (a 110-km lake, 65 km from the volcano at its closest point) to ~ 0.3 mm along the Atlantic coast.

Density measured on 39 pumice samples ranged from 0.61 to 1.05 g/cm3. Coarse floating pumice, occasionally forming rafts, was observed in Lago Buenos Aires.

Mineralogical composition was determined for the very fine sand fraction (0.062-0.125 mm), which consists of vitric particles (87%) and crystals (13%) with rare lithics. The vitric particles are composed of pumice (~70%) and cuspate to platy shards (30%). Most pumice particles have a fibrous texture with tubular vesicles of subparallel orientation and longitude/diameter ratios larger than 10/1. Crystals are fresh, euhedral, commonly broken, and often have glass rinds. The main components are feldspar, olivine, ortho- and clinopyroxene, and magnetite. Biotite, tridymite and unidentified iron/manganese oxides are less abundant.

Regional impact. The consequences of the eruption on Argentine territory, together with the difficult meteorological conditions that usually affect this region, produced a serious and persistent situation. The tephra fall hindered transportation and caused the collapse of some house roofs due to the weight of the ash accumulations. Ashfall and/or the later remobilization by winds polluted the atmosphere, causing respiratory ailments, damage by abrasion to engines and mechanical devices, and other problems. Low visibility provoked numerous accidents and aviation inconveniences. Problems persisted in mid-October.

The eruption has caused many difficulties for livestock (principally sheep and cattle) and wildlife, including: thirst, because the great water absorption capacity of the fine pumice particles dried every source of water in this already desert area; hunger, because the tephra deposit covered the grass, preventing ingestion or obliging the animals to swallow a large proportion of ash; blindness, due to the abrasive action of the glass shards and minerals, continuously blown by the wind, on the cornea; and immobilization due to increase in weight by accumulation of ash into the wool fleece, impeding movement. As a consequence, 50% of the sheep and cattle had died within 30 days of the end of the Hudson eruption. [see also 16:10]

Vegetation in this desert region (<150 mm/year precipitation) was initially covered by a thin layer of ash that retained moisture. However, the strong winds removed this protective cover, damaging pastures by the impact of the particles and by completely burying them under dune formations.

Other phenomena related to the Hudson eruption were:

Earthquakes. In Bajo Caracoles, 200 km ESE of Hudson, shocks of medium intensity destroyed some adobe buildings. People from these rural areas reported loud noises and ground vibrations.

Acid rain. The odor of sulfurous gas was noticeable everywhere in the area affected by ashfalls, but acid rain was only reported in Gobernador Gregores, 360 km ESE of the volcano, where H2SO4 produced light face and hand burns, and damaged roof paint.

Atmospheric contamination. After the tephra fall stopped (August 15), remobilization of fine ash occurred each time the W wind blew at speeds higher than 35 km/hour, causing the formation of huge dust clouds. The population was warned to employ protective dust masks to prevent respiration of the fine glass shards in these clouds (<5 mm, in average concentrations of 300 p/cm3 with maximum of 1,500 p/cm3). This last phenomenon has had the largest impact on the rural and urban population, not counting the economic losses suffered.

Geologic Background. The ice-filled, 10-km-wide caldera of the remote Cerro Hudson volcano was not recognized until its first 20th-century eruption in 1971. It is the southernmost volcano in the Chilean Andes related to subduction of the Nazca plate beneath the South American plate. The massive volcano covers an area of 300 km2. The compound caldera is drained through a breach on its NW rim, which has been the source of mudflows down the Río de Los Huemeles. Two cinder cones occur N of the volcano and others occupy the SW and SE flanks. This volcano has been the source of several major Holocene explosive eruptions. An eruption about 6700 years ago was one of the largest known in the southern Andes during the Holocene; another eruption about 3600 years ago also produced more than 10 km3 of tephra. An eruption in 1991 was Chile's second largest of the 20th century and formed a new 800-m-wide crater in the SW portion of the caldera.

Information Contacts: H. Corbella, R. Scasso, P. Rial, M. Palacios, M. Lucero, P. Tiberi, and D. Perez, Geological Team of the Santa Cruz Volcanic Emergency Commission, Argentina; J. Naranjo, SERNAGEOMIN ; M. Villouta, Univ de la Frontera; H. Moreno, Univ de Chile; H. Massone, Univ de Chile; G. Villaroes Pinilla, ONEMI, Santiago; R. Osorio Araneda, Coyhaique, Chile; N. Banks, USGS.


Irazu (Costa Rica) — September 1991 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


Continued fumarolic activity and seismicity; crater lake rises

Crater fumarolic activity continued in September, with the most intense emissions in the N and NW sections, where distinct gas vents were visible. Gas temperatures were 90°C and condensates had a pH of 3.5. One fumarole produced a roaring sound audible at the summit rim overlook. The level of the turquoise-green crater lake continued to rise; numerous fumaroles were drowned but continued emitting subaqueously. The average lake temperature was 37°C (compared to 35°C in July), with a temperature of 90°C measured near active fumaroles in the N part of the lake. Weaker fumarolic activity occurred in the SE, E, and NE parts of the lake, and on the crater's E slope. In September, 74 earthquakes (M 1-2) were recorded, with depths <8 km.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: J. Barquero, E. Fernández, V. Barboza, and J. Brenes, OVSICORI.


Kilauea (United States) — September 1991 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Numerous surface flows break out from tubes, then lava stops entering ocean; lava lake active

Frequent breakouts . . . fed numerous surface lava flows between ~450 m (1,500 ft) altitude and the coast during September. Some lobes advanced rapidly downslope, but upon reaching the more level area near the coast they generally inflated, oozed small viscous breakouts, then stagnated. New flows covered previously untouched portions of Royal Gardens subdivision, and started a 1-day brush fire in a nearby section of Hawaii Volcanoes National Park.

The numerous breakouts and surface flows apparently reduced lava supply to the ocean entries, since all were inactive by late September. Lava had ceased to reach the sea by 3 September at the eastern of the two main ocean entries (Paradise). Two kilometers to the SW (at Poupou), lava had been flowing into the ocean at two points. A 1-2-m tumulus developed atop Poupou's E lava bench on 4 September, and extruded small, very viscous flows through cracks before all activity stopped at the E entry point 2 days later. Lava continued to pour into the ocean at the W Poupou entry point for the next 2 weeks. On 19 September, a very viscous pahoehoe flow broke out from its main feeder tube <500 m inland, in an area of inflated and fractured ground, remaining active for a few days before stagnating. Lava stopped flowing into the sea on 20 September, when small collapses of the bench front exposed hot rock to seawater, creating short-lived steam plumes. Entry of lava into the sea had not resumed as of early October, but surface flows from breakouts between 30 and 300 m elevation spread over a broad area.

Little surface activity was evident at Kupaianaha vent, source of the lava for the main tube system, although a skylight in the neck of its frozen lava pond was open on 7 September, and heavy fuming and a glowing crack were visible on the uprift edge of the pond on the 17th. Three km uprift, an 80 x 50 m lava pond covered ~15% of the floor of Pu`u `O`o crater during most of September, and frequent overflows sent lava across the crater bottom, ~36 m below the 1986 spillway. During 1.5 hours of observations from the crater rim on 17 September, vigorous upwelling of lava occurred on the downrift side of the pond while continuous spattering on the pond's N side added to its 2-3-m-high spatter rampart. Two episodes of strong degassing were characterized by vigorous upwelling and spattering followed by roughly 2-3 m of rapid drainback. Pond level was high and the entire crater floor was typically covered by overflows before drainback episodes. Seismic instruments registered tremor during the degassing episodes, which were sometimes precipitated by collapses from the crater walls. On 28 September, lava in the pond withdrew to >15 m below the crater floor. After at least 5 hours of inactivity, a small vent opened on the crater floor and a cascade of lava poured into the drained pond, filling it to within a meter of the crater floor by the next day. The vent remained open and intermittently active, sending lava across the crater floor and into the pond. The vent continued to feed periodic overflows the following week, and the crater floor was covered with lava during observations on 4 October.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: T. Mattox, HVO.


Langila (Papua New Guinea) — September 1991 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Frequent tephra emission; tremor declines

"Moderate to strong activity persisted at Langila throughout September. Ash-laden vapor emissions were released almost continuously from Crater 2, accompanied by weak to loud rumbling sounds. A weak glow was visible on most nights, except 21-25 September. Activity at Crater 3 consisted of occasional Vulcanian explosions, at rates of 30-80/day. The activity was stronger 23-26 September and a steady night glow was visible 25-26 September.

"The amplitude of discontinuous tremor declined markedly in late August, while cumulative daily tremor duration dropped to <=100 minutes from levels that had been as high as 200 minutes/day since mid-June."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: P. de Saint-Ours and C. McKee, RVO.


Marchena (Ecuador) — September 1991 Citation iconCite this Report

Marchena

Ecuador

0.33°N, 90.47°W; summit elev. 343 m

All times are local (unless otherwise noted)


Lava from circumferential fissure flows into caldera and ocean

The eruption was first observed on 25 September at about 2100 from a ship ~ 75 km S of Marchena [but see 16:10], and glow remained visible through the night. A large black and white eruption cloud was reported the next day, but no glow was evident during cloudy weather that night from a nearby island. During an overflight around midday on 27 September, a dark plume was visible above low weather clouds.

When David Day and others arrived at the island's W coast on 28 September at about 2230, lava was flowing into the sea along a front ~1.5 km wide. Incandescence was evident at about 10 sites over a roughly 3 x 3 km area, but lava fountaining had apparently stopped. The next day, small quantities of Pele's hair were found on the beach near the fresh flows, along with substantial numbers of dead fish and other marine organisms. Scuba divers found glassy breccia near the shore, a zone of aa rubble extending seaward for several hundred meters, and, with gradual increase in slope from 25 to 35 m depth, a small lava flow that included pillow structures. A 30 September summit climb revealed new lava covering much of the caldera's SW floor, suggesting that a circumferential fissure several kilometers long had been active on the W to SW rim, supplying lava to both the caldera floor and the outer flank.

Geologic Background. The low shield volcano forming Marchena Island contains one of the largest calderas of the Galápagos Islands. The 6 x 7 km caldera and its outer flanks have been largely buried by a cluster of pyroclastic cones and associated lava flows. Its first historical eruption occurred in 1991. Other young lava flows, some of which may be only a few thousand, or even a few hundred years old, filled the caldera and flowed down its outer forested flanks, in some cases to the sea.

Information Contacts: D. Day, Isla Santa Cruz.


Nyamulagira (DR Congo) — September 1991 Citation iconCite this Report

Nyamulagira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Lava flows and plumes reported

An eruption . . . apparently began on 20 or 22 September . . . . On 24 September, the Nimbus-7 satellite's TOMS showed an SO2 enhancement, just above detection limits, centered immediately over the volcano. A small amount of SO2 may have been present the previous day, but increased SO2 was not evident 20-22 or 25 September. No additional reports of activity were received until the crew of a British Airways flight observed an eruption cloud rising to ~7.5 km altitude on 15 October at 0555. In a report received 18 October, observers in Goma, Zaire (roughly 30 km S of the summit) described lava flows to the NW and SE [but see 17:1] and an eruption cloud rising to ~3.5 km from a site at 1.28°S, 29.22°E (on the NNE flank) [see slightly revised coordinates in 17:1]. South African Airways reported a plume to ~7.5 km altitude, probably on 20 October.

Geologic Background. Africa's most active volcano, Nyamulagira (also known as Nyamuragira), is a massive high-potassium basaltic shield about 25 km N of Lake Kivu and 15 km NE of the steep-sided Nyiragongo volcano. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from the numerous flank fissures and cinder cones. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Recent lava flows extend down the flanks more than 30 km from the summit as far as Lake Kivu; extensive lava flows from this volcano have covered 1,500 km2 of the western branch of the East African Rift.

Information Contacts: ICAO; S. Doiron, GSFC; H-L. Hody, GEOVAR, Kigali, Rwanda.


Pacaya (Guatemala) — September 1991 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Vigorous explosions and lava fountaining

A strong explosive phase occurred on 22 August, after 3 weeks of relative quiet that followed strong explosive activity from 6 June to 1 August. Volcanologists visiting the summit observed an increase in fumarolic activity beginning at 1400, and the start of small explosions 20 minutes later. The frequency and sound of the explosions increased, and by 1425, lapilli and blocks were rising above the rim of the crater, before falling back into the interior. Between 1,500 and 1630 the explosions increased in size, feeding a continuous lava fountain 100-200 m high. The eruption entered its most vigorous period at 1700, with a black plume 1,000 m high, and explosions heard to 1 km from the crater. Activity declined 1710-1730, as lava fountaining was replaced by strong black plume emission that gradually ceased.

The summit was visited again on 20 September, two days after strong explosions were observed from Guatemala City (45 km N). Fresh bombs, flattened on impact, with crystal-rich interiors, covered the E part of MacKenney Cone. The explosions on 18 September coincided with the last in a 24-hour series of earthquakes that killed at least 25 people. The largest shock [M 6.1 at 5 km depth] was centered about [30 km NNW] of the volcano.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Franck Pothé, Sallanches, France; Sección de Vulcanología, INSIVUMEH; USGS NEIC.


Pinatubo (Philippines) — September 1991 Citation iconCite this Report

Pinatubo

Philippines

15.13°N, 120.35°E; summit elev. 1486 m

All times are local (unless otherwise noted)


Small secondary explosions from pyroclastic-flow deposits; fewer mudflows with less rain

Although no explosions have occurred in the caldera since 2 September (16:8), small secondary explosions continued through early October, at pyroclastic-flow deposits from the paroxysmal June eruption. Seismicity was at low levels, and a decrease in the number of mudflows reflected decreased rainfall.

16-22 September. Several secondary explosions were observed at pyroclastic-flow deposits in the Sacobia valley (NE flank). Ash was periodically reported falling at Clark Air Base (20 km E) and Angeles (25 km E), with 5 mm deposited on the morning of 18 September. No steam or ash emissions were recorded from the summit caldera.

Clusters of high-frequency earthquakes persisted near the caldera (figure 22), but noticeably fewer events have been recorded since June, especially at shallow depths (figure 23). A slight increase in seismicity was associated with a M 4.5 earthquake at 0151 on 17 September. The shock was felt at intensity V (modified Rossi-Forel scale) at Clark Air Base, with aftershocks of intensities I-IV. Occasional low-frequency, small-amplitude harmonic tremor of uncertain origin was recorded 21-22 September. Explosion-type low-frequency signals were periodically observed during and after heavy rainfall.

Figure (see Caption) Figure 22. Epicenters of 619 earthquakes recorded near Pinatubo, 27 May-22 September 1991; 515 had magnitudes less than 1, 104 were of M 1-2. Contours are diagrammatic. Courtesy of PHIVOLCS.
Figure (see Caption) Figure 23. Depths of 619 earthquakes at Pinatubo, 27 June-22 September 1991. Courtesy of PHIVOLCS.

A lake that had formed in the Mapanuepe River (SW flank), following damming by pyroclastic-flow deposits, continued to grow until heavy rain caused it to overflow on 21 September. The dam was quickly incised and partially breached, leading to flooding in San Narciso (~35 km SW) on 22 September.

23-29 September. No ashfall occurred at Clark Air Base, although several secondary explosions were observed. The number of high-frequency earthquakes (M < 3.6) decreased slightly from the previous week. Three shocks were felt (intensity I-II) on 28 September. Minimal rains occurred during the week, and no mudflows were detected. The caldera lake was turquoise-blue and steamed along its S wall during a 23 September helicopter overflight. Fresh landslides were noted on the steep-sided caldera walls.

30 September-6 October. Secondary explosions produced plumes to 4,500 m high, and ash fell on Angeles 3 October. SO2 flux from the caldera, measured by COSPEC, was only 18 t/d. Geologists noted that this flux represented SO2 rising from the caldera lake, and subaerial fumaroles; an unknown quantity of SO2 from fumaroles below the lake may be going into solution. The lake had a temperature of 40°C and a pH of 6.0 on 8 October.

Investigations of hydrologic changes caused by the thick pyroclastic-flow deposits and voluminous debris-flow deposits were not yet able to resolve whether the Abacan River (E flank) would be captured by the Sacobia River. Numerous catchment basins and dams were under construction in an attempt to constrain the Abacan River.

High-frequency seismicity decreased slightly, with a daily average of 63 recorded earthquakes, compared to 71 the preceding week. Events were centered at 2-10 km depths, shallower than the preceding week (5-15 km depths), and were distinctly clustered E of the caldera. Most of the earthquakes had magnitudes less than 2, although some reached M 3, and many were felt at Clark Air Base. Two mudflows were detected during the week.

Casualties and damages. The United Nations Development Programme reported on 15 October that the human death toll had reached 722. Of these, 358 deaths were attributed to disease, 281 to the initial eruption, and 83 to mudflows. An additional 184 people were injured, and 23 reported missing. More than 108,000 houses were partially or totally damaged, more than 100,000 people were still being fed at 143 evacuation centers, and an additional 70,000 were being fed near affected villages.

Geologic Background. Prior to 1991 Pinatubo volcano was a relatively unknown, heavily forested lava dome complex located 100 km NW of Manila with no records of historical eruptions. The 1991 eruption, one of the world's largest of the 20th century, ejected massive amounts of tephra and produced voluminous pyroclastic flows, forming a small, 2.5-km-wide summit caldera whose floor is now covered by a lake. Caldera formation lowered the height of the summit by more than 300 m. Although the eruption caused hundreds of fatalities and major damage with severe social and economic impact, successful monitoring efforts greatly reduced the number of fatalities. Widespread lahars that redistributed products of the 1991 eruption have continued to cause severe disruption. Previous major eruptive periods, interrupted by lengthy quiescent periods, have produced pyroclastic flows and lahars that were even more extensive than in 1991.

Information Contacts: R. Punongbayan, PHIVOLCS; J. Tomblin, UN Disaster Relief Organization, Switzerland.


Poas (Costa Rica) — September 1991 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Small explosions and gas emission from crater lake; continued seismicity

The level of crater lake water, bright yellow and 71°C, decreased in September, despite continuation of the rainy season. Phreatic explosions in the central part of the lake ejected water to a height of 2 m. Steam and gas rose nearly continuously, creating small plumes that were carried W and SW by wind. A strong sulfur smell and respiratory difficulties were reported by park rangers on 22-23 September. The gas plume rose vertically during calm conditions the morning of 23 September, and was visible >10 km away from the Central Valley.

A daily average of 262 low-frequency (<2.5 Hz) earthquakes was recorded in September, with the highest levels of activity on the 21st-22nd. Low- and medium-frequency tremor episodes were recorded, with maximum durations of 2 hours.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: J. Barquero, E. Fernández, V. Barboza, and J. Brenes, OVSICORI.


Nevado del Ruiz (Colombia) — September 1991 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Seismicity and SO2 flux at low levels

The number of seismic events and the amount of released energy were both at low levels in September. Only a few short pulses of very low-energy tremor were recorded. Deformation showed no significant changes. The monthly average SO2 flux was low, declining to ~925 t/d from 1,135 t/d in August.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: C. Carvajal, INGEOMINAS, Manizales.


Stromboli (Italy) — September 1991 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Continued tephra ejection from several vents

Activity was moderate from August through mid-September, with occasional explosions from craters C1 and C3 (about 1-4 hourly/crater). During 1 August to 25 September, the average number of explosion shocks/hour gradually increased to the "normal" value of 6; (figure 20). Relatively low levels of activity lasted from mid-July to mid-August. The number of instrument-saturating events was low and concentrated on a few days during the second week in August, while average tremor amplitude remained relatively stable until it declined in late August (figure 21).

Figure (see Caption) Figure 20. Average number of explosion shocks/hour at Stromboli, 1 August-25 September 1991. The mean value for the period is shown by the dotted line. Courtesy of M. Riuscetti.
Figure (see Caption) Figure 21. Number of seismometer-saturating events/day (lower curve) and average daily tremor amplitude in volts (upper curve) at Stromboli, 1 August-25 September 1991. Courtesy of M. Riuscetti.

The following report from Jonathan Dehn and Boris Behncke, on 28-29 August activity, supplements information in 16:8. "During a visit to Stromboli's summit and craters on 28-29 August, the volcano, much less active than during visits in March-April 1990 and November 1990, was in a state similar to that observed in mid-September 1989. Eruptions came from only two vents, one at the NE end of C1 (figure 22), and the other in the center of C3. The former erupted frequently during the evening of 28 August producing fountains up to 150 m high. Such eruptions lasted at least 10 seconds and began without any noticeable premonitory signs. Bombs and spatter fell over much of the C1 area and into C2. After midnight on 29 August, explosions from this vent became much less frequent, averaging 1-2/hour. The other active vent produced ~2-4 explosions/hour but much lower fountains, and ejecta mostly fell back into C3. These explosions were often preceded by an increasingly bright glow from the interior of C3.

Figure (see Caption) Figure 22. Sketch of Stromboli's crater terrace as seen from Pizzo sopra la Fossa, 28-29 August 1991. Features (such as cone at vent 3 in C1) are not to scale. Courtesy of J. Dehn and B. Behncke.

"During the night, four glowing but not erupting vents (1 and 2 in C2, and 1 and 2 in C3) could be observed, at the same positions as in late 1990. Two more vents (2 and 3) were visible within or near C1. Vent 2 appeared to be a larger pit created by collapse of the former vents 1 and 2. A symmetrical cone ~10 m high had been built around C1's vent 3, feeding a dense gas plume.

"C3 could be approached around daybreak (0530-0630) on 29 August, and observations of the crater's interior and its eruptive activity were made during a 45-minute period. The SW half of the crater was occupied by a pit ~50 m deep. This pit contained at least three active vents, of which two were open and displaying continuous glow and gas emission. Minor spattering from these vents occurred at times, often heralding eruptions from a third vent, in the center of the pit's floor, that was buried under a cover of bombs and scoriae. Eruptions from this vent fragmented the old overlying material, forming diffuse ash plumes followed by the ejection of fresh glowing spatter. All of the ejecta from C3 fell back into the pit and onto its walls, and slumping of material from the pit's walls commonly covered the vent within seconds after each eruption.

"Vents 1 and 2 (in C3) were also observed at close range. They contained small active lava ponds, or molten sulfur, and displayed pulsating gas emission. The ponds were located within a cavern, but no obvious vertical conduit was seen. The rim of C3 was covered with a thin coating of fine tephra and fresh Pele's hair, but no ejecta fell in this area during the stay on the crater rim. From 0630 until about 1100 (29 August), the end of the summit visit, eruptions were separated by intervals ranging from 10 to 40 minutes."

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: J. Dehn and B. Behncke, GEOMAR, Kiel; M. Riuscetti, Univ di Udine.


Ulawun (Papua New Guinea) — September 1991 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Increased seismicity but surface activity limited to gas emission

Increased seismicity has been observed at Ulawun, but surface activity remained limited to release of small to moderate volumes of white vapor until late September. Recorded seismicity since mid-August has consisted of numerous to nearly continuous, very small, low-frequency events. Larger events began to occur in mid-September. Periods of stronger seismic activity were occasionally separated by intervals of little seismicity, producing a banded appearance on seismograms. Similar seismicity has been recorded previously at Ulawun, and at Karkar prior to its 1979 eruption. Gas emission on 29 and 30 September was stronger, and brown plumes were reported.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: P. de Saint-Ours and C. McKee, RVO.


Unzendake (Japan) — September 1991 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


Dome collapse triggers large pyroclastic flow, then new dome extruded

Lava dome growth continued in Jigoku-ato crater through early October, generating frequent pyroclastic flows by partial dome collapse. A seismic swarm began beneath the crater on 6 September, peaking 7-9 September and again on 15-16 September. Seismicity was similar to that of mid-August when dome 3 (formerly called the central dome, or C-dome) began to grow, although September activity was more vigorous.

Extruded lava pushed the crater wall NE, leading to a collapse of the crater wall and the adjoining dome 3 at 1854 on 15 September. Red-colored ash plumes were observed intermittently earlier in the day, becoming stronger and more frequent by the start of a 2-hour increase in the number and size of pyroclastic flows at 1644. The activity culminated in a major pyroclastic flow that generated an 11-minute seismic signal, the longest since 8 June, composed of 6 successive events including one that lasted 4 minutes beginning at 1857. The pyroclastic flow traveled ENE down the Oshiga Valley, then followed it SE into the Mizunashi River valley, reaching 5.5 km from the dome (figure 33), the same distance as the 8 June flow. An ash cloud surge detached from the flow at the confluence of the Oshiga with the Mizunashi River, continuing SE into the Onokoba area of Fukae city. A car previously burned by June pyroclastic flows was thrown about 60 m by the surge. Although it appeared that the surge rapidly lost force when it detached from the rest of the pyroclastic flow, its temperature remained high. [A total of 218] houses were burned, but the area had already been evacuated and there were no injuries.

Figure (see Caption) Figure 33. Map showing the distribution of the 15 September 1991 pyroclastic-flow deposits at Unzen. Courtesy of Setsuya Nakada.

The average speed of the pyroclastic flow was estimated at 95 km/hour, using the interval between the start of the flow's seismic signal and its cessation when the flow destroyed the telemeter cable. The volume of collapsed dome lavas and pre-existing summit rock was estimated to be 3.5 x 106 m3, of which 2.5 x 106 m3 was believed to be from the dome. Using aerial photos, the Ministry of Construction estimated the volume of 15 September pyroclastic-flow deposits at 4 x 106 m3, indicating that the main flow was the largest since the start of activity in May. Flow deposits were about 5 m thick, and although the interior was still hot 3 weeks after deposition, no gas-pipe structures were observed. Lava blocks in the deposits were massive, without the breadcrust or cauliflower surfaces seen in the 8 June pyroclastic-flow deposits. The biotite hornblende dacite composition of the blocks was the same as that of lava fragments from the 3 and 8 June flows and the pumice ejected from Jigoku-ato crater on 11 June. Peripheral surge deposits consisted of a lower coarse sand layer, and an upper reddish ash layer.

A total of 448 earthquakes was recorded on 16 September, the most in one day since July 1990, but seismicity rapidly declined, reaching former levels by the following morning. Dome 4 began to grow in the horseshoe-shaped depression (about 300 m wide and 400 m long) formed by the collapse of dome 3 (figure 34). By 20 September, it had grown to about 1.6 x 106 m3, indicating an extrusion rate of about 3.5 x 105 m3/day. The new dome was 350 m long, 250 m wide, and >150 m high on 10 October. Following the pattern of dome 2, the length of dome 4 stopped increasing at the end of September, as continuing collapse of its distal end generated small-scale block-and-ash flows. The upper reaches of the Oshiga valley were filled with debris shed from the domes, and large pyroclastic flows were rare.

Figure (see Caption) Figure 34. Sketch map showing the growth of domes 3 and 4 at Unzen, 13 August-28 September 1991. Numbered outlines show boundaries of dome 3 (upper) and dome 4 (lower) on indicated dates. Dome 4 was extruded within the horseshoe-shaped depression, opening NE, formed on 15 September 1991. Courtesy of Setsuya Nakada.

A total of 521 seismically determined pyroclastic-flow events and 2102 earthquakes were recorded in September, increases from 292 and 559, respectively, in August. There were no felt shocks in either September or early October.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: JMA; S. Nakada, Kyushu Univ.


Whakaari/White Island (New Zealand) — September 1991 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Continued explosions from May vent

Several explosions have been documented from May 91 vent since the 28-29 August fieldwork. The first occurred on 29 August at 2132, shortly after geologists left the island. A second, observed by R. Fleming on 5 September at 1149, produced a 2-km eruption column. Blocks larger than 1 m across fell 250 m SE of the vent and floating scoriae washed onto the shore at Crater Bay, roughly 800 m SE. A large eruption column that rose to 4-5 km altitude on 16 September at 1630, accompanied by intermittent block ejection, was observed from a nearby boat and from ~50 km away on the North Island coast (at Whakatane). Emission of ash continued overnight, with ash falling on a boat off the SE tip of the island, but tephra emission declined the next morning. Another eruptive episode was reported on 18 September at 1625, lasting 5-6 minutes and feeding a 2-km column.

When geologists returned to the island on 9 October, lithic blocks occupied scattered impact craters in a zone extending roughly 400-750 m SE from May 91 vent. Closer to the vent, blocks and craters became more common and fragments of slaggy scoria began to appear. Most of the scoriae were highly vesicular, but bombs of denser scoria, characterized by a smaller range of vesicle sizes (most <5 mm), were also found. Bombs reached 0.8 m in size and the largest observed lithic block was 1.3 m across. Most of the ballistic ejecta appeared to have fallen on the S side of the main crater floor, where it seemed to be directed by the vent configuration. Between 5 and 10 mm of fine gray ash was found at sites roughly 250 and 400 m SE of the vent, thickening toward the rim of the 1978/91 Crater complex.

Activity at May 91 vent on 9 October was similar to but less intense than that observed in late August, with emission of pink fume accompanied by loud roaring and occasional sharp detonations. The noises suggested that the top of the magma column was deeper in the conduit than at the end of August. Shock waves were visible about once a minute, less often than in late August, although conditions were less suitable for their observation. Low-pressure white gas emission from TV1 vent, roughly 50 m SE of May 91 vent, was similar to that of August, although its N wall had apparently migrated outwards 10-20 m by collapse. Voluminous gas emission continued from Noisy Nellie fumarole, on the main crater floor NE of the 1978/91 Crater complex.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: I. Nairn and B. Scott, DSIR Geology & Geophysics, Rotorua.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports