Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Tinakula (Solomon Islands) Thermal anomalies in satellite data December 2018-June 2019; ship visit January 2019

Piton de la Fournaise (France) Eruptive episodes in February-March and June 2019; multiple fissures and lava flows

Semeru (Indonesia) Decreased activity after October 2018

Heard (Australia) Thermal hotspots continue during October 2018-March 2019 at the summit and on the upper flanks

Dukono (Indonesia) Numerous ash explosions from October 2018 through March 2019

Rincon de la Vieja (Costa Rica) Occasional weak phreatic explosions continue through February 2019

Turrialba (Costa Rica) Frequent passive ash emissions continue through February 2019

San Cristobal (Nicaragua) Weak ash explosions in January and March 2019

Semisopochnoi (United States) Minor ash explosions during September and October 2018

Asosan (Japan) Multiple brief ash emission events during April and May 2019; minor ashfall in adjacent villages

Nyamuragira (DR Congo) Lava lake reappears in central crater in April 2018; activity tapers off during April 2019

Tengger Caldera (Indonesia) New explosions with ash plumes from Bromo Cone mid-February-April 2019



Tinakula (Solomon Islands) — July 2019 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Thermal anomalies in satellite data December 2018-June 2019; ship visit January 2019

Remote Tinakula lies 100 km NE of the Solomon Trench at the N end of the Santa Cruz Islands, which are part of the country of the Solomon Islands located 400 km to the W. It has been uninhabited since an eruption with lava flows and ash explosions in 1971 when the small population was evacuated (CSLP 87-71). The nearest communities live on Te Motu (Trevanion) Island (about 30 km S), Nupani (40 km N), and the Reef Islands (60 km E); residents occasionally report noises from explosions at Tinakula. Ashfall from larger explosions has historically reached these islands. The most recent eruptive episode was a large ash explosion and substantial SO2 plume during 21-26 October 2017; satellite imagery suggested that a flow of some type traveled down the scarp on the W flank. Renewed thermal activity that was recognized in satellite imagery beginning in December 2018 continued intermittently through June 2019 and is covered in this report. Satellite imagery and thermal data are the primary sources of information for this volcano. It is occasionally visited by members of the National Disaster Management Office (NDMO) of the Solomon Islands Government, tourists, and research vessels who are able to capture ground-based information.

Satellite images from December 2018 to February 2019 show thermal anomalies at the summit vent. Excellent ship-based photographs of the island on 24-25 January 2019 provided by a crewmember from the R/V Petrel identify numerous volcanic features and show a steam-and-gas plume at the vent. Satellite images from April and May 2019 show thermal anomalies at both the summit vent and along the W flank scarp suggesting flow activity during that time.

A stream of incandescence on the NW flank of Tinakula in a Sentinel 2 satellite image on 24 October 2017 confirmed that some type of high-temperature flow accompanied the explosions and eruptive activity of 21-25 October 2017 (BGVN 43:02). Satellite imagery during most of 2018 recorded steam plumes drifting in several directions from the summit, but no thermal activity (figure 24). There was no further evidence of activity in satellite visible or thermal data until almost exactly one year later when the MIROVA project recorded two thermal alerts in the third week of October 2018 (figure 25). Satellite images from that week were cloudy and did not confirm any surface activity.

Figure (see Caption) Figure 24. Sentinel-2 satellite imagery of Tinakula provides valuable information about activity at this remote volcano in the South Pacific. A large explosion with ash plumes and flows occurred during 21-26 October 2017. Top left: a strong E-W linear thermal anomaly suggesting a flow event from the summit was evident on the NW flank on 24 October 2017. Top right: a small steam plume rose from the summit vent on a cloudless 11 February 2018. Bottom left: a dense steam plume drifted SE from the summit vent on 4 September 2018. Bottom right: clouds and dense steam obscure the summit on 24 October 2018, about the same time that MIROVA reported a thermal anomaly. Top left image uses bands 12, 11, 8A, others use 12, 4, 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 25. The MIROVA project recorded the first thermal anomaly in a year from Tinakula during the third week of October 2018. Courtesy of MIROVA.

The first satellite imagery confirming renewed thermal activity appeared on 8 December 2018, around the same time as a small MIROVA anomaly. After that, several images during January and February 2019 confirmed moderately strong thermal activity at the summit (figure 26). Whether the anomalies were the result of active lava effusion or strong incandescent gases from the summit vent is uncertain.

Figure (see Caption) Figure 26. Thermal anomalies at the summit vent of Tinakula were recorded six times between early December 2018 and early February 2019 with Sentinel-2 satellite images. Top row: 8 December 2018 and 2 January 2019. Middle row: 12 (anomaly is just below date) and 27 January 2019. Bottom row: 1 and 6 February 2019. All images are bands 12, 4, 2. Courtesy of Sentinel Hub Playground.

Visual confirmation of activity at Tinakula is rare, but the research vessel R/V Petrel sailed past the volcano on 24 and 25 January 2019 and a crewmember provided detailed images of the W flank and vent area. The summit vent is located at the top of a W facing scarp, and steam is frequently observed rising from the vent (figures 27). Recent flows and volcaniclastic deposits were visible in the ravine on the W flank (figures 28 and 29). Fresh-looking lava was also visible near the summit vent on top of older deposits (figure 30). Eroded volcaniclastic deposits near the base of the scarp on the W flank were visible on top of older veined and layered volcanic rocks (figure 31). Crewmembers on the vessel R/V Petrel could clearly see an incandescent glow from the summit crater at night (figure 32).

Figure (see Caption) Figure 27. A view from the SW of the W flank of Tinakula on 24-25 January 2019. The summit vent is at the top of a W facing scarp, the steam plume drifted E. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 28. The W flank of Tinakula as seen from the W on 24-25 January 2019. The steam plume drifted E. Recent flows and volcaniclastic deposits appeared dark in the steep ravine on the W face (left side). Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 29. Steam and gas rose from the summit vent at Tinakula on 24-25 January 2019. Recent lava deposits are visible in front of the plume and in the ravine on the left (the W flank). Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 30. The edge of the summit vent of Tinakula on 24-25 January 2019 had recent lava on older deposits; steam and gas is rising from the vent in the background. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 31. The W flank of Tinakula on 24-25 January 2019. Eroded volcaniclastic deposits overlie older veined and layered volcanic rocks. Used with permission from Paul G Allen's Vulcan Inc.
Figure (see Caption) Figure 32. Incandescence was clearly visible from the summit vent at Tinakula on 24-25 January 2019. Used with permission from Paul G Allen's Vulcan Inc.

During April and May 2019, both the MIROVA project and MODVOLC measured a number of thermal anomalies (figure 33) using MODIS satellite data. MODVOLC alerts were issued on 4 and 20 April, and 11, 18, and 27 May. Sentinel-2 satellite images during the period confirmed that a flow on the W flank was a likely source of the thermal energy in addition to the summit vent (figure 34). Thermal anomalies appeared again at the end of June in MIROVA data, but no satellite images showed anomalies at that time.

Figure (see Caption) Figure 33. The number and intensity of MIROVA thermal anomalies increased at Tinakula during April and May 2019. After a short pause, they returned at the end of June. Courtesy of MIROVA.
Figure (see Caption) Figure 34. Sentinel-2 satellite images captured thermal anomalies at the summit and on the W flank of Tinakula during April and May 2019 suggesting the presence of an incandescent flow down the W scarp. Top row: 7 and 22 April 2019 (bands 12, 8, 4). Bottom row: 27 April and 12 May 2019 (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Vulcan Inc. (URL: https://www.vulcan.com/), additional details about the R/V Petrel (URL: https://www.paulallen.com/).


Piton de la Fournaise (France) — July 2019 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Eruptive episodes in February-March and June 2019; multiple fissures and lava flows

Short pulses of intermittent eruptive activity have characterized Piton de la Fournaise, the large basaltic shield volcano on La Réunion Island in the western Indian Ocean, for several thousand years. For the last 20 years, frequent effusive basaltic eruptions have occurred on average twice per year. The activity is characterized by lava fountains and lava flows, and occasional explosive eruptions that shower blocks over the summit area and produce ash plumes. Almost all of the recent activity has occurred within the Enclos Fouqué caldera, although past eruptions in 1977, 1986, and 1998 have occurred at vents outside of the caldera. Four separate eruptive episodes were reported during 2018; from 3-4 April, 27 April-1 June, 13 July, and 15 September-1 November (BGVN 43:12, 43:09). Two episodes from 2019 during February-March and June are covered in this report, with information provided primarily by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) as well as satellite instruments.

Piton de la Fournaise experienced two eruptions during November 2018-June 2019. The first lasted from 18 February to 10 March 2019, and the second episode was 11-13 June. The episode in February-March started consisted of multiple fissures opening on the E flank of the Dolomieu crater on 18 February with lava flows that traveled several hundred meters. After a brief pause, one new fissure opened nearby on 19 February and produced up to 3 million m3 of lava in a little over four days. Although the flow rate then declined, the eruption continued until 10 March. During the last three days, 7-10 March, two new fissures opened nearby and produced large volumes of lava, bringing the total eruptive volume to about 14.5 million m3. After little activity during April and May, a small eruption occurred on the SSE outer slope of Dolomieu crater that lasted for about 48 hours on 11-13 June; multiple small flows traveled about 1,000 m down the steep flank before ceasing. The MIROVA thermal anomaly graph of log radiative power clearly showed the abruptness of the beginning and ends of the last three eruptive episodes at Piton de la Fournaise from August 2018 through June 2019 (figure 165).

Figure (see Caption) Figure 165. The MIROVA graph of thermal energy from Piton de la Fournaise from 30 July 2018 through June 2019 shows the last three eruptive episodes at the volcano. From 15 September through 1 November 2018 fissures and flows were active on the SW flank of Dolomieu crater near Rivals crater (BGVN 43:12). Fissures opened on the E flank of the crater on 18 February 2019, and after a brief pause resumed on 19 February at the foot of Piton Madoré. Lava flows remained active until 10 March 2019. A short episode of lava effusion occurred on 11-12 June 2019 on the SSE outer slope of Dolomieu crater. Courtesy of MIROVA.

Activity during November 2018-March 2019. Following the end of the 15 September-1 November 2018 eruption, seismic activity immediately below the summit remained low (with only 20 shallow and two deep earthquakes during November). The inflationary signal recorded since the beginning of September stopped, and the OVPF deformation networks did not record any significant deformation. There were 35 shallow earthquakes (0-2 km depth) below the summit crater during December, and one deep earthquake. Only 12 shallow earthquakes and one deep earthquake (greater than 2 km below the surface) were reported in January.

OVPF reported an increase in CO2 concentrations beginning in December 2018, and noted the beginning of inflation on 13 February 2019. A seismic swarm of 379 earthquakes accompanied by minor but rapid deformation (less than 1 cm) was reported on 16 February 2019. A new seismic swarm of 208 earthquakes began early on 18 February with a much larger ground deformation (10 cm of elongation of the summit zone). A volcanic tremor indicative of the arrival of magma near the surface began at 0948 that morning. Webcams indicated that eruptive fissures had opened in the NE part of the Enclos Fouqué caldera. The onset of the eruption was marked by a sudden drop in CO2 flux which then stabilized. The eruptive sites were confirmed visually around 1130. Three fissures with actively flowing lava opened on the E flank of Dolomieu Crater; the fountains of lava were less than 30 m high. The front of the longest flow had reached 1,900 m elevation after one hour. The eruption lasted a little over 12 hours and was over by 2200 that evening; it covered about 150-200 m of the hiking trail to the summit.

Seismicity remained high after the event ended, and at 1500 on 19 February 2019 another seismic swarm of 511 deep earthquakes located under the E flank at about 2.5 km depth occurred. It was not accompanied by a significant amount of deformation. At 1710 tremor signals appeared on the observatory seismographs and the first gas plumes and lava ejection were observed at 1750 and 1912, respectively. During an overflight the next day (20 February), OVPF team members observed the new eruptive site at an elevation of 1,800 m at the foot of Piton Madoré. One fissure and one fountain were active at 0620 on 20 February and the flow front was at 1,300 m elevation (figure 166). During the night of 20-21 February the flow front crossed over the "Grandes Pentes" area in the eastern half of the Enclos Fouque (figure 167).

Figure (see Caption) Figure 166. The eruption which began on 19 February 2019 on the E flank of Dolomieu crater at Piton de la Fournaise produced a lava fountain and flow which traveled down at least 500 m of elevation by the next morning when this photo was taken at 0620 local time. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du mercredi 20 février 2019 à 11h00, Heure locale).
Figure (see Caption) Figure 167. The active fissure at Piton de la Fournaise was producing lava fountains and an active flow during the evening of 20 February 2019. Overnight the flow crossed over the "Grandes Pentes" area of the caldera. Photo courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du jeudi 21 février 2019 à 14H00, Heure locale).

OVPF reported on 22 February 2019 that 22 shallow earthquakes had been reported since the eruption began on 19 February. Surface flow rates estimated from satellite data, via the HOTVOLC system (OPGC - University of Auvergne), were between 2.5 and 15 m3/s. The quantity of lava emitted between 19 and 22 February was between 1 and 3 million m3. OVPF observed the growth of an eruptive cone that was filled with a small lava lake producing ejecta during a morning overflight on 22 February. A channelized flow moved downstream from the cone and split into two lobes about 1 km from (and 200 m below) the cone (figure 168). The split in the flow occurred near the Guyanin crater. The N flowing lobe, about 50 m wide, had an actively flowing front located at 1,320 m elevation; the incandescent flow was travelling over a recent flow (likely from the previous night). The S-flowing lobe spread to 200 m wide and split into two tongues 300 m SE of Guyanin crater.

Figure (see Caption) Figure 168. During an overflight on the morning of 22 February 2019 scientists from OVPF observed a growing spatter cone with a small lava lake at Piton de la Fournaise. A channelized flow moved downstream from the fissure and split into two flows. Photo courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 22 février 2019 à 13h30, Heure locale).

Incandescent ejecta from the cone was captured in a webcam image overnight on 22-23 February 2019 (figure 169). The rate of advance of the flow slowed significantly by 24 February, but the intensity of the eruptive tremor remained relatively constant. Mapping of the lava flow on 28 February carried out by the OI2 platform (OPGC - University Clermont Auvergne) from satellite data confirmed the slow progress of the flow after 24 February (300 m in 5 days) (figure 170). The flow front was located at 1,200 m elevation, and only the N arm was active; the lava had traveled about 2.2 km from the vent by 28 February.

Figure (see Caption) Figure 169. Incandescent ejecta from the eruptive cone at Piton de la Fournaise was captured in the webcam in the early hours of 23 February 2019. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 23 février 2019 à 13h30, Heure locale).
Figure (see Caption) Figure 170. Contours of the lava flows at Piton de la Fournaise from 18-28 February 2019 were determined from satellite data by the OI2 platform (Université Clermont Auvergne), dated 18 (red) and 19 (blue) February (top image); 20 (green), 21 (red), 22 (blue), 27 (turquoise), and 28 (pink) February (bottom image). Courtesy of and copyright by OVPF/IPGP. Top: Bulletin d'activité du vendredi 22 février 2019 à 13h30 (Heure locale); bottom: Bulletin d'activité du jeudi 28 février 2019 à 16h30 (Heure locale).

Between 28 February and 1 March 2019 a third lobe of lava appeared flowing NE from the vent on the N side of the new flow area; it split into two lobes sometime on 1 March. Very little new lava was recorded on the other lobes. By 4 March the flow rate estimated by satellite data was about 7.5 m3/s. During a site visit on the morning of 5 March OVPF scientists sampled the N lobe of the flow and bombs and tephra near the cone, and acquired infrared and visible images. They noted the continued growth of the cone which still had an open vent at the summit and a base 100 m in diameter. It was 25 m high with a 50-m-wide eruptive vent at the top (figure 171). High-temperature gas emissions and strong Strombolian activity issued from the vent. Steam emissions were present around the base of the cone, suggesting the presence of lava tunnels. A single lobe of lava flowed N from the cone.

Figure (see Caption) Figure 171. The eruptive cone at Piton de la Fournaise on 5 March 2019 had a 100-m-diameter base, 25 m of vertical height, and 50-m-wide vent at the summit. Courtesy of and copyright by OVPF/IPGP, (Bulletin d'activité du mardi 5 mars 2019 à 17h30, Heure locale).

A new fissure that opened about 150 m from the main vent on the NW flank of Piton Madoré was first observed on the morning of 6 March (figure 172); OVPF concluded that it had opened late on 5 March. A small cone was forming and a new flow traveled N from the main eruptive site. At least six new emission points were noted the following morning (7 March) around the Piton Madoré. Poor weather prevented confirmation by aerial reconnaissance that day, but in a site visit on 8 March OVPF scientists determined that the new fissure from 5 March remained active; a small cone about 10 m high had two flow lobes on the W and N sides (figure 173). A fissure that opened on 7 March was located 300 m S of the 19 February vent and oriented E-W. It was very active on the morning of 8 March with two 50-m-high lava fountains (figure 174). Samples collected by OVPF indicated that the vents of 5 and 7 March produced lava of different compositions.

Figure (see Caption) Figure 172. A new fissure that opened about 150 m from the main vent on the NW flank of Piton Madoré at Piton de la Fournaise was first observed on the morning of 6 March 2019; OVPF concluded that it had opened late on 5 March. A small cone was forming on the flank of an old one and a new flow traveled N from the main eruptive site. Courtesy of OVPF/IPGP, copyright by Helicopter Coral (Bulletin d'activité du jeudi 7 mars 2019 à 15h00 Heure locale).
Figure (see Caption) Figure 173. The 5 March 2019 fissure at Piton de la Fournaise on the NW flank of Piton Madoré still had two active flow lobes emerging from it and heading N and W on 8 March 2019. Courtesy of and copyright by OVPF/IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).
Figure (see Caption) Figure 174. A fissure that opened on 7 March 2019 at Piton de la Fournaise was located 300 m S of the 19 February vent and oriented E-W. It was very active on the morning of 8 March 2019 with two 50-m-high lava fountains. Courtesy of and copyright by OVPF/IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).

There was a strong increase in the eruptive tremor intensity on 7 March, related to the opening of the two new fissures on 5 and 7 March (figure 175). As a result, the surface flow estimates made from satellite data increased significantly to high values greater than 50 m3/s, with the average values on 7-8 March of around 20-25 m3/s. The increased flow rates resulted in the flows traveling much greater distances. By the morning of 9 March the active flow had reached 650-700 m above sea level. The flow front had traveled about 1 km in 24 hours. Strong seismicity had been increasing under the summit zone for the previous 48 hours. After a phase of very strong surface activity observed overnight on 9-10 March that included lava fountains 50-100 m high (figure 176), surface activity ceased around 0630 on 10 March, and seismic activity decreased significantly. OVPF noted that sudden increases in seismicity and flow rates near the end of an eruption have occurred at about half of the eruptions at Piton de la Fournaise in recent years. Lava volumes emitted on the surface between 18 February and 10 March 2019 were estimated at about 14.5 million m3 (figure 177).

Figure (see Caption) Figure 175. An infrared view of the eruptive site on the E flank of Dolomieu crater at Piton de la Fournaise on 8 March 2019 clearly showed the original fissure from 19 February (bottom right of center), the fissure on Piton Madore that opened on 5 March (right) and the fissures that opened on 7 March (upper, right of center). The combined activity produced significant thermal and seismic activity at the volcano. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 8 mars 2019 à 17h00, Heure locale).
Figure (see Caption) Figure 176. Lava fountains 50-100 m high were the result of very strong surface activity observed overnight on 9-10 March 2019 at Piton de la Fournaise. Surface activity ceased around 0630 on 10 March, and seismic activity decreased significantly. Photo taken on 9 March 2019 around midnight from the RN2. Courtesy of OVPF/IPGP, copyright by A. Finizola LGSR/IPGP (Bulletin d'activité du dimanche 10 mars 2019 à 19h30 Heure locale).
Figure (see Caption) Figure 177. A sudden increase in the flow rate at the end of the 18 February-10 March 2019 eruption at Piton de la Fournaise was recorded by researchers at the Université Clermont Auvergne. OVPF noted this was typical of about half of the eruptions at Piton de la Fournaise. Courtesy of OVPF/IPGP, copyright by HOTVOLC, Université Clermont Auvergne (OVPF Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).

Significant SO2 plumes were captured by the TROPOMI instrument on the Sentinel 5-P satellite throughout the 18 February-10 March eruption (figure 178). After the surface eruption ceased, shallow seismicity continued at a lower rate of about 12 earthquakes per day. The end of the eruption (7-10 March) was accompanied by a marked deflation, interpreted by OVPF as the rapid emptying of the magma reservoir. Following the end of the eruption, inflation resumed for the rest of March but then ceased. Seismicity continued at a lower level during April with an average of six shallow earthquakes per day.

Figure (see Caption) Figure 178. Multiple days of high DU value SO2 plumes were recorded by the TROPOMI instrument on the Sentinel 5-P satellite during the 18 February-10 March 2019 eruption at Piton de la Fournaise. Top row: during 18, 21, and 22 February SO2 plumes drifted SE. Middle row: during 23, 24, and 25 February the wind direction changed from SE through S to SW and left a curling trail of SO2. Bottom row: 5, 7, and 8 March showed an increase in SO2 emissions that corresponded with increased seismicity and lava flow output before the eruption ceased.

Activity during May-June 2019. OVPF reported slight inflation near the summit beginning in early May, and an increase in CO2 concentration in the soil near Plaine des Cafres and Plaine des Palmistes. Strong shallow seismicity reappeared on 27 May 2019 and recurred on 30 and 31 May. Two small seismic swarms were measured on 31 May in the early morning. A new seismic swarm beginning at 0603 on 11 June accompanied by rapid deformation suggested a new eruption was imminent. A tremor near the summit area was first noted at 0635 local time; the webcams indicated a plume of gas, but poor visibility prevented evidence of fresh lava. Around 0930 that morning OVPF confirmed that five fissures had opened on the outer SSE slope of Dolomieu crater at elevations ranging from 2480 to 2025 m (figure 179). The flow fronts were not visible due to weather. Lava fountains under 30 m in height and lava flows were present in the three lowest fissures. The flows traveled rapidly down the steep flank of the crater (figure 180).

Figure (see Caption) Figure 179. Around 0930 on the morning of 11 June 2019 OVPF confirmed that five fissures had opened on the outer SSE slope of Dolomieu crater at Piton de la Fournaise at elevations ranging from 2480 to 2025 m. Courtesy of and copyright by OVPF-IPGP and Imazpress (Bulletin d'activité du mardi 11 juin 2019 à 11h00).
Figure (see Caption) Figure 180. Thermal imaging of the 11-12 June 2019 eruptive site at Piton de la Fournaise showed multiple streams of lava traveling rapidly down the steep flank from several fissures on 11 June 2019. Courtesy of and copyright by OVPF-IPGP (Bulletin d'activité du mardi 11 juin 2019 à 11h00).

The intensity of the eruptive tremor decreased throughout the day, and by 1530 only the lowest elevation fissure was still active (figure 181). The next afternoon (12 June) images in the OVPF webcam located in Piton des Cascades indicated the flow front was at about 1,200-1,300 m elevation. Seismographs indicated that the eruption stopped around 1200 on 13 June. Poor weather obscured visibility of the flow activity. Seismic activity decreased following the eruption, but appeared to increase again beginning on 21 June, with 10 events detected on 30 June. SO2 plumes were recorded in satellite data on 11 and 12 June 2019.

Figure (see Caption) Figure 181. The intensity of the eruptive activity at Piton de la Fournaise on 11 June 2019 decreased throughout the day, and by 1530 only the lowest elevation fissure was still active. Courtesy of and copyright by OVPF-IPGP (Bulletin d'activité du mardi 11 juin 2019 à 17h45 Heure locale).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Semeru (Indonesia) — April 2019 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Decreased activity after October 2018

The ongoing eruption at Semeru has been characterized by numerous ash explosions and thermal anomalies, but activity apparently diminished in 2018 (BGVN 43:01 and 43:09); this decreased activity continued through at least February 2019. The current report summarizes activity from 24 August 2018 to 28 February 2019.

The Indonesian volcano monitoring agency, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), reported ongoing daily seismicity, dominated by explosion earthquakes and emission-related events from late November through February (figure 35). Ash plumes resulting in aviation advisories by the Darwin Volcanic Ash Advisory Centre (VAAC) were reported on 4, 6-7, and 19 September, and 12 October 2018. The next significant ash plume reported by the VAAC wasn't until 24 February 2019 (table 23).

Figure (see Caption) Figure 35. Seismicity recorded at Semeru during 28 November 2018-26 February 2019. Plot shows explosion earthquakes ('Letusan'), emission-related events ('Hembusan'), felt earthquakes ('Gempa Terasa'), local tectonic events ('Tektonic Lokal'), and distant tectonic events ('Tektonic Jauh'). Courtesy of PVMBG and MAGMA Indonesia.

Table 23. Summary of ash plumes at Semeru during 25 August 2018 through February 2019. The summit is at 3,657 m elevation. Data courtesy of Darwin VAAC.

Date Plume altitude (km) Plume drift Remarks
04 Sep 2018 4.3 W --
06-07 Sep 2018 4.3 SW --
19 Sep 2018 4 SSW Possible ash-and-steam plume.
12 Oct 2018 4.5 W Discrete eruption.
24 Feb 2019 4.3 W Discrete volcanic ash eruption.

Thermal anomalies using MODIS satellite instruments processed by the MODVOLC algorithm were only recorded on 26, 28, and 30 August 2018, and 22 and 31 October 2018. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected numerous hotspots within 5 km of the volcano during August and early September, with a significant decrease in frequency through October (figure 36); only a few scattered hotspots were recorded from November 2018 through February 2019.

Figure (see Caption) Figure 36. MIROVA plot of thermal anomalies (Log Radiative Power) at Semeru during July 2018-February 2019. Courtesy of MIROVA.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Heard (Australia) — April 2019 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Thermal hotspots continue during October 2018-March 2019 at the summit and on the upper flanks

Heard Island, in the Southern Indian Ocean, includes the large Big Ben stratovolcano and the smaller, apparently inactive, Mt. Dixon. Because of the island's remoteness, satellites are the primary monitoring tool. Big Ben has been active intermittently since 1910, and was active during October 2017-September 2018 (BGVN 43:10). Activity continued during October 2018-March 2019.

Satellite photos using Sentinel Hub showed hotspots every month between October 2018 and March 2019. Because the area was frequently covered by a heavy cloud layer, most of the hotspot signals were partially obscured. Though thermal anomalies are usually seen at summit vents, on 18 October 2018 an anomaly was present about 300 m down the E flank. Similarly, on 1 January 2019, a weak anomaly beginning about 200 m down the NW flank was about 300 m long (figure 40).

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected three hotspots, two in October and one in early November 2018, all of low radiative power. There were no MODVOLC alert pixels during this period.

Figure (see Caption) Figure 40. Sentinel-2 L1C image of Heard Island's Big Ben volcano on 1 January 2019 one summit hotspot and an elongated thermal anomaly to the NW. Scale bar (bottom right) is 200 m. The photo was taken in atmospheric penetration view (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon volcano lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben volcano because of its extensive ice cover. The historically active Mawson Peak forms the island's 2745-m high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported in historical time at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Dukono (Indonesia) — April 2019 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions from October 2018 through March 2019

The eruption at Dukono that began in 1933 has showered the area with ash from frequent explosions (BGVN 43:04, 43:12). The Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Center for Volcanology and Geological Hazard Mitigation (CVGHM), is responsible for monitoring this volcano.

This long-term pattern of intermittent ash explosions continued during October 2018-March 2019, with ash plumes rising to between 1.5 and 2.7 km altitude, or about 300-1,500 m above the summit (table 19). Although meteorological clouds often obscured views, satellite imagery captured typical ash plumes on 28 September 2018 (figure 10) and 5 February 2019 (figure 11). Instruments aboard NASA satellites (TROPOMI and OMPS) detected high levels of sulfur dioxide near or directly above the volcano on multiple days during January-March 2019. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to remain outside of the 2-km exclusion zone.

Table 19. Monthly summary of reported ash plumes from Dukono for October 2018-March 2019. The direction of drift for the ash plume through each month was highly variable. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2018 1.5-2.1 --
Nov 2018 1.5-2.1 --
Dec 2018 1.5-2.4 --
Jan 2019 1.8-2.1 --
Feb 2019 1.8-2.7 --
Mar 2019 1.5-2.4 --
Figure (see Caption) Figure 10. Satellite image from Sentinel-2 (LC1 natural color) of an ash plume at Dukono on 28 September 2018 with the plume blowing towards the NE. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 11. Satellite image from Sentinel-2 (LC1 natural color) of an ash plume at Dukono on 5 February 2019, with the plume blowing SW. Courtesy of Sentinel Hub Playground.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Rincon de la Vieja (Costa Rica) — April 2019 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Occasional weak phreatic explosions continue through February 2019

Intermittent small phreatic explosions from the acid lake of Rincón de la Vieja's active crater has most recently occurred since 2011 (BGVN 42:08, 43:03, and 43:09). This activity continued through at least February 2019. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), and the information below comes from its weekly bulletins between 18 August 2018 and 28 February 2019. Weather conditions often prevented webcam views and estimates of plume heights. The volcano was in Activity Level 3 throughout the reporting period (volcano erupting, steady state).

According to OVSICORI-UNA, two distinct, 2-minute-long explosions occurred on 31 August 2018 beginning at 0434 and 1305. Several hours after the eruption tremor became continuous but low-frequency long-period (LP) earthquakes ceased. OVSICORI-UNA reported a gas emission late on 7 September. An unconfirmed small phreatic explosion occurred on 11 September at 0634, and another on 17 September at 1014. The seismic record showed continuous background tremor and very sporadic LP earthquakes.

Intermittent background tremor was recorded during the first half of October, along with a few emissions and phreatic explosions. Deformation measurements during October showed a contraction between the N and S of the volcano, with subsidence. On 17 October there was another phreatic explosion, and thereafter tremor disappeared and seismicity decreased. On 23 and 27 October seismic stations signaled additional possible phreatic explosions.

OVSICORI-UNA reported that a series of explosions began at 1945 on 4 November and consisted of at least three 2-minute-long episodes. The next day at 1511 a plume of water vapor and diffuse gas, recorded by a webcam and visible to residents to the N, rose about 100 m above the crater rim and drifted W. On 9 November a 2-minute-long explosion began at 1703. Another explosion on 27 November at 0237 produced a plume of water vapor and gas that rose 600 m above the crater rim and drifted SW. A short 1-minute explosion began at 1054 on 3 December.

Based on OVSICORI-UNA weekly bulletins, activity remained stable in January 2019 with small-amplitude phreatic explosions on 11, 12, and 14 January. More energetic phreatomagmatic explosions on 17 and 20 January produced lahars. Several small-amplitude explosions were detected at the end of the month. During January, a few LPs, no VTs, and intermittent tremor were recorded.

OVSICORI-UNA reported that two small-scale explosions occurred on 1 February, along with possible events at 1906 and 1950 on 5 February and at 0120 on 6 February. An event at 0000 on 6 February was also recorded; the report noted that poor weather conditions prevented visual observations of the crater. On 16 and 17 February strong degassing was observed. No LPs were recorded, but two significant VTs were detected on 17 and 22 February near or under the crater.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/).


Turrialba (Costa Rica) — April 2019 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Frequent passive ash emissions continue through February 2019

This report summarizes activity at Turrialba during September 2018-February 2019. During this period there was similar activity as described earlier in 2018 (BGVN 43:09), with occasional ash explosions and numerous, sometimes continuous, periods of gas-and-ash emissions (table 8). Data were provided by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

Table 8. Ash emissions at Turrialba, September 2018-February 2019. Cloudy weather sometimes obscured observations. Maximum plume height is above the crater rim. Information courtesy of OVSICORI-UNA.

Date Time Max plume height Plume drift Remarks
27 Aug-05 Sep 2018 -- 100 m SW, W Continuous gas-and-ash emissions.
06 Sep 2018 -- -- -- Mostly gas, punctuated by small sporadic ash plumes.
10 Sep 2018 1210 300 m NW --
01-13 Sep 2018 -- -- -- Continuous gas-and-ash emissions.
17-18 Sep 2018 -- 300 m SW, NW --
27 Sep 2018 0915 200 m NW --
30 Sep-01 Oct 2018 -- 500 m NW, NE --
03 Oct 2018 -- -- -- Incandescence.
08 Oct 2018 0800 500 m N --
10-16 Oct 2018 -- 1,000 m Various Intermittent emissions; some explosions, including an energetic one on 14 Oct at 1712. Clouds prevented estimate of plume height.
17-23 Oct 2018 -- 200-500 m E, NW, SW Periodic gas-and-ash emissions. Frequent Strombolian events since 5 Oct.
25-30 Oct 2018 -- -- -- Periodic ash emissions when weather conditions allowed observations.
26 Oct 2018 0134 500 m NE Ashfall in neighborhoods of Coronado (San José, 35 km WSW) and San Isidro de Heredia (Heredia, 38 km W).
29 Oct 2018 0231 500 m NW --
30 Oct 2018 1406 500 m W --
24 Oct-01 Nov 2018 -- 500 m -- Continuous emissions.
01-06 Nov 2018 0530-0640 500 m SW --
02 Nov 2018 1523, 1703 500 m -- --
03 Nov 2018 0109 500 m -- Short (2-3 minutes) duration events. Ashfall reported in Coronado.
05 Nov 2018 0620 600 m NW --
06-11 Nov 2018 -- 500 m -- Low-level, continuous gas-and-ash emissions occasionally punctuated by energetic explosions that sent plumes as high as 500 m and caused ashfall in several areas downwind, including Cascajal de Coronado, Desamparados (35 km WSW), San Antonio, Guadalupe (32 km WSW), Sabanilla, San Pedro Montes de Oca, Moravia (31 km WSW), Heredia, and Coronado (San José, 35 km WSW). Weather prevented observations on 12 Nov.
13-19 Nov 2018 -- -- -- Periodic, passive ash emissions visible in webcam images or during cloudy conditions inferred from the seismic data.
22 Nov 2018 0710 100 m W --
23 Nov 2018 -- -- -- Frequent pulses of ash.
23-25 Nov 2018 -- 500 m -- Occasional Strombolian explosions ejected lava bombs deposited near the crater; residents of Cascajal de Coronado reported hearing several booming sounds.
26-27 Nov 2018 -- -- -- Passive emissions with small quantities of ash visible. Minor ashfall in San Jose (Cascajal de Coronado and Dulce Nombre), San Pedro Montes de Oca, and neighborhoods of Heredia.
28 Nov-03 Dec 2018 -- 500 m N, NW, SW Ashfall in Santo Domingo (36 km WSW) on 2 Dec.
05 Dec 2018 -- -- -- Minor emission.
06 Dec 2018 -- -- S Emission.
08 Dec 2018 0749 500 m NW --
09 Dec 2018 -- 1,000 m -- Ashfall in areas of Valle Central.
10 Dec 2018 -- -- -- Emissions periodically observed during periods of clear viewing. Ashfall in Moravia (31 km WSW) and Santa Ana, and residents of Heredia noted a sulfur odor.
11-12 Dec 2018 -- 500 m NW, SW The Tico Times stated some flights were delayed at San Jose airport, 67 km away.
13 Dec 2018 -- -- -- Pulsing ash emissions; ashfall in Guadalupe (32 km WSW) and Valle Central.
14-16 Dec 2018 -- -- W, SW Emissions with diffuse amounts of ash.
05-06 Jan 2019 0815 -- -- Increased after midnight on 6 Jan.
28 Jan-04 Feb 2019 -- -- -- Minor, sporadic ash emissions rose to low heights during most days.
01 Feb 2019 0640 1,500 m NW --
08 Feb 2019 0540 200 m -- Sporadic ash emissions for more than one hour.
11 Feb 2019 -- -- -- Very small ash emission.
13-15 Feb 2019 200-300 m NW, W, SW Almost continuous gas emissions with minor ash content.
15 Feb 2019 1330 1,000 m W --
18 Feb 2019 1310 500 m W --
21 Feb 2019 -- 300 m NW Frequent ash pulses.
22-24 Feb 2019 -- 300 m NW, SW Frequent ash emissions of variable intensity and duration. On 22 Feb ash fell in Santa Cruz (31 km WSW) and Santa Ana, and a sulfur odor was evident in Moravia.
28 Feb 2019 1050 500 m SW Ash pulses.

According to OVSICORI-UNA's annual summary for 2018, a slow decline in activity occurred after the volcano reached its highest emission rate during 2016. Activity during 2018 was consistent with an open system, generating frequent passive ash emissions. The volcano emitted ash on 58% of the days during the year. Some explosions were large enough to eject ballistics more than 400 m around the crater. Typical activity can be seen in a photo from 11 September 2018 (figure 50) and satellite imagery on 7 November 2018 (figure 51).

Figure (see Caption) Figure 50. Photo of an ash explosion at Turrialba taken on 11 September 2018. Courtesy of Red Sismologica Nacional (RSN: UCR-ICE), Universidad de Costa Rica.
Figure (see Caption) Figure 51. Sentinel-2 satellite image of an ash emission from Turrialba on 7 November 2018, taken in natural color (gamma adjusted). Courtesy of Sentinel Hub Playground.

During January into early February 2019, passive ash emissions continued irregularly and with less intensity and duration. Emissions sometimes lacked ash. In their report of 4 February 2019, OVSICORI-UNA indicated that passive ash emissions were weak and slow. For the rest of February, they characterized ash emissions as frequent, but of low intensity.

Seismic activity. On 1 November 2018 OVSICORI-UNA reported that seismicity remained high, and involved low-amplitude banded volcanic tremor along with long-period (LP) and volcano-tectonic (VT) earthquakes. In late January-early February 2019, OVSICORI-UNA reported that seismicity remained relatively stable, although a small increase was associated with the hydrothermal system. VT earthquakes were absent, and tremors had decreased in both energy and duration. The number of low-frequency LP volcanic earthquakes remained stable, although they had decreasing amplitudes. No explosions were documented, and emissions were weak and had short durations and very dilute ash content.

Thermal anomalies. No thermal anomalies were recorded during the reporting period using MODIS satellite instruments processed by MODVOLC algorithm. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected five scattered hotspots during September-October 2018, none during November-December 2018, and two during January-February 2019. All were within 2 km of the volcano and of low radiative power.

Gas measurements. Significant sulfur dioxide levels near the volcano were recorded by NASA's satellite-borne ozone instruments only on 29 September 2018 (both NPP/OMPS and Aura/OMI instruments) and on 11 February 2019 (Sentinel 5P/TROPOMI instrument). OVSICORI-UNA's gas measuring instruments were compromised in September 2018 through January 2019 due to vandalism. In early February, however, they detected hydrogen sulfide for the first time since 2016.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Red Sismologica Nacional (RSN) a collaboration between a) the Sección de Sismología, Vulcanología y Exploración Geofísica de la Escuela Centroamericana de Geología de la Universidad de Costa Rica (UCR), and b) the Área de Amenazas y Auscultación Sismológica y Volcánica del Instituto Costarricense de Electricidad (ICE), Costa Rica (URL: https://rsn.ucr.ac.cr/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Costa Rica Star (URL: https://news.co.cr); The Tico Times (URL: https://ticotimes.net).


San Cristobal (Nicaragua) — April 2019 Citation iconCite this Report

San Cristobal

Nicaragua

12.702°N, 87.004°W; summit elev. 1745 m

All times are local (unless otherwise noted)


Weak ash explosions in January and March 2019

San Cristóbal has produced occasional weak explosions since 1999, with intermittent gas-and-ash emissions. The only reported explosion during the first half of 2018 was on 22 April, the first since November 2017 (BGVN 43:03). The current report covers activity between 1 August 2018 and 1 May 2019. The volcano is monitored by the Instituto Nicaragüense de Estudios Territoriales (INETER).

According to INETER, a series of explosions occurred on 9 January 2019 that lasted several hours. INETER stated that one explosion occurred at 1643; the Washington VAAC's first advisory stated that an explosion occurred at 1145 (local time). The weak explosions, which occurred after a period of heightened seismic activity, generated an ash plume that reached 200 m above the edge of the crater and drifted W. The Washington VAAC reported volcanic ash plumes on 10-11 January extending about 92 km SW, and on 24-25 January extending about 185 km WSW. A low-energy explosion was detected by the seismic network at 1550 on 4 March 2019. The event produced a gas-and-ash plume that rose 400 m above the crater rim and drifted SW.

Monitoring data reported by INETER (table 6) showed elevated levels of seismicity during October 2018 through January 2019. Sulfur dioxide was also measured at higher levels in January 2019.

Table 6. Monthly sulfur dioxide measurements and seismicity reported at San Cristóbal during August 2018-March 2019. "Most" indicates that type of seismicity was dominant that month. Data courtesy of INETER.

Month Average SO2 Total earthquakes Degassing-type earthquakes Volcano-tectonic (VT) earthquakes
Aug 2018 461 t/d 6,464 6,147 251
Sep 2018 893 t/d 9,659 9,586 73
Oct 2018 269 t/d 11,698 3,509 8,189
Nov 2018 -- 19,593 19,586 7
Dec 2018 -- 30,901 -- Most
Jan 2019 1,286 t/d 11,504 Most Very few
Feb 2019 695 t/d 3,470 Most Very few
Mar 2019 -- 3,882 Most Very few

Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://webserver2.ineter.gob.ni/vol/dep-vol.html); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Semisopochnoi (United States) — February 2019 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Minor ash explosions during September and October 2018

The remote Semisopochnoi comprises the uninhabited volcanic island of the same name, ~20 km in diameter, in the Rat Islands group of the western Aleutians (figure 1). Plumes had been reported several times in the 18th and 19th centuries, and most recently observed in April 1987 from Sugarloaf Peak (SEAN 12:04). The volcano is dominated by an 8-km diameter caldera that contains a small lake (Fenner Lake) and a number of post-caldera cones and craters. Monitoring is done by the Alaska Volcano Observatory (AVO) using an on-island seismic network along with satellite observations and lightning sensors. An infrasound array on Adak Island, about 200 km E, may detect explosive emissions with a 13 minute delay if atmospheric conditions permit.

On 16 September 2018 increased seismicity was detected at 0831, prompting AVO to raise the Aviation Color Code (ACC) to Yellow and Volcano Alert Level (VAL) to Advisory. Retrospective analysis of satellite data acquired on 10 September revealed small ash deposits on the N flank of Mount Cerberus, possibly associated with two bursts of tremor recorded on 8 September (figure 5). This new information, coupled with intensifying seismicity and a strong tremor signal recorded at 1249 on 17 September, resulted in AVO raising the ACC to Orange and the VAL to Watch. Seismicity remained elevated on 18 September with nearly constant tremor recorded by local sensors. At the same time, no ash emissions were observed in cloudy satellite images and no eruptive activity was recorded on regional pressure sensors at Adak.

Figure (see Caption) Figure 1. Minor ash deposits can be seen on the south and west flanks of the N cone of Mount Cerberus, Semisopochnoi Island, in this ESA Sentinel-2 image from 1200 on 10 September 2018. Also note probable minor steam emissions obscuring the crater of the N cone. Image courtesy of AVO.

During 19-25 September 2018 seismicity remained elevated, alternating between periods of continuous and intermittent bursts of tremor. Tremor bursts at 1319 on 21 September and at 1034 on 22 September produced airwaves detected on a regional infrasound array on Adak Island; no ash emissions were identified above the low cloud deck in satellite data, and the infrasound detections likely reflected an atmospheric change instead of volcanic activity.

Seismicity remained elevated during 3-9 October 2018, with intermittent bursts of tremor. No volcanic activity was detected in infrasound or satellite data. On 11 October satellite data indicated partial erosion of a tephra cone in the crater of Cerberus's N cone. A crater lake about 90 m in diameter filled the vent. The data also suggested that the vent had not erupted since 1 October. Seismicity remained elevated and above background levels. The next day AVO lowered the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory, noting the recent satellite data results and lack of tremor recorded during the previous week. AVO reported that unrest continued during 11-24 October.

An eruptive event began at 2047 on 25 October 2018, identified based on seismic data; strong volcanic tremor lasted about 20 minutes and was followed by 40 minutes of weak tremor pulses. A weak infrasound signal was detected by instruments on Adak Island. The Aviation Color Code was raised to Orange (the second highest level on a four-color scale) and Volcano Alert Level was raised to Watch (the second highest level on a four-level scale). A dense meteorological cloud deck prevented observations below 3 km, but a diffuse cloud was observed in satellite data rising briefly above the cloud deck, though it was unclear if it was related to eruptive activity. Tremor ended after the event, and seismicity returned to low levels.

Small explosions were detected by the seismic network at 2110 and 2246 on 26 October 2018, and 0057 and 0603 on 27 October. No ash clouds were identified in satellite data, but the volcano was obscured by high meteorological clouds. Additional small explosions were detected in seismic and infrasound data during 28-29 October; no ash clouds were observed in partly-cloudy-to-cloudy satellite images.

AVO reported on 31 October 2018 that unrest continued. Two small explosions were detected, one just before 0400 and the other around 1000. Satellite views were obscured by clouds at the time, and no ash clouds were observed. Unrest continued through 1 November, at which time the satellite link and the seismic line failed. On 21 November the ACC was lowered to Yellow and the VAL was lowered to Advisory.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Asosan (Japan) — July 2019 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Multiple brief ash emission events during April and May 2019; minor ashfall in adjacent villages

Japan's 24-km-wide Asosan caldera on the island of Kyushu has been active throughout the Holocene. Nakadake has been the most active of 17 central cones within the caldera for 2,000 years. Historical eruptions have been primarily basaltic to basaltic-andesitic ash eruptions, with periodic Strombolian activity, all from Nakadake Crater 1. The most recent major eruptive episode began in late November 2014 and continued through 1 May 2016. Another eruption, with the largest ash plume in 20 years, occurred on 8 October 2016. Asosan remained quiet until renewed activity from Crater 1 began in mid-April 2019; it is covered in this report, through the end of June 2019. The Japan Meteorological Agency (JMA) provides monthly reports of activity; the Tokyo Volcanic Ash Advisory Center (VAAC) issues aviation alerts reporting on possible ash plumes.

Asosan remained quiet during 2017 and 2018 with steam plumes rising a few hundred meters from Crater 1 and low levels of SO2 emissions; a warm acidic lake was present within the crater. Fumarolic activity from two areas on the S and SW wall of the crater rim generated occasional thermal anomalies in satellite data and incandescence at night. A brief period of increased seismicity was reported in mid-March 2019. An increase in seismic amplitude on 14 April 2019 preceded a small explosion on 16 April; it produced an ash plume which rose 200 m above the crater rim and drifted NW. It was followed by additional small explosions on 19 April. A new explosion on 3 May produced minor ashfall in adjacent communities; ash emissions were reported multiple times during May with plumes reaching 1,400 m above the crater rim. No additional ash emissions were reported in June.

Activity during 2017 and 2018. JMA reported that no eruptions occurred during 2017. Amplitudes of volcanic tremor increased somewhat during March but were generally low for the rest of the year. The earthquake hypocenters were mostly located near the active crater at around sea level. SO2 emissions were slightly less than 1,000 tons per day (t/d) from January through April; for the rest of the year they ranged from 600 to 2,500 t/d. The Alert Level had been lowered from 2 to 1 on 7 February 2017 where it remained throughout the year. Steam plumes generally rose no more than 600 m above the active crater rim (figure 42). JMA noted that from January to June they often observed crater incandescence at night with a high-sensitivity surveillance camera; Sentinel-2 satellite images also captured thermal anomalies a few times (figure 43). The green lake inside the crater persisted throughout the year with water temperatures of 50-60°C. Two fumaroles were present with high-temperature gas emissions on the SW and S crater walls. Temperatures at the S crater wall were over 600°C from February to May; they decreased to 320-560°C during the rest of the year (figure 44). Sulfur deposits were visible around the SW crater wall fumarole during July.

Figure (see Caption) Figure 42. Steam plumes that rose around 600 m above Nakadake Crater 1 at Asosan were typical activity throughout 2017. Images taken with JMA webcam on 9 June (top left), 22 August (top right), 12 November (bottom left), and 20 December (bottom right) 2017. Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 43. Sentinel-2 images captured thermal anomalies at the S rim of the green lake at Asosan's Nakadake Crater 1 on 16 February (left) and 27 May 2017 (right). JMA reported that incandescence was occasionally visible during the night from January-June from the same area. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 44. High-temperature gas and steam from fumaroles on the S wall of the Nakadake Crater 1 at Asosan on 24 August (top) and 17 November 2017 (bottom) were persistent all year, with temperatures ranging from 300 to over 600°C. The green lake inside the crater persisted throughout the year as well with water temperatures of 50-60°C. Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

The Alert Level did not change at Asosan during 2018, and no eruptions were reported. Sulfur dioxide emissions fluctuated between 400 and 1,800 t/d throughout the year. Steam plumes generally rose less than 500 m above the active crater (figure 45); incandescence was observed at night during May-October and sometimes observed in satellite imagery as thermal anomalies (figure 46). The temperature of the green lake inside the crater ranged from 58 to 75°C throughout the year. The thermal anomaly on the S wall of the crater was consistently in the 300-500°C range, and had a high temperature in April of 580°C; in December the high temperature had risen to 738°C (figure 47). A brief increase in the number of isolated tremors occurred during March, with 1,044 reported on 4 March, exceeding the previous maximum of 1,000 on 27 October 2014. Seismicity also increased briefly during June, with more than 400 events reported each day on 8, 18, and 20 June. The Minami Aso village Yoshioka fumarole zone, located about 5 km W of Nakadake Crater 1, continued to produce modest steam plumes throughout 2017 and 2018 (figure 48).

Figure (see Caption) Figure 45. Typical steam plumes at Asosan during 2018 rose around 500 m above the Nakadake Crater 1. Images are from 4 March (top left), 22 July (top right), 17 August (lower left), and 13 September 2018 (lower right). Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 46. Nighttime incandescence was reported by JMA during May-October 2018 from the S rim of Nakadake Crater 1 at Asosan; Sentinel-2 satellite images (bands 12, 4, 2) captured thermal anomalies from the same area numerous times during 2018 including on 16 June (top left), 26 July and 19 September (middle row), and 18 and 23 November (bottom row). JMA photographed incandescence at night on 17 July 2018 at the S fumarole area (top right). Courtesy of Sentinel Hub Playground and JMA (Aso volcano Monthly Report for July 2018).
Figure (see Caption) Figure 47. The "Green Tea Pond" inside Nakadake Crater 1 at Asosan had temperatures that ranged from 58 to 75°C during 2018 (top row, 26 March 2018); the thermal anomaly on the S wall of the crater consistently had temperatures measured in the 300-500°C range and the SW fumarole area had somewhat lower temperatures (bottom row, 22 June 2018). Courtesy of JMA (monthly Asosan reports for March, May, and June 2018).
Figure (see Caption) Figure 48. The Minami Aso village Yoshioka fumarole zone, located about 5 km W of Nakadake Crater 1 at Asosan, continued to produce modest steam plumes throughout 2017 and 2018. It is shown here on 20 December 2017 (top) and 12 March 2018 (bottom). Courtesy of JMA (December 2017 and March 2018 monthly volcano reports).

Activity during 2019. Steam plumes rose to 800 m above the crater rim during January 2019. Overall activity increased slightly during February; SO2 emissions peaked at 2,200 t/d early in the month; they ranged from 800 to 1,800 t/d for most of the month. The amplitude of volcanic tremor also increased slightly during February. A further increase in tremor amplitude on 11 March 2019 prompted JMA to raise the Alert Level from 1 to 2 the following morning. Volcanic tremor amplitude decreased on 15 March; JMA determined that activity had decreased, and the Alert Level was lowered back to 1 on 29 March 2019. The amount of water in the crater decreased significantly between 27 February and 20 March, exposing part of the crater floor.

The surface temperature of the lake rose during the first part of 2019; it was 78°C in February and 84°C in March. Steam plumes rose to 1,200 m above the crater rim during March and April. SO2 emissions rose to 4,500 t/d on 12 March but dropped to a lower range of 1,300-2,400 for the rest of the month. Another surge in SO2 emissions on 12 April 2019 to 3,600 t/d prompted a special report from JMA the following day. SO2 emissions varied from about 1,700 to 4,100 t/d during the month; values remained high during the second half of the month. JMA noted that the color of the water in the lake inside Nakadake Crater 1 changed from green to gray after 4 April. Fountains of muddy water were periodically observed; they reached 15 m high on 9 April. The temperatures of both the lake (82°C) and around the two fumarole areas (S area about 530°C, SW area about 310°C) remained constant during April and similar to March.

A large increase in the amplitude of volcanic tremor early on 14 April 2019 prompted JMA to raise the Alert Level from 1 to 2 later in the day. The epicenters of the earthquakes were very shallow, located within 1 km beneath the crater. A small eruption occurred at 1828 on 16 April at Nakadake Crater 1; it produced a gray and white plume that rose 200 m above the crater rim and was the first eruption since 8 October 2016 (figure 49). Incandescence was observed inside the crater on 3 and 17 April. The amplitude of seismic tremors decreased on 18 April. Three very small eruptions on 19 April produced ash and steam plumes that rose 500 m above the crater rim. During a site visit that day JMA measured a high-temperature area that produced incandescence from the bottom of the crater at night (figure 50).

Figure (see Caption) Figure 49. The first eruption since October 2016 at Nakadake Crater 1 at Asosan on 16 April 2019 sent an ash plume 200 m above the crater rim (top). Incandescent gas appeared on the crater floor the next day (bottom). Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 50. Three small explosions on 19 April 2019 at Asosan's Nakadake Crater 1 produced small ash emissions that rose 500 m above the crater rim (top). A strong thermal signal also appeared from the bottom of the crater. Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

A new eruption began at 1540 on 3 May that lasted until 0620 on 5 May (figure 51). Initially the ash plume rose 600 m above the crater rim, but a few hours later the volume of ash increased, and the plume reached 2 km above the crater rim for a brief period. Incandescence was visible from the webcam. The Tokyo VAAC reported the ash plume at 3 km altitude drifting SE on 3 May. Later in the day it rose to 3.7 km altitude and drifted SW. During a field survey the following day (4 May) JMA reported a steam and ash plume rising from the center of the active crater. The infrared thermal imaging camera recorded the temperature of the plume at about 500°C (figure 52).

Figure (see Caption) Figure 51. An explosion at Asosan's Nakadake Crater 1 on 3 May 2019 produced an ash plume that reached 2 km above the crater rim (top) and incandescence visible from the webcam (bottom). Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 52. During a site visit on 4 May 2019, staff from JMA witnessed an ash and steam plume rising from the bottom of Nakadake Crater 1 at Asosan (top). The infrared thermal imaging camera recorded the temperature of the plume at about 500°C (bottom). Courtesy of JMA (Aso volcano monthly activity reports, May 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

Ash fell on the S flank, and a small amount of ashfall on 4 May was confirmed by evidence on a car windshield in Takamori Town (6 km S), Kumamoto Prefecture (figure 53). Ashfall was also reported in Takamori-machi, Minami Aso village (9 km SW), and part of Yamato-cho (25 km SW), also in the Kumamoto Prefecture. SO2 emissions were measured as high as 4,000 t/d on 4 May. Additional explosions with ash plumes were reported from Asosan on 9, 12-16, 29, and 31 May; the plumes rose from 200 to 1,400 m above the crater rim but were not visible in satellite imagery. The TROPOMI instrument on the Sentinel-5 satellite captured SO2 plumes on 3 and 26 May 2019 (figure 54).

Figure (see Caption) Figure 53. Ashfall was reported on 4 May 2019 in Takamori Town, Kumamoto Prefecture, from the eruption at Asosan's Nakadake Crater 1 on 3 May 2019. Courtesy of JMA (Aso volcano monthly activity reports, May 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 54. Plumes of SO2 from Asosan were recorded by the TROPOMI instrument on the Sentinel-5P satellite on 3 (left) and 26 (right) May 2019. Courtesy of NASA Goddard Space Flight Center.

Steam plumes rose to 1,700 m above the crater rim during June 2019 (figure 55). During field visits on 6 and 25 June diffuse ash emissions were observed rising from the center of the active crater, but they did not extend significantly above the crater rim (figure 56). The maximum temperature of the plume was measured at about 340°C with a thermal imaging camera. Almost all of the water in the crater bottom had evaporated since early May; incandescence continued to be observed within the crater at night with the high-resolution webcam (figure 57).

Figure (see Caption) Figure 55. Steam plumes rose to 1,700 m above the crater rim at Asosan's Nakadake Crater 1 on 10 June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 56. Plumes of gas and minor ash were visible at Asosan's Nakadake Crater 1 during site visits by JMA on 6 (left) and 25 (right) June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 57. Incandescent gas was visible from the vent at Asosan's Nakadake Crater 1 on 18 (left) and 25 (right) June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Nyamuragira (DR Congo) — May 2019 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Lava lake reappears in central crater in April 2018; activity tapers off during April 2019

The Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo is part of the western branch of the East African Rift System. Nyamuragira (or Nyamulagira), a high-potassium basaltic shield volcano on the W edge of VVP, includes a lava field that covers over 1,100 km2 and contains more than 100 flank cones in addition to a large central crater (see figure 63, BGVN 42:06). A lava lake that had been active for many years emptied from the central crater in 1938. Numerous flank eruptions were observed after that time, the most recent during November 2011-March 2012 on the NE flank. This was followed by a period of degassing with unusually SO2-rich plumes from April 2012 through April 2014 (BGVN 42:06). The lava lake reappeared during July 2014-April 2016 and November 2016-May 2017, producing a strong thermal signature. After a year of quiet, a new lava lake appeared in April 2018, reported below (through May 2019) with information provided by the Observatoire Volcanologique de Goma (OVG), MONUSCO (the United Nations Organization working in the area), and satellite data and imagery from multiple sources.

Fresh lava reappeared inside the summit crater in mid-April 2018 from a lava lake and adjacent spatter cone. Satellite imagery and very limited ground-based observations suggested that intermittent pulses of activity from both sources produced significant lava flows within the summit crater through April 2019 when the strength of the thermal signal declined significantly. Images from May 2019 showed a smaller but persistent thermal anomaly within the crater.

Activity from October 2017-May 2019. Indications of thermal activity tapered off in May 2017 (BGVN 42:11). On 20 October 2017 OVG released a communication stating that a brief episode of unspecified activity occurred on 17 and 18 October, but the volcano returned to lower activity levels on 20 October. There was no evidence of thermal activity during the month. The volcano remained quiet with no reports of thermal activity until April 2018 (figure 73).

Figure (see Caption) Figure 73. Sentinel-2 satellite images (bands 12, 4, 2) indicated no thermal activity at Nyamuragira on 19 November (top left), 14 December 2017 (top right) and 18 January 2018 (bottom). However, Nyiragongo (about 13 km SE) had an active lava lake with a gas plume drifting SW on 18 January 2018 (bottom right). Courtesy of Sentinel Hub Playground.

OVG reported the new lava emissions beginning on 14 April 2018 as appearing from both the lava lake and a small adjacent spatter cone (figure 74). The first satellite image showing thermal activity at the summit appeared on 18 April 2018 (figure 75) and coincided with the abrupt beginning of strong MIROVA thermal signals (figure 76). MODVOLC thermal alerts also first appeared on 18 April 2018. An image of the active crater taken on 9 May 2018 showed the lake filled with fresh lava and two adjacent incandescent spatter cones (figure 77).

Figure (see Caption) Figure 74. Fresh lava reappeared at Nyamuragira's crater during April 2018 from the lava lake (left) and the adjacent small spatter cone (right). Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Avril 2018).
Figure (see Caption) Figure 75. The first satellite image (bands 12, 4, 2) indicating renewed thermal activity at the Nyamuragira crater appeared on 18 April 2018; the signal remained strong a few weeks later on 3 May 2018. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 76. A strong thermal signal appeared in the MIROVA graph of Log Radiative Power on 18 April 2018 for Nyamuragira, indicating a return of the lava lake at the summit crater. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Fresh lava filled the lake inside the crater at Nyamuragira on 9 May 2018. Two spatter cones were incandescent with gas emissions. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Mai 2018).

Satellite images confirmed that ongoing activity from the lava lake remained strong during June -September 2018 (figure 78). A mission to Nyamuragira was carried out by helicopter provided by MONUSCO on 20 July 2018; lava lake activity was observed along with gas emissions from the small spatter cone (figure 79). OVG reported increased volcanic seismicity during 1-3 and 10-17 September 2018, and also during October, located in the crater area, mostly at depths of 0-5 km.

Figure (see Caption) Figure 78. Sentinel-2 satellite images (bands 12, 4, 2) confirmed that ongoing activity from the lava lake at Nyamuragira remained strong during June-September 2018, likely covering the crater floor with a significant amount of fresh lava. Image are from 12 June (top left), 7 July (top right), 17 July (middle left), 22 July (middle right), 11 August (bottom left), and 20 September (bottom right). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 79. The crater at Nyamuragira on 20 July 2018 had an active lava lake and adjacent incandescent spatter cone with gas emissions. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Juillet 2018).

Personnel from OVG and MONUSCO (United Nations Organization Stabilization Mission in DR Congo) made site visits on 11 October and 2 November 2018 and concluded that the level of the active lava lake had increased during that time (figure 80). On 2 November OVG measured the height from the base of the active cone to the W rim of the crater as 58 m (figure 81).

Figure (see Caption) Figure 80. OVG scientists reported a rise in the lake level between site visits to the Nyamuragira crater on 11 October (top) and 2 November 2018 (bottom). Top image courtesy of MONUSCO and Culture Vulcan, bottom image courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Octobre 2018).
Figure (see Caption) Figure 81. On 2 November 2018 scientists from OVG measured the height from the base of the active cone to the W rim of the crater as 58 m. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Octobre 2018).

Seismicity remained high during November 2018 but decreased significantly during December. Instrument and access issues in January 2019 prevented accurate assessment of seismicity for the month. The lava lake remained active with periodic surges of thermal activity during November 2018-March 2019 (figure 82). Multiple images show incandescence in multiple places within the crater, suggesting significant fresh overflowing lava.

Figure (see Caption) Figure 82. The active lava lake at Nyamuragira produced strong thermal signals from November 2018 through March 2019 that were recorded in Sentinel-2 satellite images (bands 12, 4, 2). Several images suggest fresh lava cooling around the rim of the crater in addition to the active lake. A relatively cloud-free day on 19 November 2018 (top left) revealed no clear thermal signal, but a strong signal was recorded on 29 November (top right) despite significant cloud cover. Images from 13 and 28 January 2019 (second row) both showed evidence of incandescent lava in multiple places within the crater. The thermal signal was smaller and focused on the center of the crater on 12 and 27 February 2019 (third row). Images taken on 9 and 19 March 2019 clearly showed incandescent material at the center of the crater and around the rim (bottom row). Courtesy of Sentinel Hub Playground.

On 12 April 2019 a Ukrainian Aviation Unit supported by MONUSCO provided support for scientists visiting the crater for observations and seismic analysis. Satellite data confirmed ongoing thermal activity into May, although the strength of the signal appeared to decrease (figure 83). MODVOLC thermal alerts ceased after 8 April, and the MIROVA thermal data also confirmed a decrease in the strength of the thermal signal during April 2019 (figure 84).

Figure (see Caption) Figure 83. Sentinel-2 satellite data (bands 12, 4, 2) confirmed ongoing thermal activity at Nyamuragira into May 2019. The thermal anomalies on 18 April (left) and 3 May (right) 2019 were smaller than those recorded during previous months. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 84. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira from 16 July 2018 through April 2019 showed near-constant levels of high activity through April 2019 when it declined. This corresponded well with satellite and ground-based observations. Courtesy of MIROVA.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Katcho Karume, Director; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MONUSCO, United Nations Organization Stabilization Mission in the DR Congo (URL: https://monusco.unmissions.org/en/, Twitter: @MONUSCO); Cultur Volcan, Journal d'un volcanophile (URL: https://laculturevolcan.blogspot.com), Twitter: @CultureVolcan).


Tengger Caldera (Indonesia) — May 2019 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


New explosions with ash plumes from Bromo Cone mid-February-April 2019

The 16-km-wide Tengger Caldera in East Java, Indonesia is a massive volcanic complex with numerous overlapping stratovolcanos (figure 11). Mount Bromo is a pyroclastic cone that lies within the large Sandsea Caldera at the northern end of the complex (figure 12) and has erupted more than 20 times during each of the last two centuries. It is part of the Bromo Tengger Semeru National Park (also a UNESCO Biosphere Reserve) and is frequently visited by tourists. The last eruption from November 2015 to November 2016 produced hundreds of ash plumes that rose as high as 4 km altitude; some of them drifted for hundreds of kilometers before dissipating and briefly disrupted air traffic. Only steam and gas plumes were observed at Mount Bromo from December 2016 to February 2018 when a new series of explosions with ash plumes began; they are covered in this report with information provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC). Copyrighted ground and drone-based images from Øystein Lund Andersen have been used with permission of the photographer.

Figure (see Caption) Figure 11. The Tengger Caldera viewed from the north Mount Bromo issuing steam in the foreground and Semeru volcano in the background on 30 September 2018. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 12. Aerial view of the Bromo Cone in Tengger Caldera seen from the west on 30 September 2018. Courtesy of Øystein Lund Andersen, used with permission.

PVMBG lowered the Alert Level at Bromo on 21 October 2016 from III to II near the end of an eruptive episode lasting nearly a year. The last VAAC report was issued on 12 November 2016 (BGVN 41:12) noting that the last ash emission had been observed the previous day drifting NW at 3 km altitude. Throughout 2017 and 2018 Bromo remained at Alert Level II, with no unusual activity described by PVMBG. During 1-2 September 2018, a wildfire in the Bromo Tengger Semeru National Park burned 65 hectares of savannah (figure 13); the fire produced 12 MODVOLC thermal alerts around the Tengger Caldera rim. No reports of increased volcanic activity were issued by PVMBG during the period.

Figure (see Caption) Figure 13. A wall of fire in the Bromo Tengger Semeru National Park savanna during 1-2 September 2018 produced thermal alerts that were not related to volcanic activity at the Bromo Cone in Tengger Caldera. Image courtesy of the park authority, reported by Mongabay. MODVOLC thermal alerts courtesy of Hawai'i Institute of Geophysics and Planetology (HIGP).

After slightly more than two years of little activity other than gas and steam plumes, ash emissions resumed from the Bromo Cone on 18 February 2019. After a brief pause, a new explosion on 10 March marked the beginning of a series of near-daily ash emissions that lasted for the rest of March, producing ash plumes that rose to altitudes ranging from 3.0 to 5.2 km and drifted in many different directions. A new series of ash emissions began on 6 April, rising to 3 km and also drifting in multiple directions. Ash emission density decreased during the month; plumes were only rising a few hundred meters above the summit by the end of April and consisted of mostly steam and moderate amounts of ash.

Activity during February-April 2019. PVMBG reported that at 0600 on 18 February 2019 an eruption at Tengger Caldera's Bromo Cone generated a dense white-and-brown ash plume that rose 600 m and drifted WSW. The plume was not visible in satellite imagery, according to the Darwin VAAC. The Alert Level remained at 2 (on a scale of 1-4). After a few weeks of quiet a new explosion on 10 March (local time) produced a white, brown, and gray ash plume that rose 600 m above the summit; the plume was visible in satellite imagery extending SW. Increased tremor amplitude was also reported on 10 March. A new emission the next morning produced similar ash plumes that drifted S, SW, and W at 3 km altitude. On the morning of 12 March (local time) a continuous ash plume was observed in satellite imagery at 3.4 km altitude drifting SW. The plume drifted counterclockwise towards the S, E, and NE throughout the day and continued to drift NE and SE on 13 March. The altitude of the plume was reported at 4.3 km later that day based on a pilot report.

Continuous brown, gray, and black ash emissions were reported by PVMBG during 14-19 March at altitudes ranging from 3 to 3.9 km; they drifted generally NE to NW. Ashfall was noted around the crater and downwind a short distance. The Darwin VAAC reported continuous ash emissions to 5.2 km altitude drifting SE on 20 March. It was initially reported by a pilot and partially discernable in satellite imagery before dissipating. Ongoing ash emissions of variable densities and colors ranging from white to black were intermittently visible in satellite imagery and confirmed in webcam and ground reports at around 3.0 km altitude during 21-25 March (figures 14-17). Ashfall impacted the closest villages to Bromo, including Cemara Lawang (30 km NW), which was covered by a thin layer of ash. A few trees in the area were toppled over by the weight of the ash. The plume altitude increased slightly on 26 March to 3.7-3.9 km, drifting N and NE. The higher altitude plume dissipated early on 28 March, but ash emissions continued at 3.0 km for the rest of the day.

Figure (see Caption) Figure 14. Ash drifted NNE from the Bromo Cone in Tengger Caldera on 23 March 2019. Courtesy of Øystein Lund Andersen (drone image), used with permission.
Figure (see Caption) Figure 15. Ash drifted N from the Bromo Cone in Tengger Caldera on 23 March 2019. The Batok Cone is on the right, Segera Wedi is behind Bromo, and Semeru is in the far background. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 16. A few trees toppled from ashfall in the vicinity of the Bromo Cone in Tengger Caldera on 24 March 2019. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 17. Ash plumes from the Bromo Cone in Tengger Caldera on 24 March 2019 caused ashfall in communities as far as 30 km away. View is from the floor of the Sandsea Caldera. Courtesy of Øystein Lund Andersen, used with permission.

After just a few days of quiet, new ash emissions rising to 3.0 km altitude and drifting SE were reported by both PVMBG (from the webcam) and the Darwin VAAC on 6 April 2019. By the next day the continuous ash emissions were drifting N, then E during 8-10 April, and S during 11 and 12 April. A new emission seen in the webcam was reported by the Darwin VAAC on 15 April (UTC) that rose to 3.0 km and drifted W. Ash plumes were intermittently visible in either webcam or satellite imagery until 17 April rising 500-1,000 m above the crater; from 19-25 April only steam plumes were reported rising 300-500 m above the summit. A minor ash emission was reported from the webcam on 26 April that rose to 3.0 km altitude and drifted NE for a few hours before dissipating. PVMBG reported medium density white to gray ash plumes that rose 400-600 m above the crater for the remainder of the month.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Mongabay, URL: https://news.mongabay.com/2018/09/fires-tear-through-east-java-park-threatening-leopard-habitat/.

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 21, Number 02 (February 1996)

Managing Editor: Richard Wunderman

Aira (Japan)

Explosive ash eruptions continue

Akutan (United States)

Several days of felt earthquakes during cloudy weather

Asosan (Japan)

Continuous tremor; crater floor still covered with water

Atmospheric Effects (1995-2001) (Unknown)

Lidar data from Cuba, Germany, and Hawaii; aerosol layer with unknown source

Eastern Gemini Seamount (France)

Submarine eruption; the first recorded historical activity

Etna (Italy)

Two additional significant eruptive episodes during January-February

Fujisan (Japan)

Low-frequency earthquake swarm

Galeras (Colombia)

Slight increase in seismicity, but still at low levels

Hokkaido-Komagatake (Japan)

Tremor and extension precede early March phreatic eruption

Iwatesan (Japan)

Small-amplitude tremor

Karymsky (Russia)

Ongoing explosions eject steam and minor ash

Kujusan (Japan)

Seismic activity continues but plume is devoid of ash

Kusatsu-Shiranesan (Japan)

Minor hydrothermal ejection in Yu-gama crater

Langila (Papua New Guinea)

Ash-and-vapor clouds and occasional night glow

Manam (Papua New Guinea)

Steam emitted at low-to-moderate rates

Miyakejima (Japan)

Low-frequency earthquakes

North Gorda Ridge Segment (Undersea Features)

Eruption or intrusive event detected by acoustic signals

Popocatepetl (Mexico)

New eruptive episode produces ash plume that drifts over SW coast

Rabaul (Papua New Guinea)

Tavurvurs November eruption continues; 35% increase in seismicity

Soufriere Hills (United Kingdom)

Increasingly rapid dome growth

Stromboli (Italy)

Intense eruptive phase followed by a drop in seismicity

Ulawun (Papua New Guinea)

Noiseless steaming and seismic quiet continue

Unzendake (Japan)

Multiple small block-and-ash flows; the first since February 1995



Aira (Japan) — February 1996 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosive ash eruptions continue

During February Minami-dake Crater produced 35 eruptions, including 31 that were explosive. At the seismic station 2.3 km NW of Minami-dake Crater (Station B), 689 earthquakes and 879 tremors were recorded. On 11 February, the highest ash plume during the month rose 1,800 m above the summit crater. Ashfall measured at the Kagoshima Local Meteorological Observatory (KMO), 10 km W of the crater, was 10 g/m2.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Akutan (United States) — February 1996 Citation iconCite this Report

Akutan

United States

54.134°N, 165.986°W; summit elev. 1303 m

All times are local (unless otherwise noted)


Several days of felt earthquakes during cloudy weather

At 1930 on 10 March, residents of the city of Akutan on Akutan Island began feeling continuous earthquakes punctuated occasionally by strong, but non-damaging shocks. The coastal city has a seasonal population of 750 and lies 13 km E of the summit. Poor weather, which prevailed for at least the next few days, hampered visual observations of the volcano.

The strongly felt seismic activity continued throughout most of 11 March. At 1700 on 11 March, continuous tremor-like shaking in Akutan city began subsiding. A similar decrease also took place in the intensity of felt shocks and, by 2000 that day, event counts were on the decline. This decline continued through the night and into the morning of 12 March. As of the afternoon of 12 March, Akutan residents reported that they felt earthquakes at a rate of ~1/hour.

An AVO seismologist with an instrument arrived in Akutan city on the night of 12 March. Seismicity increased significantly beginning about 1700 on 13 March. Felt-earthquakes began occurring at a rate of about 1 a minute, similar to the 11 March rate.

Seismic observations at distant stations, and the felt-earthquakes, suggested a very shallow volcanic source, a possible prelude to, or indication of, eruptive activity at the nearby volcano. There were, however, no reports of airborne ash or sulfurous odors. Weather cloud tops were estimated to be at about 8 km with local winds blowing toward the N. If any ash discharged, it was localized. Without direct observation, AVO postulated that if the eruptive activity took place it was characterized by periodic low-level explosions.

Forwarded reports from aviators in mid-March noted abnormal amounts of steam or possible ash coming from the crater's SE corner. Plume height estimates were from 0.9-1.2 km in one case and 3.0-4.6 km in another. At the time of one particular observation the plume's width was relatively narrow. It was given as about a quarter of the width of the volcano's base (presumably the visible base, a distance that is difficult to determine exactly). Various reports also mentioned layers of weather clouds.

Geologic Background. One of the most active volcanoes of the Aleutian arc, Akutan contains 2-km-wide caldera with an active intracaldera cone. An older, largely buried caldera was formed during the late Pleistocene or early Holocene. Two volcanic centers are located on the NW flank. Lava Peak is of Pleistocene age, and a cinder cone lower on the flank produced a lava flow in 1852 that extended the shoreline of the island and forms Lava Point. The 60-365 m deep younger caldera was formed during a major explosive eruption about 1600 years ago and contains at least three lakes. The currently active large cinder cone in the NE part of the caldera has been the source of frequent explosive eruptions with occasional lava effusion that blankets the caldera floor. A lava flow in 1978 traveled through a narrow breach in the north caldera rim almost to the coast. Fumaroles occur at the base of the caldera cinder cone, and hot springs are located NE of the caldera at the head of Hot Springs Bay valley and along the shores of Hot Springs Bay.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA, b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Asosan (Japan) — February 1996 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Continuous tremor; crater floor still covered with water

The floor of Naka-dake Crater 1 remained covered with water in January. Seismic station A, 800 m W of the crater, recorded continuous tremor of 0.1-0.3 µm amplitude. In addition, there were 4,966 isolated tremors during the month.

Aso, a 24-km-wide caldera, produced pyroclastic-flow deposits during the Pleistocene that cover much of Kyushu. Its frequently active Naka-dake is one of a group of 15 intra-caldera cones.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Atmospheric Effects (1995-2001) (Unknown) — February 1996 Citation iconCite this Report

Atmospheric Effects (1995-2001)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Lidar data from Cuba, Germany, and Hawaii; aerosol layer with unknown source

Colorful twilights of long duration have been reported since late September 1995 by observers in England and across the United States in Florida, Maryland, Kentucky, Arkansas, Texas, New Mexico, Colorado, California and Hawaii (F. M. Mims III and others, 1996). This report describes information compiled by Mims and co-authors and includes lidar backscatter data from sites in Cuba, Germany, and Hawaii (figure 1 and table 5). Lidar values are similar to those from earlier in 1995 (Bulletin v. 20, nos. 7 and 10).

Figure with caption Figure 1. Lidar backscattering in 1994 and 1995 for Camagüey, Cuba and Garmisch-Partenkirchen, Germany (see table 1 for details). Data courtesy of Rene Estevan and Horst Jäger; plot courtesy of Forrest Mims III.

Table 5. Lidar data from Cuba and Germany showing altitudes of aerosol layers; some layers have multiple peaks. Backscattering ratios are for the Nd-YAG wavelength of 0.53 microns, with equivalent ruby values (0.69 microns) in parentheses for data from Germany. The integrated value shows total backscatter, expressed in steradians^-1, integrated over 300-m intervals from 16-33 km for Cuba and from the tropopause to 30 km at Garmisch-Partenkirchen. Courtesy of Rene Estevan and Horst Jäger.

DATE LAYER ALTITUDE (km) (peak) BACKSCATTERING RATIO BACKSCATTERING INTEGRATED
Camaguey, Cuba (21.2°N, 77.5°W)
28 Jul 1995 15.1 (21.4) 1.23 1.75 x 10-4
28 Jul 1995 15.1 (22.0) 1.21 --
13 Aug 1995 15.4 (23.8) 1.24 1.79 x 10-4
18 Aug 1995 16.0 (20.5) 1.18 1.04 x 10-4
26 Aug 1995 13.9 (19.9) 1.24 1.58 x 10-4
26 Aug 1995 13.9 (20.0) 1.31 --
30 Aug 1995 14.5 (22.6) 1.26 1.69 x 10-4
15 Sep 1995 16.6 (18.4) 1.20 1.10 x 10-4
15 Sep 1995 16.6 (21.1) 1.17 --
Garmisch-Partenkirchen, Germany (47.5°N, 11.0°E)
10 Aug 1995 10-28 (19.8) 1.13 (1.3) --
04 Sep 1995 11-26 (17.9) 1.11 (1.2) --
09 Sep 1995 10-27 (18.2) 1.14 (1.3) --
18 Sep 1995 11-33 (18.4) 1.14 (1.3) --
26 Sep 1995 13-27 (18.4) 1.17 (1.3) --
09 Oct 1995 14-32 (18.5) 1.13 (1.3) --
15 Oct 1995 11-27 (19.0) 1.10 (1.2) --
23 Oct 1995 13-29 (17.5) 1.13 (1.3) --
05 Nov 1995 9-32 (16.3) 1.14 (1.3) --
11 Nov 1995 11-31 (18.1) 1.11 (1.2) --
20 Nov 1995 11-29 (17.3) 1.16 (1.3) --
01 Dec 1995 8-32 (17.4) 1.13 (1.3) --
09 Dec 1995 11-31 (14.9) 1.14 (1.3) --
28 Dec 1995 10-27 (16.5) 1.11 (1.2) --
Mauna Loa, Hawaii (19.5°N, 155.6°W)
01 Aug 1995 16-27 (22.0) 1.38 0.93 x 10-4
08 Aug 1995 16-27 (22.0) 1.31 0.61 x 10-4
16 Aug 1995 16-27 (22.0) 1.35 0.71 x 10-4
23 Aug 1995 16-27 (22.3) 1.27 0.59 x 10-4
31 Aug 1995 16-27 (22.0) 1.32 0.67 x 10-4
12 Sep 1995 16-26 (21.7) 1.31 0.53 x 10-4
12 Oct 1995 16-26 (23.2) 1.28 0.74 x 10-4

Visual observations from both the ground and commercial aircraft of colorful twilights and a prominent solar aureole suggest a stratospheric cloud now extends from about 20 to 37°N. The origin of the scattering aerosols is presently unknown. Many of the twilights last fall and winter had a duration of 45-60 minutes, which implies an altitude for the aerosols of ~23-35 km. Photographs of the twilights closely resemble images of El Chichón and Pinatubo twilights.

Increased aerosol optical thickness (AOT) has been measured at two sites (Seguin, Texas, and San Diego, California) where extended twilights have been reported. (The optical thickness is equal to the negative natural logarithm of the attenuation of incident light, or Tau = -ln(I/Io), where I and Io are the initial and final light intensity, respectively.) The lowest AOT (1.003 µm) at Seguin, Texas, during winter 1995-96 was 0.03 higher, double the smallest AOT during the previous two winters (figure 2).

Figure with caption Figure 2. Aerosol optical thickness (AOT) at 1.003 microns from 23 September 1989 to 27 March 1996 measured at Seguin, Texas USA. The data show both the seasonal cycle (greatest optical clarity in winter, least in summer) and the volcanic perturbation from Pinatubo. Courtesy of Forrest M. Mims III.

Visual and AOT observations of the aerosol cloud have been corroborated by lidar measurements in Cuba from September-December 1995 (figure 1 and table 5). Several episodes of unusually high total integrated backscatter at 16-33 km occurred during this period. Finally, backscatter data from Germany confirm visual and Sun photometer observations that the new aerosol has not reached 47.5°N.

Reference. Mims, F.M., III, Meinel, C., Roosen, R.G., Russell, R.T., Hawkins, G.P., and Easton, H., 1996, Stratospheric aerosol cloud of unknown origin: unpublished manuscript.

Information Contacts: Horst Jäger, Fraunhofer -- Institut für Atmosphärische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, Germany; Forrest M. Mims III, Sun Photometer Atmospheric Network (SPAN), 433 Twin Oak Rd., Seguin, TX 78155 USA; Rene Estevan and Juan Carlos Antuña, Centro Meteorologico de Camagüey, Apartado 134, Camagüey 70100, Cuba [J.C.A is presently at Univ. Maryland, Dept. of Meteorology, College Park, MD 20742 USA]; John Barnes, Mauna Loa Observatory, P.O. Box 275, Hilo, HI 96720 USA.


Eastern Gemini Seamount (France) — February 1996 Citation iconCite this Report

Eastern Gemini Seamount

France

20.98°S, 170.28°E; summit elev. -80 m

All times are local (unless otherwise noted)


Submarine eruption; the first recorded historical activity

A submarine eruption was observed in the southern New Hebrides island arc (Vanuatu), an area without previously documented historical activity. The activity was first observed by the merchant ship OSCO STAR cruising in this area on 18 February around 1800. It was described as "continual steam and frequent vertical bursts of very dark water." Observations during a New Caledonia Coast Guard flight on 19 February revealed a white zone within a steaming black patch. A similar flight on 22 February enabled a television crew from RFO New Caledonia to take videotape footage for the local news. Observers on that flight noted that the white zone, from which steam was rising, had a diameter of ~400 m. This zone was located inside a wider ellipse, brown-ochre in color, elongated ~4 km down-current. Every 3-9 minutes an explosion sent black products ~20 m above sea level. After each explosion, the diameter of the white area diminished drastically, rising again during the next explosion. The black products were diluted to form the brown-ochre zone. This activity was probably similar to that documented on 18 February.

Located ~100 km S of Anatom Island, about halfway between Yasur Volcano (Tanna Island) and Matthew Island, the Eastern Gemini seamount is one of several seamounts along the southern submarine extension of the New Hebrides island arc. Several basalt samples and one andesite dredged from this seamount in 1989 (Monzier and others, 1993) were described as glassy, vesicular, and extremely fresh (Bargibant and others, 1989). Because all of the samples were devoid of marine animal traces, the activity was described as very recent. The nearby Western Gemini seamount is located near 21.0°S, 170.05°E, at a depth of 30 m below sea level. Well-developed marine life around its summit suggests that its activity is older.

References. Monzier, M., Danyushevsky, L.V., Crawford, A.J., Bellon, H., and Cotten, J., 1993, High-Mg andesites from the southern termination of the New Hebrides island arc (SW Pacific): Journal of Volcanology and Geothermal Research, v. 57, p. 193-217.

Bargibant and others, 1989, ORSTOM Noumea Earth Sciences Report, no. 12, 13 p. (unpublished).

Geologic Background. A submarine eruption, the first recorded in historical time from Eastern Gemini seamount, was observed by a passing ship on 18 February 1996. Water discoloration and bursts of very dark water were observed. Overflights as late as the 22nd noted periodic explosions that ejected black products to about 20 m above sea level. This seamount, also known as Oscostar, is located ~100 km S of Aneityum Island, about halfway between Yasur volcano and Matthew Island. It is one of several seamounts along the southern submarine extension of the New Hebrides island arc, and consists of an elongated NNE-SSW-trending ridge of submarine volcanoes with satellitic cones. Several basaltic samples and one andesitic rock dredged in 1989 were described as glassy, vesicular, and extremely fresh.

Information Contacts: Bernard Pelletier, Centre ORSTOM de Noumea, BP A5, Noumea, New Caledonia; Michel Lardy, ORSTOM, BP 76, Port Vila, Vanuatu; Michel Monzier and Claude Robin, ORSTOM, AP 17-11-6596 CCI, Quito, Ecuador; Jean-Philippe Eissen, Centre ORSTOM de Brest, BP 70, 29280 Plouzane, France.


Etna (Italy) — February 1996 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Two additional significant eruptive episodes during January-February

After the sixth eruptive episode at Northeast Crater (NEC) on 23 December 1995 (BGVN 20:11/12), continuous steam emission was observed at the other summit craters in early January. After sunrise on 4 January, ash puffs were observed at Bocca Nuova crater (BN). The abundant black ash emissions were apparently not linked to explosive activity; the frequency of ash puffs ranged between 2 and 5/minute and slowly declined during the afternoon. The next day only a white plume was present. A few small ash puffs observed on 5 and 9 January came from BN and NEC.

In the early morning of 17 January, a strong explosion from NEC ejected lithic material. Intermittent blasts (up to 15 minutes apart) were heard during the day, but no ejections were observed. Fieldwork two days later revealed that Strombolian explosions with ash puffs had occurred from two vents in the NW part of the Bocca Nuova crater floor, in the same place where activity resumed at the end of July 1995 (BGVN 20:08). The Voragine crater produced unusually strong gas blasts, but no sign of eruptive activity was observed. NEC produced a strong explosion at 1010, but then remained quiet without any gas emission. A 20 January explosion at NEC had similar characteristics. Explosive activity on 21 January was more intense and caused ash emission mainly from BN, but some strong blasts also came from NEC during the day.

Seventh eruptive episode. During the night of 24 January, red glows were intermittently observed at NEC, and after 0600 on 25 January lava jets inside a dense ash cloud were observed by the surveillance video camera at La Montagnola (3.5 km from the summit). This seventh eruptive episode, 33 days after the start of the previous one, probably began around 0130 when a strong increase in tremor amplitude was recorded by the summit stations of the IIV seismic network. A pulsating ash column developed around 0430 and was flattened down to the ground by strong winds. The lava jets were fairly low (~100 m above the crater rim) so the spatter deposit mantled only the upper part of the NEC cone, whereas fine material was blown onto the NE flank. Lapilli fallout ended around 1045, but the explosive activity continued for several hours. The lapilli-fall deposit covered a sector of the volcano >20 km long and 3.5 km wide at 12 km from the vent, where the thickness of the deposit was 1-2 mm. The volume of the pyroclastic material erupted during this episode was estimated at ~500,000 m3.

During the night of 26-27 January several strong blasts from the summit were heard in the nearest villages and strong red glows were sometimes observed at the summit. This activity was marked by short periods of high tremor amplitude. At sunrise two intense ash emissions from NEC were observed by the video surveillance system. Aerial observations revealed that one or more short lava-fountaining episodes occurred at NEC during the night. A hot spatter deposit covered a wide band on the upper SE flank down to 2,500 m elevation; no fine distal deposit was observed. Ash puffs and blasts were observed and heard from BN and NEC in the following days (in particular on the morning of 28 January) up to around 1000 on 30 January when tremor amplitude increased and ashfall was reported by skiers on the S flank. However, these phenomena vanished in the afternoon.

The summit craters remained quiet in early February, showing continuous steam emission sporadically darkened by minor ash. However, tremor amplitude fluctuated above background levels. On 8 February copious ash emitted by BN thinly covered the snow on the S flank.

Eigth eruptive episode. Another fire fountaining episode at NEC began at 2335 on 9 February and ended around 0115 the next day. Pulsating lava jets reached 200 m above the crater rim. Lapilli fallout covered a narrow band (1-3 km wide) from the vent to the shoreline (25 km away) on the SE flank (figure 63). A light ash fallout reached the town of Catania. However, the estimated volume of eruptive products was the estimated volume of eruptive products was < 300,000 m3.

Figure (see Caption) Figure 63. Map of the Etna area showing zones affected by ashfall in November-December 1995, 21 January 1996, and 9 February 1996. Coordinates are UTM. Courtesy of IIV.

Minor eruptive activity continued until 0145-0200 on 10 February. A strong explosion at 1022 ejected a large amount of material from NEC. Several ash puffs occurred during the day at NEC and BN craters. In the late evening the ash emission at BN increased and Strombolian activity resumed at NEC, marked by increased tremor amplitude that decreased again during the night. At dawn on 11 February several ash puffs were observed at BN; this activity decreased during the day but around 1700 the tremor amplitude increased again and strong Strombolian activity resumed at NEC. Eruptive activity continued through 2130 and then dropped.

On 12 February numerous ash puffs were observed at both BN and NEC. At 0030 the following day strong Strombolian activity was observed at NEC by the surveillance camera. The intensity of explosions grew up to 0130 when another sharp tremor amplitude increase was recorded. Strombolian explosions often threw incandescent bombs up to 200 m above the crater at a rate of ~5/minute until 0200. Strombolian activity gradually decreased and after 0300 was seldom observed. At sunrise several black ash puffs were observed at both BN and NEC craters and ash emissions became less frequent at 1100.

Ash puffs were next observed on 14 February, becoming more frequent on 17-18 February and during the morning of 19 February when BN produced almost continuous ash emissions for periods of up to tens of minutes. At sunrise on 21 February the snow was covered by a thin ash layer. At 1757 pulsating red glows were visible above NEC; at 1830 the glow became continuous until sunrise the next day (22 February). Higher intensity glow occurred for up to a few tens of minutes when bomb ejections were recognized.

During 22 February activity was apparently low, with only a few ash puffs from NEC. At 0240 on 23 February red glows resumed at NEC and continued through sunrise. Red glow resumed at 1820, alternating between a few tens of minutes of strong activity and longer periods of reduced activity. The same phenomena occurred the following night but poor visibility prevented good observations.

Good visibility on the night of 24-25 February permitted detailed observations of the Strombolian activity at NEC. It was continuous all night and produced by two vents; the rate of explosions ranged between 1 and 5/minute, and ejecta rose to a maximum of 150 m above the crater. During daytime no evidence of this activity was recognizable from the surveillance camera, but the next night (25-26 February) the two vents were often active simultaneously and their frequency of explosions exceeded 5/minute; moreover, the strong explosions at the start of each higher intensity phase threw bombs up to 300 m above the crater.

Poor weather conditions after the morning of 26 February prevented regular observations. Decreasing tremor amplitude in late February suggested that the period of quasi-continuous Strombolian activity at NEC ended during daylight on 27 February.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Mauro Coltelli, CNR Istituto Internazionale di Vulcanologia (IIV), Piazza Roma 2, Catania, Italy (URL: http://www.ingv.it/en/).


Fujisan (Japan) — February 1996 Citation iconCite this Report

Fujisan

Japan

35.361°N, 138.728°E; summit elev. 3776 m

All times are local (unless otherwise noted)


Low-frequency earthquake swarm

On 20, 24, 25, and 30 January about a dozen low-frequency earthquakes were recorded.

Geologic Background. The conical form of Fujisan, Japan's highest and most noted volcano, belies its complex origin. The modern postglacial stratovolcano is constructed above a group of overlapping volcanoes, remnants of which form irregularities on Fuji's profile. Growth of the Younger Fuji volcano began with a period of voluminous lava flows from 11,000 to 8000 years before present (BP), accounting for four-fifths of the volume of the Younger Fuji volcano. Minor explosive eruptions dominated activity from 8000 to 4500 BP, with another period of major lava flows occurring from 4500 to 3000 BP. Subsequently, intermittent major explosive eruptions occurred, with subordinate lava flows and small pyroclastic flows. Summit eruptions dominated from 3000 to 2000 BP, after which flank vents were active. The extensive basaltic lava flows from the summit and some of the more than 100 flank cones and vents blocked drainages against the Tertiary Misaka Mountains on the north side of the volcano, forming the Fuji Five Lakes, popular resort destinations. The last confirmed eruption of this dominantly basaltic volcano in 1707 was Fuji's largest during historical time. It deposited ash on Edo (Tokyo) and formed a large new crater on the east flank.

Information Contacts: Volcanological Division, Japan Meteorological Agency, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan


Galeras (Colombia) — February 1996 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Slight increase in seismicity, but still at low levels

Seismicity during January and February remained low, similar to previous months. The activity was characterized by fracture events at the seismogenic source 2-8 km NE of the main crater. One M 2.9 volcano-tectonic event from this source on 26 January was felt by residents in Pasto and near the epicenter. Earthquakes were also felt on 4 and 19 February (M 2.4 and 2.7, respectively). Long-period events associated with gas movement increased slightly at the end of January and early February, but remained at low levels. This activity was mainly characterized by tornillo signals (screw-type events) lasting 30 seconds. The dominant frequency of these events also declined in late January (figure 79). A similar pattern was observed before eruptions in 1992-93.

Figure (see Caption) Figure 79. Dominant frequency of tornillo signals at Galeras, 21 January-1 March 1996. Courtesy of OVP.

The two electronic tiltmeters showed no significant changes. SO2 measurements using COSPEC registered emission rates of <100 metric tons/day through January-February. Few morphological changes were observed in the walls of the active crater near the Pinta crater or the Paisita fumaroles.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Pablo Chamorro, INGEOMINAS Observatorio Vulcanologico y Sismologico de Pasto (OVP), A.A. 1795, San Juan de Pasto, Nariño, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Hokkaido-Komagatake (Japan) — February 1996 Citation iconCite this Report

Hokkaido-Komagatake

Japan

42.063°N, 140.677°E; summit elev. 1131 m

All times are local (unless otherwise noted)


Tremor and extension precede early March phreatic eruption

In the early evening of 5 March, >=6 minutes of large amplitude volcanic tremor registered and during the night an eruption began. The monthly record of earthquakes from 1966 until the eruption showed little in the way of a diagnostic rise prior to the eruption (figure 1). The above mentioned tremor was detected at the local Japan Meteorological Agency (JMA) seismic station (4.1 km WSW from the crater). Tremor was also noted by Usu Volcano Observatory (UVO), which maintains five seismic stations. On 5 March UVO recorded 5 minutes of premonitory tremor and an abnormally high number (> 10) of small volcanic earthquakes. Prior to the heightened seismicity, UVO researchers found continuous extension of Komaga-take's 1929 crater area begining in 1989, and their leveling survey in November 1995 showed a reversal from subsidence to uplift.

Figure (see Caption) Figure 1. Monthly number of earthquakes of Komaga-take recorded at JMA's local seismic station in the years 1966-96. An eruption took place in early March 1996. Courtesy of JMA.

On the morning of 6 March JMA reported that a white plume rose to 150 m above the summit and ashfall was visible for >10 km from the summit on the SSE flank. According to Tad Ui, who made observations from a helicopter during the morning of 6 March, steam-dominated eruption clouds rose from inside the craters of the 1929 eruption and also from new, 100-m-long, N-S trending fissures S of the craters. He estimated the cloud height at around 400 m. Ashfall covered new snow; no mudflows were observed. Videos taken around this time by the press and local residents showed violent, gray, ash-laden clouds jetting from newly formed fissures.

On 8 March, a white-colored plume was 900 m above the summit. By 12 March, eruptive activity declined. Post-eruption seismicity was weak: tremor was not observed from 5 March to as late as 10 March, and after 6 March small earthquakes occurred several times a day.

An aviation notice on 7 March stated that the top of the ash cloud was at ~1,500-m altitude (~300 m above the summit) and drifting SE; a notice the next day reported ash to ~1,700 m altitude drifting W. Notices were again issued on 13 and 19 March for ash clouds to ~1,300-m altitude.

Ui and other scientists from Hokkaido University will analyze new products; preliminary analysis suggested that the initially erupted tephra contained little fresh glass, and other magmatic materials appeared absent. The mass of tephra erupted in this event was estimated at ~25,000 tons.

Residents evacuated the night of 5 March were permitted to return on 8 March. Small phreatic eruptions of the kind witnessed beginning on 5 March 1996 could be precursors to larger explosions. Phreatic eruptions were observed during June 1919, and in June 1929, prior to larger events.

Geologic Background. Much of the truncated Hokkaido-Komagatake andesitic volcano on the Oshima Peninsula of southern Hokkaido is Pleistocene in age. The sharp-topped summit lies at the western side of a large breached crater that formed as a result of edifice collapse in 1640 CE. Hummocky debris avalanche material occurs at the base of the volcano on three sides. Two late-Pleistocene and two Holocene Plinian eruptions occurred prior to the first historical eruption in 1640, which began a period of more frequent explosive activity. The 1640 eruption, one of the largest in Japan during historical time, deposited ash as far away as central Honshu and produced a debris avalanche that reached the sea. The resulting tsunami caused 700 fatalities. Three Plinian eruptions have occurred since 1640; in 1694, 1856, and 1929.

Information Contacts: Tadahide Ui, Hokkaido University, Grad School Sci., Kita-ku, Sapporo 060 Japan; Usu Volcano Observatory (UVO), Faculty of Science, Hokkaido University, Sohbetsu-cho, Usu-gun, Hokkaido 052-01 Japan; Volcanological Division, Seismological and Volcanological Dept, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan; Setsuya Nakada, Volcano Research Center, Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html); Bureau of Meteorology, Darwin, Australia.


Iwatesan (Japan) — February 1996 Citation iconCite this Report

Iwatesan

Japan

39.853°N, 141.001°E; summit elev. 2038 m

All times are local (unless otherwise noted)


Small-amplitude tremor

On 13, 24, and 29 January small-amplitude volcanic tremors occurred. Such tremors were previously observed on 20 October 1995.

Geologic Background. Viewed from the east, Iwatesan volcano has a symmetrical profile that invites comparison with Fuji, but on the west an older cone is visible containing an oval-shaped, 1.8 x 3 km caldera. After the growth of Nishi-Iwate volcano beginning about 700,000 years ago, activity migrated eastward to form Higashi-Iwate volcano. Iwate has collapsed seven times during the past 230,000 years, most recently between 739 and 1615 CE. The dominantly basaltic summit cone of Higashi-Iwate volcano, Yakushidake, is truncated by a 500-m-wide crater. It rises well above and buries the eastern rim of the caldera, which is breached by a narrow gorge on the NW. A central cone containing a 500-m-wide crater partially filled by a lake is located in the center of the oval-shaped caldera. A young lava flow from Yakushidake descended into the caldera, and a fresh-looking lava flow from the 1732 eruption traveled down the NE flank.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan.


Karymsky (Russia) — February 1996 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Ongoing explosions eject steam and minor ash

Following the main eruptive period in early January, Karymsky had produced one to several small explosions a day. The explosions consisted mainly of steam with minor ash rising to heights <=1.5 km above the summit. Daily explosions continued until at least ~7 March. The lava flow erupted in January stopped growing during early February and continued cooling. The Institute of Volcanic Geology and Geochemistry (IVGG) reported that during the first week of March, Karymsky lake had a temperature of 23°C with a hotter area (32°C) located at its N end.

Ground reports noted one eruptive pulse at 2330 on 29 February; it sent ash and steam to ~4 km altitude; satellite imagery failed to detect this pulse. Simulated trajectory for plumes showed them generally blowing S to SSW.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Vladimir Kirianov and Yuri Doubik, IVGG; Alaska Volcano Observatory; Synoptic Analysis Branch, NOAA/NESDIS, USA.


Kujusan (Japan) — February 1996 Citation iconCite this Report

Kujusan

Japan

33.086°N, 131.249°E; summit elev. 1791 m

All times are local (unless otherwise noted)


Seismic activity continues but plume is devoid of ash

High seismicity was recorded throughout February: earthquakes totaled 303. No volcanic tremors were observed. The height of the ash-free plume remained at 100-300 m throughout the month. There was no ashfall.

Geologic Background. Kujusan is a complex of stratovolcanoes and lava domes lying NE of Aso caldera in north-central Kyushu. The group consists of 16 andesitic lava domes, five andesitic stratovolcanoes, and one basaltic cone. Activity dates back about 150,000 years. Six major andesitic-to-dacitic tephra deposits, many associated with the growth of lava domes, have been recorded during the Holocene. Eruptive activity has migrated systematically eastward during the past 5000 years. The latest magmatic activity occurred about 1600 years ago, when Kurodake lava dome at the E end of the complex was formed. The first reports of historical eruptions were in the 17th and 18th centuries, when phreatic or hydrothermal activity occurred. There are also many hot springs and hydrothermal fields. A fumarole on Hosho lava dome was the site of a sulfur mine for at least 500 years. Two geothermal power plants are in operation at Kuju.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Kusatsu-Shiranesan (Japan) — February 1996 Citation iconCite this Report

Kusatsu-Shiranesan

Japan

36.618°N, 138.528°E; summit elev. 2165 m

All times are local (unless otherwise noted)


Minor hydrothermal ejection in Yu-gama crater

According to Kusatsu-Shirane Volcano Observatory (Tokyo Institute of Technology), at 1044 on 7 February geophysical changes occurred. A hydrophone submerged in Yu-gama pond recorded large amplitude sound waves and a meter registered water-level changes. Observers on 14 and 24 February saw discolored water near the NW part of the pond's surface and pieces of broken ice, 20-30 cm in size, along the shore. Therefore, on 7 February, a small magnitude ejection might have occurred at the pond. When a similar phenomenon was last observed, 6 January 1989, it was ascribed to hydrothermal activity.

Geologic Background. The Kusatsu-Shiranesan complex, located immediately north of Asama volcano, consists of a series of overlapping pyroclastic cones and three crater lakes. The andesitic-to-dacitic volcano was formed in three eruptive stages beginning in the early to mid-Pleistocene. The Pleistocene Oshi pyroclastic flow produced extensive welded tuffs and non-welded pumice that covers much of the E, S, and SW flanks. The latest eruptive stage began about 14,000 years ago. Historical eruptions have consisted of phreatic explosions from the acidic crater lakes or their margins. Fumaroles and hot springs that dot the flanks have strongly acidified many rivers draining from the volcano. The crater was the site of active sulfur mining for many years during the 19th and 20th centuries.

Information Contacts: Volcanological Division, Japan Meteorological Agency, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan


Langila (Papua New Guinea) — February 1996 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Ash-and-vapor clouds and occasional night glow

Activity at Crater 2 was low to moderate in January and moderate in February. During this time, the explosions produced thick white-gray ash-and-vapor clouds; these usually blew SE over unpopulated areas. Eruption sounds varied between rumblings and detonations. On most February nights, observers saw variable glow over Crater 2 and, on 2, 8, and 23 February, ejection of incandescent lava fragments. During January and February, Crater 3 was inactive, but moderate seismicity prevailed. The daily total of explosion earthquakes during February ranged between 0 and 5.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Ima Itikarai and Ben Talai, RVO.


Manam (Papua New Guinea) — February 1996 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Steam emitted at low-to-moderate rates

During January and February both summit craters emitted white vapors at low to moderate rates. While activity at Manam was very subdued in February, S Crater released blue emissions on two days (11-12 February) and weak booming noises were heard during the month. Neither ash emissions nor increased white vapor emissions were noted at the time of the sound effects.

No seismic monitoring took place at Manam during February. Tilt measurements from the water-tube tilt meters at Tabele Observatory (4 km from the summit) indicated little or no tilt for the month.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: RVO.


Miyakejima (Japan) — February 1996 Citation iconCite this Report

Miyakejima

Japan

34.094°N, 139.526°E; summit elev. 775 m

All times are local (unless otherwise noted)


Low-frequency earthquakes

Low-frequency earthquakes were recorded on 21 and 23 January.

Geologic Background. The circular, 8-km-wide island of Miyakejima forms a low-angle stratovolcano that rises about 1100 m from the sea floor in the northern Izu Islands about 200 km SSW of Tokyo. The basaltic volcano is truncated by small summit calderas, one of which, 3.5 km wide, was formed during a major eruption about 2500 years ago. Parasitic craters and vents, including maars near the coast and radially oriented fissure vents, dot the flanks of the volcano. Frequent historical eruptions have occurred since 1085 CE at vents ranging from the summit to below sea level, causing much damage on this small populated island. After a three-century-long hiatus ending in 1469, activity has been dominated by flank fissure eruptions sometimes accompanied by minor summit eruptions. A 1.6-km-wide summit caldera was slowly formed by subsidence during an eruption in 2000; by October of that year the crater floor had dropped to only 230 m above sea level.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


North Gorda Ridge Segment (Undersea Features) — February 1996 Citation iconCite this Report

North Gorda Ridge Segment

Undersea Features

42.67°N, 126.78°W; summit elev. -3000 m

All times are local (unless otherwise noted)


Eruption or intrusive event detected by acoustic signals

In late February and early March a possible submarine eruption was detected on the Gorda Ridge. Seismo-acoustic T-waves established the epicenter at between 42.41 and 42.75°N. Vertical conductivity-temperature-depth (CTD) casts found a candidate plume at 42.67°N, 126.78°W.

Beginning at 0700 GMT on 28 February, intense seismicity was detected using the T-phase Monitoring System developed by National Oceanic and Atmospheric Administration's Pacific Marine Environmental laboratory (NOAA/PMEL) to access the U.S. Navy's Sound Surveillance System (SOSUS) in the NE Pacific. The event was located on the northernmost segment of the Gorda Ridge (figure 1), over 200 km W of the Oregon coast. The seismicity was very similar to that observed in June 1993 at the CoAxial Segment of the Juan de Fuca Ridge at 46.5°N (BGVN 18:07), which was later documented to be the lateral injection of magma with a subsequent eruption.

Figure (see Caption) Figure 1. Bathymetric map of the northernmost Gorda Ridge, NE Pacific Ocean. White box shows the approximate area of the hydrothermal plumes found during 10-11 March 1996. The "narrow-gate" summit area is located just N of the plume location, around 42.75°N, 126.75°E. Inset bathymetric map shows the Blanco Fracture Zone and the Gorda Ridge, with the eruption site indicated by a white dot. Courtesy of the RIDGE Office.

For the first 42 hours of T-wave seismicity, two proximal SOSUS arrays were not operating, so the presence of seismicity in the general area of the northern Gorda Ridge was confirmed based on distant arrays. The proximal SOSUS array became operational on 6 March, allowing improved sensitivity and epicenter estimates. Seismicity continued during 6-8 March, located thoughout the S half of the ridge segment from 42°25' to 42°45'N.

The Gorda Ridge Eruption Assessment Team (GREAT), aboard the NOAA Ship MacArthur, reached the area on 8 March. They began a series of vertical CTD casts starting at 42°26.2'N, 126°55.3' W, and proceeding N along the ridge axis with measurements at ~2' intervals; only 2,900 m of wire was useable. No plume signals were detected on the first six casts, although up to 1 km of the water column remained below the deepest CTD depths reached. At 42°37.9'N, 126°47.8'W, temperature and particle plumes were found between 1,850 and 2,800 m above a bottom depth of 3,300 m. The main plume lens was centered at 1,850-2,300 m, with several thinner and less intense plumes below. Plume distribution was similar at the next two stations N, though the overall plume became thinner and less intense. A plume located 24 hours later was similar, perhaps indicating advection of the plume to the W.

On 9 March seismicity decreased to <10 events/hour. Only minor seismic activity was recorded on 10 March, mostly from the shallower "narrow-gate" (summit) area near 42°45'N. That day, GREAT detected a large hydrothermal plume centered near 42°40'N, 126°47'W that may have been due to recent magmatic activity. Initial survey work indicated that the plume may have been an agglomeration of more than one discharge. It had a maximum thickness of ~700 m, a maximum diameter of ~10 km, and a maximum temperature anomaly of ~0.12°C. Seismicity continued at a low level (<5 earthquakes/hour) during 11-14 March. Seismic activity increased again at 1625 GMT on 15 March to >25 events in the first hour. The nature of the seismicity appeared to be due to magma injection rather than eruption. Preliminary locations for the 15 March activity were in the summit area.

Based on their exceptional height above the axial valley, most of the major plumes detected through 15 March were thought to be event plumes. The capability to demonstrate the vertical and horizontal symmetry characteristic of event plumes was not available. Apparently, several distinct event plumes were mapped that differ in depth and in horizontal and vertical dimensions. One alternative hypothesis is that all, or some, of the plumes are chronic plumes originating high on the valley walls. No substantial near-seafloor plumes have been found. The source of the presumed event plumes may be S of their present position in water too deep for available equipment to reach, farther to the N where samples had not yet been taken, or beneath their present position but as yet undetected.

Remaining unanswered questions regarding the Gorda Ridge event, as well as mid-ocean ridge events generally include: spatial and temporal patterns of seismicity, intrusive vs. extrusive behavior, the origin of the event plumes, and patterns and rates of geochemical and microbiological processes associated with event plumes and resulting chronic plumes. A second response cruise on the UNOLS RV Wecoma during the first two weeks of April 1996 will focus on water column work and camera tows.

Substantial data sets have been previously collected in this area. Water column surveys collected by NOAA in 1985 and later surveys by Oregon State University showed water column temperature anomalies in the area, which was labelled GR-14. Full SeaBeam coverage has been collected by NOAA. SeamarC II surveys were collected in the area in 1983 by USGS/University of Hawaii. Detailed SeamarC I surveys were collected by NOAA/PMEL in the northern half of the segment in 1987. Camera surveys were conducted in 1985-86 by USGS and NOAA/PMEL. Extensive dredges were also collected by USGS. The Navy's SeaCliff submersible dove in the area in 1988.

Geologic Background. The northernmost of five segments of the Gorda Ridge lies immediately south of the Blanco Transform Fault that offsets the Gorda and Juan de Fuca oceanic spreading ridges. The 65-km-long segment is located about 200 km W of the southern Oregon coast and has deep 5- 10-km-wide valleys at either ends with a shallower narrow axial valley at the center. This morphology, which in plan view resembles an hourglass, is typical of magmatically active spreading segments. A submarine lava flow was erupted in late February and early March 1996, near the center of the segment. The eruption was initially detected through acoustic T-waves from a seismic swarm and the emission of large thermal plumes. In April submarine cameras revealed new lava flows about 100-200 m wide along a fissure that was at least 3.5 km long. A seismic swarm of uncertain origin also occurred at this location in January 1998.

Information Contacts: Chris Fox, Bob Embley, Bob Dziak, and Ed Baker, NOAA Pacific Marine Environmental Laboratory, 2115 SE Osu Drive, Newport, OR 97365 USA (URL: http://www.pmel.noaa.gov); RIDGE Office, Ocean Processes Analysis Laboratory, Morse Hall, 39 College Road, University of New Hampshire, Durham, NH 03824-3525 USA (URL: http://ridge.unh.edu).


Popocatepetl (Mexico) — February 1996 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


New eruptive episode produces ash plume that drifts over SW coast

An ash-emission event was detected at 0349 on 5 March when continuous tremor began. This seismicity remained at relatively high levels for about one hour, and then decreased. Mild ashfalls were reported in the immediate area around the volcano, particularly in the N sector. During a helicopter reconnaissance flight at 1200, ash deposits were confirmed, especially in the close neigborhood of Tlamacas (figure 12). The glacier and snow near the summit were entirely covered by ash, confirming statements made by witnesses who saw ash emissions in the morning. A vigorous ash-and-gas column could be seen rising ~800 m vertically; it dispersed NE in a long plume. A sulfur smell could clearly be perceived near the crater. The emission of gas, steam, and ash appeared to come from the same three sources in the E side of the crater that produced the 1994-95 activity (BGVN 19:11, 19:12, and 20:01-20:04). This event on 5 March seemed very similar to that of 21 December 1994, but perhaps about an order of magnitude lower, an intensity comparable to the levels of activity observed on 26 December 1994. The only activity that may be regarded as precursory was a small A-type event at 0227 (M 1.2).

Figure (see Caption) Figure 12. Base map of Popocatépetl and vicinity (elevations taken from the 1986 México City 1:250,000 topographic sheet).

Tremor activity slowly decreased through the night of 5-6 March. At 0710 on 6 March another sudden increase in the gas and ash emission rates was accompanied by tremor signals comparable to those of the previous day. These levels persisted through at least 1030 on 6 March. During a second helicopter reconnaissance flight, between 0825 and 0930, the ash plume was larger than the previous day, and directed E. However, the plume, consisting of steam, gases, and dilute fine-grained ash, bent as it exited the crater. Considering the low wind speed at the summit (~28 km/hour), this suggested a low thermal power in the emission.

At 1245 on 6 March a new and stronger ash-emission event was detected. Volcanic tremor increased correspondingly. Tremor amplitude continued to increase until 1532, when it reached the relatively high levels of early 5 March, where it remained for at least three hours. The ash plume, now with a higher particle density, was blown SE at ~22 km/hour. Besides tremor, during the first two days of the eruption there were mixed low-magnitude A- and B-type earthquakes at shallow to intermediate depths, with the greatest concentration at ~5-9 km beneath the summit (figure 13).

Figure (see Caption) Figure 13. Cross-section of earthquake hypocenters at Popocatépetl during 5-7 March 1996. Triangles indicate the position of seismic stations. Bars indicate uncertainties in the location. All dates and times are local. Courtesy of Carlos Valdes-Gonzalez, UNAM.

Volcanic tremor amplitude and the ash emission rate remained fairly constant until 1030 on 7 March, when tremor amplitudes decreased by a factor of about two. However, a helicopter flight at 0800-0900 showed some increase in the apparent emission rate. Mild ashfall on the volcanoþs flank was observed under the plume; wind speed was low (10-12 km/h). These conditions remained stable until 7 March at 1650, when tremor amplitude and duration increased to levels exceeding those of December 1994. Stronger winds (60 km/hour at 1100) bent the plume horizontally from the crater, dispersing the ash farther E. Tiltmeters showed some oscillations, probably related to the high tremor level, but no actual deformation was detected. High tremor amplitudes persisted until 1400 on 10 March, when tremor amplitude and the ash emission rate slowly underwent a 5-fold decrease.

Low-level activity persisted until 11 March at 1800, with three important exceptions. At 1845 on 10 March, a strong emission produced an ash column nearly 3 km high accompanied by a small 2-minute duration B-type volcanic earthquake. These events repeated at 0921 and 0937 on 11 March. The 0921 event was preceded by a fairly high-frequency A-type earthquake at 0906. On 11 March at 1800, the pattern of activity started to return to continuous tremor and ash emission. These tremor signals have been interpreted as high-speed exhaust of volcanic gases that remobilize non-juvenile ash.

Satellite imagery, 10-11 March. Analysis of satellite imagery by the NOAA Synoptic Analysis Branch revealed that an eruption at 0245 on 10 March was followed 30 minutes later by a larger burst. The height of the ash was estimated to be just above the summit level (5.5 km). By 1315 that day the ash plume had extended S and SW as far as the Pacific Ocean (figure 14a). Movement of the ash cloud by 1515 suggested that the ash probably extended upwards to ~7 km. The last usable visible imagery on 10 March (at 1815) showed the thicker portion of the ash cloud over the ocean (figure 14b), but less ash in the immediate vicinity of the volcano. This correlates with the decrease in tremor amplitude and ash emission that began at 1400 as noted above. However, infrared imagery indicated continued eruptive activity through the night.

Figure (see Caption) Figure 14. Sketches of the ash plumes from Popocatépetl based on visible satellite imagery, 11-12 March 1996. Solid areas are denser zones of the eruption cloud, lightly stippled areas are zones of the cloud with less ash. Note that scales vary. Courtesy of the NOAA Synoptic Analysis Branch.

The first visible imagery the next morning, at 0915, showed the volcano still erupting with the ash moving S and then W over the East Pacific Ocean (figure 14c), possibly with thinner ash even farther away. A stronger eruptive event at 0945 (probably the 0921 and 0937 events as noted above) sent a plume to perhaps 7.5 km altitude where it was blown SE. The cloud from these events had dissipated by the time of the next visible image at 1015. Eruptions became intermittent over the next three hours, with the estimated plume height remaining at ~7 km altitude. Ash seen on imagery at 1315 was present in a very narrow S-directed area (figure 14d), with thinner ash detected over the ocean.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Servando De la Cruz (CENAPRED and Instituto de Geofisica, UNAM); Roberto Quaas, Enrique Guevara, Bertha López, Alicia Martínez, and Carlos Gutierrez, Centro Nacional de Prevencion de Desastres (CENAPRED), México; Claus Siebe, Instituto de Geofisica, UNAM, Coyoacán 04510 DF, México; Carlos Valdes-Gonzalez, Depto de Sismología y Volcanología, Instituto de Geofísica, UNAM, Ciudad Universitaría 04510 DF, México; Jim Lynch, NOAA/ NESDIS Synoptic Analysis Branch, Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA.


Rabaul (Papua New Guinea) — February 1996 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Tavurvurs November eruption continues; 35% increase in seismicity

Tavurvur's two-month-long eruption continued in February with weak to moderate explosions every few minutes. At close range, roaring and detonation sounds could be heard. Pale to dark gray ash and vapor clouds rose ~400-1,000 m above the crater rim and formed a plume 10-15 km long. The plume generally trended SE over the sea, but occasionally it moved NW over Rabaul Town. At times, ballistic blocks were ejected as far as the outer slopes of Tavurvur's low cone. Sprays of incandescent lava were occasionally seen at night. There were no emissions from Vulcan.

During February, seismicity reached its highest level since the current phase of eruptive activity began on 28 November, 1995 (BGVN 20:11/12). A total of 5,212 eruption-related seismic events were recorded in February, which compares to 3,850 in January, and 1,283 in December. Seismicity peaked in mid-February, declining slightly during the second half of the month. February earthquakes consisted of 4 short-duration volcanic tremors, 5,187 explosion earthquakes, and 21 high-frequency earthquakes. The first two groups of events were directly associated with Tavurur's eruptive activity; 707 of the explosion earthquakes had a distinct air-wave phase recorded at distant seismic stations.

High-frequency earthquakes chiefly occurred in two main time intervals of dissimilar duration. The first interval included 10 events and occurred during 5 minutes on the 10th. The largest event had a magnitude (ML) of 3.1 and was felt in Rabaul Town with a Modified Mercalli intensity of III. The second interval included nine events and occurred over four consecutive days. Except for one earthquake on the W side of the caldera seismic zone, all others were located immediately NE of the caldera.

Ground deformation measurements indicated slight inflation. Between 1 February and 1 March, just W of Tavurvur (Greet Harbor area), tilt amounted to ~15 µrad. In the second half of February, on the opposite side of the caldera (the SW, in vicinity of Vulcan), tilt amounted to ~5 µrad.

Reference. Lauer, S., Pumice and ash: a personal account of the 1994 Rabaul volcanic eruptions, Quality Plus Printers, Ltd., Ballina, NSW, Australia, 1995.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ima Itikarai and Ben Talai, Rabaul Volcano Observatory, P.O. Box 386, Rabaul, Papua New Guinea.


Soufriere Hills (United Kingdom) — February 1996 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Increasingly rapid dome growth

As reported in Montserrat Volcano Observatory (MVO) Scientific Reports, during February the growing dome became higher than Castle Peak and was visible on the volcano's W margins. Based on qualitative estimates, during the third week of February and early March the dome's growth probably reached the highest rates seen since extrusion began around 16 November 1995 (BGVN 20:11/12).

Dome growth and visible observations. As the dome enlarged, the focus of its growth migrated. During 1-7 February the dome's N side grew upward, and the S side grew outward. The dome's N side first became visible from the volcano's W margins beginning on 31 January. Under clear conditions on 2 February it was confirmed that this side of the dome had grown higher than Castle Peak. On 4 February this side of the dome reached a height equal to adjacent parts of the crater wall; talus from the dome's N side filled the adjacent moat and began piling up against the crater wall.

Although low cloud cover generally hampered visibility during the week of 8-14 February, observations around 9 February indicated slowed growth on the N and S coupled with a shift in the focus of activity to the dome's W side. On 11 February a spine was seen in the dome's central sector; its height then was equal to the dome's N side. That day, talus made contact with the crater wall around much of the dome. On 12 February a late morning helicopter flight allowed observers to see a small pyroclastic flow created as debris from the central dome avalanched S. Later in the week, growth took place on the dome's SE side and, in the form of two new protrusions, on the dome's W side.

A second consecutive week of low cloud cover occurred, 15-21 February, and by the end of this interval it was learned that the dome's SE side included a large whaleback-shaped lobe. This new lobe grew to reach the size of the southern whaleback, a lobe emplaced around 19 January (figure 8). The new lobe (not shown on figure 8) was the source of comparatively few rockfalls, and therefore was considered to be relatively massive and coherent. In contrast, frequent rockfalls fell down off the dome's central region and NW side and by the end of the week this area became the focus of growth. The moat's W margin, at the base of Gage's wall (figure 8), received considerable debris. Previously, this area had been the last part of the moat's W margin without appreciable debris.

Figure (see Caption) Figure 8. Soufriere Hills dome map for 25 December 1995 through 31 January 1996. Contour interval is 50 feet; values shown are in hundreds of feet (100 feet = 30.48 m). Although contours are unavailable for areas on the new dome, during February it had reached higher than the old Castle Peak dome and was visible through Gages Gap on from the W slope. Courtesy of MVO.

During the week of 22-28 February, the dome growth rate, which was estimated qualitatively, may have been the highest since extrusion began. High steam and gas fluxes also prevailed. Although the resulting plumes thwarted aerial photo-documentation, the dome grew in both vertical and horizontal directions. Semi-continuous rockfalls from specific zones indicated growth in a pattern similar to the previous week. Specifically, most 22-28 February rockfalls came from the dome's central region, as well as its NW, and to a lesser extent, SE sides. A gas sampling visit on 27 February revealed extensive gas escaping from areas on and surrounding the dome, but the primary vent identified was still the 18 July one (see map, BGVN 20:11/12). At this vent escaping gases were 720°C and red-hot rock was seen ~2 m below the surface.

During the week of 29 February-6 March rockfalls from the new dome were abundant, especially from the SW and NW sides; qualitative estimates suggested the highest rate of growth yet seen. Similar to the previous several months, during February and March ash clouds were produced by rock avalanches. A large avalanche on 1 February detached from the dome's S side resulting in a small convective cloud that deposited fine-grained ash on Chances Peak.

Higher than normal amounts of acidic aerosols were noted in the upper Gages valley and through the first 3 weeks of February. During the last week of February, however, the plume rose higher so there was typically less volcanic fog near the ground. During the first week the largest steam emissions came from the dome's top central region. As a result, brown acid burns on vegetation reached as far as Plymouth and Richmond Hill (~5 km W) and some residents suffered irritations.

Rain water sampled during 1-8 February in the Gages valley had a pH of 2.5 and contained sulfates, <3 mg/l; fluorides, 1.5 mg/l; and chlorides, 106 mg/l. The pH has ranged from 2.5 to 3.5 in weekly rainwater tests made beneath the plume on the volcano's W flanks (Upper Amersham). In contrast, the local source springs used for drinking water, also on the W flank, had consistently shown little or no geochemical perturbation. During February it was reported that gases from both the dome and three fumaroles (soufrieres) around the volcano appeared to have changed little during the course of the increased activity.

Samples of the new dome collected in January were crystal-rich andesites containing hornblende and two pyroxenes. This rock appeared very similar to those forming the old Castle Peak dome. Tephra from small eruptions on 13 and 21 December were of dacitic composition and appeared to be phreatomagmatic in origin, containing accretionary lapilli and a definite juvenile component.

Deformation. Surveys during the first week of February established that the volcano's NW radial direction (the Tar River-Castle Peak EDM line) underwent a shortening of 1.5 cm since its previous measurement on 21 January and a shortening of 2.5 cm since 23 December 1995. A survey on 13 February established that the SW radial direction (the O'Garra-Chances Peak line segment) shortened by 1.4 cm since last measured on 1 February. Surveys during the third week of February established that in the NW radial direction there had been a shortening rate of about 1 mm/day, a rate that appears to have been pretty steady since dome extrusion began. Surveys during the fourth week of February indicated continued deformation. The Long Ground tiltmeter continued to remained stable as it has for several months.

Results obtained on 27-28 February suggested that neither the Castle Peak nor Gages Wall reflectors showed any greater movement than the reflectors farther from the area of dome extrusion. This was taken to indicate a lack of local deformation at these two sites on the edifice.

Seismicity. During the first week of February, tremor was rare. The chief exceptions were a 4-hour interval of low-amplitude tremor and an 18-hour interval of low- to moderate-amplitude tremor. Throughout much of February, and particularly between the 8th and 14th, intermittent episodes of low- to moderate-amplitude tremor were recorded. Increased tremor amplitude was seen on 17, 19, and 20 February; another episode that started on the 25th lasted ~12 hours.

Small (M 0.0-0.5) hybrid events fluctuated in amplitude but occurred often during February. In a particularly intense episode between 23 January and 6 February, they took place 5-6 times/minute. These hybrid events generally took place less frequently, particularly in late February.

Early in February, long-period earthquakes of M <=2.5 were located. During the most intense interval they took place at a rate of 34/day. Late in February, instrumental locations were obtained for many of the larger (M 1.0-1.8) long-period earthquakes. They all occurred <=3 km beneath the volcano. In addition to thedaily seismic events diagnostic of rockfalls, on 7 February a 10-minute-long signal was received exclusively at Gages station. This signal was probably caused by a mudflow down a nearby drainage (Gages Ghaut).

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat.


Stromboli (Italy) — February 1996 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Intense eruptive phase followed by a drop in seismicity

The following presents previously unreported observations of October 1995 activity made by Roberto Carniel (University of Udine), and seismicity recorded near the summit since mid-September 1995. A contribution from the Istituto Internazionale di Vulcanologia (IIV) provides information about a significant explosive event on 16 February.

October 1995 activity. Abundant light fumarolic activity was seen in the crater area on 13 October 1995 by Carniel. A shallow lava pond in vent 3/1 (see map in BGVN 20:11/12) was inferred by continuous night glow and ejection of small spatters that sometimes reached 3-4 m above the crater rim and only rarely fell outside the vent area. The other active vent in the SW crater (vent 3/2) produced regular explosions, with ejecta reaching considerable heights. Crater 2 was quiet, exhibiting neither explosions nor the gas-jet activity that often characterizes this crater. In Crater 1, the only activity occurred at a hole in cone 1/4; it consisted of continuous gas puffing, strong glow visible during the day, and very short blasts of air and smoke. Vent 1/1 was also active, although its eruptions were not as spectacular as those from 3/2, with occasional emission of a black cloud and ejection of sufficient material to trigger noteworthy movement of pyroclasts down the Sciara del Fuoco.

Mauro Coltelli (IIV) noted that the low lava fountains reported during August-October (BGVN 20:11/12) were typical of the Strombolian activity at the volcano, which was relatively low during that period.

Seismicity recorded at the summit, September-December 1995.Seismic activity recorded by the University of Udine summit station during the last three months of 1995 showed little variation in volcanic tremor intensity (figure 47). The daily number of recorded events was low (<100) in mid-September, reached a maximum of 337 on 18 October, and then decreased again until November. This period was interesting because of rapid transitions between days of very quiet activity (3-5 and 8-9 November) and days with a greater number of events (6-7 November). The minimum of the period was reached on 8 November, with only 53 events recorded during a full day of operation. A greater number of stronger events (either more energetic or less shallow) was recorded at the end of November and in early December (high of 46 events on 4 December).

Figure (see Caption) Figure 47. Seismicity detected at the summit of Stromboli, 16 September 1995-29 February 1996. Open bars show the number of recorded events/day, and the solid bars those saturating the instrument (ground velocity exceeding 100 µm/s). The line shows daily tremor intensity computed by averaging hourly 60-second samples. The seismic station is located 300 m from the craters at 800 m elevation. No data were collected during the gaps on the plot, intervals when solar panel efficiency was insufficient to provide power for continuous acquisition. In cases of partial operation, the number of recorded events and the tremor intensity were normalized to the period of acquisition. However, because stronger events (those saturating the instrument) can easily be clustered in a short period of time, they were not normalized and the plotted values show the actual numbers recorded. Courtesy of Roberto Carniel.

January-February 1996 activity. January and the first half of February showed increased seismicity, with an average of 200-300 events/day and higher tremor intensity recorded at the summit. IIV reported that explosive activity during the first half of February remained low, ranging from days with an explosion almost every hour to days with a very few explosions. The main activity consisted of Crater 3 explosions that ejected minor spatter and ash puffs. Crater 2 exhibited continuous degassing, rarely interrupted by short periods of low-level spattering. Crater 1 produced daily strong gas explosions, sometimes with minor spatter.

At 2258 GMT on 16 February the seismic stations of the IIV permanent network on Stromboli recorded a sequence of explosion events, some of which were characterized by remarkable amplitudes. The events occurred in a very short time and were followed by increased tremor amplitude lasting ~12 minutes. Thereafter, the increment of tremor amplitude gradually vanished. The seismicity marked an intense eruptive phase from the summit craters. Eyewitnesses in Stromboli village reported a strong blast followed in the next few minutes by some incandescent bombs and glow on the summit; a dark column rose 200-300 m above the craters. No significant activity was observed by local residents for the next several hours. An IIV field survey on 20 February revealed that the bombs fell on an area 200-300 m wide. Both black scoriaceous bombs, covered by Pele's hairs, and reddish fumarolized blocks were observed; the vent that produced these materials was probably in Crater 2 or 3, but no relevant morphological variation of the shape of these craters was observed.

The University of Udine summit seismic station showed a general drop in activity after the event (figure 47). This repeats the pattern already observed after the explosions of 10 February and 16 October 1993 (BGVN 18:01 and 18:09) and after the small lava flow of May 1993 (BGVN 18:09), when similar abrupt decays were observed. The following days show increasing seismicity in terms of both tremor intensity and number of events.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Roberto Carniel, Dipartimento di Georisorse e Territorio, Univ. di Udine, via Cotonificio 114, I- 33100 Udine; Mauro Coltelli, IIV (URL: http://www.ingv.it/).


Ulawun (Papua New Guinea) — February 1996 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Noiseless steaming and seismic quiet continue

During January and, although less closely monitored, during February, Ulawun continued to release moderate to high volumes of white vapor without any audible sounds. There were no night glows. Seismic activity was low during January; the equipment did not operate during February.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the north coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Ima Itikarai and Ben Talai, RVO.


Unzendake (Japan) — February 1996 Citation iconCite this Report

Unzendake

Japan

32.761°N, 130.299°E; summit elev. 1483 m

All times are local (unless otherwise noted)


Multiple small block-and-ash flows; the first since February 1995

On 10 February, a pyroclastic flow took place that was caused by collapse of the dome's lobe 7 or 8. No pyroclastic flows had been observed since 11 February 1995. In the next five days, six more small block-and-ash flows occurred; the highest plume reached 500 m.

According to the Shimabara Earthquake and Volcano Observatory, the pyroclastic flows descended SE, traveling ~1 km from the source. The resulting deposits were reddish brown and based on infrared camera measurements hosted lava blocks with temperatures > 60°C. The ash-clouds accompanied by these flows were similar to those of pyroclastic (block-and-ash) flows that took place frequently during 1991-94. Simple rockfalls (without ash-clouds) also occurred simultaneously and reached ~1.5 km from the source, beyond the front of the block-and-ash flows.

Neither volcanic earthquakes nor near-dome tiltmeter perturbations occurred before or after the pyroclastic flows. The collapses may have been due to stresses from either cooling-related or seasonal temperature changes.

Unzen is a large volcanic complex that covers much of the Shimabara Peninsula E of Nagasaki. The Mayu-yama lava dome was the source of a devastating 1792 avalanche and tsunami. Partial dome collapses have continued following Unzen's 1990-93 eruption.

Geologic Background. The massive Unzendake volcanic complex comprises much of the Shimabara Peninsula east of the city of Nagasaki. An E-W graben, 30-40 km long, extends across the peninsula. Three large stratovolcanoes with complex structures, Kinugasa on the north, Fugen-dake at the east-center, and Kusenbu on the south, form topographic highs on the broad peninsula. Fugendake and Mayuyama volcanoes in the east-central portion of the andesitic-to-dacitic volcanic complex have been active during the Holocene. The Mayuyama lava dome complex, located along the eastern coast west of Shimabara City, formed about 4000 years ago and was the source of a devastating 1792 CE debris avalanche and tsunami. Historical eruptive activity has been restricted to the summit and flanks of Fugendake. The latest activity during 1990-95 formed a lava dome at the summit, accompanied by pyroclastic flows that caused fatalities and damaged populated areas near Shimabara City.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, Seismological and Volcanological Department, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan; Shimbara Earthquake and Volcano Observatory (SEVO), Kyushu University, Shimabara-shi, Nagasaki-ken 855 Japan; Setsuya Nakada, Volcano Research Center, Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/VRC/index_E.html).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).