Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Sheveluch (Russia) Renewed activity with lava dome growth and ash explosions starting in late December 2018

Mayon (Philippines) Intermittent ash emissions; persistent summit incandescence, October 2018-April 2019

Tinakula (Solomon Islands) Thermal anomalies in satellite data December 2018-June 2019; ship visit January 2019

Piton de la Fournaise (France) Eruptive episodes in February-March and June 2019; multiple fissures and lava flows

Heard (Australia) Thermal hotspots continue during October 2018-March 2019 at the summit and on the upper flanks

Semeru (Indonesia) Decreased activity after October 2018

Dukono (Indonesia) Numerous ash explosions from October 2018 through March 2019

Rincon de la Vieja (Costa Rica) Occasional weak phreatic explosions continue through February 2019

Turrialba (Costa Rica) Frequent passive ash emissions continue through February 2019

San Cristobal (Nicaragua) Weak ash explosions in January and March 2019

Semisopochnoi (United States) Minor ash explosions during September and October 2018

Asosan (Japan) Multiple brief ash emission events during April and May 2019; minor ashfall in adjacent villages



Sheveluch (Russia) — May 2019 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Renewed activity with lava dome growth and ash explosions starting in late December 2018

Volcanism at Sheveluch has been ongoing for the past 20 years. Previous activity consisted of pyroclastic flows, explosions, moderate gas-and-steam emissions, and lava dome growth, according to the Kamchatka Volcanic Eruptions Response Team (KVERT). Between May 2018 and mid-December 2018 activity levels were low, with intermittent low-power thermal anomalies and gas-and-steam emissions. Activity increased in the second half of December 2018, remaining high through at least April 2019.

Activity intensified beginning in late December through April 2019, which included increased and more frequent thermal anomalies, according to KVERT and the MIROVA system (figure 50). On 30 December 2018, video data from KVERT showed explosions producing an ash cloud that rose up to 11 km altitude and drifted 244 km WSW and 35 km NE. Eruptive activity included incandescent lava flows and hot avalanches. The ash cloud that drifted WSW resulted in ashfall over Klyuchi Village (50 km SW) and Kozyrevsk (100 km SW).

Figure (see Caption) Figure 50. Thermal anomalies at Sheveluch increased in late December 2018, as seen on this MIROVA Log Radiative Power graph for the year ending 5 April 2019. The elevated thermal activity continued through March 2019. Courtesy of MIROVA.

Beginning in early January and going through April 2019, the lava dome at the northern part of the volcano continued to grow, extruding incandescent, viscous lava blocks (figure 51). Throughout these months, KVERT reported that satellite imagery and video data showed strong fumarolic activity, as well as strong gas-and-steam plumes containing some amount of ash; gas-and-steam plumes rose as high as 7 km. According to the KVERT Daily Reports on 3 and 4 January 2019, a gas-and-steam plume containing ash drifted NE up to about 600 and 400 km, respectively. Gas-and-steam plumes noted in the KVERT Daily Report, Weekly Releases, and Volcano Observatory Notice for Aviation (VONA), drifted 50-263 km in different directions. On 9 November 2018, the KVERT Daily Report recorded an ash plume drifting 461 km E from the volcano and on 26 December 2018, the KVERT Weekly Information Release recorded an ash cloud drifting 300 km NW. The KVERT Weekly Information Release reported that on 10 April 2019 an ash cloud drifted up to 1,300 km SE.

Figure (see Caption) Figure 51. Incandescent avalanches from the lava dome and an ash plume can be seen in this photo of Sheveluch on 22 February 2019. Photo by Yu. Demyanchuk; courtesy of the Institute of Volcanology and Seismology FEB RAS, KVERT.

Thermal anomalies based on MODIS satellite instruments analyzed using the MODVOLC algorithm were frequent beginning on 28 December 2018. In just three days in late December (28-31 December 2018) there were 34 thermal alerts. Hotspots were detected 21-27 days each month between January-April 2019. A majority of these hotspot pixels occurred within the summit crater.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Mayon (Philippines) — May 2019 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Intermittent ash emissions; persistent summit incandescence, October 2018-April 2019

Steep-sloped and symmetrical Mayon has recorded historical eruptions back to 1616 that range from Strombolian fountaining to basaltic and andesitic flows, as well as large ash plumes, and devastating pyroclastic flows and lahars. A phreatic explosion with an ash plume in mid-January 2018 began the latest eruptive episode which included the growth of a lava dome with pyroclastic flows down the flanks and lava fountaining (BGVN 43:04). Activity tapered off during March; occasional ash emissions continued through August 2018. Minor ash emissions and summit incandescence were intermittent from October 2018-April 2019, the period covered in this report. Information is provided primarily by the Philippine Institute of Volcanology and Seismology (PHIVOLCS).

Pyroclastic density currents were reported in early November 2018; ash plumes were produced from phreatic events a few times during both November and December 2018. Emissions produced SO2 anomalies during January-March 2019; a series of events in early March generated several small ash plumes. Satellite images showing a thermal anomaly at the summit were recorded multiple times each month from October 2018-April 2019 (figure 44).

Figure (see Caption) Figure 44. Small but distinct persistent thermal anomalies were recorded in satellite imagery from the summit of Mayon during October 2018-April 2019. Top left: 12 October 2018. Top right: 26 November 2018. Middle left: 11 December 2018. Middle right: 30 January 2019. Bottom left: 14 February 2019. Bottom right: 25 April 2019. All images are using the "Atmospheric penetration" filter (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Very little activity was reported at Mayon during October 2018. Steam plumes rose daily from 250-750 m above the summit before drifting with the prevailing winds and dissipating. Incandescence was observed at the summit most nights during the month, and seismicity remained low with only a few earthquakes reported. Leveling data obtained during 30 August-3 September indicated significant short-term deflation of the volcano relative to 17-24 July 2018. New leveling data obtained on 22-31 October indicated inflation of the SE quadrant and short-term deflation on the N flank relative to the 30 August-3 September data. The volcano remained inflated compared with 2010 baseline data. Electronic tilt data showed pronounced inflation of the mid-slopes beginning 25 June 2018.

Activity increased during November 2018. In addition to steam plumes rising to 750 m and an incandescent glow at the summit most nights, pyroclastic density currents and ash plumes were reported. The seismic monitoring network recorded pyroclastic density currents on 5 and 6 November. On 8 November around noontime, a small, short-lived brownish ash plume, associated with degassing, drifted WSW from the summit. A seismic event on the morning of 11 November was associated with a short-lived fountaining event that produced a brownish-gray ash plume that drifted SW. Another similar plume was reported on the morning of 12 November, also drifting SW before dissipating. Two phreatic events were observed on the morning of 26 November. They produced grayish to grayish-white ash plumes that rose 300-500 m above the summit before drifting SW. The following morning, another event produced a grayish ash plume 500 m above the summit that drifted SW. On 30 November a 1-minute-long ash emission event produced a grayish white plume that also drifted SW.

Steam plume emissions and incandescence at night continued at Mayon during December 2018. The seismic network recorded a four-minute-long event shortly after noon on 9 December that produced a grayish-brown ash plume which drifted W. Precise leveling data obtained on 8-13 December 2018 indicated a slight inflation of the volcano relative to 22-31 October 2018. A 30-second-long ash emission event in the afternoon on 18 December produced a brownish ash plume. Two phreatic events were observed on the morning of 27 December. They produced grayish to grayish-white ash plumes that rose 600 and 200 m above the summit, before drifting SW (figure 45).

Figure (see Caption) Figure 45. Ash plumes rose a few hundred m from the summit of Mayon on 27 December 2018. Courtesy of Twitter users "k i t" (left) and "georgianne" (right).

Very little surface activity except for white steam-laden plumes that crept downslope and drifted NW or SW was noted during January 2019. Incandescence at the summit, visible with the naked eye, became more frequent during February 2019, along with continued steam plumes. Precise leveling data obtained on 25 January-3 February 2019 indicated a slight deflation relative to 8-13 December 2018. However, continuous GPS and electronic tilt data showed inflation of the mid-slopes since June 2018. Small SO2 plumes were detected by the TROPOMI satellite instrument a few times during January-March 2019 (figure 46).

Figure (see Caption) Figure 46. Emissions of SO2 that exceeded 2 DU (Dobson Units) occurred a few times at Mayon during January-March 2019. Top left: 25 January. Top right: 16 February. Lower left: 4 March. Lower right: 15 March. Courtesy of NASA Goddard Space Flight Center.

Steam plumes rose 250-500 m above the summit and drifted generally W in early March 2019; incandescence continued daily at the summit. Phreatic events occurred on 7 and 8 March, producing ash plumes that rose 500 and 300 m from the summit before drifting SW (figure 47). Three more phreatic events occurred on the afternoon of 12 March; they produced light brown to grayish ash plumes that rose 500, 1,000, and 500 m, respectively, and drifted SW. Six phreatic events occurred throughout the day on 13 March, producing ash plumes that rose 200-700 m above the summit and drifted W. A single explosion the next day produced a 500-m-tall ash plume. The Tokyo VAAC reported an ash plume visible for several hours in satellite imagery drifting W at 3.7 km altitude on 13 March (UTC). An increase in the daily number of rockfall events from 1-2 per day to 5-10 per day was noted during the second half of March. Precise leveling data obtained on 20-26 March 2019 indicated a slight inflation relative to 25 January-3 February 2019.

Figure (see Caption) Figure 47. A small ash emission at Mayon was reported by PHIVOLCS on 8 March 3019; the plume rose 300 m from the summit and drifted SW. Courtesy of PHOVOLCS.

Steam plumes drifted SW or NW throughout April, rising 200-400 m from the summit. Incandescence could be observed at night for the first half of the month. Leveling data obtained during 9-17 April 2019 indicated a slight inflation relative to 20-26 March 2019. Seismicity remained low during the month with only occasional volcanic earthquakes and rockfall events. Lenticular clouds around the summit were observed (figure 48), but these are an unusual meteorological occurrence caused by weather conditions not related to volcanic activity.

Figure (see Caption) Figure 48. A double lenticular cloud surrounded the summit of Mayon early in the morning on 23 April 2019 and was captured by a local observer; it was not related to volcanic activity. Courtesy of Twitter user Ivan.

Geologic Background. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Twitter user "Ivan", Naga City, Philippines (URL: https://twitter.com/ivanxlcsn); Twitter user "k i t", Legazpi City, Philippines (URL: https://twitter.com/jddmgc); Twitter user "georgianne", Costa Leona, Philippines (URL: https://twitter.com/xolovesgia_).


Tinakula (Solomon Islands) — July 2019 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Thermal anomalies in satellite data December 2018-June 2019; ship visit January 2019

Remote Tinakula lies 100 km NE of the Solomon Trench at the N end of the Santa Cruz Islands, which are part of the country of the Solomon Islands located 400 km to the W. It has been uninhabited since an eruption with lava flows and ash explosions in 1971 when the small population was evacuated (CSLP 87-71). The nearest communities live on Te Motu (Trevanion) Island (about 30 km S), Nupani (40 km N), and the Reef Islands (60 km E); residents occasionally report noises from explosions at Tinakula. Ashfall from larger explosions has historically reached these islands. The most recent eruptive episode was a large ash explosion and substantial SO2 plume during 21-26 October 2017; satellite imagery suggested that a flow of some type traveled down the scarp on the W flank. Renewed thermal activity that was recognized in satellite imagery beginning in December 2018 continued intermittently through June 2019 and is covered in this report. Satellite imagery and thermal data are the primary sources of information for this volcano. It is occasionally visited by members of the National Disaster Management Office (NDMO) of the Solomon Islands Government, tourists, and research vessels who are able to capture ground-based information.

Satellite images from December 2018 to February 2019 show thermal anomalies at the summit vent. Excellent ship-based photographs of the island on 24-25 January 2019 provided by a crewmember from the R/V Petrel identify numerous volcanic features and show a steam-and-gas plume at the vent. Satellite images from April and May 2019 show thermal anomalies at both the summit vent and along the W flank scarp suggesting flow activity during that time.

A stream of incandescence on the NW flank of Tinakula in a Sentinel 2 satellite image on 24 October 2017 confirmed that some type of high-temperature flow accompanied the explosions and eruptive activity of 21-25 October 2017 (BGVN 43:02). Satellite imagery during most of 2018 recorded steam plumes drifting in several directions from the summit, but no thermal activity (figure 24). There was no further evidence of activity in satellite visible or thermal data until almost exactly one year later when the MIROVA project recorded two thermal alerts in the third week of October 2018 (figure 25). Satellite images from that week were cloudy and did not confirm any surface activity.

Figure (see Caption) Figure 24. Sentinel-2 satellite imagery of Tinakula provides valuable information about activity at this remote volcano in the South Pacific. A large explosion with ash plumes and flows occurred during 21-26 October 2017. Top left: a strong E-W linear thermal anomaly suggesting a flow event from the summit was evident on the NW flank on 24 October 2017. Top right: a small steam plume rose from the summit vent on a cloudless 11 February 2018. Bottom left: a dense steam plume drifted SE from the summit vent on 4 September 2018. Bottom right: clouds and dense steam obscure the summit on 24 October 2018, about the same time that MIROVA reported a thermal anomaly. Top left image uses bands 12, 11, 8A, others use 12, 4, 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 25. The MIROVA project recorded the first thermal anomaly in a year from Tinakula during the third week of October 2018. Courtesy of MIROVA.

The first satellite imagery confirming renewed thermal activity appeared on 8 December 2018, around the same time as a small MIROVA anomaly. After that, several images during January and February 2019 confirmed moderately strong thermal activity at the summit (figure 26). Whether the anomalies were the result of active lava effusion or strong incandescent gases from the summit vent is uncertain.

Figure (see Caption) Figure 26. Thermal anomalies at the summit vent of Tinakula were recorded six times between early December 2018 and early February 2019 with Sentinel-2 satellite images. Top row: 8 December 2018 and 2 January 2019. Middle row: 12 (anomaly is just below date) and 27 January 2019. Bottom row: 1 and 6 February 2019. All images are bands 12, 4, 2. Courtesy of Sentinel Hub Playground.

Visual confirmation of activity at Tinakula is rare, but the research vessel R/V Petrel sailed past the volcano on 24 and 25 January 2019 and a crewmember provided detailed images of the W flank and vent area. The summit vent is located at the top of a W facing scarp, and steam is frequently observed rising from the vent (figures 27). Recent flows and volcaniclastic deposits were visible in the ravine on the W flank (figures 28 and 29). Fresh-looking lava was also visible near the summit vent on top of older deposits (figure 30). Eroded volcaniclastic deposits near the base of the scarp on the W flank were visible on top of older veined and layered volcanic rocks (figure 31). Crewmembers on the vessel R/V Petrel could clearly see an incandescent glow from the summit crater at night (figure 32).

Figure (see Caption) Figure 27. A view from the SW of the W flank of Tinakula on 24-25 January 2019. The summit vent is at the top of a W facing scarp, the steam plume drifted E. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 28. The W flank of Tinakula as seen from the W on 24-25 January 2019. The steam plume drifted E. Recent flows and volcaniclastic deposits appeared dark in the steep ravine on the W face (left side). Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 29. Steam and gas rose from the summit vent at Tinakula on 24-25 January 2019. Recent lava deposits are visible in front of the plume and in the ravine on the left (the W flank). Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 30. The edge of the summit vent of Tinakula on 24-25 January 2019 had recent lava on older deposits; steam and gas is rising from the vent in the background. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 31. The W flank of Tinakula on 24-25 January 2019. Eroded volcaniclastic deposits overlie older veined and layered volcanic rocks. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 32. Incandescence was clearly visible from the summit vent at Tinakula on 24-25 January 2019. Used with permission from Paul G Allen's Vulcan Inc.

During April and May 2019, both the MIROVA project and MODVOLC measured a number of thermal anomalies (figure 33) using MODIS satellite data. MODVOLC alerts were issued on 4 and 20 April, and 11, 18, and 27 May. Sentinel-2 satellite images during the period confirmed that a flow on the W flank was a likely source of the thermal energy in addition to the summit vent (figure 34). Thermal anomalies appeared again at the end of June in MIROVA data, but no satellite images showed anomalies at that time.

Figure (see Caption) Figure 33. The number and intensity of MIROVA thermal anomalies increased at Tinakula during April and May 2019. After a short pause, they returned at the end of June. Courtesy of MIROVA.
Figure (see Caption) Figure 34. Sentinel-2 satellite images captured thermal anomalies at the summit and on the W flank of Tinakula during April and May 2019 suggesting the presence of an incandescent flow down the W scarp. Top row: 7 and 22 April 2019 (bands 12, 8, 4). Bottom row: 27 April and 12 May 2019 (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Vulcan Inc. (URL: https://www.vulcan.com/), additional details about the R/V Petrel (URL: https://www.paulallen.com/).


Piton de la Fournaise (France) — July 2019 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Eruptive episodes in February-March and June 2019; multiple fissures and lava flows

Short pulses of intermittent eruptive activity have characterized Piton de la Fournaise, the large basaltic shield volcano on La Réunion Island in the western Indian Ocean, for several thousand years. For the last 20 years, frequent effusive basaltic eruptions have occurred on average twice per year. The activity is characterized by lava fountains and lava flows, and occasional explosive eruptions that shower blocks over the summit area and produce ash plumes. Almost all of the recent activity has occurred within the Enclos Fouqué caldera, although past eruptions in 1977, 1986, and 1998 have occurred at vents outside of the caldera. Four separate eruptive episodes were reported during 2018; from 3-4 April, 27 April-1 June, 13 July, and 15 September-1 November (BGVN 43:12, 43:09). Two episodes from 2019 during February-March and June are covered in this report, with information provided primarily by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) as well as satellite instruments.

Piton de la Fournaise experienced two eruptions during November 2018-June 2019. The first lasted from 18 February to 10 March 2019, and the second episode was 11-13 June. The episode in February-March started consisted of multiple fissures opening on the E flank of the Dolomieu crater on 18 February with lava flows that traveled several hundred meters. After a brief pause, one new fissure opened nearby on 19 February and produced up to 3 million m3 of lava in a little over four days. Although the flow rate then declined, the eruption continued until 10 March. During the last three days, 7-10 March, two new fissures opened nearby and produced large volumes of lava, bringing the total eruptive volume to about 14.5 million m3. After little activity during April and May, a small eruption occurred on the SSE outer slope of Dolomieu crater that lasted for about 48 hours on 11-13 June; multiple small flows traveled about 1,000 m down the steep flank before ceasing. The MIROVA thermal anomaly graph of log radiative power clearly showed the abruptness of the beginning and ends of the last three eruptive episodes at Piton de la Fournaise from August 2018 through June 2019 (figure 165).

Figure (see Caption) Figure 165. The MIROVA graph of thermal energy from Piton de la Fournaise from 30 July 2018 through June 2019 shows the last three eruptive episodes at the volcano. From 15 September through 1 November 2018 fissures and flows were active on the SW flank of Dolomieu crater near Rivals crater (BGVN 43:12). Fissures opened on the E flank of the crater on 18 February 2019, and after a brief pause resumed on 19 February at the foot of Piton Madoré. Lava flows remained active until 10 March 2019. A short episode of lava effusion occurred on 11-12 June 2019 on the SSE outer slope of Dolomieu crater. Courtesy of MIROVA.

Activity during November 2018-March 2019. Following the end of the 15 September-1 November 2018 eruption, seismic activity immediately below the summit remained low (with only 20 shallow and two deep earthquakes during November). The inflationary signal recorded since the beginning of September stopped, and the OVPF deformation networks did not record any significant deformation. There were 35 shallow earthquakes (0-2 km depth) below the summit crater during December, and one deep earthquake. Only 12 shallow earthquakes and one deep earthquake (greater than 2 km below the surface) were reported in January.

OVPF reported an increase in CO2 concentrations beginning in December 2018, and noted the beginning of inflation on 13 February 2019. A seismic swarm of 379 earthquakes accompanied by minor but rapid deformation (less than 1 cm) was reported on 16 February 2019. A new seismic swarm of 208 earthquakes began early on 18 February with a much larger ground deformation (10 cm of elongation of the summit zone). A volcanic tremor indicative of the arrival of magma near the surface began at 0948 that morning. Webcams indicated that eruptive fissures had opened in the NE part of the Enclos Fouqué caldera. The onset of the eruption was marked by a sudden drop in CO2 flux which then stabilized. The eruptive sites were confirmed visually around 1130. Three fissures with actively flowing lava opened on the E flank of Dolomieu Crater; the fountains of lava were less than 30 m high. The front of the longest flow had reached 1,900 m elevation after one hour. The eruption lasted a little over 12 hours and was over by 2200 that evening; it covered about 150-200 m of the hiking trail to the summit.

Seismicity remained high after the event ended, and at 1500 on 19 February 2019 another seismic swarm of 511 deep earthquakes located under the E flank at about 2.5 km depth occurred. It was not accompanied by a significant amount of deformation. At 1710 tremor signals appeared on the observatory seismographs and the first gas plumes and lava ejection were observed at 1750 and 1912, respectively. During an overflight the next day (20 February), OVPF team members observed the new eruptive site at an elevation of 1,800 m at the foot of Piton Madoré. One fissure and one fountain were active at 0620 on 20 February and the flow front was at 1,300 m elevation (figure 166). During the night of 20-21 February the flow front crossed over the "Grandes Pentes" area in the eastern half of the Enclos Fouque (figure 167).

Figure (see Caption) Figure 166. The eruption which began on 19 February 2019 on the E flank of Dolomieu crater at Piton de la Fournaise produced a lava fountain and flow which traveled down at least 500 m of elevation by the next morning when this photo was taken at 0620 local time. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du mercredi 20 février 2019 à 11h00, Heure locale).
Figure (see Caption) Figure 167. The active fissure at Piton de la Fournaise was producing lava fountains and an active flow during the evening of 20 February 2019. Overnight the flow crossed over the "Grandes Pentes" area of the caldera. Photo courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du jeudi 21 février 2019 à 14H00, Heure locale).

OVPF reported on 22 February 2019 that 22 shallow earthquakes had been reported since the eruption began on 19 February. Surface flow rates estimated from satellite data, via the HOTVOLC system (OPGC - University of Auvergne), were between 2.5 and 15 m3/s. The quantity of lava emitted between 19 and 22 February was between 1 and 3 million m3. OVPF observed the growth of an eruptive cone that was filled with a small lava lake producing ejecta during a morning overflight on 22 February. A channelized flow moved downstream from the cone and split into two lobes about 1 km from (and 200 m below) the cone (figure 168). The split in the flow occurred near the Guyanin crater. The N flowing lobe, about 50 m wide, had an actively flowing front located at 1,320 m elevation; the incandescent flow was travelling over a recent flow (likely from the previous night). The S-flowing lobe spread to 200 m wide and split into two tongues 300 m SE of Guyanin crater.

Figure (see Caption) Figure 168. During an overflight on the morning of 22 February 2019 scientists from OVPF observed a growing spatter cone with a small lava lake at Piton de la Fournaise. A channelized flow moved downstream from the fissure and split into two flows. Photo courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 22 février 2019 à 13h30, Heure locale).

Incandescent ejecta from the cone was captured in a webcam image overnight on 22-23 February 2019 (figure 169). The rate of advance of the flow slowed significantly by 24 February, but the intensity of the eruptive tremor remained relatively constant. Mapping of the lava flow on 28 February carried out by the OI2 platform (OPGC - University Clermont Auvergne) from satellite data confirmed the slow progress of the flow after 24 February (300 m in 5 days) (figure 170). The flow front was located at 1,200 m elevation, and only the N arm was active; the lava had traveled about 2.2 km from the vent by 28 February.

Figure (see Caption) Figure 169. Incandescent ejecta from the eruptive cone at Piton de la Fournaise was captured in the webcam in the early hours of 23 February 2019. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 23 février 2019 à 13h30, Heure locale).
Figure (see Caption) Figure 170. Contours of the lava flows at Piton de la Fournaise from 18-28 February 2019 were determined from satellite data by the OI2 platform (Université Clermont Auvergne), dated 18 (red) and 19 (blue) February (top image); 20 (green), 21 (red), 22 (blue), 27 (turquoise), and 28 (pink) February (bottom image). Courtesy of and copyright by OVPF/IPGP. Top: Bulletin d'activité du vendredi 22 février 2019 à 13h30 (Heure locale); bottom: Bulletin d'activité du jeudi 28 février 2019 à 16h30 (Heure locale).

Between 28 February and 1 March 2019 a third lobe of lava appeared flowing NE from the vent on the N side of the new flow area; it split into two lobes sometime on 1 March. Very little new lava was recorded on the other lobes. By 4 March the flow rate estimated by satellite data was about 7.5 m3/s. During a site visit on the morning of 5 March OVPF scientists sampled the N lobe of the flow and bombs and tephra near the cone, and acquired infrared and visible images. They noted the continued growth of the cone which still had an open vent at the summit and a base 100 m in diameter. It was 25 m high with a 50-m-wide eruptive vent at the top (figure 171). High-temperature gas emissions and strong Strombolian activity issued from the vent. Steam emissions were present around the base of the cone, suggesting the presence of lava tunnels. A single lobe of lava flowed N from the cone.

Figure (see Caption) Figure 171. The eruptive cone at Piton de la Fournaise on 5 March 2019 had a 100-m-diameter base, 25 m of vertical height, and 50-m-wide vent at the summit. Courtesy of and copyright by OVPF/IPGP, (Bulletin d'activité du mardi 5 mars 2019 à 17h30, Heure locale).

A new fissure that opened about 150 m from the main vent on the NW flank of Piton Madoré was first observed on the morning of 6 March (figure 172); OVPF concluded that it had opened late on 5 March. A small cone was forming and a new flow traveled N from the main eruptive site. At least six new emission points were noted the following morning (7 March) around the Piton Madoré. Poor weather prevented confirmation by aerial reconnaissance that day, but in a site visit on 8 March OVPF scientists determined that the new fissure from 5 March remained active; a small cone about 10 m high had two flow lobes on the W and N sides (figure 173). A fissure that opened on 7 March was located 300 m S of the 19 February vent and oriented E-W. It was very active on the morning of 8 March with two 50-m-high lava fountains (figure 174). Samples collected by OVPF indicated that the vents of 5 and 7 March produced lava of different compositions.

Figure (see Caption) Figure 172. A new fissure that opened about 150 m from the main vent on the NW flank of Piton Madoré at Piton de la Fournaise was first observed on the morning of 6 March 2019; OVPF concluded that it had opened late on 5 March. A small cone was forming on the flank of an old one and a new flow traveled N from the main eruptive site. Courtesy of OVPF/IPGP, copyright by Helicopter Coral (Bulletin d'activité du jeudi 7 mars 2019 à 15h00 Heure locale).
Figure (see Caption) Figure 173. The 5 March 2019 fissure at Piton de la Fournaise on the NW flank of Piton Madoré still had two active flow lobes emerging from it and heading N and W on 8 March 2019. Courtesy of and copyright by OVPF/IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).
Figure (see Caption) Figure 174. A fissure that opened on 7 March 2019 at Piton de la Fournaise was located 300 m S of the 19 February vent and oriented E-W. It was very active on the morning of 8 March 2019 with two 50-m-high lava fountains. Courtesy of and copyright by OVPF/IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).

There was a strong increase in the eruptive tremor intensity on 7 March, related to the opening of the two new fissures on 5 and 7 March (figure 175). As a result, the surface flow estimates made from satellite data increased significantly to high values greater than 50 m3/s, with the average values on 7-8 March of around 20-25 m3/s. The increased flow rates resulted in the flows traveling much greater distances. By the morning of 9 March the active flow had reached 650-700 m above sea level. The flow front had traveled about 1 km in 24 hours. Strong seismicity had been increasing under the summit zone for the previous 48 hours. After a phase of very strong surface activity observed overnight on 9-10 March that included lava fountains 50-100 m high (figure 176), surface activity ceased around 0630 on 10 March, and seismic activity decreased significantly. OVPF noted that sudden increases in seismicity and flow rates near the end of an eruption have occurred at about half of the eruptions at Piton de la Fournaise in recent years. Lava volumes emitted on the surface between 18 February and 10 March 2019 were estimated at about 14.5 million m3 (figure 177).

Figure (see Caption) Figure 175. An infrared view of the eruptive site on the E flank of Dolomieu crater at Piton de la Fournaise on 8 March 2019 clearly showed the original fissure from 19 February (bottom right of center), the fissure on Piton Madore that opened on 5 March (right) and the fissures that opened on 7 March (upper, right of center). The combined activity produced significant thermal and seismic activity at the volcano. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 8 mars 2019 à 17h00, Heure locale).
Figure (see Caption) Figure 176. Lava fountains 50-100 m high were the result of very strong surface activity observed overnight on 9-10 March 2019 at Piton de la Fournaise. Surface activity ceased around 0630 on 10 March, and seismic activity decreased significantly. Photo taken on 9 March 2019 around midnight from the RN2. Courtesy of OVPF/IPGP, copyright by A. Finizola LGSR/IPGP (Bulletin d'activité du dimanche 10 mars 2019 à 19h30 Heure locale).
Figure (see Caption) Figure 177. A sudden increase in the flow rate at the end of the 18 February-10 March 2019 eruption at Piton de la Fournaise was recorded by researchers at the Université Clermont Auvergne. OVPF noted this was typical of about half of the eruptions at Piton de la Fournaise. Courtesy of OVPF/IPGP, copyright by HOTVOLC, Université Clermont Auvergne (OVPF Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).

Significant SO2 plumes were captured by the TROPOMI instrument on the Sentinel 5-P satellite throughout the 18 February-10 March eruption (figure 178). After the surface eruption ceased, shallow seismicity continued at a lower rate of about 12 earthquakes per day. The end of the eruption (7-10 March) was accompanied by a marked deflation, interpreted by OVPF as the rapid emptying of the magma reservoir. Following the end of the eruption, inflation resumed for the rest of March but then ceased. Seismicity continued at a lower level during April with an average of six shallow earthquakes per day.

Figure (see Caption) Figure 178. Multiple days of high DU value SO2 plumes were recorded by the TROPOMI instrument on the Sentinel 5-P satellite during the 18 February-10 March 2019 eruption at Piton de la Fournaise. Top row: during 18, 21, and 22 February SO2 plumes drifted SE. Middle row: during 23, 24, and 25 February the wind direction changed from SE through S to SW and left a curling trail of SO2. Bottom row: 5, 7, and 8 March showed an increase in SO2 emissions that corresponded with increased seismicity and lava flow output before the eruption ceased.

Activity during May-June 2019. OVPF reported slight inflation near the summit beginning in early May, and an increase in CO2 concentration in the soil near Plaine des Cafres and Plaine des Palmistes. Strong shallow seismicity reappeared on 27 May 2019 and recurred on 30 and 31 May. Two small seismic swarms were measured on 31 May in the early morning. A new seismic swarm beginning at 0603 on 11 June accompanied by rapid deformation suggested a new eruption was imminent. A tremor near the summit area was first noted at 0635 local time; the webcams indicated a plume of gas, but poor visibility prevented evidence of fresh lava. Around 0930 that morning OVPF confirmed that five fissures had opened on the outer SSE slope of Dolomieu crater at elevations ranging from 2480 to 2025 m (figure 179). The flow fronts were not visible due to weather. Lava fountains under 30 m in height and lava flows were present in the three lowest fissures. The flows traveled rapidly down the steep flank of the crater (figure 180).

Figure (see Caption) Figure 179. Around 0930 on the morning of 11 June 2019 OVPF confirmed that five fissures had opened on the outer SSE slope of Dolomieu crater at Piton de la Fournaise at elevations ranging from 2480 to 2025 m. Courtesy of and copyright by OVPF-IPGP and Imazpress (Bulletin d'activité du mardi 11 juin 2019 à 11h00).
Figure (see Caption) Figure 180. Thermal imaging of the 11-12 June 2019 eruptive site at Piton de la Fournaise showed multiple streams of lava traveling rapidly down the steep flank from several fissures on 11 June 2019. Courtesy of and copyright by OVPF-IPGP (Bulletin d'activité du mardi 11 juin 2019 à 11h00).

The intensity of the eruptive tremor decreased throughout the day, and by 1530 only the lowest elevation fissure was still active (figure 181). The next afternoon (12 June) images in the OVPF webcam located in Piton des Cascades indicated the flow front was at about 1,200-1,300 m elevation. Seismographs indicated that the eruption stopped around 1200 on 13 June. Poor weather obscured visibility of the flow activity. Seismic activity decreased following the eruption, but appeared to increase again beginning on 21 June, with 10 events detected on 30 June. SO2 plumes were recorded in satellite data on 11 and 12 June 2019.

Figure (see Caption) Figure 181. The intensity of the eruptive activity at Piton de la Fournaise on 11 June 2019 decreased throughout the day, and by 1530 only the lowest elevation fissure was still active. Courtesy of and copyright by OVPF-IPGP (Bulletin d'activité du mardi 11 juin 2019 à 17h45 Heure locale).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Heard (Australia) — April 2019 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Thermal hotspots continue during October 2018-March 2019 at the summit and on the upper flanks

Heard Island, in the Southern Indian Ocean, includes the large Big Ben stratovolcano and the smaller, apparently inactive, Mt. Dixon. Because of the island's remoteness, satellites are the primary monitoring tool. Big Ben has been active intermittently since 1910, and was active during October 2017-September 2018 (BGVN 43:10). Activity continued during October 2018-March 2019.

Satellite photos using Sentinel Hub showed hotspots every month between October 2018 and March 2019. Because the area was frequently covered by a heavy cloud layer, most of the hotspot signals were partially obscured. Though thermal anomalies are usually seen at summit vents, on 18 October 2018 an anomaly was present about 300 m down the E flank. Similarly, on 1 January 2019, a weak anomaly beginning about 200 m down the NW flank was about 300 m long (figure 40).

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected three hotspots, two in October and one in early November 2018, all of low radiative power. There were no MODVOLC alert pixels during this period.

Figure (see Caption) Figure 40. Sentinel-2 L1C image of Heard Island's Big Ben volcano on 1 January 2019 one summit hotspot and an elongated thermal anomaly to the NW. Scale bar (bottom right) is 200 m. The photo was taken in atmospheric penetration view (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon volcano lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben volcano because of its extensive ice cover. The historically active Mawson Peak forms the island's 2745-m high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported in historical time at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Semeru (Indonesia) — April 2019 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Decreased activity after October 2018

The ongoing eruption at Semeru has been characterized by numerous ash explosions and thermal anomalies, but activity apparently diminished in 2018 (BGVN 43:01 and 43:09); this decreased activity continued through at least February 2019. The current report summarizes activity from 24 August 2018 to 28 February 2019.

The Indonesian volcano monitoring agency, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), reported ongoing daily seismicity, dominated by explosion earthquakes and emission-related events from late November through February (figure 35). Ash plumes resulting in aviation advisories by the Darwin Volcanic Ash Advisory Centre (VAAC) were reported on 4, 6-7, and 19 September, and 12 October 2018. The next significant ash plume reported by the VAAC wasn't until 24 February 2019 (table 23).

Figure (see Caption) Figure 35. Seismicity recorded at Semeru during 28 November 2018-26 February 2019. Plot shows explosion earthquakes ('Letusan'), emission-related events ('Hembusan'), felt earthquakes ('Gempa Terasa'), local tectonic events ('Tektonic Lokal'), and distant tectonic events ('Tektonic Jauh'). Courtesy of PVMBG and MAGMA Indonesia.

Table 23. Summary of ash plumes at Semeru during 25 August 2018 through February 2019. The summit is at 3,657 m elevation. Data courtesy of Darwin VAAC.

Date Plume altitude (km) Plume drift Remarks
04 Sep 2018 4.3 W --
06-07 Sep 2018 4.3 SW --
19 Sep 2018 4 SSW Possible ash-and-steam plume.
12 Oct 2018 4.5 W Discrete eruption.
24 Feb 2019 4.3 W Discrete volcanic ash eruption.

Thermal anomalies using MODIS satellite instruments processed by the MODVOLC algorithm were only recorded on 26, 28, and 30 August 2018, and 22 and 31 October 2018. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected numerous hotspots within 5 km of the volcano during August and early September, with a significant decrease in frequency through October (figure 36); only a few scattered hotspots were recorded from November 2018 through February 2019.

Figure (see Caption) Figure 36. MIROVA plot of thermal anomalies (Log Radiative Power) at Semeru during July 2018-February 2019. Courtesy of MIROVA.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Dukono (Indonesia) — April 2019 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions from October 2018 through March 2019

The eruption at Dukono that began in 1933 has showered the area with ash from frequent explosions (BGVN 43:04, 43:12). The Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Center for Volcanology and Geological Hazard Mitigation (CVGHM), is responsible for monitoring this volcano.

This long-term pattern of intermittent ash explosions continued during October 2018-March 2019, with ash plumes rising to between 1.5 and 2.7 km altitude, or about 300-1,500 m above the summit (table 19). Although meteorological clouds often obscured views, satellite imagery captured typical ash plumes on 28 September 2018 (figure 10) and 5 February 2019 (figure 11). Instruments aboard NASA satellites (TROPOMI and OMPS) detected high levels of sulfur dioxide near or directly above the volcano on multiple days during January-March 2019. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to remain outside of the 2-km exclusion zone.

Table 19. Monthly summary of reported ash plumes from Dukono for October 2018-March 2019. The direction of drift for the ash plume through each month was highly variable. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2018 1.5-2.1 --
Nov 2018 1.5-2.1 --
Dec 2018 1.5-2.4 --
Jan 2019 1.8-2.1 --
Feb 2019 1.8-2.7 --
Mar 2019 1.5-2.4 --
Figure (see Caption) Figure 10. Satellite image from Sentinel-2 (LC1 natural color) of an ash plume at Dukono on 28 September 2018 with the plume blowing towards the NE. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 11. Satellite image from Sentinel-2 (LC1 natural color) of an ash plume at Dukono on 5 February 2019, with the plume blowing SW. Courtesy of Sentinel Hub Playground.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Rincon de la Vieja (Costa Rica) — April 2019 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Occasional weak phreatic explosions continue through February 2019

Intermittent small phreatic explosions from the acid lake of Rincón de la Vieja's active crater has most recently occurred since 2011 (BGVN 42:08, 43:03, and 43:09). This activity continued through at least February 2019. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), and the information below comes from its weekly bulletins between 18 August 2018 and 28 February 2019. Weather conditions often prevented webcam views and estimates of plume heights. The volcano was in Activity Level 3 throughout the reporting period (volcano erupting, steady state).

According to OVSICORI-UNA, two distinct, 2-minute-long explosions occurred on 31 August 2018 beginning at 0434 and 1305. Several hours after the eruption tremor became continuous but low-frequency long-period (LP) earthquakes ceased. OVSICORI-UNA reported a gas emission late on 7 September. An unconfirmed small phreatic explosion occurred on 11 September at 0634, and another on 17 September at 1014. The seismic record showed continuous background tremor and very sporadic LP earthquakes.

Intermittent background tremor was recorded during the first half of October, along with a few emissions and phreatic explosions. Deformation measurements during October showed a contraction between the N and S of the volcano, with subsidence. On 17 October there was another phreatic explosion, and thereafter tremor disappeared and seismicity decreased. On 23 and 27 October seismic stations signaled additional possible phreatic explosions.

OVSICORI-UNA reported that a series of explosions began at 1945 on 4 November and consisted of at least three 2-minute-long episodes. The next day at 1511 a plume of water vapor and diffuse gas, recorded by a webcam and visible to residents to the N, rose about 100 m above the crater rim and drifted W. On 9 November a 2-minute-long explosion began at 1703. Another explosion on 27 November at 0237 produced a plume of water vapor and gas that rose 600 m above the crater rim and drifted SW. A short 1-minute explosion began at 1054 on 3 December.

Based on OVSICORI-UNA weekly bulletins, activity remained stable in January 2019 with small-amplitude phreatic explosions on 11, 12, and 14 January. More energetic phreatomagmatic explosions on 17 and 20 January produced lahars. Several small-amplitude explosions were detected at the end of the month. During January, a few LPs, no VTs, and intermittent tremor were recorded.

OVSICORI-UNA reported that two small-scale explosions occurred on 1 February, along with possible events at 1906 and 1950 on 5 February and at 0120 on 6 February. An event at 0000 on 6 February was also recorded; the report noted that poor weather conditions prevented visual observations of the crater. On 16 and 17 February strong degassing was observed. No LPs were recorded, but two significant VTs were detected on 17 and 22 February near or under the crater.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/).


Turrialba (Costa Rica) — April 2019 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Frequent passive ash emissions continue through February 2019

This report summarizes activity at Turrialba during September 2018-February 2019. During this period there was similar activity as described earlier in 2018 (BGVN 43:09), with occasional ash explosions and numerous, sometimes continuous, periods of gas-and-ash emissions (table 8). Data were provided by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

Table 8. Ash emissions at Turrialba, September 2018-February 2019. Cloudy weather sometimes obscured observations. Maximum plume height is above the crater rim. Information courtesy of OVSICORI-UNA.

Date Time Max plume height Plume drift Remarks
27 Aug-05 Sep 2018 -- 100 m SW, W Continuous gas-and-ash emissions.
06 Sep 2018 -- -- -- Mostly gas, punctuated by small sporadic ash plumes.
10 Sep 2018 1210 300 m NW --
01-13 Sep 2018 -- -- -- Continuous gas-and-ash emissions.
17-18 Sep 2018 -- 300 m SW, NW --
27 Sep 2018 0915 200 m NW --
30 Sep-01 Oct 2018 -- 500 m NW, NE --
03 Oct 2018 -- -- -- Incandescence.
08 Oct 2018 0800 500 m N --
10-16 Oct 2018 -- 1,000 m Various Intermittent emissions; some explosions, including an energetic one on 14 Oct at 1712. Clouds prevented estimate of plume height.
17-23 Oct 2018 -- 200-500 m E, NW, SW Periodic gas-and-ash emissions. Frequent Strombolian events since 5 Oct.
25-30 Oct 2018 -- -- -- Periodic ash emissions when weather conditions allowed observations.
26 Oct 2018 0134 500 m NE Ashfall in neighborhoods of Coronado (San José, 35 km WSW) and San Isidro de Heredia (Heredia, 38 km W).
29 Oct 2018 0231 500 m NW --
30 Oct 2018 1406 500 m W --
24 Oct-01 Nov 2018 -- 500 m -- Continuous emissions.
01-06 Nov 2018 0530-0640 500 m SW --
02 Nov 2018 1523, 1703 500 m -- --
03 Nov 2018 0109 500 m -- Short (2-3 minutes) duration events. Ashfall reported in Coronado.
05 Nov 2018 0620 600 m NW --
06-11 Nov 2018 -- 500 m -- Low-level, continuous gas-and-ash emissions occasionally punctuated by energetic explosions that sent plumes as high as 500 m and caused ashfall in several areas downwind, including Cascajal de Coronado, Desamparados (35 km WSW), San Antonio, Guadalupe (32 km WSW), Sabanilla, San Pedro Montes de Oca, Moravia (31 km WSW), Heredia, and Coronado (San José, 35 km WSW). Weather prevented observations on 12 Nov.
13-19 Nov 2018 -- -- -- Periodic, passive ash emissions visible in webcam images or during cloudy conditions inferred from the seismic data.
22 Nov 2018 0710 100 m W --
23 Nov 2018 -- -- -- Frequent pulses of ash.
23-25 Nov 2018 -- 500 m -- Occasional Strombolian explosions ejected lava bombs deposited near the crater; residents of Cascajal de Coronado reported hearing several booming sounds.
26-27 Nov 2018 -- -- -- Passive emissions with small quantities of ash visible. Minor ashfall in San Jose (Cascajal de Coronado and Dulce Nombre), San Pedro Montes de Oca, and neighborhoods of Heredia.
28 Nov-03 Dec 2018 -- 500 m N, NW, SW Ashfall in Santo Domingo (36 km WSW) on 2 Dec.
05 Dec 2018 -- -- -- Minor emission.
06 Dec 2018 -- -- S Emission.
08 Dec 2018 0749 500 m NW --
09 Dec 2018 -- 1,000 m -- Ashfall in areas of Valle Central.
10 Dec 2018 -- -- -- Emissions periodically observed during periods of clear viewing. Ashfall in Moravia (31 km WSW) and Santa Ana, and residents of Heredia noted a sulfur odor.
11-12 Dec 2018 -- 500 m NW, SW The Tico Times stated some flights were delayed at San Jose airport, 67 km away.
13 Dec 2018 -- -- -- Pulsing ash emissions; ashfall in Guadalupe (32 km WSW) and Valle Central.
14-16 Dec 2018 -- -- W, SW Emissions with diffuse amounts of ash.
05-06 Jan 2019 0815 -- -- Increased after midnight on 6 Jan.
28 Jan-04 Feb 2019 -- -- -- Minor, sporadic ash emissions rose to low heights during most days.
01 Feb 2019 0640 1,500 m NW --
08 Feb 2019 0540 200 m -- Sporadic ash emissions for more than one hour.
11 Feb 2019 -- -- -- Very small ash emission.
13-15 Feb 2019 200-300 m NW, W, SW Almost continuous gas emissions with minor ash content.
15 Feb 2019 1330 1,000 m W --
18 Feb 2019 1310 500 m W --
21 Feb 2019 -- 300 m NW Frequent ash pulses.
22-24 Feb 2019 -- 300 m NW, SW Frequent ash emissions of variable intensity and duration. On 22 Feb ash fell in Santa Cruz (31 km WSW) and Santa Ana, and a sulfur odor was evident in Moravia.
28 Feb 2019 1050 500 m SW Ash pulses.

According to OVSICORI-UNA's annual summary for 2018, a slow decline in activity occurred after the volcano reached its highest emission rate during 2016. Activity during 2018 was consistent with an open system, generating frequent passive ash emissions. The volcano emitted ash on 58% of the days during the year. Some explosions were large enough to eject ballistics more than 400 m around the crater. Typical activity can be seen in a photo from 11 September 2018 (figure 50) and satellite imagery on 7 November 2018 (figure 51).

Figure (see Caption) Figure 50. Photo of an ash explosion at Turrialba taken on 11 September 2018. Courtesy of Red Sismologica Nacional (RSN: UCR-ICE), Universidad de Costa Rica.
Figure (see Caption) Figure 51. Sentinel-2 satellite image of an ash emission from Turrialba on 7 November 2018, taken in natural color (gamma adjusted). Courtesy of Sentinel Hub Playground.

During January into early February 2019, passive ash emissions continued irregularly and with less intensity and duration. Emissions sometimes lacked ash. In their report of 4 February 2019, OVSICORI-UNA indicated that passive ash emissions were weak and slow. For the rest of February, they characterized ash emissions as frequent, but of low intensity.

Seismic activity. On 1 November 2018 OVSICORI-UNA reported that seismicity remained high, and involved low-amplitude banded volcanic tremor along with long-period (LP) and volcano-tectonic (VT) earthquakes. In late January-early February 2019, OVSICORI-UNA reported that seismicity remained relatively stable, although a small increase was associated with the hydrothermal system. VT earthquakes were absent, and tremors had decreased in both energy and duration. The number of low-frequency LP volcanic earthquakes remained stable, although they had decreasing amplitudes. No explosions were documented, and emissions were weak and had short durations and very dilute ash content.

Thermal anomalies. No thermal anomalies were recorded during the reporting period using MODIS satellite instruments processed by MODVOLC algorithm. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected five scattered hotspots during September-October 2018, none during November-December 2018, and two during January-February 2019. All were within 2 km of the volcano and of low radiative power.

Gas measurements. Significant sulfur dioxide levels near the volcano were recorded by NASA's satellite-borne ozone instruments only on 29 September 2018 (both NPP/OMPS and Aura/OMI instruments) and on 11 February 2019 (Sentinel 5P/TROPOMI instrument). OVSICORI-UNA's gas measuring instruments were compromised in September 2018 through January 2019 due to vandalism. In early February, however, they detected hydrogen sulfide for the first time since 2016.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Red Sismologica Nacional (RSN) a collaboration between a) the Sección de Sismología, Vulcanología y Exploración Geofísica de la Escuela Centroamericana de Geología de la Universidad de Costa Rica (UCR), and b) the Área de Amenazas y Auscultación Sismológica y Volcánica del Instituto Costarricense de Electricidad (ICE), Costa Rica (URL: https://rsn.ucr.ac.cr/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Costa Rica Star (URL: https://news.co.cr); The Tico Times (URL: https://ticotimes.net).


San Cristobal (Nicaragua) — April 2019 Citation iconCite this Report

San Cristobal

Nicaragua

12.702°N, 87.004°W; summit elev. 1745 m

All times are local (unless otherwise noted)


Weak ash explosions in January and March 2019

San Cristóbal has produced occasional weak explosions since 1999, with intermittent gas-and-ash emissions. The only reported explosion during the first half of 2018 was on 22 April, the first since November 2017 (BGVN 43:03). The current report covers activity between 1 August 2018 and 1 May 2019. The volcano is monitored by the Instituto Nicaragüense de Estudios Territoriales (INETER).

According to INETER, a series of explosions occurred on 9 January 2019 that lasted several hours. INETER stated that one explosion occurred at 1643; the Washington VAAC's first advisory stated that an explosion occurred at 1145 (local time). The weak explosions, which occurred after a period of heightened seismic activity, generated an ash plume that reached 200 m above the edge of the crater and drifted W. The Washington VAAC reported volcanic ash plumes on 10-11 January extending about 92 km SW, and on 24-25 January extending about 185 km WSW. A low-energy explosion was detected by the seismic network at 1550 on 4 March 2019. The event produced a gas-and-ash plume that rose 400 m above the crater rim and drifted SW.

Monitoring data reported by INETER (table 6) showed elevated levels of seismicity during October 2018 through January 2019. Sulfur dioxide was also measured at higher levels in January 2019.

Table 6. Monthly sulfur dioxide measurements and seismicity reported at San Cristóbal during August 2018-March 2019. "Most" indicates that type of seismicity was dominant that month. Data courtesy of INETER.

Month Average SO2 Total earthquakes Degassing-type earthquakes Volcano-tectonic (VT) earthquakes
Aug 2018 461 t/d 6,464 6,147 251
Sep 2018 893 t/d 9,659 9,586 73
Oct 2018 269 t/d 11,698 3,509 8,189
Nov 2018 -- 19,593 19,586 7
Dec 2018 -- 30,901 -- Most
Jan 2019 1,286 t/d 11,504 Most Very few
Feb 2019 695 t/d 3,470 Most Very few
Mar 2019 -- 3,882 Most Very few

Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://webserver2.ineter.gob.ni/vol/dep-vol.html); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Semisopochnoi (United States) — February 2019 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Minor ash explosions during September and October 2018

The remote Semisopochnoi comprises the uninhabited volcanic island of the same name, ~20 km in diameter, in the Rat Islands group of the western Aleutians (figure 1). Plumes had been reported several times in the 18th and 19th centuries, and most recently observed in April 1987 from Sugarloaf Peak (SEAN 12:04). The volcano is dominated by an 8-km diameter caldera that contains a small lake (Fenner Lake) and a number of post-caldera cones and craters. Monitoring is done by the Alaska Volcano Observatory (AVO) using an on-island seismic network along with satellite observations and lightning sensors. An infrasound array on Adak Island, about 200 km E, may detect explosive emissions with a 13 minute delay if atmospheric conditions permit.

On 16 September 2018 increased seismicity was detected at 0831, prompting AVO to raise the Aviation Color Code (ACC) to Yellow and Volcano Alert Level (VAL) to Advisory. Retrospective analysis of satellite data acquired on 10 September revealed small ash deposits on the N flank of Mount Cerberus, possibly associated with two bursts of tremor recorded on 8 September (figure 5). This new information, coupled with intensifying seismicity and a strong tremor signal recorded at 1249 on 17 September, resulted in AVO raising the ACC to Orange and the VAL to Watch. Seismicity remained elevated on 18 September with nearly constant tremor recorded by local sensors. At the same time, no ash emissions were observed in cloudy satellite images and no eruptive activity was recorded on regional pressure sensors at Adak.

Figure (see Caption) Figure 1. Minor ash deposits can be seen on the south and west flanks of the N cone of Mount Cerberus, Semisopochnoi Island, in this ESA Sentinel-2 image from 1200 on 10 September 2018. Also note probable minor steam emissions obscuring the crater of the N cone. Image courtesy of AVO.

During 19-25 September 2018 seismicity remained elevated, alternating between periods of continuous and intermittent bursts of tremor. Tremor bursts at 1319 on 21 September and at 1034 on 22 September produced airwaves detected on a regional infrasound array on Adak Island; no ash emissions were identified above the low cloud deck in satellite data, and the infrasound detections likely reflected an atmospheric change instead of volcanic activity.

Seismicity remained elevated during 3-9 October 2018, with intermittent bursts of tremor. No volcanic activity was detected in infrasound or satellite data. On 11 October satellite data indicated partial erosion of a tephra cone in the crater of Cerberus's N cone. A crater lake about 90 m in diameter filled the vent. The data also suggested that the vent had not erupted since 1 October. Seismicity remained elevated and above background levels. The next day AVO lowered the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory, noting the recent satellite data results and lack of tremor recorded during the previous week. AVO reported that unrest continued during 11-24 October.

An eruptive event began at 2047 on 25 October 2018, identified based on seismic data; strong volcanic tremor lasted about 20 minutes and was followed by 40 minutes of weak tremor pulses. A weak infrasound signal was detected by instruments on Adak Island. The Aviation Color Code was raised to Orange (the second highest level on a four-color scale) and Volcano Alert Level was raised to Watch (the second highest level on a four-level scale). A dense meteorological cloud deck prevented observations below 3 km, but a diffuse cloud was observed in satellite data rising briefly above the cloud deck, though it was unclear if it was related to eruptive activity. Tremor ended after the event, and seismicity returned to low levels.

Small explosions were detected by the seismic network at 2110 and 2246 on 26 October 2018, and 0057 and 0603 on 27 October. No ash clouds were identified in satellite data, but the volcano was obscured by high meteorological clouds. Additional small explosions were detected in seismic and infrasound data during 28-29 October; no ash clouds were observed in partly-cloudy-to-cloudy satellite images.

AVO reported on 31 October 2018 that unrest continued. Two small explosions were detected, one just before 0400 and the other around 1000. Satellite views were obscured by clouds at the time, and no ash clouds were observed. Unrest continued through 1 November, at which time the satellite link and the seismic line failed. On 21 November the ACC was lowered to Yellow and the VAL was lowered to Advisory.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Asosan (Japan) — July 2019 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Multiple brief ash emission events during April and May 2019; minor ashfall in adjacent villages

Japan's 24-km-wide Asosan caldera on the island of Kyushu has been active throughout the Holocene. Nakadake has been the most active of 17 central cones within the caldera for 2,000 years. Historical eruptions have been primarily basaltic to basaltic-andesitic ash eruptions, with periodic Strombolian activity, all from Nakadake Crater 1. The most recent major eruptive episode began in late November 2014 and continued through 1 May 2016. Another eruption, with the largest ash plume in 20 years, occurred on 8 October 2016. Asosan remained quiet until renewed activity from Crater 1 began in mid-April 2019; it is covered in this report, through the end of June 2019. The Japan Meteorological Agency (JMA) provides monthly reports of activity; the Tokyo Volcanic Ash Advisory Center (VAAC) issues aviation alerts reporting on possible ash plumes.

Asosan remained quiet during 2017 and 2018 with steam plumes rising a few hundred meters from Crater 1 and low levels of SO2 emissions; a warm acidic lake was present within the crater. Fumarolic activity from two areas on the S and SW wall of the crater rim generated occasional thermal anomalies in satellite data and incandescence at night. A brief period of increased seismicity was reported in mid-March 2019. An increase in seismic amplitude on 14 April 2019 preceded a small explosion on 16 April; it produced an ash plume which rose 200 m above the crater rim and drifted NW. It was followed by additional small explosions on 19 April. A new explosion on 3 May produced minor ashfall in adjacent communities; ash emissions were reported multiple times during May with plumes reaching 1,400 m above the crater rim. No additional ash emissions were reported in June.

Activity during 2017 and 2018. JMA reported that no eruptions occurred during 2017. Amplitudes of volcanic tremor increased somewhat during March but were generally low for the rest of the year. The earthquake hypocenters were mostly located near the active crater at around sea level. SO2 emissions were slightly less than 1,000 tons per day (t/d) from January through April; for the rest of the year they ranged from 600 to 2,500 t/d. The Alert Level had been lowered from 2 to 1 on 7 February 2017 where it remained throughout the year. Steam plumes generally rose no more than 600 m above the active crater rim (figure 42). JMA noted that from January to June they often observed crater incandescence at night with a high-sensitivity surveillance camera; Sentinel-2 satellite images also captured thermal anomalies a few times (figure 43). The green lake inside the crater persisted throughout the year with water temperatures of 50-60°C. Two fumaroles were present with high-temperature gas emissions on the SW and S crater walls. Temperatures at the S crater wall were over 600°C from February to May; they decreased to 320-560°C during the rest of the year (figure 44). Sulfur deposits were visible around the SW crater wall fumarole during July.

Figure (see Caption) Figure 42. Steam plumes that rose around 600 m above Nakadake Crater 1 at Asosan were typical activity throughout 2017. Images taken with JMA webcam on 9 June (top left), 22 August (top right), 12 November (bottom left), and 20 December (bottom right) 2017. Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 43. Sentinel-2 images captured thermal anomalies at the S rim of the green lake at Asosan's Nakadake Crater 1 on 16 February (left) and 27 May 2017 (right). JMA reported that incandescence was occasionally visible during the night from January-June from the same area. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 44. High-temperature gas and steam from fumaroles on the S wall of the Nakadake Crater 1 at Asosan on 24 August (top) and 17 November 2017 (bottom) were persistent all year, with temperatures ranging from 300 to over 600°C. The green lake inside the crater persisted throughout the year as well with water temperatures of 50-60°C. Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

The Alert Level did not change at Asosan during 2018, and no eruptions were reported. Sulfur dioxide emissions fluctuated between 400 and 1,800 t/d throughout the year. Steam plumes generally rose less than 500 m above the active crater (figure 45); incandescence was observed at night during May-October and sometimes observed in satellite imagery as thermal anomalies (figure 46). The temperature of the green lake inside the crater ranged from 58 to 75°C throughout the year. The thermal anomaly on the S wall of the crater was consistently in the 300-500°C range, and had a high temperature in April of 580°C; in December the high temperature had risen to 738°C (figure 47). A brief increase in the number of isolated tremors occurred during March, with 1,044 reported on 4 March, exceeding the previous maximum of 1,000 on 27 October 2014. Seismicity also increased briefly during June, with more than 400 events reported each day on 8, 18, and 20 June. The Minami Aso village Yoshioka fumarole zone, located about 5 km W of Nakadake Crater 1, continued to produce modest steam plumes throughout 2017 and 2018 (figure 48).

Figure (see Caption) Figure 45. Typical steam plumes at Asosan during 2018 rose around 500 m above the Nakadake Crater 1. Images are from 4 March (top left), 22 July (top right), 17 August (lower left), and 13 September 2018 (lower right). Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 46. Nighttime incandescence was reported by JMA during May-October 2018 from the S rim of Nakadake Crater 1 at Asosan; Sentinel-2 satellite images (bands 12, 4, 2) captured thermal anomalies from the same area numerous times during 2018 including on 16 June (top left), 26 July and 19 September (middle row), and 18 and 23 November (bottom row). JMA photographed incandescence at night on 17 July 2018 at the S fumarole area (top right). Courtesy of Sentinel Hub Playground and JMA (Aso volcano Monthly Report for July 2018).
Figure (see Caption) Figure 47. The "Green Tea Pond" inside Nakadake Crater 1 at Asosan had temperatures that ranged from 58 to 75°C during 2018 (top row, 26 March 2018); the thermal anomaly on the S wall of the crater consistently had temperatures measured in the 300-500°C range and the SW fumarole area had somewhat lower temperatures (bottom row, 22 June 2018). Courtesy of JMA (monthly Asosan reports for March, May, and June 2018).
Figure (see Caption) Figure 48. The Minami Aso village Yoshioka fumarole zone, located about 5 km W of Nakadake Crater 1 at Asosan, continued to produce modest steam plumes throughout 2017 and 2018. It is shown here on 20 December 2017 (top) and 12 March 2018 (bottom). Courtesy of JMA (December 2017 and March 2018 monthly volcano reports).

Activity during 2019. Steam plumes rose to 800 m above the crater rim during January 2019. Overall activity increased slightly during February; SO2 emissions peaked at 2,200 t/d early in the month; they ranged from 800 to 1,800 t/d for most of the month. The amplitude of volcanic tremor also increased slightly during February. A further increase in tremor amplitude on 11 March 2019 prompted JMA to raise the Alert Level from 1 to 2 the following morning. Volcanic tremor amplitude decreased on 15 March; JMA determined that activity had decreased, and the Alert Level was lowered back to 1 on 29 March 2019. The amount of water in the crater decreased significantly between 27 February and 20 March, exposing part of the crater floor.

The surface temperature of the lake rose during the first part of 2019; it was 78°C in February and 84°C in March. Steam plumes rose to 1,200 m above the crater rim during March and April. SO2 emissions rose to 4,500 t/d on 12 March but dropped to a lower range of 1,300-2,400 for the rest of the month. Another surge in SO2 emissions on 12 April 2019 to 3,600 t/d prompted a special report from JMA the following day. SO2 emissions varied from about 1,700 to 4,100 t/d during the month; values remained high during the second half of the month. JMA noted that the color of the water in the lake inside Nakadake Crater 1 changed from green to gray after 4 April. Fountains of muddy water were periodically observed; they reached 15 m high on 9 April. The temperatures of both the lake (82°C) and around the two fumarole areas (S area about 530°C, SW area about 310°C) remained constant during April and similar to March.

A large increase in the amplitude of volcanic tremor early on 14 April 2019 prompted JMA to raise the Alert Level from 1 to 2 later in the day. The epicenters of the earthquakes were very shallow, located within 1 km beneath the crater. A small eruption occurred at 1828 on 16 April at Nakadake Crater 1; it produced a gray and white plume that rose 200 m above the crater rim and was the first eruption since 8 October 2016 (figure 49). Incandescence was observed inside the crater on 3 and 17 April. The amplitude of seismic tremors decreased on 18 April. Three very small eruptions on 19 April produced ash and steam plumes that rose 500 m above the crater rim. During a site visit that day JMA measured a high-temperature area that produced incandescence from the bottom of the crater at night (figure 50).

Figure (see Caption) Figure 49. The first eruption since October 2016 at Nakadake Crater 1 at Asosan on 16 April 2019 sent an ash plume 200 m above the crater rim (top). Incandescent gas appeared on the crater floor the next day (bottom). Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 50. Three small explosions on 19 April 2019 at Asosan's Nakadake Crater 1 produced small ash emissions that rose 500 m above the crater rim (top). A strong thermal signal also appeared from the bottom of the crater. Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

A new eruption began at 1540 on 3 May that lasted until 0620 on 5 May (figure 51). Initially the ash plume rose 600 m above the crater rim, but a few hours later the volume of ash increased, and the plume reached 2 km above the crater rim for a brief period. Incandescence was visible from the webcam. The Tokyo VAAC reported the ash plume at 3 km altitude drifting SE on 3 May. Later in the day it rose to 3.7 km altitude and drifted SW. During a field survey the following day (4 May) JMA reported a steam and ash plume rising from the center of the active crater. The infrared thermal imaging camera recorded the temperature of the plume at about 500°C (figure 52).

Figure (see Caption) Figure 51. An explosion at Asosan's Nakadake Crater 1 on 3 May 2019 produced an ash plume that reached 2 km above the crater rim (top) and incandescence visible from the webcam (bottom). Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 52. During a site visit on 4 May 2019, staff from JMA witnessed an ash and steam plume rising from the bottom of Nakadake Crater 1 at Asosan (top). The infrared thermal imaging camera recorded the temperature of the plume at about 500°C (bottom). Courtesy of JMA (Aso volcano monthly activity reports, May 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

Ash fell on the S flank, and a small amount of ashfall on 4 May was confirmed by evidence on a car windshield in Takamori Town (6 km S), Kumamoto Prefecture (figure 53). Ashfall was also reported in Takamori-machi, Minami Aso village (9 km SW), and part of Yamato-cho (25 km SW), also in the Kumamoto Prefecture. SO2 emissions were measured as high as 4,000 t/d on 4 May. Additional explosions with ash plumes were reported from Asosan on 9, 12-16, 29, and 31 May; the plumes rose from 200 to 1,400 m above the crater rim but were not visible in satellite imagery. The TROPOMI instrument on the Sentinel-5 satellite captured SO2 plumes on 3 and 26 May 2019 (figure 54).

Figure (see Caption) Figure 53. Ashfall was reported on 4 May 2019 in Takamori Town, Kumamoto Prefecture, from the eruption at Asosan's Nakadake Crater 1 on 3 May 2019. Courtesy of JMA (Aso volcano monthly activity reports, May 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 54. Plumes of SO2 from Asosan were recorded by the TROPOMI instrument on the Sentinel-5P satellite on 3 (left) and 26 (right) May 2019. Courtesy of NASA Goddard Space Flight Center.

Steam plumes rose to 1,700 m above the crater rim during June 2019 (figure 55). During field visits on 6 and 25 June diffuse ash emissions were observed rising from the center of the active crater, but they did not extend significantly above the crater rim (figure 56). The maximum temperature of the plume was measured at about 340°C with a thermal imaging camera. Almost all of the water in the crater bottom had evaporated since early May; incandescence continued to be observed within the crater at night with the high-resolution webcam (figure 57).

Figure (see Caption) Figure 55. Steam plumes rose to 1,700 m above the crater rim at Asosan's Nakadake Crater 1 on 10 June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 56. Plumes of gas and minor ash were visible at Asosan's Nakadake Crater 1 during site visits by JMA on 6 (left) and 25 (right) June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 57. Incandescent gas was visible from the vent at Asosan's Nakadake Crater 1 on 18 (left) and 25 (right) June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 20, Number 03 (March 1995)

Managing Editor: Richard Wunderman

Aira (Japan)

Explosive eruptions send plumes 3-4 km above the summit

Alcedo (Ecuador)

Two craters on the SW caldera wall linked to a 1993 eruption

Arenal (Costa Rica)

Eruptions and lava flows continue; ash deposition rate quantified

Asosan (Japan)

Mud ejection beyond the crater and an ash cloud to 1 km

Cameroon (Cameroon)

Seismicity in 1994 declines from 1993 levels

Fernandina (Ecuador)

Lava enters the sea at three locations; ejections from lava lake

Fogo (Cape Verde)

New eruption on 2 April generates lava flows within the caldera

Galeras (Colombia)

Earthquake on 4 March kills six people and precedes more felt earthquakes

Irazu (Costa Rica)

Lake rises one meter

Krakatau (Indonesia)

Explosions continue, sending ash plumes daily up to 500 m above the summit

Langila (Papua New Guinea)

Moderate emissions and explosions from Crater 2

Lascar (Chile)

Small ash eruptions and increased height of gas plume

Long Valley (United States)

Summary of 1994 seismicity, deformation, and CO2 discharge

Manam (Papua New Guinea)

Gentle vapor emissions, weak glow, and low-level seismicity

Martin (United States)

Large steam plumes, but no eruptive activity

Poas (Costa Rica)

Continued moderate seismicity, but no tremor; lake rise

Popocatepetl (Mexico)

Ash plumes; two SO2-flux measurements from January (1-4 kilotons/day)

Rabaul (Papua New Guinea)

Mild explosive activity at Tavurvur

San Miguel (El Salvador)

Increased seismicity and minor ashfall near the crater

Semeru (Indonesia)

Ash eruptions, lava avalanches, and summit glow

Slamet (Indonesia)

Increased seismicity and gas emission

Tengger Caldera (Indonesia)

Eruption at Bromo causes ashfall 20 km away; gas emissions

Turrialba (Costa Rica)

Weak fumarolic activity

Ulawun (Papua New Guinea)

Continued moderate vapor emissions; SO2 data from October 1994



Aira (Japan) — March 1995 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosive eruptions send plumes 3-4 km above the summit

Explosive volcanism continued in February and March from Minami-dake crater but caused no damage. There were a total of 22 eruptions in February, including 12 explosive ones. Activity increased somewhat in March with 36 eruptions, 24 of which were explosive. The highest monthly ash plumes occurred on 11 February (3 km) and on 8 March (4 km). Ashfall measured 10 km W at the Kagoshima Meteorological Observatory (KMO) was 30 g/m2 in February. Although there were more eruptions, only 9 g/m2 of ash fell at KMO during March.

An earthquake swarm that started at 1600 on 23 February lasted 9 hours and consisted of 99 events registered at Station B, 2.3 km NE of Minami-dake crater. This episode caused the KMO to issue a Volcanic Advisory noting the restlessness of the volcano. Station B also registered 208.8 hours of volcanic tremor and a total of 424 volcanic earthquakes during February. Another earthquake swarm between 0000 on 26 March and 0300 on 28 March produced 2,041 earthquakes and 828 tremors, causing another two Volcanic Advisories. However, total amount of tremor in March (164.3 hours) was less than in February.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Alcedo (Ecuador) — March 1995 Citation iconCite this Report

Alcedo

Ecuador

0.43°S, 91.12°W; summit elev. 1130 m

All times are local (unless otherwise noted)


Two craters on the SW caldera wall linked to a 1993 eruption

Alcedo . . . had two new craters when visited by Jonathan R. Green during 16-18 February 1994. According to him and Jim Stimac, who saw the craters in February 1995, the craters were located on the S wall of the caldera. At the same two points, Geist and others (1994) had previously mapped sulfur veneer and fumaroles in 1991. The points lie ~1.4 km W of El Geyser, a fumarole that lies within a similar crater and sits farther E along a common fault. . . . Geist confirmed that there were no craters in this vicinity when he made his map, and in addition Green clearly reported that these two craters were new.

Besides the opening of these new craters, Green (1994) described Alcedo activity during November-December 1993, and January 1994. This included local tremor, explosions, noises from one or more subterranean sources, and increased fumarolic activity. The larger crater was associated with adjacent deposits of ash, debris, and mud. The craters were also observed during a July 1994 helicopter flyover. A videotape made during the flyover (archived at Galápagos National Park Headquarters) documented vigorous steam plumes coming from both craters, similar to plumes seen by Green in February 1994. Green, who showed the craters on a sketch in his report, estimated that the larger crater was 75 x 100 m.

Although groups do occasionally visit, Alcedo is uninhabited and no one witnessed the eruption. Green's report stated: "Additional information from other guides places this activity later than mid-November 1993 and prior to the end of December 1993."

Later observations were made when J. Stimac and Fraser Goff sampled fumaroles . . . from 5 to 10 February 1995. At that time the larger new crater issued a vigorous steam plume from a small vent along one side; the smaller crater issued less steam. Stimac estimated that the elliptical larger crater had a diameter of 100-150 m, and a depth of 35-40 m. The smaller crater had a diameter of 10 m and a depth of 3 m.

Layered tephra, up to perhaps 2-m thick, lies at the crater margins and extends for several hundred meters, Stimac reported. Based on the observed deposits, and on crater morphology and location, visiting volcanologists concluded the craters were formed by hydrothermal explosions.

Geist and others (1994) point out that Alcedo is distinct from other Galápagos volcanoes (and many oceanic islands) in that it has erupted rhyolite and not just basalt as seen on all the adjacent islands.

References. Geist, D., Howard, K., Jellinek, A. M., and Rayder, S., 1994, The volcanic history of Volcán Alcedo, Galápagos Archipelago: A case study of rhyolitic oceanic volcanism: Bulletin of Volcanology, v. 56, no. 4, Springer-Verlag, p. 243-260.

Green, J., 1994, Recent activity in Alcedo volcano, Isabela Island: Noticias de Galápagos, no. 54 (H. Snell, editor): The Charles Darwin Foundation for the Galápagos Islands (100 N. Washington St., Suite 311, Falls Church, VA 22046 USA), p. 11-13.

Geologic Background. Alcedo is one of the lowest and smallest of six shield volcanoes on Isabela Island. Much of the flanks and summit caldera are vegetated, but young lava flows are prominent on the N flank near the saddle with Darwin volcano. It is the only Galapagos volcano known to have erupted rhyolite as well as basalt, producing about 1 km3 of late-Pleistocene rhyolitic tephra and lava flows from several vents late in its history. Recent faulting has produced a moat around part of the 7-8 km caldera floor, which is elongated N-S and appears to be migrating to the south. Fewer circumferential fissures occur on Alcedo than on other western Galápagos volcanoes. An eruption attributed to Alcedo in 1954 (Richards, 1957) is more likely to have been from neighboring Sierra Negra (Simkin 1980, pers. comm.). Photo-geologic mapping by K.A. Howard (pers. comm.) revealed only one flow on 30 October 1960 photographs that does not appear on 30 May 1946 photos. That is near Cartago Bay, low on the SE flank, rather than the 610-m, NE-flank elevation listed for the 1954 eruption. An active hydrothermal system is located within the caldera.

Information Contacts: J. Green, Quito; D. Geist, University of Idaho; J. Stimac and F. Goff, LANL, Los Alamos.


Arenal (Costa Rica) — March 1995 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Eruptions and lava flows continue; ash deposition rate quantified

Crater C continued its ongoing emission of gases, lava flows, and sporadic Strombolian eruptions. The Strombolian eruptions remained similar to those of January, with ash columns reaching up to 1 km above the crater. These eruptions vibrated windows in the village of La Palma 4 km from the volcano. Falling bombs and blocks reached 1,000 m elev, ~660 m below the summit. Crater D continued fumarolic activity. Moderate low-frequency (<3 Hz) seismicity continued to decrease during March, but tremor duration remained high (figure 71).

Figure (see Caption) Figure 71. Arenal low-frequency seismicity for 1994 and January-March 1995. Data courtesy of OVSICORI.

The record of ash deposition 1.8 km W of the vent (table 9) shows, in terms of total mass, that the deposition rate has increased since October 1994. Daily deposition after 3 March was 22.7 g/m2, compared to a daily average of only 7.6-8.2 g/m2 between 19 October 1994 and 3 March 1995.

Table 9. Ash collected 1.8 km W of Arenal's active vent. Courtesy of G. Soto, ICE.

Collection Interval Avg daily ashfall (grams/m2) Ash % 300+µ Ash % less than 300µ
19 Oct 94-23 Jan 1995 7.6 38.0 62.0
23 Jan 95-03 Mar 1995 8.2 54.7 45.3
03 Mar 95-30 Mar 1995 22.7 42.2 57.8

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernández, V. Barboza, and J. Barquero, OVSICORI; G. Soto, ICE.


Asosan (Japan) — March 1995 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Mud ejection beyond the crater and an ash cloud to 1 km

Mud and water ejections continued during February from the shrinking pool of hot water in Naka-dake Crater 1. Similar ejections occurred on 13 and 17 March. The eruption on 17 March ejected mud and volcaniclastic materials within a 300-m radius, including some beyond the crater rim, and sent an ash cloud as high as 1 km above the crater rim. Large-amplitude tremor associated with the mud ejections was felt at the Aso Weather Station (AWS) on 14 and 19 February, and another nine times during March. An earthquake centered beneath the crater was also felt at AWS on 16 February.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: JMA.


Cameroon (Cameroon) — March 1995 Citation iconCite this Report

Cameroon

Cameroon

4.203°N, 9.17°E; summit elev. 4095 m

All times are local (unless otherwise noted)


Seismicity in 1994 declines from 1993 levels

Overall seismic activity was lower in 1994 (240 total events) compared to 1993 (840 events). Most of the 1993 activity was from beneath the SE flank. The monthly number of events was consistently below 30 after October 1993, until December 1994 (figure 1). During 10-12 December a swarm of >40 microearthquakes with a maximum magnitude of 2.5 was recorded at station KBC. Because that was the only operational station, the events could not be accurately located. However, based on the waveform and S-P intervals of ~7 seconds, they were interpreted to be from Mount Cameroon. As of the end of January 1995, seismicity below the SE flank had returned to the 1992 level of 9-12 events/month.

Geologic Background. Mount Cameroon, one of Africa's largest volcanoes, rises above the coast of west Cameroon. The massive steep-sided volcano of dominantly basaltic-to-trachybasaltic composition forms a volcanic horst constructed above a basement of Precambrian metamorphic rocks covered with Cretaceous to Quaternary sediments. More than 100 small cinder cones, often fissure-controlled parallel to the long axis of the 1400 km3 edifice, occur on the flanks and surrounding lowlands. A large satellitic peak, Etinde (also known as Little Cameroon), is located on the S flank near the coast. Historical activity was first observed in the 5th century BCE by the Carthaginian navigator Hannon. During historical time, moderate explosive and effusive eruptions have occurred from both summit and flank vents. A 1922 SW-flank eruption produced a lava flow that reached the Atlantic coast, and a lava flow from a 1999 south-flank eruption stopped only 200 m from the sea. Explosive activity from two vents on the upper SE flank was reported in May 2000.

Information Contacts: A. Bekoa and N. Nfomou, ARGV, Buea; Ekodeck G.E. and N. Metuk, IRGM, Yaounde; J. Fairhead, Univ of Leeds.


Fernandina (Ecuador) — March 1995 Citation iconCite this Report

Fernandina

Ecuador

0.37°S, 91.55°W; summit elev. 1476 m

All times are local (unless otherwise noted)


Lava enters the sea at three locations; ejections from lava lake

Fernandina continued to erupt in late March. While acting as a guide for a film crew, Godfrey Merlin made his third visit . . . and reported on 26 March concerning the 30 hours the group spent at the volcano.

Lava flowing into the sea was concentrated in three areas. Two areas were the same as two months earlier, and the third was ~400 m to the N. Most of the lava descended the near-vertical shoreline, a sea-cliff that was typically ~4-m high and being progressively undercut by wave action removing sand along its base. Flowing in channels of 0.5-1.5 m width, the lava often dripped into the ocean, although Merlin noted that the lava to the N had "the appearance of water cascading to the sea." Discolored water still surrounded the lava's ocean entries. The amount of lava flowing into the sea was difficult to judge, but at least one substantial fluctuation in flow volume was seen during their 30-hour visit.

The group reached shore at the Cape Hammond landing, an area rich in wildlife that could have been threatened if lava flows had continued to progress in that direction. They found that nearby flow fronts remained immobile since the previous visit . . . . Merlin suggested that the lava issuing from main vent (now a well-formed cone), was descending in old tubes to the shore. At night, no incandescence could be seen between the main vent and the sea. During the day, in the upper third of this interval, white vapor rose from the lava flows but otherwise there was little surface evidence of their freshness.

While hiking to the main vent they heard several explosions and saw molten lava "tossed above the rim of the cone every few seconds." Nevertheless, Merlin and Mr. Iwago of the Japanese Broadcasting Corporation (NGK) ascended the cone's base, which they described as built on "huge blocks of reddish-gray rock jumbled together" with intermediate spaces "filled with glassy scoria." Next, they descended into a shallow valley of scoria with extremely hot vents, some ringed by white deposits. They climbed the upper slopes of the spatter cone from the E, upwind side, and found that the cone held a "heaving, rolling, red sea of molten lava" that was ~30-40 m in diameter and 40 m below the cone's rim. Spatter was thrown ~70 m above the lava lake's surface. On the cone's W side, lava flowed over the rim and descended into a tube within the cone.

They found eight dead marine iguanas. Although their appearance ranged from unscorched to charred, the iguanas had each been "literally cooked on the surface of the lava." The group also noted that live iguanas continued to invade the still-hot surface. In contrast to earlier in the eruption, no dead fish were seen floating along the coast and accordingly the large number of sea birds that previously had come to feed on them were absent.

Geologic Background. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 km3 section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake.

Information Contacts: G. Merlen, Estacion Cientifica Charles Darwin.


Fogo (Cape Verde) — March 1995 Citation iconCite this Report

Fogo

Cape Verde

14.95°N, 24.35°W; summit elev. 2829 m

All times are local (unless otherwise noted)


New eruption on 2 April generates lava flows within the caldera

A fissure eruption that began the night of 2-3 April produced lava flows from the base of the Pico cone, located within the 8-km-diameter Cha Caldera (figure 1). This cone, also called Fogo Peak, has a crater ~500 m in diameter and 180 m deep. Caldera residents felt weak intermittent earthquakes as early as 25 March. After 0100 on 2 April the earthquakes increased in frequency, and felt events occurred at 0700 and 1500. At about 2015 residents felt a stronger earthquake that caused dishes to fall from cupboard shelves and may have opened a 200-m-long crack on the flanks of the cone.

Figure (see Caption) Figure 1. Topographic map of Fogo Island showing historical lava flows (shaded), current lava flows through 11 April (solid), and selected towns (hatched). Modified from Neumann van Padang and others (1967).

Residents in Sao Filipe, ~15 km WSW of the vent, noticed a red glow around 2300 on the night of 2 April, probably the beginning of the eruption. Other residents reported that eruptive vents on the flank of Pico opened at 0006 on 3 April. Initially there was a burst or jetting of gas followed by ejection of large blocks. This Strombolian activity was followed by a "curtain of fire" that fed a lava flow, which cut off the main road to Portela village by 0200 (figure 2). By 0500 on 3 April, fine dark ash had begun to fall in areas close to the volcano. Around the same time, an eruption cloud to a height of 2,500 m was formed. Witnesses told reporters that the volcano was "spewing out smoke and flames." The head of the Cape Verde Red Cross stated that high flames could be seen and that "a pall of black smoke was hanging over the island."

Figure (see Caption) Figure 2. Map of Fogo caldera showing lava flows from the current eruption. Courtesy of João Gaspar, Universidade dos Açores.

During the night of 2-3 April, several residents evacuated to the N coast. Once ashfall began, more caldera residents and some people in the eastern villages of Corvo, Achada Grande, Relva, Tintiera, Cova Matinho, Cova Figueira, and Estância Roque also evacuated to the coastal towns of Mosteiros (~9 km N of the summit) or Sao Filipe. Police officials reported that all of the ~1,300 people living within the caldera had managed to get out on foot and had been accounted for by noon on 3 April.

Under the supervision of the National Defense Minister, a Crisis Cabinet was created by the Cape Verde Government. About 60 Cape Verde Army soldiers were sent to the island and an emergency communications system was installed. Food and medicine were provided, and evacuation centers (schools, private institutions, and tent camps) were established to hold up to 5,600 people. Official reports indicated that almost 1,000 persons were sheltered in the Army camps at Sao Filipe, Patim, Achada Furna, and Mosteiros. During the first days of the eruption local authorities, Cape Verde soldiers, and volunteers, helped caldera residents save their belongings. Nobody was killed, and only 20 people needed medical assistance during the evacuation, including children with respiratory problems. Although numbers are uncertain, as many as 5,000 people may have been displaced during this eruption. As of 16 April, Portela residents continued to remove belongings by foot.

Around noon on 3 April some teachers who had driven from Sao Filipe to Mosteiros told geologist Veronica Carvalho Martins (U.S. Embassy in Cape Verde) of sandy ashfall along the road on the E side of the island just below the caldera; they also reported sounds "like an old stove." During a flight W of the caldera soon afterwards, Martins observed a high mushroom-shaped ash column rising from the caldera. Martins later saw a long fissure vent with lava fountains feeding an already well-developed flow that was moving W across a road towards the caldera wall and curving N. A vent SE of the fissure exhibited continuous strong ejection of brownish pyroclastic material, while to the NW a smaller vent was intermittently ejecting similar material.

João Gaspar (Universidade dos Açores) and colleagues from Cape Verde (ISE and IICT) reported that on 3 April a thick cloud of dark ash and vapor 2,500-5,000 m high could be seen from Santiago Island, ~60 km ENE. Early that morning three small vents were observed inside the caldera along the SW part of a N30°E fissure that crossed the main road within the caldera (figure 2). Fine dark ash and small pahoehoe lavas were produced, and large plastic bombs (1-4 m in diameter) were projected distances of 500 m. That afternoon the fissure reached 2 km in length, and four new vents opened in its NE section. Activity increased during the night of 3-4 April with the emission of more lava flows, but decreased the following morning. One Cape Verde official said that the lava was moving at a speed of 60 m/hour. Gaspar reported that explosive activity was centered at the NE vents, but strong fumarolic activity continued along the main fissure. Lava fountains reached ~ 400 m high and a cloud of dark ash and gases rose 2,000 m. A scoria cone with a crater open to the SW formed and produced aa lava flows with thicknesses of 3-10 m measured at different fronts.

Effusive activity remained intense on 4 April, but ejection of pyroclastic fragments had decreased significantly. Television pictures showed a lava "stream" coming from the fissure and, in the morning, a mantle of aa lava covering the central part of the caldera. Portuguese television and other press coverage on the evening of 5 April indicated that activity had decreased.

In the following days the lava flow reached the settlement of Boca de Fonte near the caldera wall ~2 km W of the eruption center, and by 9 April it had destroyed at least 5 houses (possibly 10), the main water reservoir, and several square kilometers of fertile land used to grow coffee, wine grapes, fruits, maize, tapioca, and beans. Reluctant farmers with cattle in the caldera were ordered to leave their homes or face arrest on 8 April. A TSF Radio correspondent reported on 9 April that the lava flow moving into Boca de Fonte was advancing at a rate of 10-14 m/hour, twice as fast as the day before. However, the flow slowed to 4-5 m/hour on the 10th. Weak tremor had been felt on the caldera floor since the start of the eruption. On 10 April the seismicity increased, and earthquakes with Mercalli intensities of III-IV occurred, probably due to obstruction of the main vent, where lava fountaining stopped briefly.

Richard Moore and Frank Trusdell (U.S. Geological Survey) arrived on 10 April to assess the volcanic hazards and advise the Government of Cape Verde. With the help of Martins, they installed a seismograph ~1 km S of the erupting vent. The seismograph recorded continuous tremor, indicative of the ongoing eruption, as well as microearthquakes (M <1) at 0759 and 1213 on 12 April. Volcanic tremor amplitude remained moderate to strong through 13-16 April. Lava temperature measured using a thermocouple on 11 April was 1,026°C; this temperature seems low, but the aa was highly viscous and sluggish, in contrast to the more fluid lava of Kilauea in Hawaii. Lava flows and spatter contain ~5% black pyroxene and 1% olivine phenocrysts, often together in clots.

Gaspar noted that on 11 April two main lava rivers had velocities of 5-6 m/s near the vent. One lobe moved towards the W and fed the flow-front moving towards Portela and Bangaeira villages. The other more active lobe was directed SW into the Cova Tina depression. The USGS team observed relatively low-volume eruptions of gas-rich spatter slowly building a cone, and lava cascading rapidly down the W flank of Pico being directed W and SW by high levees. The N flow-front, near Portela, stagnated during 10-11 April. At 1830 on 11 April, advancing flows were confined to the S part of the caldera, where two small lobes were moving W at a rate of ~15-20 m/hour, travelling S of the flows erupted the previous week.

During the morning of 12 April eruptive activity consisted of Strombolian gas-rich spatter ejection; volumetric output remained relatively low. At 1549 activity changed to Hawaiian-type fire fountains that typically rose 100-120 m above the vent, slowly building a scoria cone 100 m high. A new lava flow that started on 12 April overrode the first flow, which had stagnated ~1 km SW of Portela. This flow quickly traveled 3 km from the vent in the general direction of Portela, but remained entirely on top of the first flow. All other lava flows were inactive at 1900 on 12 April. Preliminary estimates of erupted volume through 12 April ranged from 50 to 75 x 106 m3 of lava.

Although volumetric output remained low, Hawaiian-type fire fountains continued on 13 April and a flow confined to a 3-m-wide channel cascaded down the W flank of the new cone. That channel continued to feed a sluggish aa flow moving W then N. The cinder and spatter cone reached a height of 120 m. The overriding lava flow only moved N another 46 m; most of the additional lava was expended covering the first flow. The added mass on top of the first flow also caused it to spread laterally.

Activity on 14 April continued unabated, increasing the height of the new cone to 130 m. The E lobe of the second flow reactivated and moved 470 m N during 13-14 April. At 1900 on 14 April the second flow was within 235 m of the distal end of the first flow, and lateral spreading was occurring at the flow margins. At this time the distal portion of the first lobe showed signs of renewed movement, induced by pressure from the overriding aa flow. The thick aa flow continued to spread slowly W the next day; maximum lateral spreading S of Boca de Fonte was ~3 m. The new E lobe of the second flow advanced an additional 6 m and stopped. At 1700 on 15 April the most active part of the overriding flow was on its NW side. Much of the lava production apparently went towards thickening the central part of the flow, estimated to be 16 m thick. At 1800 on 15 April spatter fountains were ~100 m high and cinder was falling as far as 2 km S of the vent.

Activity remained generally constant on 16 April, with fire fountains typically rising 100-120 m; the scoria cone stood 140 m tall. Estimates of lava-channel dimensions and speeds through 16 April yielded an erupted lava volume of 2.5-8 x 106 m3/day. The flow-front became remobilized at 1535 on 16 April, and by 1700 had moved 38 m beyond and NE of the distal end of the first flow. At that time the lava front was ~534 m from the nearest house in Portela. A lava temperature of 1,056°C was measured with a thermocouple in a spiny aa breakout near the terminus of the flow. From a few hundred meters away, USGS geologists watched the roof of a small house burn; it was buried soon thereafter. There was also considerable lateral spreading of the flow S of Boca de Fonte on 16 April. In this area, the flow-front monitor lines showed westward movement of 19-26.5 m. At 1800 the flow was still active and 41-72 m E of the Portela access road. Thickness at the margins of the active flows ranged from 1 to 20 m. The greater thicknesses are a strong indication that a breakout of spiny pahoehoe or aa can be expected, advancing the flow.

Fogo Island (476 km2), with a population of ~33,000, consists of a single massive volcano with an 8-km-wide caldera breached to the E; the W rim rises 700 m above the caldera floor. The central cone in the caldera, the highest point in the Cape Verde Islands, was apparently almost continuously active from the time of Portuguese settlement in 1500 A.D. until around 1760. Later historical lava flows reached the E coast. The last eruption was during June-August 1951 from caldera vents S and NW of the central cone. That eruption, also preceded by earthquakes, began with ejection of pyroclastic material that formed Mt. Rendall and Mt. Orlando (figure 2).

Reference. Neumann van Padang, M., Richards, A.F., Machado, F., Bravo, T., Baker, P.E., and LeMaitre, R.W., 1967, Catalogue of active volcanoes of the world including solfatara fields, part XXI, Atlantic Ocean: Rome, IAVCEI, 128 p.

Geologic Background. The island of Fogo consists of a single massive stratovolcano that is the most prominent of the Cape Verde Islands. The roughly circular 25-km-wide island is truncated by a large 9-km-wide caldera that is breached to the east and has a headwall 1 km high. The caldera is located asymmetrically NE of the center of the island and was formed as a result of massive lateral collapse of the ancestral Monte Armarelo edifice. A very youthful steep-sided central cone, Pico, rises more than 1 km above the caldera floor to about 100 m above the caldera rim, forming the 2829 m high point of the island. Pico, which is capped by a 500-m-wide, 150-m-deep summit crater, was apparently in almost continuous activity from the time of Portuguese settlement in 1500 CE until around 1760. Later historical lava flows, some from vents on the caldera floor, reached the eastern coast below the breached caldera.

Information Contacts: J. Gaspar and N. Wallenstein, Universidad dos Açores; A. Mota Gomes, Instituto Superior de Educação de Cabo Verde (ISE), Cape Verde; F. Costa and E. Correia, Centro de Geografia do Instituto de Investigação Cientifica de Tropical (IICT), [Portugal]; R. Moore, USGS; F. Trusdell, USGS Hawaiian Volcano Observatory; V. Carvalho Martins, U.S. Embassy, Cape Verde; UNDHA; Reuters; UPI; LUSA News Agency, RTP Internacional Television, Channel 1 Television, and TSF Radio, Lisbon.


Galeras (Colombia) — March 1995 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Earthquake on 4 March kills six people and precedes more felt earthquakes

According to INGEOMINAS, at 1823 on 4 March a M 4.7-4.8 earthquake struck Galeras's NE flank (figure 73). The USGS National Earthquake Information Center (NEIC) reported the earthquake as M 4.5. The preliminary location for the event was provided by the Observatory's network (stations 0.9, 1.6, 2.1, 11.0, 5.0, 5.5 and 9.0 km from the active crater); the hypocenter (at 1.26°N, 77.33°W) was ~4 km NE of the active cone at 13 km depth. Signals from the earthquake saturated all of the stations in the local network; the earthquake itself was clearly felt in SW Colombia's in the E part of the Department of Nariño.

Figure (see Caption) Figure 73. Isoseismal map of the 4 March earthquake near Galeras prepared using the European microseismic scale. Courtesy of INGEOMINAS.

During the 3 hours following the event there were 130 aftershocks, at least 11 felt, the majority with magnitudes between 2.6 and 3.6 (figures 74 and 75). Subsequent events tended to decrease in magnitude, but some were still felt near the epicenter. Two relatively strong aftershocks took place 6 days after the initial earthquake (at 0017 and 0632 on 10 March), M 4.1 and 3.8, setting off a second swarm of declining aftershocks (figure 75). During 4-31 March approximately 1,440 aftershocks took place from the same area (figures 74, 75, and 76). At least 67 aftershocks were felt; the last, at 0804 on 29 March, was M 2.1.

Figure (see Caption) Figure 74. Histogram showing the number of seismic events/hour following the 4 March earthquake near Galeras. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 75. Plot of earthquake magnitude with respect to time following the 4 March earthquake near Galeras. Calculated magnitude values (M) were based on a function of the earthquakes duration. The graphic includes only earthquakes whose amplitude is >=2.5 m/sec. This value was the minimum classification parameter at "Crater-2," a station 1.6 km S of the active crater. Courtesy of INGEOMINAS.
Figure (see Caption) Figure 76. Map showing seismicity near Galeras (top), and vertical N-S cross-section (bottom) showing the pattern of located earthquakes, 4-31 March. Courtesy of INGEOMINAS.

Large measured tilt coincided with the main shock. The maximum tilt changes were registered by electronic tiltmeters as 3 µrad, and by short leveling line vectors as 15 µrad. The tiltmeters returned to their previous levels almost immediately; the short leveling line vectors returned in a few days.

The epicentral area basically corresponded to the rural municipalities of Pasto . . . and other adjacent towns (figures 73 and 76), settlements with houses that were for the most part single-level and of rudimentary adobe construction. The houses were seriously affected and INGEOMINAS reported that some were ". . . damaged so badly as to be ready to collapse, also with caved-in roofs and loose tiles, that made living in them impossible and insecure. In the city of Pasto the constructions most affected were the antiquated structures . . . ." INGEOMINAS also related that: "In one neighborhood to the N of the city, the principal earthquake caused the loosening of blocks on a slope that fell on a nearby house, causing its destruction and killing 6 of its inhabitants. Other effects related to the main shock and its aftershocks were loud noises and small landslides on slopes near the wagon trails close to the epicentral region." NEIC reports stated that eight people were killed and four were injured. They mentioned that there were ~250 aftershocks, and that over 50 houses were damaged or destroyed, many by seismically triggered mudslides.

INGEOMINAS noted that previous seismic swarms had similar or adjacent epicenters. In both April and November 1993 swarms of M < 4.5 were felt in the same epicentral region, although the 4 March earthquake was itself larger and associated with more energetic, more numerous, and more frequent aftershocks. Soon after the earthquake, on 6, 11, and 19 March, the local seismic system around Galeras registered unusual, high-amplitude seismic events possibly associated with an explosive eruption. During these events signal amplitude grew for a few seconds, rapidly escalated, and then quickly decayed, the entire event lasting perhaps two minutes. The high-amplitude part of the event generally caused many of the stations in the local system to saturate. Associated with these high amplitude events, people located ~6-9 km from the volcano reported loud noises suggesting that an explosive eruption may have occurred. This hypothesis was unconfirmed due to poor visibility.

Other than these large earthquakes at Galeras, low- and high-frequency events and "butterfly" events remained low. The high- and low-frequency events were chiefly located at shallow depths (

As in previous months, the concentrations of SO2obtained by mobile, ground-based correlation spectroscopy (COSPEC) remained <100 t/d. The volcano was clearly visible on various occasions, particularly at the beginning of the month, but the gas column was only visible a few times from the city of Pasto. At these times the column had heights under 300 m, and emission were coming from the W sector of the volcano. Sometimes, when the column was blown E, sulfurous odors were reported.

M. Calvache recently sent us color photographs showing Galeras's summit morphology in December 1991, March 1993, and March 1995. The December 1991 image was most suitable for black-and-white reproduction (figure 77).

Figure (see Caption) Figure 77. Galeras's summit area viewed from the SE in December 1991. Deformes fumarole (left center) and the small elliptical El Pinta crater (right center on crater rim) are still present in 1995 (see sketch map in 20:2). CCourtesy of INGEOMINAS.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS, Pasto; NEIC.


Irazu (Costa Rica) — March 1995 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


Lake rises one meter

"Irazú remains calm [in February]. Fumarolic activity is still weak in the main crater and on the NW flanks. The lake in the main crater has a temperature between 18 and 23°C, and the water surface rose about 1 m with respect to the same date last year. The lake holds an estimated 430 million m3 of water. Acidity and temperature of hot springs surrounding the volcano remain unchanged."

On 17 April Soto added that "tectonic-like seismic events have been recorded in the vicinity of the volcano during 1995 (8 in January, 8 in February, 14 in March . . . )." The hypocenters were located within 20 km of the main crater. The biggest earthquake took place on 21 March, about 15 km from the main crater.

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: G. Soto, ICE.


Krakatau (Indonesia) — March 1995 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 813 m

All times are local (unless otherwise noted)


Explosions continue, sending ash plumes daily up to 500 m above the summit

Volcanic activity continued through January-March 1995, sending grayish white plumes 150-500 m above the summit. Sounds like thunder were sometimes heard at the VSI observatory . . . and glow was visible at night as high as 50 m above the summit. The daily number of explosions in January and early February fluctuated between 50 and 150 events. From mid-February to mid-March the average number of explosions increased to 150-200 events/day (figure 10).

Figure (see Caption) Figure 10. Daily number of explosion earthquakes (bars) and height of the ash plume (line) at Krakatau, January-March 1995. Courtesy of VSI.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: W. Tjetjep, VSI.


Langila (Papua New Guinea) — March 1995 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Moderate emissions and explosions from Crater 2

"Monitoring was temporarily discontinued on 18 March. Until that time activity at Crater 2 was at a moderate level, similar to that observed in February, while Crater 3 showed a low level of activity. Emissions from Crater 2 were mostly white vapour, weak to moderate in volume. Occasionally grey ash clouds were emitted. Light ash fall took place around the crater. One loud explosion was heard on 8 March with weak explosions on the following two days and low rumbling sounds on the 16th. Steady weak night glow was observed on 16 and 17 March. Crater 3 released very thin to occasionally moderately thick white vapour. Thin blue vapour was observed on 1 and 7 March. There were no audible sounds and no night glows. Both seismographs remained inoperative throughout the month."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: B. Talai, RVO.


Lascar (Chile) — March 1995 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


Small ash eruptions and increased height of gas plume

Activity in February-March 1995. For the period 18 February to 10 March 1995 Lascar remained fairly active—frequently changing the altitude of its gas plume, producing small ash eruptions, and ejecting dense columns of water vapor (figure 24). The plume, which was typically pulsing, had a yellowish or brownish color. On 23 and 25 February underground booming noises ('retumbos') were heard 4 km from the volcano on both the N and NW flanks and at the village of Soncor, 25 km SW. On 24 February the plume's height above the crater suddenly increased from 200 m to 1,000 m (figure 24). This elevated "sustained" plume height marked the beginning of a series of small eruptions whose "transient" column heights are depicted by the arrow tips on figure 24. The sustained plume height initially remained comparatively high, reaching a maximum of 2 km above the volcano on 3 March; later, sustained plume height decreased gradually to ~500 m (figure 24).

Figure (see Caption) Figure 24. Estimated sustained plume and transient eruption-column heights above Lascar's crater for 18 February-10 March 1995. For the sustained plume heights, error bars increase in size with plume altitude due to problems of perspective. The transient eruption-column height is given by the arrow tips. Courtesy of S. Matthews and M. Gardeweg.

At 0800 on 26 February a small ash-bearing eruption was reported by the Carabineros from 35 km NW of the volcano in Toconao. A black column rose at least 200 m (probably higher) above the crater. Retumbos associated with this eruption were audible at the offices of MINSAL in Toconao. Three larger eruptions were observed on 7 March, between 0000 and 0100, by Elcira Araya at the MINSAL offices. In each case a dark column rose an estimated 3 km above the crater. Plumes from these columns blew NW over Toconao and many residents reported a strong sulfur smell. The type of activity described (retumbos and small ash-rich eruptions) has in the past preceded larger Vulcanian eruptions. It is thought likely that such a Vulcanian eruption will occur in the near future.

Recent crater collapse and eruptive activity. At least two eruptive events took place in late 1994, both producing columns 4-km high. In November, Luis Aracena, a tour guide from San Pedro de Atacama, climbed Lascar and noted that a portion of the S rim had collapsed into the crater. Fractures on the S side of the crater had enlarged with an increase in fumarolic activity. He also found that the central hole in the crater floor had deepened substantially. One of his photos revealed large new arcuate fractures along the base of the talus slope at the foot of the NE crater wall.

Volcanologists concluded that the crater floor had continued to subside, destabilizing the walls and inducing them to collapse. The crater is thus becoming deeper and wider. In addition, blockage of the gas jets in the base of the crater due to subsidence on ring fractures and rockfalls from the walls has led to periodic 'throat clearing' eruptions. The edifice was expected to become increasingly unstable so long as this activity continues. Thus, the Carabineros in Toconao began advising tourists not to climb the volcano due to the high risk of both small explosive eruptions and of additional collapse along the S rim (along the favored ascent route).

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: S. Matthews, Univ of Bristol; M. Gardeweg, SERNAGEOMIN, Santiago.


Long Valley (United States) — March 1995 Citation iconCite this Report

Long Valley

United States

37.7°N, 118.87°W; summit elev. 3390 m

All times are local (unless otherwise noted)


Summary of 1994 seismicity, deformation, and CO2 discharge

The following summarizes more detailed reports (Hill, 1995; Johnson and others, 1995; and Sorey and others, 1995) on caldera seismicity, deformation, and CO2 discharge at Mammoth Mountain during 1994.

Earthquake activity within the caldera gradually decreased through the first months of 1994, and activity thereafter remained moderate with a few exceptions. During the entire year there were only ten-twelve M ~3 earthquakes in the caldera, in comparison with 30 in 1993. The earthquakes continued to cluster in the caldera's S moat, and gradually moved northward. During 1994, earthquakes with M <2 took place beneath Mammoth Mountain at depths of 4-20 km.

Seismicity in the Sierra Nevada block, S of the caldera, persisted at a moderate level throughout the year and was concentrated in a broad band extending S from Mount Morrison to Red Slate Mountain. In the Chalfant Valley, E of the Long Valley Caldera and W of the White Mountains, over 20 M ~3 earthquakes occurred throughout 1994, with many smaller late M <2 aftershocks associated with the M 6.4 Chalfant Valley earthquake of 1986.

Swelling of Long Valley's resurgent dome continued at a steady rate of 2-3 ppm/year, resembling 1993 activity. Deformation measurements, using a two-color geodetic distance-meter (geodimeter), revealed steady extension rates to the N and E of a central survey site (CASA, figure 17) from mid-1991 through the end of 1994. To the W and SW of CASA, extension rates gradually decelerated beginning in mid-to-late 1993 and continuing through 1994.

Figure (see Caption) Figure 17. Earthquake epicenters in the Long Valley region, 1994. Modified from Hill (1995).

Dead mature pine trees were found in four separate areas on the flanks of Mammoth Mountain during 1994. Reports of asphyxia among workers entering poorly ventilated parts of the tree kill areas and an area near the top of the Chair 3 ski lift were also recorded during 1994, and were correlated with high (10-90%) CO2 concentrations in the soils (Sorey and others, 1995). The area of tree mortality has expanded since 1989, when the first tree death was reported. Several explanations have been put forward, including: 1) dike intrusion during the intense earthquake swarm below Mammoth Mountain of April-December 1989; 2) ongoing shallow silicic magma intrusion; 3) ongoing input of basaltic magma from a deeper source associated with the long-period earthquakes that began in 1989; and 4) gas release from a volatile-rich vapor zone surrounding areas of previously emplaced igneous rocks.

References: Hill, David P., 1995, Long Valley Caldera Monitoring Report (Oct - Dec 1994): U.S. Geological Survey, Office of Earthquakes, Volcanoes, and Engineering, 345 Middlefield Rd. Menlo Park, CA 94025, 16 p.

Sorey, Mike, Evans, Bill, and Farrar, Chris, 1994, Gas composition and discharge rate at Mammoth Mountain, in Hill, 1995, Long Valley Caldera Monitoring Report (Oct - Dec 1994): U.S. Geological Survey, 2 p.

Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.

Information Contacts: D. Hill, USGS Menlo Park.


Manam (Papua New Guinea) — March 1995 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Gentle vapor emissions, weak glow, and low-level seismicity

"South Crater released occasional gentle emissions of thin-to-thick white vapour during most of the month, but from 28-31 March the amount of vapour emissions decreased. Thin wispy blue vapour emissions were observed on the 31st. Weak steady glow was observed occasionally (on 3, 22-24, and 26-28 March). There were no audible sounds produced. Main Crater also released occasional gentle, thin-to-thick white vapour emissions. There were no night glows and no audible sounds. Seismicity fluctuated but was at a low level during most of the month. A decline in seismic activity occurred on 26 March and persisted for the remainder of the month."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: B. Talai, RVO.


Martin (United States) — March 1995 Citation iconCite this Report

Martin

United States

58.172°N, 155.361°W; summit elev. 1863 m

All times are local (unless otherwise noted)


Large steam plumes, but no eruptive activity

On 15 March, the U.S. National Weather Service received a report from the town of King Salmon of steam plumes rising 600-900 m over the general vicinity of Mount Martin volcano in Katmai National Park. No eruptive activity was detected during analysis of satellite imagery. The mostly ice-covered Mount Martin stratovolcano has a poorly documented record of minor historical eruptive activity. However, vigorous steam plumes from its summit crater are common.

Geologic Background. The mostly ice-covered Mount Martin stratovolcano lies at the SW end of the Katmai volcano cluster in Katmai National Park. The volcano was named for George C. Martin, the first person to visit and describe the area after the 1912 eruption. It is capped by a 300-m-wide summit crater, which is ice-free because of an almost-constant steam plume and contains a shallow acidic lake. The edifice overlies glaciated lava flows of the adjacent mid- to late-Pleistocene Alagoshak volcano on the WSW and was constructed entirely during the Holocene. Martin consists of a small fragmental cone that was the source of ten thick overlapping blocky dacitic lava flows, largely uneroded by glaciers, that descend 10 km to the NW, cover 31 km2, and form about 95% of the eruptive volume of the volcano. Two reports of historical eruptions that originated from uncertain sources were attributed by Muller et al. (1954) to Martin.

Information Contacts: Alaska Volcano Observatory.


Poas (Costa Rica) — March 1995 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Continued moderate seismicity, but no tremor; lake rise

During February the green-turquoise colored lake rose to its December 1994 level. The lake contained clouds of suspended sulfur, and had a temperature of 47°C. Lake evaporation caused minor steam clouds (columns <50 m tall); in the S part of the lake constant bubbling took place with sporadic gushing of water.

During February seismic station POA2 (located 2.7 km SW of the principal crater) registered 4,937 earthquakes (high, medium, and low-frequency events combined). This was the largest number of earthquakes since July 1994. It followed a low of 2,555 earthquakes in December 1994 and previous highs of ~7,000 earthquakes in March and April 1994. Although up to 200-300 hours of tremor took place during mid-1994, in February 1995 less than an hour of tremor was registered. Events of high frequency (above 3 Hz) took place 20 times, a comparatively high number for Poás.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernández, V. Barboza, and J. Barquero, OVSICORI; G. Soto, ICE.


Popocatepetl (Mexico) — March 1995 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Ash plumes; two SO2-flux measurements from January (1-4 kilotons/day)

. . . SO2 flux was estimated twice during January using COSPEC. On 15 January scientists made airborne measurements but were unable to establish a GPS navigational fix for 2-3 hours and so made wind speed estimates from map positions and estimates by their pilot, Sergio Zambrano. On 28 January the plume was traversed by a van on a route between the Puebla airport and a junction N of Atlixco; wind speed was from pilot reports to the Puebla airport. Two 15-minute eruptions of dark ash were noted (at 0922 and 1015). Results of these SO2 flux measurements were as follows: 1) 15 January, 3,680 ± 300 tons/day; 2) 28 January, 2,000 ± 1,000 tons/day.

At 1000 on 27 January a light beige plume rose no more than 100-200 m above the crater rim and was visible downwind for about 100 km. In addition, sufficient ash fell on the Puebla airport during the night of 27 January to make the tarmac (airport surface) light in color and to visibly cover freshly washed planes.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Stan Williams, Tobias Fisher, and Caitlin Gorman, Arizona State University, USA; Claus Siebe and Hugo Delgado, Instituto de Geofísica, UNAM, Coyoacan.


Rabaul (Papua New Guinea) — March 1995 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Mild explosive activity at Tavurvur

"Explosions at Tavurvur were mostly mild with emission clouds rising slowly to ~1 km above the crater at intervals of ~5-15 minutes. Seismic activity was slightly elevated on 1-2 March, but then decreased sharply in accord with weaker visible activity. The activity remained low for 24 hours then started to increase at a steady rate until it peaked on the 6th. Activity decayed the following day, but then began a gradual recovery that continued until 14 March. The explosions continued at intervals of ~5-15 minutes with ash emissions lasting 2-5 minutes. On 15 March a slight increase in seismic activity occurred as indicated by larger and more frequent explosion earthquakes, although visible activity appeared unchanged. Seismicity peaked on the 19th and then declined slightly over a period of ~48 hours. During the next 10 days the activity showed minor fluctuations but on average there were ~6 events/hour. On 30 March at 0805 and 2034 two strong explosions occurred. Dense ash clouds rose ~3 km above the crater and the flanks of Tavurvur were showered with lava fragments. These explosions signified a dramatic change in the pattern of activity as the frequency of explosions dropped markedly. The intervals between explosions sometimes lasted several hours.

"Aerial inspections of Tavurvur and Vulcan were conducted on 6, 13, and 21 March. The active crater at Tavurvur was bowl-shaped. On two occasions (6 and 21 March) there appeared to be an ash-mantled lava mound on the floor of the crater. At the NW and SE edges of the mound were a number of small vents (~1-2 m wide). These vents were aligned roughly in two arcs, which might represent small fissures. Between eruptions some vents emitted blue vapour. When inspected on 14 March, three rubble-covered vent areas were noted on the S, E, and NE parts of the crater floor. Low ridges of ash separated these vents. Weak fumaroles were present on parts of Tavurvur's main crater, especially on the N Wall. Fumarolic activity was also noted on the 1994 lava flow.

"Apart from the seismic activity related to events at Tavurvur, which were basically low-frequency explosion earthquakes, overall seismic activity of Rabaul Caldera was very low. Only five well-located high-frequency earthquakes were recorded (compared to 4 in February and 28 in January). Three occurred outside the caldera and the other two were under Tavurvur. The electronic tiltmeter at Matupit Island continued to show a trend of slow deflation of the caldera.

"Vulcan continued to exhibit only weak fumarolic activity at the W base of the 1994 crater. Hot springs along the N shore yielded temperatures of ~100°C. Rabaul continued to be under a State of Emergency with access to severely affected areas being controlled because of the risk of mud flows and flooding. Since the eruption started in September 1994, only one death was reported related to flooding."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: B. Talai, RVO.


San Miguel (El Salvador) — March 1995 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Increased seismicity and minor ashfall near the crater

New fumaroles were found near the central vent in early January, followed by an increase in seismic activity from an average of 20-30 events/day. On 8 February there were 52 recorded earthquakes. Seismicity increased to 73 events on 19 February, 100 on the 20th, and peaked at 267 on the 21st. This activity then declined on 22 February to an average of 76 events/day, a rate which continued through at least 24 March. Minor ashfall was reported on 23 March within ~100 m of the crater.

The Centro de Investigaciones Geotécnicas (CIG) concluded that this activity was no cause for alarm, but they would increase their monitoring efforts. The population at risk from an eruption with significant ashfall is a mix of urban and rural residents. The city of San Miguel (10 km NE) has a population of ~150,000, and the rural zone that would likely be affected has a population of ~100,000.

Geologic Background. The symmetrical cone of San Miguel volcano, one of the most active in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. The unvegetated summit rises above slopes draped with coffee plantations. A broad, deep crater complex that has been frequently modified by historical eruptions (recorded since the early 16th century) caps the truncated summit, also known locally as Chaparrastique. Radial fissures on the flanks of the basaltic-andesitic volcano have fed a series of historical lava flows, including several erupted during the 17th-19th centuries that reached beyond the base of the volcano on the N, NE, and SE sides. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. The location of flank vents has migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Jorge Alberto Rodríguez Deras, Director, Centro de Investigaciones Geotécnicas, San Salvador, El Salvador.


Semeru (Indonesia) — March 1995 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Ash eruptions, lava avalanches, and summit glow

Activity from the Jonggring Seloko summit crater continued in January and February 1995. Ash eruptions rose as high as 600 m above the summit. Lava avalanches increased in frequency during January and early February, and traveled down the Kembar River drainage to a distance of 750 m from the summit. Glow was sometimes observed 50-100 m above the summit. On the morning of 6 February three pyroclastic avalanches moved 800-1,000 m from the summit along the Kembar River before turning into the Kobokan River.

Tremor and volcanic earthquakes (both A- and B-type) were variable, with 20-110 events/day and 1-12 events/day, respectively (figure 5, top). Maximum tremor amplitude was 3-18 mm during the first week of January before increasing and peaking at 30 mm on the 8th. The daily number of explosions, recorded by a seismograph, showed an overall decline from 40-190 events/day in December to

Figure (see Caption) Figure 5. Tremor events and B-type volcanic earthquakes (top), and explosion and avalanche events detected by seismograph (bottom) at Semeru, December 1994-March 1995. Courtesy of VSI

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: W. Tjetjep, VSI.


Slamet (Indonesia) — March 1995 Citation iconCite this Report

Slamet

Indonesia

7.242°S, 109.208°E; summit elev. 3428 m

All times are local (unless otherwise noted)


Increased seismicity and gas emission

Seismicity increased in January-February 1995. Continuous volcanic tremor (maximum amplitude 21 mm) was recorded during 14-19 January, followed by intermittent tremor (maximum amplitude 10 mm) until 26 January and during 6-10 February. Earthquakes associated with gas emissions were recorded at an average rate of 50 events/day in late January; by the end of February these had increased to 150 events/day (figure 06sla01f). No explosive activity was observed or detected.

Figure (see Caption) Figure 1. Daily number of gas-emission earthquakes and tremor amplitude at Slamet, January-February 1995. Courtesy of VSI.

Geologic Background. Slamet, Java's second highest volcano at 3428 m and one of its most active, has a cluster of about three dozen cinder cones on its lower SE-NE flanks and a single cinder cone on the western flank. It is composed of two overlapping edifices, an older basaltic-andesite to andesitic volcano on the west and a younger basaltic to basaltic-andesite one on the east. Gunung Malang II cinder cone on the upper E flank on the younger edifice fed a lava flow that extends 6 km E. Four craters occur at the summit of Gunung Slamet, with activity migrating to the SW over time. Historical eruptions, recorded since the 18th century, have originated from a 150-m-deep, 450-m-wide, steep-walled crater at the western part of the summit and have consisted of explosive eruptions generally lasting a few days to a few weeks.

Information Contacts: W. Tjetjep, VSI.


Tengger Caldera (Indonesia) — March 1995 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


Eruption at Bromo causes ashfall 20 km away; gas emissions

An ash eruption from the active vent on the N side of Bromo crater at 0600 on 3 March produced a dark gray plume that rose 100-200 m above the crater rim. The plume extended >20 km S and SE, causing ashfall (0.5-2 mm thick) that covered ~10 km2 of cultivated land in and around the area of Sukapura (~20 km away). No injuries were reported as a result of this activity. Continuous weak-to-moderate gas emissions lasted through the end of March. COSPEC measurements showed that the SO2 flux was 6 t/d on 8 March. SO2 emission gradually increased to a peak of 22.8 t/d on the 18th before dropping again on 19-20 March (figure 1). Measurements during 27-31 March were again higher, 15-21 t/d.

Figure (see Caption) Figure 1. SO2 values measured by COSPEC (dots) and daily number of gas-emission tremor events (solid line) at Bromo (Tengger Caldera), March 1995. Courtesy of VSI.

Volcanic tremor events associated with the gas emissions (maximum amplitude 2-7 mm) were recorded continuously beginning on 9 March using PS-2 and Teledyne seismographs installed between 500 and 1,000 m from the active crater. The number of distinct earthquakes (maximum amplitude1,100 to ~400, and gradually decreased through the end of the month (figure 1). Three tectonic earthquakes were detected on 23 February, and one each on 24 and 28 February, and 28 March.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: W. Tjetjep, VSI.


Turrialba (Costa Rica) — March 1995 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Weak fumarolic activity

"Weak fumarolic activity was witnessed in the SW and Central craters during an overflight in February." Previously described tilt measurements in 1994 (18:01) disclosed no changes above detection limits.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: G. Soto, ICE.


Ulawun (Papua New Guinea) — March 1995 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Continued moderate vapor emissions; SO2 data from October 1994

Activity on most days during January-March remained at a low level, with only moderate or moderate-strong thick white vapor emissions. Seismicity was low during the first week of January, the first three weeks of February, and the first three weeks of March; the seismograph was not operational at other times.

On 6 October 1994 the stratovolcano was visited by Chris McKee and Rod Stewart (RVO), and Stan Williams and Steve Schaefer (ASU), because of reports that the gas plume was abnormally large. Williams suggested that the plume appeared larger in volume and visible extent than during his two other visits in 1983 and 1989. Airborne COSPEC measurements made in clear atmospheric conditions showed the SO2 flux to be 1,260 ± 100 t/d. Prior measurements in 1983 and 1989 were 71 and 120 t/d, respectively.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the north coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: B. Talai, C. McKee, and R. Stewart, RVO; S. Williams and S. Schaefer, Arizona State University.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).