Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Karymsky (Russia) Explosions during November 2020-January 2021; new eruptive episode in April 2021

Langila (Papua New Guinea) Ash plumes, SO2 emissions, and thermal anomalies during November 2020-April 2021

Dieng Volcanic Complex (Indonesia) Phreatic explosion on 29 April 2021

Pacaya (Guatemala) Ash emissions during March 2021 close airport; lava flows travel over 3 km, burning crops and blocking roads

Etna (Italy) Frequent explosions, ash plumes, fountaining, and lava flows during December 2020-March 2021

Fuego (Guatemala) Ash plumes, ashfall, and incandescent block avalanches through March 2021; lava flows and a pyroclastic flow in mid-February

Kavachi (Solomon Islands) Discolored water plumes observed in satellite imagery during October 2020-April 2021

Semisopochnoi (United States) Ash emissions in June 2020 and during February-May 2021

Piton de la Fournaise (France) New eruption with lava fountains and flows on 7-8 December 2020

Heard (Australia) Thermal anomalies during November 2020 and January 2021

Sabancaya (Peru) Daily ash explosions, large SO2 flux, and thermal anomalies from multiple domes, October 2020-March 2021

Telica (Nicaragua) Numerous explosions and ash plumes during late November-early December 2020



Karymsky (Russia) — May 2021 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Explosions during November 2020-January 2021; new eruptive episode in April 2021

Karymsky, part of Kamchatka’s eastern volcanic zone, has had frequent eruptions since 1996 that have included ash explosions, ash plumes, gas-and-steam emissions, and thermal anomalies. Its most recent eruption began in April 2020 and has been characterized by ash explosions, ash plumes, ashfall, gas-and-steam emissions, and thermal anomalies (BGVN 45:10). This report covers activity from November 2020 through April 2021 and describes the end of the previous eruption in February 2021 and the start of a new eruption in April. Information comes from daily, weekly, and special reports from the Kamchatka Volcanic Eruptions Response Team (KVERT), the Tokyo Volcanic Ash Advisory Center (VAAC), and satellite data.

During the first half of November 2020 activity consisted of intermittent explosions accompanied by thermal anomalies. During 1-2 November an explosion sent ash plume to 6.5 km altitude that extended as far as 60 km ENE and 30 km SW. An ash explosion on 8 November generated an ash plume that rose to 8 km altitude and drifted 230 km NE. According to the Tokyo VAAC ash plumes were observed on 9 and 11 November that rose to 6 and 7 km, respectively. Intermittent thermal anomalies were observed in satellite data throughout the month.

Moderate gas-and-steam emissions were observed intermittently during December, sometimes accompanied by thermal anomalies. On 10 December, at 0845 local time, explosions generated ash plumes that rose to 6-7 km altitude and drifted NW. Ash explosions continued throughout the day, drifting as far as 220 km NW, W, and SW. Subsequent ash plumes were reported on 13 and 18 December that rose to 3.9 km altitude and drifted N, and 2.7 km altitude that drifted SW, respectively. Explosions on 26 and 30 December produced ash plumes that rose to 4-5 km altitude and drifted as far as 70 km NW. The Tokyo VAAC reported ash plumes to 5.2 km altitude that drifted NW and N on 27 December, to 3 km altitude that drifted SE on 29 December, and to 4.6 km altitude that drifted W on 31 December.

Similar ash explosions accompanied by thermal anomalies were reported during early January 2021. On 1 January the Tokyo VAAC reported an ash plume that rose up to 5.2 km altitude and drifted S, followed the next day by explosions that sent plumes to 5.5 km altitude and drifted 130 km SE. Some of the resulting ash deposits on the snow-covered flanks were observed in Sentinel-2 natural color satellite imagery (figure 55). KVERT reported that a thermal anomaly over a lava dome was visible in satellite images during 14-15, 20-24, and 27 January. Explosivity significantly decreased in February and activity was primarily characterized by moderate gas-and-steam emissions and a thermal anomaly that was last detected on 5 February, marking the end of the current eruption period.

Figure (see Caption) Figure 55. Sentinel-2 natural color satellite images showing fresh ash deposits (dark gray) on the snowy flanks at Karymsky, occasionally accompanied by white gas-and-steam plumes, as seen on 3 (top left) and 28 (top right) December 2020 and 2 January (bottom left) 2020. Satellite images with “Natural Color” (bands 4, 3, 2) rendering. Courtesy of Sentinel Hub Playground.

During 2-6 April a thermal anomaly was detected in satellite data, according to KVERT. Explosions on 4 April at 1130 local time resulted in ash plumes that rose to 8.5 km altitude, which then drifted NE for 255 km during the day, marking the beginning of a new eruptive episode. On 11 April at 1745 ash explosions rose to 4 km altitude and drifted 67-115 km SE, according to a VONA (Volcano Observatory Notice for Aviation). KVERT continued to report weak thermal anomalies that were visible in satellite images during 9-12, 16-17, 22-23, and 29 April.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows three small clusters of low-to-moderate strength thermal anomalies during early November, early December 2020, and early January 2021 (figure 56), which each coincided with explosion events reported by KVERT. No thermal activity was detected after late January through April, according to the MIROVA graph, though KVERT noted thermal anomalies during early February and again in early April. A total of two thermal hotspots were detected by the MODVOLC thermal algorithm on 10 December, which was also visible in an infrared satellite image. Sentinel-2 infrared satellite images captured white gas-and-steam plumes rising from the summit during 10 November and 10 December; on 10 December the explosive events were accompanied by a strong thermal anomaly that was visible through the clouds (figure 57). Weaker thermal anomalies were observed in the summit crater on clear weather days on 25 December and 14 January 2021, which were also reported by KVERT (figure 57).

Figure (see Caption) Figure 56. Small clusters of low-to-moderate strength thermal anomalies at Karymsky were detected during early November, early December 2020, and early January 2021 as seen in the MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 57. Sentinel-2 infrared satellite images show strong degassing plumes from the summit crater of Karymsky on 10 November (top left) and 10 December (top right) 2020 both drifting W. On 10 December a strong thermal anomaly was visible at the summit but was mostly obscured by clouds. On 25 December (bottom left) 2020 and 14 January (bottom right) 2021 faint thermal anomalies were still visible in the crater, accompanied by some ash deposits (black color). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Langila (Papua New Guinea) — May 2021 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Ash plumes, SO2 emissions, and thermal anomalies during November 2020-April 2021

Langila, located at the western tip of Papua New Guinea’s New Britain Island, consists of a group of four small overlapping cones. Frequent mild-to-moderate explosive eruptions with ash emissions have been recorded since the 19th century from three active summit craters. The current eruption period began in October 2015 and has recently been characterized by low-level thermal activity and ash plumes (BGVN 45:11). Similar activity continued during this reporting period of November 2020 through April 2021 using information primarily from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite images.

The NASA Global Sulfur Dioxide page, using data from the TROPOMI instrument on the Sentinel-5P satellite, showed a few weak sulfur dioxide plumes during early December 2020 and late March 2021 that drifted in different directions (figure 22). The Darwin VAAC issued notices of ash plumes on 9 January 2021 to 4.9 km altitude that drifted W, on 13 January to 3 km that drifted WSW, and on 5 April to 1.5 km that drifted SW.

Figure (see Caption) Figure 22. Small sulfur dioxide plumes were visible above Langila based on data from the TROPOMI instrument on the Sentinel-5P satellite. Faint plumes drifted W on 8 December (top left) 2020, N on 10 December (top right), SE on 18 March (bottom left) 2021, and NW on 20 March (bottom right). Small plumes were also present on most of those days originating from Manam (to the W) and Bagana (to the E) volcanoes. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

MIROVA recorded a single low-power thermal anomaly was detected during early November, followed by four more during early December (figure 23). A low-power cluster of thermal anomalies resumed in mid-March that continued through the month. Three more anomalies were recorded in late April. The latter part of this thermal activity was also detected in Sentinel-2 infrared satellite imagery. A single thermal anomaly was visible at the summit crater beginning in February 2021, and in March a second thermal anomaly appeared that continued to be observed through April (figure 24).

Figure (see Caption) Figure 23. Few low-power thermal anomalies at Langila were detected during early November (1) and early-to-mid-December (4) 2020 as recorded by the MIROVA graph (Log Radiative Power). A cluster of low-power thermal anomalies were detected in mid-March 2021 that continued through the month, followed by three anomalies in late April. Courtesy of MIROVA.
Figure (see Caption) Figure 24. Weak thermal anomalies were visible at the summit of Langila in infrared satellite imagery during February through April 2021. Though clouds obscured most of the view on 12 February (top left), a single faint thermal anomaly was observed. On 9 March (top right) two thermal anomalies were observed at the summit, which were also visible on 6 (bottom left) and 18 (bottom right) April. On 18 April, the western thermal anomaly seemed to have decreased in strength slightly. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Dieng Volcanic Complex (Indonesia) — May 2021 Citation iconCite this Report

Dieng Volcanic Complex

Indonesia

7.2°S, 109.879°E; summit elev. 2565 m

All times are local (unless otherwise noted)


Phreatic explosion on 29 April 2021

Infrequent phreatic explosions have occurred at the Sileri Crater Lake in the Dieng Volcanic Complex, with three explosions between 30 April and 2 July 2017, and one on 1 April 2018 (BGVN 42:10, 43:05). None were reported in 2019 and 2020. The volcano is monitored by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Centre for Volcanology and Geological Hazard Mitigation or CVGHM).

PVMBG reported that a phreatic explosion at the Sileri Crater Lake occurred at 1825 on 29 April 2021, ejecting rocks 200 m S and E and mud 400 m S and 300 m E. According to a news article, a local road was temporarily closed because rocks (about 10 cm in diameter) from the explosion were scattered along the road and the mud made conditions slippery. The closest residents are 1 km away. The Alert Level remained at 1 (on a scale of 1-4), and the public was warned to stay 500 m away from the crater rim.

Geologic Background. The Dieng plateau in the highlands of central Java is renowned both for the variety of its volcanic scenery and as a sacred area housing Java's oldest Hindu temples, dating back to the 9th century CE. The Dieng volcanic complex consists of two or more stratovolcanoes and more than 20 small craters and cones of Pleistocene-to-Holocene age over a 6 x 14 km area. Prahu stratovolcano was truncated by a large Pleistocene caldera, which was subsequently filled by a series of dissected to youthful cones, lava domes, and craters, many containing lakes. Lava flows cover much of the plateau, but have not occurred in historical time, when activity has been restricted to minor phreatic eruptions. Toxic gas emissions are a hazard at several craters and have caused fatalities. The abundant thermal features and high heat flow make Dieng a major geothermal prospect.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Detik News (URL: https://news.detik.com/).


Pacaya (Guatemala) — June 2021 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Ash emissions during March 2021 close airport; lava flows travel over 3 km, burning crops and blocking roads

Extensive lava flows, bomb-laden Strombolian explosions, and ash plumes from Mackenney crater have characterized the persistent activity at Pacaya since 1961. The latest eruptive period began with intermittent ash plumes and incandescence in June 2015; the growth of a new pyroclastic cone inside the summit crater was confirmed later that year and has continued, producing frequent loud Strombolian explosions rising above the crater rim and ongoing ash emissions. In addition, flank fissures have been the source of lava flows during 2019-2021. A significant increase in both effusive and explosive activity that began in February 2021 continued through mid-May. Activity during March-May 2021 is covered in this report with information provided by Guatemala's Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), multiple sources of satellite data, and photographs from observers on the ground.

Summary of activity during March-May 2021. Incandescent explosions, ash emissions, and subsequent ashfall increased substantially at the beginning of March 2021 from the already increased levels during February. Explosions sent ejecta hundreds of meters high and hundreds of meters from the summit; ash plumes drifted tens to hundreds of kilometers and ashfall occurred almost daily in communities within tens of kilometers of Mackenney crater. The most extensive ash emissions forced closure of the International Airport in Guatemala City on 22 March. Ash emissions decreased during April and were intermittent into the first half of May, after which they tapered off.

Effusive activity also increased significantly during March 2021; by early in the month as many as three lava flows with multiple branches, all about 1 km long, were simultaneously active on multiple flanks. A new fast-moving flow appeared on the SW flank during the second half of March and rapidly reached 1.5 km in length, flowing NW then SW, ultimately extending over 3 km. It had multiple branches that caused vegetation fires, destroyed significant cropland, and crossed roads before stopping in mid-April. A new flow emerged along a similar path at the end of April and grew to over 2 km long in early May before activity at its source fissure ended on 17 May. High temperatures remained at many flow areas around the volcano for the rest of the month.

The high levels of activity are reflected in the MIROVA radiative power data for the period which show the increase in intensity to very high levels through mid-April, followed by a pulse in late April and early May that corresponds to explosions and lava flows. Thermal activity decreased significantly by the third week of May (figure 160). The MODVOLC thermal alert data shows a similar pattern with multiple alerts issued most days in March and for the first half of April, and another pulse of activity from 27 April-13 May. Significant sulfur dioxide emissions were recorded in satellite data several times in March and April and corresponded to periods of increased explosive and effusive activity (figure 161).

Figure (see Caption) Figure 160. The ongoing eruption at Pacaya increased significantly in intensity in December 2020 and continued to increase through March 2021 as seen in this MIROVA log radiative power graph. Abundant ash emissions and extensive lava flows emerged from numerous fissures until activity decreased substantially in mid-May 2021. Courtesy of MIROVA.
Figure (see Caption) Figure 161. Pulses of increased sulfur dioxide emissions at Pacaya were measured by the TROPOMI instrument on the Sentinel-5P satellite multiple times during March and April 2021, including (top row, left to right) on 5, 10, and 21 March, and (bottom row) 6, 8, and 16 April. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during March 2021. A notable increase in seismicity early on 1 March 2021 coincided with increased Strombolian activity. Observatorio Volcán de Pacaya geologists observed explosions sending ejecta 500 m above the rim of Mackenney crater accompanied by plumes of ash and gas that reached 3.5 km altitude and drifted W and SW. For most of March high levels of Strombolian activity sent ejecta 200-400 m high each day, sometimes higher, reaching 800 m on 3 March, 800-1,000 m on 5 March, and 700 m on 10 March (figure 162). Sounds as loud as a train locomotive or plane engine from the explosions were frequently reported, and ejecta was sometimes scattered 500-600 m from the cone. Explosive activity with ejecta and ash emissions were also reported from the fissure feeding the lava flow on the S flank 300 m below Mackenney crater. On 14 March, ejecta from the fissure sent block avalanches 1,300 m down the S flank.

Figure (see Caption) Figure 162. Strombolian activity at Pacaya sent ejecta hundreds of meters above the summit and down the flanks on 4 March 2021 while effusion continued on the SW flank, also producing an intense glow. Image by Reuters photographer Josue Decavele taken from Los Rios. Courtesy of Reuters Pictures.

The increase in explosive activity also included an increase in dense ash emissions and resulting ashfall during March 2021. Ash plume heights ranged from 3 to 5.5 km altitude, and often drifted W, NW, or SW. The Washington VAAC reported an ash plume centered about 75 km WSW of the summit on 1 March. On 3 March a dense ash emission was drifting W from the summit at 3.7 km altitude. The next day ash was detected almost 100 km SW just off the Mexican Pacific coast before dissipating. The altitude of the ash emissions increased to 4.9 km on 5 March; puffs drifting W were visible in satellite images extending over 250 km from the summit the next day. Pulses of activity lasted between 15 minutes and 13 hours, and produced tephra fallout around the volcano, dense ash plumes that drifted 3-5 km, and finer ash plumes that drifted more than 60 km.

Explosions on 7 March caused lava fountains 100-500 m above the crater. The following day ash plumes were drifting 45 km SW at 3 km altitude. On 9 March ash plumes fanned out from the NW to the SW about 30 km from the summit before dissipating. From 11 March onward multiple daily discrete ash emissions extended at least 30-50 km WNW and SW from the summit at altitudes of 3.7-4.3 km altitude, and much farther on some days. The plumes reached 90 km WSW on 12 March, and 140 km W on 14 March. The next day, ash emissions extended over 100 km WSW, with remnants visible in satellite images almost 185 km away by the end of the day. On 16 March they drifted 170 km WNW at 4.3 km altitude and on 18 March the ash emissions were observed drifting SW at 3.4 km altitude extending 185 km from the summit. Dense gray-black emissions were accompanied by white steam emissions on 21 March (figure 163).

Figure (see Caption) Figure 163. Dense dark gray ash emissions rose from the summit of Pacaya on 21 March 2021 causing significant ashfall around the region. In addition, white steam plumes surrounded the summit. Courtesy of CONRED.

Dense ash clouds seen on 22 March 2021 were drifting rapidly SSE at 4.9 km altitude as far as 75 km, SE at 6.1 km altitude, and visible in satellite imagery moving E at 7.6 km altitude up to 25 km from the volcano. The next day they were drifting NE at 3 km altitude up to 90 km away, and SW at 4.6 km altitude. A narrow ash plume was detected in visible satellite imagery on 28 March drifting about 80 km NW of the summit before dissipating. Over the next two days a plume was detected moving SW at 3 km altitude about 130-150 km from the summit. In addition, another plume was drifting NW at 4.3 km altitude on 31 March causing dense ash to cover the summit of Fuego that was visible on webcams. The lower plume was visible over 300 km SW of Pacaya before it dissipated (figure 164).

Figure (see Caption) Figure 164. Haze from ash emissions at Pacaya extends for tens of kilometers across the region in multiple directions after many days of emissions, while a fresh ash plume rises above the volcano in the left foreground on 31 March 2021. Ash drifted NW up to 50 km and was reported in Sacatepéquez and Chimaltenango. In the middle right to the NW is the large Agua volcano, and behind it to the right are Fuego and Acatenango. Ash from Pacaya was visible in Fuego webcams that day. Courtesy of INSIVUMEH.

Communities all around Pacaya were affected by ashfall many times throughout March 2021 (figure 165, table 7). Most of the communities were within 10 km of the summit, but ashfall reached more than 20 km away multiple times. During the bigger ashfall events, blocks more than 6 cm in diameter fell on the flanks of the volcano, while lapilli (2 mm to 6 cm) fell up to 5 km away, and fine ash was observed up to 30 km away (figure 166). The most significant ashfall events occurred during 22-23 March when ash drifted tens of kilometers in multiple directions and caused the closure of La Aurora International Airport in Guatemala City (figure 167).

Figure (see Caption) Figure 165. Communities all around Pacaya were affected by ashfall throughout March 2021. The red oval was the area where INSIVUMEH cautioned residents to be prepared for ashfall and lapilli after explosions on 3 March. All of the communities shown by yellow stars were affected by ashfall at some point during March. Courtesy of INSIVUMEH (Boletin Volcanologico especial BEPAC-41-2021, Eruption, Volcan Pacaya, 3 de marzo 2021, 11:55 horas).

Table 7. Communities reporting ashfall from Pacaya during March 2021. Information courtesy of INSIVUMEH.

Date Direction Tephra Description Community
01 Mar 2021 SW Ash El Patrocinio and others in that direction.
03 Mar 2021 SW Ash El Patrocinio and El Rodeo, SW flank.
05 Mar 2021 SW Ash, lapilli (2 mm to 6 cm) and blocks greater than 6 cm San Francisco de Sales, Cerro Chino, El Cedro, El Patrocinio and El Rodeo, ash in Los Rios and Los Jazmines communities, and in the municipalities of Palín (10 km WNW) and Escuintla (20 km SW).
06 Mar 2021 W, S Ash El Patrocinio and El Rodeo, SW flank.
08 Mar 2021 SW, S, SE Ash Pacaya village, El Chupadero farm, La Laguna farm and others in this area.
10 Mar 2021 W, SW Coarse ash and lapilli El Patrocinio, El Caracol.
11 Mar 2021 W, SW Ash El Patrocinio and San José El Rodeo in the municipality of San Vicente Pacaya.
14 Mar 2021 W, SW, NW Ash San José el Bejucal, San Antonio el Pepinal, San Francisco de Sales, Concepción el Cedro, San José Calderas, fine ash in the municipalities of Amatitlán (10 km N), Villa Nueva (15 km N), Mixco (30 km NNE) and the Capital city (25 km NNE).
15 Mar 2021 W, NW Ash Communities on the NW, W, SW flanks.
16 Mar 2021 NW, W Ash, Lapilli Fine ash to 2 cm long lapilli in El Patrocinio, San José El Rodeo and Concepción El Cedro, in the municipality of San Vicente Pacaya. Fine ash in the urban area of Amatitlán.
17 Mar 2021 SW, W, NW, N Ash El Rodeo, El Patrocinio, El Cedro, San Francisco de Sales, Amatitlán, Villa Nueva.
18 Mar 2021 S, SW Ash El Rodeo, El Patrocinio, Los Pocitos and others in these directions.
22 Mar 2021 E, SE, S, SW Ash El Rodeo, El Patrocinio, Los Pocitos, Los Dolores, Los Llanos, Santa Elena Barillas, Mesías Alta and Mesías Baja.
23 Mar 2021 S, NE Lapilli, ash Lapilli in San Francisco de Sales and San José Calderas. Ash reported in El Cedro, San Francisco de Sales, Mesías Bajas, Mesías Altas, Los Pocitos, Los Dolores, Santa Elena Barillas, and also Villa Nueva and the Capital Guatemala City. La Aurora International Airport (25 km NNE) closed.
24 Mar 2021 NE Ash Mesillas Altas and Mesillas Bajas.
25 Mar 2021 W, NW, NE, N Ash San Francisco de Sales, San Vicente Pacaya, Pepinal, El Cedro, Calderas, Mesías Alta, and Messías Baja.
26 Mar 2021 SW Ash El Rodeo and El Patrocinio.
27 Mar 2021 S Ash El Rodeo, El Patrocinio, Cedro, San Vicente Pacaya, and others in that area.
28 Mar 2021 S, SW Ash El Patrocinio.
30 Mar 2021 S Ash Communities on S flank including Finca El Chupadero and Los Pocitos.
Figure (see Caption) Figure 166. Lapilli-size tephra (2 mm to 6 cm) from Pacaya was reported several times during March 2021 in communities as far as 5 km away, including this example on 16 March 2021 from Concepcion El Cedro (4 km NNW). Courtesy of INSIVUMEH (BOLETIN VULCANOLOGICO ESPECIAL BEPAC-56-2021, ACTUALIZACION DE ACTIVIDAD Y CAIDA DE TEFRA, 16 de marzo 2021, 09:05 horas).
Figure (see Caption) Figure 167. A plane at the La Aurora international airport in Guatemala City was dusted with ash from Pacaya on 23 March 2021, forcing closure of the airport for much of the day. Photo by Moises Castillo/AP, courtesy of CNN.

Lava flow activity also increased significantly during March 2021. At the end of February, an active flow on the S flank remained about 1 km long, shedding incandescent blocks hundreds of meters from its advancing front. By 3 March, three flows with multiple branches were active on the SSW flank; they were 800-1,000 m long (figure 168). On 5 and 6 March two flows with many branches extended 300-500 m down the S flank (figure 169). Flows were active on the SW, S, and SE flanks on 7 March. The S-flank-flow with two branches reached 1 km long by 8 March and had incandescent blocks constantly falling of the leading edge. It increased steadily in length, reaching 1.8 km by 16 March (figure 170).

Figure (see Caption) Figure 168. Three flows were active on the S and SW flanks of Pacaya on 3 March 2021, seen here with an infrared camera. Courtesy of INSIVUMEH.
Figure (see Caption) Figure 169. On 5 March 2021 two main flows with multiple branches extended 300-500 m down the S flank of Pacaya causing very bright thermal signatures in satellite imagery. Sentinel-2 image uses Atmospheric penetration rendering (bands 12, 11 and 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 170. Two branches of the S-flank lava flow at Pacaya were each about 1.4 km long on 12 March 2021. Courtesy of INSIVUMEH (FOTOGRAFÍAS RECIENTES DE VOLCANES).

Two new flows emerged from the S and SE flanks on the morning of 18 March (figure 171). The S-flank flow grew to 500 m and part of it overflowed outside the plateau. The SE-flank flow was 400 m long in front of the village of Los Llanos, causing fires in the vegetation which continued for several days (figure 172). On 20 March the SE flank flow caused a strong thermal signature in satellite imagery with incandescent blocks falling downslope far beyond the front (figure 173). During the night of 20-21 March, a new flow appeared on the SW flank and grew to 500 m long; the flow on the SE flank reached 850 m. The following day the rapidly growing SW-flank-flow reached 1,500 m long, causing vegetation fires on ranches in Las Granadillas.

Figure (see Caption) Figure 171. Two new flows emerged from the flanks of Pacaya on 18 March 2021 as seen in this FLIR thermal webcam image. The S-flank flow (center) grew to 500 m with two active branches. The SE flank flow (right) descended 400 m near the village of Los Llanos and burned vegetation. A third fissure higher on the SW flank (upper left) also had a short active flow. Courtesy of INSIVUMEH (Boletin Vulcanologico Especial BEPAC 58-2021, 18 March 2021).
Figure (see Caption) Figure 172. Burning vegetation from a lava flow on Pacaya’s SE flank was controlled by CONRED workers on 20 March 2021. It was burning at the Los Llanos farmhouse, Finca el Muñeco, Villa Canales. Photo by Sergio Girón, courtesy of CONRED.
Figure (see Caption) Figure 173. On 20 March 2021, a flow on the SE flank of Pacaya was about 400 m long with incandescent blocks falling several hundred meters downslope to the SE and causing fires in the vegetation. A strong thermal signature was also present from explosive activity inside Mackenney crater (top). Sentinel-2 image uses Atmospheric penetration rendering (bands 12, 11 and 8a). Courtesy of Sentinel Hub Playground.

Three flows were active on 22 March 2021, with existing flows on the SW (1,500 m) and SE flanks (300 m), and a new flow on the E (500 m) flank. By 25 March activity was focused on the SW-flank flow which had reached 2.5 km in length (figure 174). It was about 400 m wide and 2.5 m high, burning vegetation as it advanced, and causing damage on coffee and avocado plantations. By 31 March the flow exceeded 3 km in length with multiple active fronts. One of the flow fronts near the community of La Breña was still advancing, but the one at the Campo Alegre farm had stopped moving. The flow continued to cause fires, destroy crops and buildings, and block roads (figure 175).

Figure (see Caption) Figure 174. A large flow on Pacaya’s SW flank had reached 2.5 km long by 25 March 2021 (left) and over 3 km long 5 days later on 30 March (right). It flowed W from a fissure on the W flank, then NW around a higher area before continuing SSW. The flow caused fires, destroyed crops and buildings, and blocked roads. Sentinel-2 images use Atmospheric rendering (bands 12, 11 and 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 175. The large lava flow on Pacaya’s SW flank had traveled over 2.5 km by 27 March 2021 when this wide-angle drone image was taken. One of the fronts of the flow was near the community of La Breña and the other was near the Campo Alegre farm. Courtesy of CONRED.

Activity during April 2021. On 1 April 2021 remnant plumes from earlier ash emissions were moving SW over the Pacific about 400 km from the summit at 4.3 km altitude, while newer emissions were drifting S at 3.4 km altitude towards the coast. Continuous ash emissions were reported by the Washington VAAC through April 4 (figure 176) drifting tens of kilometers mostly SW at 3.5-4.5 km altitude. Ash drifted up to 20 km S and SW during the first week and caused frequent ashfall in communities on the SE, S, and SW flanks, with the most affected being Los Pocitos, El Rodeo, and El Patrocinio. A few moderate to strong explosions sent ejecta 100-500 m above the Mackenney crater. By 9 April ash emissions were more sporadic and tended to drift only 5-10 km SW, W, and NW, and no ashfall was reported. The VAAC reported occasional emissions observed in the webcam on 8 and 14 April. An ash plume was detected on 16 April moving NNW at 3.4 km altitude. Strombolian activity diminished and activity changed to primarily steam and gas plumes rising 200 m above the crater after this. A short episode of sporadic explosions during 24-29 April sent ejecta to 250 m above the crater, generated loud noises, and produced ash emissions that rose a few hundred meters and drifted several kilometers.

Figure (see Caption) Figure 176. Daily explosions at Pacaya produced dense ash emissions rising to 3.5-4.5 km altitude during the first part of April, including on 2 April 2021 when the ash drifted S and SE. Multiple branches of the lava flow on the SW flank were also burning vegetation near Las Granadillas and Buena Vista (smoke plumes in the foreground). Courtesy of CONRED.

The SW-flank flow that began during 20-21 March remained active into early April and was 2.8-3 km long during the first week. It continued to advance during the second week and reached 3.7 km long with multiple active branches that were burning vegetation (figure 177). During 7-11 April it was advancing W and N in the area of La Breña and W and S in the area of El Patrocinio and El Rodeo on the Campo Alegre farm (figure 178). By 10 April this flow was 400 m from El Patrocinio and 250 m from San José El Rodeo. By 13 April it was burning avocado and coffee plantations 370 m from houses in El Patrocinio (figure 179). Another active front to the south was 250 m E of El Rodeo and had blocked the road between El Rodeo, El Caracol, and Los Pocitos. The seismic activity associated with the lava effusion decreased significantly beginning on 16 April.

Figure (see Caption) Figure 177. Lava from Pacaya’s SW-flank flow was 300 m wide and extended more than 3 km by 7 April 2021; it was burning vegetation in its path as it advanced at about 5 meters per hour. Courtesy of CONRED.
Figure (see Caption) Figure 178. The SW-flank flow at Pacaya continued to advance during the first half of April 2021 as seen here on 4 (left) and 9 (right) April. The communities of La Breña, El Patrocinio, and El Rodeo were the most affected. Sentinel-2 images use Atmospheric rendering (bands 12, 11 and 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 179. By 14 April 2021 the SW-flank flow at Pacaya was 3.7 km long and several hundred meters wide. It had multiple active branches that came within a few hundred meters of the communities of El Patrocinio and San José El Rodeo and had burned significant acreage on coffee and avocado plantations. It also blocked the road between El Rodeo, El Caracol, and Los Pocitos. Courtesy of CONRED.

During 18-20 April 2021 the branch near La Breña stopped advancing, and by 21 April the branch near El Patrocinio had stopped (figure 180), although temperatures remained high and gas emissions from vents along the flow continued in many places through the end of April. A lava flow appeared on the SE flank on 27 April, following a few days of renewed explosive activity, and grew to 175 m by 29 April. INSIVUMEH reported another new flow on the N flank on 29 April (figure 181); it advanced rapidly to the NW around Cerro Chino, and then turned towards the SW, reaching 1.6 km long by later in the day when the leading edge was located about 100 m from La Breña with several active flow fronts.

Figure (see Caption) Figure 180. The lava flow on the SW flank of Pacaya stopped advancing a few hundred meters before reaching El Patrocinio in San Vicente Pacaya, home to about 350 people, on 21 April 2021. Photo by Moises Castillo/Associated Press, courtesy of KTLA.
Figure (see Caption) Figure 181. A lava flow emerged on the N flank of Pacaya on 29 April 2021 and advanced rapidly NW around Cerro Chino and then SW towards La Breña, reaching 1.6 km long by the end of the day. Courtesy of Colred Los Llanos.

Activity during May 2021. Sporadic emissions of steam and gas with occasional ash were typical from Mackenney crater at the beginning of May 2021. Possible ash emissions were seen in satellite data on 1 May drifting W at 3.4 km altitude. Dense plumes, some with abundant ash, were reported on 8 May drifting W and S. Strombolian activity on 10 May from the NW-flank fissure was feeding the flow which began on 29 April; it sent ejecta 50-150 m high, and loud noises were heard. The Washington VAAC reported minor amounts of ash observed in satellite images moving SW from the summit during 10-13 May, when intermittent pulses of dense ash were reported drifting W and SW from the crater. Intermittent ash emissions rose to 3.7 km altitude on 14 May and were observed about 100 km SW before dissipating. Ash plumes drifted up to 5 km W on 15 and 16 May, causing ashfall during 16 and 17 May in El Patrocinio and El Rodeo (figure 182). During 18-21 May constant steam and gas, and periodic ash, emissions drifted 5-10 km NW and W at about 3 km altitude with ashfall reported in communities such as San Francisco de Sales, Concepción El Cedro, Aldea El Patrocinio, and San Miguel Petapa. For the remainder of May, small quantities of ash accompanied dense steam and gas emissions that rose 200-700 m above the summit and drifted W, SW, and S up to 5 km. El Patrocinio, El Rodeo, and other fincas in that area within 10 km reported ashfall on 26 May.

Figure (see Caption) Figure 182. Pulses of dense ash emissions from the summit of Pacaya were noted on 16 May 2021 by a team of volcanologists from Boise State and Michigan Tech Universities. Steam and gas from still-hot lava flows rose from the flanks. Courtesy of Geo_Sci_Jerry.

The N-flank flow that began on 29 April 2021 continued to advance into early May. It had originally flowed NW, then curved around Cerro Chino and headed W. It was 2 km long and advancing in the vicinity of La Breña on 3 May. On 5 May incandescent ejecta was observed at the fissure feeding the flow, which had advanced to the S of La Breña where incandescent blocks continued to fall off the front of the advancing flow. On 6 May the flow reached 2.3 km in length on the W flank, with only one of the fronts continuing to advance slowly. Small explosions were reported at the fissure. The lava flow continued to advance laterally in places as incandescent material spilled over the edges. Explosions from the fissure on 9 May threw material 15 m away as the flow continued moving slowly W (figure 183). By 11 May the flow was no longer advancing at its front but was still expanding due to overflows along its edges. Explosions from the fissure on 14 May launched ejecta 40 m (figure 184), and the flow front again moved slowly westward; by then it was about 2.3 km long (figure 185). Activity at the fissure ceased by 17 May.

Figure (see Caption) Figure 183. Strombolian explosions at the fissure feeding the W-flank lava flow at Pacaya were visible on the night of 8 May 2021. Although the lava flowed rapidly, it didn’t advance significantly after the first week of May; instead the lava flowed laterally and spread out over the flanks in several places until activity at the fissure ceased on 17 May. Copyrighted photo by David Rojas, used with permission.
Figure (see Caption) Figure 184. The fissure on the NW flank of Pacaya was still active on 14 May 2021. Explosions produced ash and ejecta that rose 40 m above the fissure. Courtesy of CONRED.
Figure (see Caption) Figure 185. The flow on the NW flank of Pacaya was also still active on 14 May 2021. It was over 2 km long and still actively flowing but no longer advancing. Sentinel-2 image uses Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php, https://twitter.com/ConredGuatemala/status/1393207685756203011); Colred Los Llanos, Coordinadora local para la reduccion de desastres, Los Llanos, Villa Canales (URL: https://www.facebook.com/Colred-Los-Llanos-102105058094847); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Reuters Pictures (URL: https://twitter.com/reuterspictures/status/1367472450418704387); CNN (URL: https://www.cnn.com/2021/03/23/americas/guatemala-airport-volcano-closure-latam-intl/index.html); KTLA, (URL: https://ktla.com/news/nationworld/lava-from-guatemalas-pacaya-volcano-threatens-small-communities-that-live-nearby/); David Rojas, (URL: https://twitter.com/DavidRojasGt/status/1391592159221063680); Geo_Sci_Jerry (URL: https://twitter.com/SciJerry/status/1394083192773222406).


Etna (Italy) — April 2021 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Frequent explosions, ash plumes, fountaining, and lava flows during December 2020-March 2021

Etna is located on the island of Sicily, Italy, and has had eruptions that date back 3,500 years. Its most recent eruptive period began in September 2013 and more recently has been characterized by frequent Strombolian explosions, effusive activity, and ash emissions. Activity has commonly originated from the summit areas, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). Another crater, referred to as the "cono della sella" (saddle cone), developed during early 2017 in the area between SEC and NSEC. This report covers activity from December 2020 through March 2021, consisting of frequent Strombolian explosions of variable intensity, effusive activity, ash emissions, and ashfall. Information for this report comes from weekly and special reports by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during December 2020-March 2021. Intra-crater Strombolian explosions that varied in frequency and intensity throughout the reporting period, and the accompanying ash plumes that rose to a maximum altitude of 11 km, primarily originated from the Southeast Crater (SEC), Voragine Crater (VOR), and occasionally the Northeast Crater (NEC) and Bocca Nuova Crater (BN). Beginning in mid-February a series of short lava fountaining events occurred in the SEC that continued through March. These episodes were also characterized by accompanying ash plumes, incandescent ejecta, and lava flows.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong and frequent thermal anomalies throughout the reporting period (figure 319). Some of these anomalies were markedly high in mid-December, mid-January, and mid-March. According to the MODVOLC thermal algorithm, a total of 190 alerts were detected in the summit craters during December through March; thermal anomalies were reported for nine days in December, eleven days in January, fifteen days in February, and sixteen days in March. Frequent Strombolian activity contributed to distinct SO2 plumes that drifted in multiple directions (figure 320).

Figure (see Caption) Figure 319. Strong and frequent thermal anomalies at Etna were detected during December 2020 through March 2021, as reflected in the MIROVA data (Log Radiative Power). Some thermal anomalies were significantly high in mid-December, mid-January, and mid-March. Courtesy of MIROVA.
Figure (see Caption) Figure 320. Distinct SO2 plumes from Etna were detected by the TROPOMI instrument on the Sentinel-5P satellite on multiple days during December 2020 to March 2021 due to frequent Strombolian explosions, including 22 December (top left) 2020, 20 January (top right), 21 February (bottom left), and 7 March (bottom right) 2021. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Activity during December 2020. During December, INGV reported intra-crater Strombolian explosions in the SEC, NEC, and BN. During the more intense SEC explosions material was ejected onto the flanks. Gas-and-steam emissions were reported in the VOR. A field survey on 13-14 December showed that the SEC was an irregular ellipse 150 x 230 m open to the SW. On 13 December Strombolian activity intensified at 2020 and around 2300 evolved to lava fountains which lasted through 2350, though explosions continued. Collapses of the SW part of the SEC at 2315 resulted in pyroclastic flows that traveled up to 2 km, covering the Monte Frumento Supino cone (SSW flank). Around that time two fissures opened on the SW flank of the SEC and produced lava flows until about 2350 (figure 321). A third minor pyroclastic flow went down the SSW flank at 2330. Two lava fountains were seen during 0050-0110 on 14 December.

Figure (see Caption) Figure 321. Photos of Strombolian activity at the Southeast Crater at Etna on the evening of 14 December 2020 (left) seen from Tremestieri Etneo (20 km S) and a thermal image showing the Bocca Nuova, Voragine, and three active vents in the SEC seen from the Montagnola (EMOV) thermal camera at 0949 (UTC) on 15 December (right). Courtesy of INGV (Report 52/2020, ETNA, Bollettino Settimanale, 14/12/2020 – 20/12/2020, data emissione 22/12/2020).

During a field inspection on 14 December scientists noted that the two lava flows on the S and SW flanks were cooling; the S flow had widened near the base of the SEC and formed four main lobes, one of which had stopped just NW of the cones that formed in 2002-2003 (figure 322). The SW flow traveled SSW, branched, curved around the W part of Monte Frumento Supino, and then stopped. An explosion in the easternmost SEC vent generated an ash plume at 1352 that rose to 4 km altitude and drifted S. Additionally, on 14 December sporadic ash explosions resumed in the VOR; incandescent ejecta was visible at night. On 15 December a new lava flow formed on the SW flank of the SEC at 0924 that advanced a few hundred meters. Eruptive activity briefly stopped in the E vent of the SEC during the afternoon of the 15th and during 16-18 December exhibited strong degassing and nighttime incandescence.

Figure (see Caption) Figure 322. Map of the Southeastern Crater (SEC) at Etna showing active lava flows and the cono della sella (red dot). The light green hatch mark represents the location of the eruptive fissure that opened on the SEC flank. The lava flow extended about 2 km SW, and by 14 December had formed four main lobes. The black arrow represents the direction of the pyroclastic flow after the collapse of the SW portion of the SEC cone. This map uses ground observations and thermal image analysis on a PlanetScope satellite image. Courtesy of INGV (Report 51/2020, ETNA, Bollettino Settimanale, 07/12/2020 – 13/12/2020, data emissione 15/12/2020).

Seismic tremor amplitude gradually increased on 20 December, though weather conditions prevented observations. On 21 December at 1008 Strombolian activity increased in the SEC from the central and easternmost vents. Activity evolved to lava fountaining that lasted an hour, as well as an ash plume that rose to 10 km altitude and drifted NE. An active lava flow was still visible on the SW part of the cone which had collapsed on 13 December. A second flow was observed at 1521 on the S slope of the SEC that descended toward the Valle del Bove. Activity continued through the night (figure 323), and on 22 December at 0350 Strombolian activity increased in the central and easternmost vents; around 0415 a lava flow from the SW flank traveled W, overlapping cooling lava from 21 December. Lava fountaining began again at 0519 and fed three lava flows: one from the S flank traveled SW for 2.8 km and was 600 m wide, branching off to the W and E of Monte Frumento Supino, a second that traveled 2.8 km E toward the Valle del Bove, and a third that originated at the E vent of the SEC that traveled 1.3 km ENE toward the Valle del Leone (figure 324). At 0520 a few small phreatic explosions in the Valle del Bove were due to the lava flow interacting with snow. By 0600 the lava fountains gradually subsided and stopped, though Strombolian explosions persisted at varying intensities. On 24 December at 0830 explosive activity in the E vent of the SEC gradually increased, ejecting material above the crater rim and emitting ash that drifted E.

Figure (see Caption) Figure 323. Photo of Etna’s Southeast Crater showing a new episode of lava fountaining during the early morning on 22 December 2020 viewed from Tremestieri Etneo, south of the volcano. Photo by Boris Behncke, INGV.
Figure (see Caption) Figure 324. Thermal webcam images showing (top left) Strombolian explosions and (top right) lava fountaining in the Southeast Crater seen from the Nicolosi (ENT) and Montagnola (EMOT) cameras on 22 December 2020. Lava flows were visible traveling toward the Valle del Bove and Valle del Leone seen from the Monte Cagliato (EMCT) (bottom left) and Schiena della’asino (ESR) (bottom right). Courtesy of INGV (Report 53/2020, ETNA, Bollettino Settimanale, 21/12/2020 – 27/12/2020, data emissione 29/12/2020).

On 29 December at 0750 there was a gradual increase in explosive activity in the E vent of the SEC, producing ash emissions that drifted ENE. Around 0900 Strombolian activity further intensified, ejecting coarse material onto the E flank of SEC (figure 325), but by 1000 the explosions had decreased. Intra-crater Strombolian activity in the NEC, VOR, and BN continued with sporadic ash emissions through the rest of the month; explosions in the VOR intensified, ejecting material above the crater rim.

Figure (see Caption) Figure 325. Photos of the Strombolian activity at the Voragine (left background) and Southeast Crater (right foreground) at Etna on the evening of 28 December (left) and ash emissions rising from the SEC on the morning of 29 December (right) 2020. Photos by Boris Behncke, INGV.

Activity during January 2021. Activity in January continued with intra-crater Strombolian explosions of variable intensity in the SEC, NEC, VOR, and BN with sporadic ash emissions. On 4 and 6 January at least two episodes of intense Strombolian explosions produced continuous ash plumes that drifted E and ejected coarse pyroclastic material. A lava flow on 17 January breached the SEC at 0740 and traveled to the base of the cone toward the Valle del Bove (figure 326); the lava effusion rate increased at 0819, and the flow reached an elevation of 3 km by 1000. Volcanic tremor amplitude and Strombolian activity intensified at 2000 on 18 January, evolving into lava fountains through 2130. A lava flow emerged in the E vent of the SEC at 2015 and moved 2 km ESE toward the Valle del Bove. Lava fountaining produced a plume that drifted SE, resulting in ashfall in Fleri and Acicastello (figure 327). During 2130-2147 a second lava flow on the N side of the SEC reached a length of 1.3 km. By 19 January the explosions decreased in intensity and the lava flows had begun to cool. On 20 January a new lava flow on the N side of the SEC traveled ENE at 0140, overlapping the previous flow on the 18th; by 1830 it was no longer active. The VOR was characterized by almost continuous Strombolian explosions that ejected material above the crater rim. Satellite imagery from 27 January showed that a small lava flow from a vent in the N section of the VOR was pouring into the BN. The BN also produced Strombolian explosions that often ejected material above the crater rim. At night, summit crater incandescence was observed in the NEC.

Figure (see Caption) Figure 326. Map of the summit craters of Etna showing the active vents and lava flow field on 18 January 2021. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. The hatch marks indicate the crater rims: BN = Bocca Nuova; VOR = Voragine; NEC = North East Crater; SEC = South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity. Yellow circles indicate steam and/or gas emissions only. The red shape highlights the active lava flow on 18 January and the yellow and orange shape highlights the cooling lava flow from 17 January. Courtesy of INGV (Report 04/2021, ETNA, Bollettino Settimanale, 18/01/2021 – 26/01/2021, data emissione 26/01/2021).
Figure (see Caption) Figure 327. Photos of lava fountains and an ash plume in the SEC at Etna that resulted in ashfall on the SE flank (top) as well as in Fleri (bottom left) and Acicastello (bottom right). Photo a was taken from Tremestieri on the S side of the volcano. Courtesy of INGV (Report 04/2021, ETNA, Bollettino Settimanale, 18/01/2021 – 26/01/2021, data emissione 26/01/2021).

Activity during February 2021. Variable Strombolian activity continued into February at all four summit craters; the last time this occurred was during 1998-1999. The most intense, almost continuous, Strombolian explosions at the SEC originated from two vents in the eastern top of the cone; less intense activity occurred at the S vent. Intra-crater Strombolian activity at the NEC sometimes produced nighttime incandescence. Explosions at the BN sometimes ejected coarse material above the crater rim. A field inspection on 5 February showed that three scoria cones had been built around vents at the bottom of the crater. Another nearby cone occasionally produced dense emissions. Intra-crater lava flows continued to spill into the BN from the VOR, overlapping those formed in late January. On 6 February around 0530 Strombolian activity intensified in the E vent of the SEC and produced an ash plume that drifted E.

During the morning of 15 February explosive activity at the SEC intensified, with activity continuing at the E vents. Sporadic and sometimes violent explosions were also observed at the saddle cone; intra-crater explosive activity continued in the BN, VOR, and NEC. On 16 February at 1700 lava began advancing down the E flank of the SEC for a few kilometers. A partial cone collapse at 1705 produced a pyroclastic flow that traveled 1.5 km along the W wall of the Valle del Bove. The activity changed to lava fountains around 1710, rising 500-600 m high and generating an ash plume that rose to 6-10 km altitude and drifted S (figure 328). Centimeter-sized lapilli and ash was observed in Nicolosi (16 km S), Mascalucia (19 km S), and as far as Catania (29 km SSE) while fine ashfall was reported in Syracuse (60-80 km SSE). Lava flows continued to advance into the Valle del Bove, reaching an elevation of 2 km by 1759. Another lava flow from the SEC traveled N toward the Valle del Leone; smaller lava flows traveled N and S, reaching 2.9 km elevation. Explosive activity decreased and lava fountaining stopped between 1800 and 1838, though ashfall continued; by 2025 the lava flows had stopped. Strombolian activity persisted at the SEC overnight during 16-17 February and stopped by 0715 on 17 February, though sporadic explosions were reported in the VOR at 0420, 0435, 0444.

Figure (see Caption) Figure 328. Photos during 15-16 February of Strombolian activity at the summit craters at Etna on 15 February 2021 (top left); a pyroclastic flow that occurred at the beginning of the eruptive event on 16 February at 1805 (top right); an eruption plume that was a result from the eruptive event on 16 February, seen from the S (bottom left); map of the lava flows on 16 February showing the active vents (red dots), degassing vents (yellow dots), summit craters (black hatch marks), and direction of the lava flows (light green and dark green), as well as the maximum length (4 km) and volume (2.6 million cubic meters) (bottom right). Courtesy of INGV (Report 08/2021, ETNA, Bollettino Settimanale, 15/02/2021 – 21/02/2021, data emissione 23/02/2021).

An eruptive event began at 2330 on 17 February, about 30 hours after the previous one, with a lava flow from the E vents in the SEC, followed by lava fountaining at 0100 on the 18th that rose 600-700 m (figure 329). The lava flow advanced toward the Valle del Bove, the NE, SE, and SW through the saddle vent (“bocca della sella”), covering an area of about 1 km. A second flow on the N flank of the SEC moving toward the Valle del Leone was about 1 km long. Another flow was reported on the S side of the SEC. The resulting ash plume drifted SE, causing ashfall in Zafferana, Etna, and Acireale. The lava fountains ended between 0140-0155 on 18 February, though the lava flows continued to advance.

Figure (see Caption) Figure 329. Activity at Etna during 17-18 February 2021 included lava flows and fountaining. The initial lava flow is seen in a thermal camera image just before midnight from Monte Cagliato on the E side of the volcano (top left). Lava fountains that rose 600-700 m high and lava flows are seen from Milos shortly after midnight (top right). An eruption plume seen from Milos at 0020 on 18 February was accompanied by nighttime incandescence, lava fountains, and lava flows (bottom left). A map of the lava flows on 17-18 February shows the active vents (red dots), degassing vents (yellow dots), summit craters (black hatch marks), and direction of the lava flows (yellow and green), as well as the maximum length (4.1 km) and volume (4 million cubic meters) of the flows (bottom right). Courtesy of INGV (Report 08/2021, ETNA, Bollettino Settimanale, 15/02/2021 – 21/02/2021, data emissione 23/02/2021).

During the morning of 19 February a lava flow effused from the E vents in the SEC at 0855, followed by a rapid increase in explosions and renewed lava fountaining (figure 330). A line of 4-5 vents produced “fan-shaped” lava fountains at 0953. An ash plume rose to 10 km altitude and drifted SE, causing ashfall in some towns. The lava flow that descended toward the Valle del Bove interacted with snow, causing strong explosions, and were accompanied by rockfalls on the flanks of the SEC. By 1110 the explosive activity had stopped.

Figure (see Caption) Figure 330. Thermal images of the lava flow at Etna around 0900 (local) on 19 February 2021 taken with the thermal camera in Monte Cagliato (top left). Later lava fountains reached 600-700 m high, based on the thermal image from Monte Cagliato (top right). A strong ash plume was observed from Pisano (SE) (bottom left). A map of the lava flows on 19 February showing the active vents (red dots), degassing vents (yellow dots), summit craters (black hatch marks), and direction of the lava flows (orange and green), as well as the maximum length (3.8 km) and volume (4 million cubic meters) (bottom right). Courtesy of INGV (Report 08/2021, ETNA, Bollettino Settimanale, 15/02/2021 – 21/02/2021, data emissione 23/02/2021).

Weak Strombolian activity was visible in the late afternoon of 20 February (figure 331). At 2230 a small lava flow from the E vent in the SEC descended 150-200 m into the Valle del Bove. By 2300 the activity had changed to pulsating lava fountains. Beginning at 0100 on 21 February more western vents became active and the E vents ejected lava 600-800 m high. At 0128 lava fountains were ejecting lava up to 1 km high and were sustained for about 10 minutes (figure 331). At the same time, a lava flow from the saddle vent moved a few hundred meters SW. An ash plume rose to 10 km altitude, resulting in ashfall on the SW flank. At 0200 the lava fountains decreased in intensity and by 0220 explosive activity stopped. Periodic ash emissions rose from both the S and E vents later in the evening. A lava flow in the SEC advanced 1 km toward the Valle del Bove. Lava fountains and Strombolian explosions continued at multiple vents. Activity intensified again during 0218-0220 on the 22nd, with lava fountains over 1 km high sending incandescent material onto the flanks. Lava flows in the Valle del Bove reached 3.5-4 km from the crater. During 0430-0515 about 20 strong explosions from SEC vents ejected incandescent bombs that landed at the base of the cone. The NEC was characterized by strong degassing and crater incandescence, often accompanied by Strombolian activity.

Figure (see Caption) Figure 331. Images of weak Strombolian activity in the eastern vents of the SEC at Etna at sunset on 20 February 2021 (top left). Thermal image from the Bronte thermal camera showing strong Strombolian activity at 0131 (local) on 21 February (top right). A strong ash plume at 0205 on 21 February was observed from Tremestieri Etneo (bottom left). A map of the lava flows during 20-21 February showing the active vents (red dots), degassing vents (yellow dots), summit craters (black hatch marks), and direction of the lava flows (red and green), as well as the maximum length (3.2 km) and volume (2.9 million cubic meters) (bottom right). Courtesy of INGV (Report 08/2021, ETNA, Bollettino Settimanale, 15/02/2021 – 21/02/2021, data emissione 23/02/2021).

During the evening on 22 February weak Strombolian explosions were visible in the SEC. The frequency and intensity of the explosions increased and by 2210 material was ejected onto the flanks. Jets of lava were ejected 300 m high at 2305, and by 2327 lava fountains were reported from a second SEC vent. Lava overflowed the crater at 2328 toward the Valle del Bove. Within the first hour of 23 February lava fountains rose more than 1.5 km and an ash plume reached 10 km altitude, causing ashfall to the NW. Lava overflowed the S vent and descended SW. At 0115 the lava fountains decreased. Strombolian activity intensified again at 0450, accompanied by ash emissions. Two lava flows traveled SW and SE, the latter of which reached 1.7-1.8 km elevation. By 1000 the lava flows were no longer active; the flow on the SW flank had traveled a few hundred meters, overlapping the previous flows.

The lava fountaining episodes continued; Strombolian activity at the two vents in the SEC increased during the late afternoon on 24 February that evolved into lava fountains reaching 400 m above the crater. Ash emissions also persisted in the SEC. Lava overflows from the crater headed ESE toward the Valle del Bove as far as 2-4 km and in the S area of the SEC. During 1900-2122 the lava fountains reached 500 m high and a resulting ash plume rose as high as 11 km altitude. A second lava flow traveled SW and at 2100 a pyroclastic flow descended 1 km into the Valle del Bove. The lava fountains in the SEC stopped by 2335, though the lava flow remained active in the SW and E sections.

Weak Strombolian activity on 28 February was visible at 0810 that evolved to lava fountains at 0839, feeding lava flows that traveled E toward the Valle del Bove. The fountains abruptly intensified at 0902 with jets of lava rising 700 m above the crater rim. An ash plume rose as high as 11 km altitude and drifted ESE, resulting in ashfall to the E (figure 332). A small lava flow at the S part of the SEC began at 0909, followed by a pyroclastic flow at 0920. The lava fountains ended abruptly at 0933, though the lava descending E remained active. By 1526 the lava flow in the Valle del Bove was no longer active.

Figure (see Caption) Figure 332. Photo of a strong ash plume rising above Etna’s Southeast Crater on the morning of 28 February 2021 that drifted ESE, with ashfall visible. Taken from Tremestieri Etneo. Photo by Boris Behncke, INGV.

Activity during March 2021. Weak Strombolian activity resumed on 2 March at 1145 in the SEC, which increased in intensity at 1234 with ash emissions. From 1324 to 1550 lava fountains generated an ash plume 9 km above the crater, depositing ash and lapilli in Nicolosi, Aci San Antonio (18 km SE), Pedara (15 km SSE), and Catania (29 km SSE). On 4 March Strombolian explosions increased at 0200 and produced ash emissions that dispersed NE (figure 333). At the same time, Strombolian activity from VOR ejected material above the crater. Degassing persisted in the NEC. Around 0320 the Strombolian explosions in the SEC evolved to lava fountains and at 0515 a lava flow from the E section of the base of the cone was traveling toward the Valle del Bove. Strombolian activity in VOR changed to lava fountains at 0859 that were 300 m high. An ash plume rose 11 km above the crater, depositing ash and lapilli in Fiumefreddo (19 km ENE), Linguaglossa (17 km ESE), and the area of Reggio Calabria. Lava fountains continued.

Figure (see Caption) Figure 333. Photos of the beginning an eruptive episode characterized by an early lava flow originating from Etna’s Southeast Crater (right foreground) and an explosion at the Voragine Crater (left background) on 4 March 2021 (left). Dense gray ash plumes and white degassing plumes were visible from several summit vents on 4 March (right). Taken from Tremestieri Etneo. Photos by Boris Behncke, INGV.

Another eruptive episode on 7 March starting between 0100 and 0200 included Strombolian explosions and minor lava effusions at the E base of the SEC that descended into the Valle del Bove. At 0430 an increase in Strombolian activity generated an ash plume that rose to 5 km altitude and drifted E. The lava reached an elevation of 2.8 km altitude by 0450. Strombolian activity intensified again at 0520 and the lava flow advanced to 2.7 km elevation. Lava fountains at 0720 generated another ash plume that rose to 10 km altitude and drifted E. INGV-OE personnel reported ash and lapilli deposits in Milo (11 km ESE), Fornazzo (10 km ESE), Trepunti (17 km ESE), Giarre (17 km ESE), Macchia di Giarre (16 km ESE), Mascali (18 km E), Riposto (19 km ESE), and Torre Archirafi (20 km ESE). Strombolian activity resumed at 1050 and was over by 1500.

Similar Strombolian activity in the SEC on 10 March changed to lava fountaining and a large eruption plume that rose to at least 9 km altitude and drifted ENE (figure 334). Ash and lapilli were reported in Mascali, Giarre, and Fiumefreddo. A lava flow from the S vent reached an elevation of 1.8 km. By 0430 on 10 March the lava fountaining had stopped, though sporadic ash emissions continued until 0700. On 12 March Strombolian activity in the SEC and accompanying ash emissions began again. As the activity intensified, lava overflowed the E part of the SEC, descending toward the Valle del Bove. Lava fountaining was observed up to 500 m and generating an ash plume that rose to 6 km altitude and drifted E. Within an hour, lava had advanced from an elevation of 2.8 km to 2 km. By 0939 the ash plume had risen to 9-10 km altitude and resulted in ashfall in Fleri, Milo, Fornazzo , Giarre, Santa Venerina (15 km SE), and Torre Archirafi (20 km ESE) (figure 335). Lava fountaining had stopped at 1050, though weak Strombolian activity and ash emissions persisted until 1115. The lava flow advanced as far as 1.7 km elevation while a second lava flow expanded on the W slope of the Valle del Bove for an average length of 3 km and a volume of roughly 1 million cubic meters. Strombolian activity continued in the NEC, BN, and VOR, producing minor ash emissions.

Figure (see Caption) Figure 334. Photo of the nighttime lava fountaining activity at Etna during 9-10 March 2021. Courtesy of INGV Youtube channel.
Figure (see Caption) Figure 335. Photo of an ash plume rising above Etna’s Southeast Crater on the morning of 12 March 2021. Taken from Tremestieri Etneo. Photo by Boris Behncke, INGV.

On 14 March Strombolian activity began at 2110 that evolved into lava fountaining at 0048 on the 15th (figure 336). Lava traveled toward the Valle del Bove as an ash plume drifted E (figure 337). By 0343 lava fountaining had stopped, though weak Strombolian activity and lava flows continued. On 17 March at 0155 weak Strombolian activity was observed, changing into lava fountaining at 0319. An ash plume drifted SE and a lava flow was moving toward the Valle del Bove, the latter of which overlapped the one from 15 March. Due to cloud cover, observations were limited and discontinuous. Fountaining activity stopped at 0717 and was followed by explosive activity. Weather conditions cleared the summit on 18 March at 2142, showing explosions in the SEC and a lava flow in the Valle del Bove. On 19 March at 0734 explosive activity was visible in the SEC, which intensified at 0915, accompanied by ash emissions. Lava fountaining started at 0935 with an accompanying ash plume that drifted ENE. By 1136 lava fountaining had stopped and changed to Strombolian activity, which gradually decreased. Only sporadic explosions were visible with minor ash emissions by 1350; lava flows along the Valle del Bove were reported in the late morning.

Figure (see Caption) Figure 336. Photo of a lava fountain episode at Etna’s Southeast Crater during the night of 14-15 March 2021. Taken from Tremestieri Etneo. Photo by Boris Behncke, INGV.
Figure (see Caption) Figure 337. A map of the lava flows on 15 March 2021 showing the active vents (red dots), degassing vents (yellow dots), summit craters (black hatch marks), and direction of the lava flows (blue), as well as the maximum length (2.7 km) and volume (1.1 million cubic meters) (bottom right). Courtesy of INGV (Report 12/2021, ETNA, Bollettino Settimanale, 15/03/2021 – 21/03/2021, data emissione 23/03/2021).

Though weather conditions often prevented a clear view of the summit, weak Strombolian activity was reported in the SEC at 2005 on 23 March, which had evolved into lava fountaining at 0330 on 24 March (figure 338). At 0335 a lava flow from the SEC was seen branching toward the Valle del Bove and the SE. A pyroclastic flow followed the lava at 0336, descending into the Valle del Bove. The lava fountains generated an ash plume that rose to 6-7 km altitude and drifted SSE, resulting in ashfall on the S slope and in Catania. Lava fountaining gradually decreased at 0700 and by 0945, it had stopped; the lava flows continued to advance. Intra-crater Strombolian activity continued in the NEC, BN, and VOR, accompanied by sporadic weak ash emissions. After the fountains stopped, another ash plume was seen rising to 4.5 km altitude and drifting SE. At night, ashfall was reported in Milia and Trecastagni (16 km SE). The explosions had stopped by 1347. By 25 March the two active lava flows had stopped.

Figure (see Caption) Figure 338. Photos of the lava fountain episode and incandescent Strombolian activity at Etna’s Southeast Crater during 23 (left) and 24 (right) March 2021. Taken from Tremestieri Etneo. Photos by Boris Behncke, INGV.

On 30 March weak Strombolian activity in the SEC resumed around 0607 with a single ash explosion that quickly dispersed near the summit (figure 339). Over the course of the day activity at the SEC gradually changed from degassing to continuous weak Strombolian activity at about 1830 from at least two active vents. This activity increased during the night, throwing lava above the crater rim accompanied by sporadic ash emissions. Several lava flows effused from the S base vent. The main part of the flow traveled toward the Valle del Bove with other smaller flows descending to the S and SW. Two other vents at the S base had opened by the evening, one of which ejected spatter a few tens of meters high. Throughout the night, periods of lava fountaining were detected while the main lava flow descended the W wall of the Valle del Bove. Strombolian activity intensified at 1850 and produced an ash plume that rose to 4 km altitude and drifted SSW. At 0000 there was a gradual transition from Strombolian activity to lava fountaining.

Figure (see Caption) Figure 339. Photo of an ash plume rising from Etna’s Southeast Crater on the morning of 30 March 2021. Photo by Boris Behncke, INGV.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/ ); Boris Behncke, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Fuego (Guatemala) — April 2021 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Ash plumes, ashfall, and incandescent block avalanches through March 2021; lava flows and a pyroclastic flow in mid-February

Guatemala's Volcán de Fuego has been erupting vigorously since 2002; reported eruptions date back to 1531. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars, including a series of explosions and pyroclastic flows in early June 2018 that caused several hundred fatalities. Activity consisting of explosions with ash emissions, block avalanches, and lava flows has continued since 2018; activity during December 2020-March 2021 is covered in this report. Daily reports are provided by the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH); aviation alerts of ash plumes are issued by the Washington Volcanic Ash Advisory Center (VAAC). Satellite data provide valuable information about thermal anomalies and ash emissions.

The many hourly explosions at Fuego throughout December 2020-March 2021 produced vibrations that rattled roofs and windows in the communities around the volcano every day, sometimes heard and felt as far as 20 km away. The explosions produced incandescent block avalanches that descended the flank ravines (barrancas), with a few of the blocks traveling as far as the vegetation near the bottom. The Seca, Ceniza, and Taniluya ravines were most often affected, but blocks were also reported many times in the Trinidad, Santa Teresa, El Jute, Las Lajas, and Honda ravines. Incandescent ejecta could be seen rising 100-300 m above the summit on most nights. Ash plumes rose to 4.4-4.8 km altitude every day and usually drifted W and SW; the Washington VAAC issued 2-5 ash advisories daily. Ashfall was a near-daily occurrence throughout the period. Effusive activity from 13-15 February produced two lava flows; a series of pyroclastic flows on 14 February affected the Ceniza canyon. For several days after the effusive activity, strong explosions caused ashfall in communities up to 50 km away. The MIROVA graph of thermal anomalies showed persistent high heat levels throughout the period with a brief spike to higher levels during mid-February when the lava flows were active (figure 141). MODVOLC thermal alerts were issued on multiple days each month including eight days in December 2020, 11 days in January 2021, 12 days in February, and seven days in March. Sentinel-2 satellite data showed thermal anomalies inside the summit crater five or six times each month, in all available non-cloudy images.

Figure (see Caption) Figure 141. Consistently high levels of thermal anomalies continued at Fuego during July 2020-March 2021. A brief spike in mid-February 2021 corresponded to two lava flows and a pyroclastic flow. Courtesy of MIROVA.

Explosive activity continued at Fuego during December 2020. Seven to eleven explosions per hour were typical; a few days had 10-15 explosions per hour. Gas and ash emissions rose to 4.4-4.8 km every day with ash plumes drifting usually W and SW 10-15 km, occasionally to 20-25 km (figure 142). Plumes drifted over 10 km N and NE on 6 December, 20-25 km S and SW on 13 and 14 December, and 30 km E, SE, and N during 28-31 December. Vibrations were heard and felt up to 15 km away on the W and SW flanks on 7 December. Ashfall was reported almost daily in multiple communities including Panimache I and II, Morelia, Santa Sofia, Los Yucales, Sangre de Cristo, Finca Palo Verde, and San Pedro Yepocapa. In addition, ashfall was reported on 10 December in Ojo de Agua and Santa Isabel, on 14 Dec in Ojo de Agua and Santa Emilia, in Santa Emilia on 20 and 21 December, and in Chimaltenango to the N on 31 December.

Figure (see Caption) Figure 142. An ash plume rose from the summit of Fuego early on 9 December 2020 while blocks descended multiple ravines and resuspended ash on the flanks. Photo by Fredy Arnoldo Esquit Chiquitá, 07:56 am hora local, courtesy of INSIVUMEH.

The ash plume drift direction continued to be N and NW on 1 and 2 January 2021 resulting in ashfall reported in San Pedro Yepocapa, La Soledad, and San Miguel Duenas. According to INSIVUMEH, plumes drifted 20-25 km those days. In addition to ashfall in Panimache I, Morelia, Santa Sofia, and Yucales most days of the month, ashfall was reported in La Rochela on 3 and 6 January and Ceilan on 6 January. Ashfall was reported to the N in Acatenango on 10 January after activity increased; rumbling was heard 20 km away. Explosions produced ejecta which rose 300 m and sent incandescent blocks around the crater rim and onto the upper flanks. High levels of activity continued the next day and produced ashfall in San Pedro Yepocapa, Santa Sophia, Morelia, Panimache II, El Porvenir Yepocapa, Sangre de Cristo, and at finca Palo Verde. Pulses of incandescent ejecta rising 100-300 m were common during the second half of January and ashfall continued on many days in the same communities to the W and SW. Remobilized ash triggered by incandescent blocks descending the ravines was reported in the last week of January. The number of explosions per hour was 6-12 on many days and they produced noises as loud as a train engine that lasted for several minutes at a time.

Explosive activity during February 2021 remained the same as previous months, with 7-15 explosions per hour, train engine noises that lasted for 3-10 minutes, and gas and ash plumes that rose usually to 4.5-4.8 km altitude and drifted W, SW, and S. Rumblings that rattled windows and roofs were heard 15-20 km away on 5 and 10 February; incandescent blocks descended the ravines for hundreds of meters (figure 143). Near-daily reports of ashfall in communities to the W, SW, and S continued; most affected were Panimache I, Morelia, Santa Sofia, Porvenir, Finca Asuncion, Rochela, Santa Sofia, Yucales, Sangre de Cristo, Palo Verde and Yepocapa. In addition Ceilan, El Zapote, and El Rodeo reported ashfall on 5 February when winds carried ash to S and SE.

Figure (see Caption) Figure 143. Incandescent block avalanches could be seen descending a ravine on the NW flank of Fuego in Sentinel-2 satellite imagery on 3 February 2021. A diffuse ash plume drifts S from the summit. Image uses Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

In a special report issued on 13 February INSIVUMEH noted that the seismic station had registered a change in the eruptive pattern on 12 February. During the night a lava flow emerged from the summit and traveled 1,000 m down the Ceniza ravine on the SW flank (figure 144). It produced incandescent blocks at the leading edge that fell farther, reaching the vegetation. Loud noises similar to a train engine were audible 8 km from the volcano. At 2100 on 13 February a second flow began in the Seca ravine that grew to 500 m long. Incandescent ejecta rose 200 m above the crater and constant loud noises were reported. By this time the Ceniza flow had reached 1,500 m. The following morning both flows remained active; the barranca Ceniza flow was 1,300 m long and the barranca Seca flow was 500 m long. Persistent explosions of ejecta to 200 m above the crater continued along with loud noises. The incandescent blocks spalling off the front of the flows remobilized ash that drifted S, SE, and SW.

Figure (see Caption) Figure 144. Two lava flows were active on the flanks of Fuego on 13 February 2021. A flow in the Ceniza ravine on the SW flank grew to 1,500 m long, while a 500-m-long flow descended the Seca ravine on the NW flank. Sentinel-2 image uses Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Beginning at 1020 on 14 February 2021 a series of pyroclastic flows were observed in the Ceniza ravine. They lasted for three minutes and traveled several hundred meters. Ashfall was reported in Alotenango, El Porvenir, and Finca La Reunion. By the end of the day the Ceniza lava flow was active for 800 m and the Seca flow reached 200 m. Seismic energy decreased noticeably the next day along with a decrease in the flow rate and thermal energy. Explosions continued with ash plumes drifting E, NE, and N up to 50 km resulting in ashfall in Porvenir and Alotenango. INSIVUMEH considered the effusive eruption over by the evening of 15 February, and noted a decrease in the rate of explosions to 12-14 per hour (figure 145).

Figure (see Caption) Figure 145. Although explosions at Fuego on 15 February 2021 had decreased in frequency, they still produced ash plumes and blocks rolling down the ravines that caused plumes of resuspended ash. Courtesy of INSIVUMEH (BOLETIN VULCANOLOGICO ESPECIAL BEFGO 023-2021, Guatemala, 15 de febrero de 2021, 15:30 horas).

Loud explosions continued 16 February and produced abundant ash that drifted E, NE, and N. The Washington VAAC reported intermittent ash emissions seen in satellite images moving ESE at 4.9 km altitude extending around 110 km from the summit before dissipating. Ashfall was reported in Celian, San Andres Ozuna, Rochela, Zapote, and El Rodeo. On 17 February ash plumes rose to 4.5-4.8 km altitude and drifted N, NE, and E as far as 50 km and caused ashfall in many communities, including as far away as Guatemala City. The wind changed to the E and SE later in the day, and plumes drifted 30-40 km over the departments of Sacatepequez, Escuintla, and Guatemala. Ash plumes from Pacaya were also affecting the same areas that day. The following day ash plumes were drifting 40 km SW. For the remainder of February ashfall affected the same communities to the SW and W as earlier in the month. The incandescent ejecta that rose 350 m above the summit on 28 February produced a strong thermal anomaly in satellite data that also showed incandescent blocks descending all the ravines around the summit (figure 146).

Figure (see Caption) Figure 146. Incandescent ejecta was observed 350 m above the summit of Fuego on 28 February 2021 and produced a strong thermal anomaly shown in this Sentinel-2 satellite image. Also visible is incandescent ejecta around all the ravines near the summit and a small ash plume drifting WNW. Image uses Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Explosive activity continued throughout March 2021, producing ash plumes that rose to 4.5-4.8 km altitude and drifted mostly W and SW (figure 147). This resulted in ashfall most days in the same communities as before that were located 10-20 km away. The loud rumblings continued daily, lasting for 2-5 minutes at a time and rattling windows and roofs all around the volcano. Incandescent ejecta rose 100-300 m and the blocks traveled down all of the ravines, sometimes reaching the vegetation.

Figure (see Caption) Figure 147. Numerous ash emissions at Fuego during March 2021 were captured in Sentinel-2 satellite images along with the frequent thermal anomalies. Ash plumes drifted W on 5 and 20 March (top row) and NW on 25 and 30 March 2021 (bottom row). Images for 5 and 25 March use Natural color rendering (bands 4, 3, 2). Images for 20 and 30 March show Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kavachi (Solomon Islands) — June 2021 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Discolored water plumes observed in satellite imagery during October 2020-April 2021

Kavachi is an active submarine volcano in the SW Pacific, located in the Solomon Islands south of Gatokae and Vangunu islands. Volcanism has been characterized by phreatomagmatic explosions that ejected steam, ash, and incandescent bombs. The previous report described discolored plumes extending from a single point during early September 2020 (BGVN 45:10); similar activity was recorded for this reporting period covering October 2020 through April 2021 using satellite data.

Activity at Kavachi is most frequently observed through Sentinel-2 satellite imagery and has recently been characterized by discolored submarine plumes. On 2 October 2020 a slight yellow-green discoloration in the water was observed extending NE from a specific point (figure 23). Similar faint discolored plumes were intermittently recorded on 27 October, 1 November 2020, and 25 January 2021, which each extended NE, SW, and SW, respectively, from a point source above the summit where previous activity has occurred. Intermittent discolored plumes were also visible during March 2021 (figure 24). The plume discoloration on 1 March extended S from the origin point. On 11 March, the discoloration remained near the origin point. A narrow plume extended several kilometers W on 26 March, followed by a short plume seen towards the NW on 31 March. The only plume seen in April was a broad diffuse area of discoloration extending S on the 10th (figure 24). No discoloration near the volcano was observed in May.

Figure (see Caption) Figure 23. Sentinel-2 satellite images of a discolored plume (light yellow-green) at Kavachi beginning on 2 October 2020 (top left) that extended NE. Additional plumes were visible during clear weather on 27 October (top right) that extended NE, on 1 November (bottom left) 2020 that extended SW, and strongly on 25 January 2021 (bottom right) that extended SW. Images with “Natural color” rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 24. Sentinel-2 satellite imagery of discolored plumes (light yellow-green) at Kavachi during March-April 2021. On 1 March (top left) the plume was observed extending S with a strongly discolored origin point. On 11 March (top right) the plume remained close to the origin point and did not seem to extend outward. On 26 March (bottom left) the plume was narrow and strongly extended W for several kilometers. On 10 April (bottom right) the plume extended S. Images with “Natural color” rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Semisopochnoi (United States) — June 2021 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Ash emissions in June 2020 and during February-May 2021

The volcanic Semisopochnoi Island in the western Aleutian Islands contains a group of cones within a caldera complex (figure 5). The active Cerberus center has three summit craters, with the current activity originating from North Cerberus. Since September 2018, typical activity has produced minor ash deposits within the vicinity. This bulletin summarizes activity that occurred from April 2020 through May 2021 based on information given by the Alaska Volcano Observatory (AVO), supplemented by satellite data.

Figure (see Caption) Figure 5. This satellite image of Semisopochnoi Island, Alaska, shows the major surface features with an 8-km-wide caldera in the center. As of 2021, Mount Cerberus is the most active of three cones within the caldera complex. The North, East, and South Cerberus craters are indicated, with a faint gas plume dispersing NE from the active North crater on 22 August 2020. Base satellite image from Sentinel-2 using Natural color (bands 4, 3, 2) rendering. Courtesy of Sentinel Hub Playground.

Intermittent small explosions occurred at Semisopochnoi during early 2020. An AVO Volcano Activity Notice for Aviation (VONA) issued on 1 April reported no indication of activity over the previous two weeks and seismicity at background levels. Satellite data show detectable sulfur dioxide (SO2) emission and visible steam plumes. Low-level unrest continued into early June with occasional small earthquakes, including a few small low-frequency events and episodic tremor, occasional steam plumes, and detectable SO2 emissions. An increase in tremor was detected around 12-13 June, and infrasound and seismicity indicated rapid degassing events on 17 and 19 June, with activity declining again by the 20th. AVO noted that clear satellite images acquired on the 21st showed minor ash deposits near the crater, likely from the elevated activity during the previous week, and vigorous gas and steam emission (figure 6). Steam and gas emission continued through to the end of the month then intermittently through July. A 200-km-long SO2 plume was detected on 15 July and low-level unrest continued.

Figure (see Caption) Figure 6. Minor ash deposits are visible on the Semisopochnoi North Cerberus Crater and a steam plume is shown dispersing ESE on 21 June 2020. Sentinel-2 satellite image with Natural color (bands 4, 3, 2) rendering. Courtesy of Sentinel Hub Playground.

A gas plume was reported on 7 August and seismicity was above background to the 9th, after that seismicity was at very low levels with no more significant events detected. Infrequent small earthquakes were detected through September and minor steam emissions on the 22nd. Seismicity remained low throughout October. No eruptive activity had detected since mid-June and seismicity had declined to very low levels prior to seismic data transmission failing on 11 November. Due to the lack of data, on 20 November the Aviation Color Code and Alert Level were reduced to Unassigned.

There were no reports of activity during December 2020 or January 2021. A satellite image acquired on 7 February showed several small ash deposits extending at least 3 km from the North Cerberus Crater, likely produced by a small explosion the previous week (figure 7). Steam emission prevented views into the crater and clouds obscured the volcano over the following week.

Figure (see Caption) Figure 7. This Landsat 8 image acquired on 7 February 2021 at Semisopochnoi shows several linear ash deposits from the North Cerberus Crater. This reflects low-level explosive activity. Landsat 9 true Color – pansharpened scene. Courtesy of Sentinel Hub Playground.

On 10 March a satellite image revealed a recently emplaced ash deposit that extended 1.5 km from the crater, with a steam plume being blown to the E (figure 8). Several similar small ash deposits had been noted by AVO in the previous weeks. No activity was observed or detected through 18 March, other than a possible gas plume that day. At 0350 on the 19th a small explosion was detected by infrasound monitoring. Another small explosion was detected at 0230 on the 21st, followed by a series of smaller explosions. During 22-23 March three explosions were detected. Cloud cover prevented visual observation of these events, but possible SO2 plumes were detected and a confirmed plume on the 23rd indicated further unrest. A probable ash deposit and plume were imaged on the 24th (figure 9). Activity continued with intermittent explosions and SO2 plumes detected through the 27th.

Figure (see Caption) Figure 8. This 10 March 2021 WorldView-3 satellite image shows ash deposits from low-level explosive activity at the Cerberus North Crater at Semisopochnoi. The ash extends to 1.5 km from the vent and has been partly remobilized by wind. A plume emanating from the crater is being blown to the E. Figure by Hannah Dietterich, courtesy of AVO.
Figure (see Caption) Figure 9. An ash deposit is present between the dashed lines, deposited on snow (red) in this Planet Labs near-IR false color satellite image acquired on 24 March 2021. The deposit extends over 8 km ESE across Semisopochnoi from the North Cerberus Crater and a plume is also visible in the same area. Image courtesy of AVO.

Several small low-altitude ash and gas plumes were detected in satellite images on 30 March and 1 April. Cloud cover prevented satellite views until 12 April, when new ash deposits and low-level ash emissions were observed extending at least to the coastline, accompanied by weak infrasound signals. Low-level activity was also detected the following day. Sustained ash emission that began on the morning of the 15th (figure 10) produced a plume extending more than 350 km E to altitudes of 6 km; activity continued through the next day with a change in direction to the N at around 3 km altitude. Ash emission continued over the following days with a VONA released on the 22nd reporting an ash plume reaching 3 km and extending about 75 km S (figure 11). Through to the end of April ash and SO2 plumes were either observed or noted as probably occurring under cloudy conditions.

Figure (see Caption) Figure 10. This Sentinel-3 satellite scene acquired on 15 April 2021 shows plumes from Semisopochnoi dispersed over 330 km from the vent. The insert shows a zoomed-in view of the island and the proximal ash plume. Original image by Hannah Dietterich, AVO.
Figure (see Caption) Figure 11. This Planet Labs satellite image acquired on 22 April 2021 shows an ash plume produced by the North Cerberus Crater and dispersing S. Ash deposits are visible on the flanks of the cone. Figure by Hannah Dietterich, AVO.

The volcano was often obscured during the first week of May, with activity possibly continuing at a low level without detection. A gas plume was detected on the 11th, and an ash plume is visible in satellite images acquired on the 17th (figure 12). Small explosions and SO2 emissions were detected through 21 May. An ash emission reaching 3 km altitude that was seen by an AVO field crew on 29 May was also observed in satellite data moving SW. Elevated temperatures were detected in the North Cerberus Crater. Ash emissions were produced again on the 30th and observed by an AVO field crew (figure 13). Seismic data transmission was restored on 26 May.

Figure (see Caption) Figure 12. Satellite images of Semisopochnoi acquired on 17 and 29 May (top), and a photograph taken on 29 May 2021 (bottom) show weak activity at the North Cerberus Crater, including ash emission, gas emission, and elevated temperature on the crater floor. Sentinel-2 color infrared (vegetation, bands 8, 3, 4) scene at the top left and the false color (urban, bands 12, 11, 4) scene at the top right courtesy of Sentinel Hub Playground. Photo courtesy of Hannah Dietterich, AVO.
Figure (see Caption) Figure 13. Minor ash emissions produced on 30 May 2021 at Semisopochnoi’s North Cerberus Crater around 1320 local time, taken from a helicopter during field work. Both top and bottom-left photos are taken from the SE. Photos courtesy of Hannah Dietterich, AVO.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank of Cerberus appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/).


Piton de la Fournaise (France) — April 2021 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


New eruption with lava fountains and flows on 7-8 December 2020

Piton de la Fournaise is located on the French island of Réunion in the western Indian Ocean. Its previous most recent eruption occurred during February into April 2020, characterized by fissure eruptions, fountaining, and significant lava flows (BGVN 45:05). This report covers May through December 2020, describing the new eruption in early December that was characterized by lava fountains and flows, using information from the Observatoire Volcanologique du Piton de la Fournaise (OVPF) and various satellite data.

Slight deformation was recorded after the end of the April eruption, but overall activity during May-November 2020 was low, with no eruptive events, according to OVPF. Starting around 16 June seismicity resumed, which included 77 shallow volcano-tectonic earthquakes during the month and occasional rockfall events in the Dolomieu Crater. This increase in seismicity was accompanied by inflation at the base and summit of the volcano. Shallow volcano-tectonic earthquakes continued to be reported under the Dolomieu Crater during July-November accompanied by rockfall events. In late September the number of shallow volcano-tectonic earthquakes increased markedly to 1,648, but then decreased to 129 in October and only four in November.

OVPF reported that during 0510-0554 on 4 December a seismic swarm of about 101 volcano-tectonic earthquakes was accompanied by minor, but rapid, inflation just below the center and N rim of the Dolomieu Crater. Seismicity decreased after 0600, but inflation continued through 6 December. A second seismic crisis began at 0228 on 7 December, accompanied by rapid inflation. Fissures opened on the WSW flank of the Dolomieu Crater at 0440 at elevations ranging from 2.2-2.3 km and spanning a 700-m-long area; lava began to erupt from these fissures during 0455-0500 (figure 202). Scientists on an overflight at 0700-0730 observed lava fountains rising 15 m high from the three active fissures and short lava flows (figure 203). By 1700 the fissure at an elevation of 2.3 km was the most active, with five small vents, while the other two were showing less intense activity. Satellite data via the HOTVOLC platform showed a lava flow rate of 5 and 30 m3/s during 7 December. The eruption period ended at 0715 on 8 December, following a gradual decrease in tremor and a three-hour phase of seismic signals that indicated degassing. Twenty-one volcano-tectonic earthquakes were recorded during that day under the W rim of the Dolomieu Crater. Another six earthquakes were reported during the morning of 9 December through 0900. Surficial activity was no longer visible.

Figure (see Caption) Figure 202. Photo of the active fissure vents on the WSW flank of the Dolomieu Crater and the lava fountains accompanied by degassing at Piton de la Fournaise at 0730 on 7 December 2020. Courtesy of OVPF-IPGP (Bulletin d'activité du lundi 7 décembre 2020).
Figure (see Caption) Figure 203. Photo of the lava fountains up to 15 m high at Piton de la Fournaise during 7-8 December 2020. Courtesy of OVPF-IPGP.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed brief, but significant, thermal activity during early December, reflecting the new eruption. This thermal activity was also visible in Sentinel-2 thermal satellite imagery on 7 December 2020, showing lava flows and possibly lava fountains from the fissures on the SW and W flanks (figure 204). Accompanying this activity were SO2 emissions that were detected by the Sentinel-5P/TROPOMI instrument (figure 205).

Figure (see Caption) Figure 204. Sentinel-2 infrared satellite image of the thermal activity (bright yellow-orange) on the S and SW flanks of Piton de la Fournaise on 7 December 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 205. Image of the SO2 emissions that occurred during the eruption at Piton de la Fournaise on 7 December 2020 detected by the Sentinel-5P/TROPOMI satellite. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Heard (Australia) — May 2021 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Thermal anomalies during November 2020 and January 2021

Heard is a remote island located in the southern Indian Ocean that contains the Big Ben stratovolcano, which has had intermittent activity since 1910. More recent activity since 2012 through October 2020 has been characterized by thermal anomalies in the summit crater and lava flows, primarily identified based on information from satellite data (BGVN 45:11). This report covers similar activity that continued during November 2020 and January 2021.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a total of three thermal anomalies of varying power during November 2020 (figure 46). Sentinel-2 thermal satellite imagery shows a single thermal anomaly on 9 November 2020 and later, on 11 November two strong thermal anomalies, possibly two lava flows, were observed descending the S and SW flanks (figure 47). These thermal anomalies were also detected by the MIROVA system. Weaker thermal anomalies were observed on 18 and 20 January 2021 in the summit crater. No new thermal activity was detected after November through April 2021 by the MIROVA system.

Figure (see Caption) Figure 46. Only three thermal anomalies at Heard were detected during November 2020, according to the MIROVA system, shown in this Log Radiative Power graph. The strongest thermal anomaly represents the two possible lava flows that were observed in Sentinel-2 infrared satellite data. No thermal anomalies were observed during December through April 2021. Courtesy of MIROVA.
Figure (see Caption) Figure 47. Sentinel-2 infrared satellite imagery of Heard Island’s Big Ben volcano showed a thermal anomaly (bright yellow-orange) on clear weather days on 9 (top left) and 11 (top right) November 2020, along with 18 (bottom left) and 20 (bottom right) January 2021. On 11 November two strong thermal anomalies, possibly representing different lava flows, were observed descending to the S and SW flanks, though much of the activity was covered by clouds. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — April 2021 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily ash explosions, large SO2 flux, and thermal anomalies from multiple domes, October 2020-March 2021

Although tephrochronology has dated activity at Sabancaya back several thousand years, renewed activity that began in 1986 was the first recorded in over 200 years. A new period of explosive activity that began in November 2016 has been characterized by pulses of ash emissions with some plumes exceeding 10 km altitude, frequent thermal anomalies, and significant SO2 plumes. Daily ash emissions and high levels of SO2 continued during October 2020-March 2021, the period covered in this report. The Observatorio Vulcanologico INGEMMET (OVI) reported daily on numbers of explosions, ash plume heights and directions of drift, seismicity, ashfall, and other activity; IGP (Instituto Geophysico del Peru) issued weekly reports of activity.

Activity at Sabancaya during October 2020-March 2021 consisted of multiple daily explosions with dense gas-and-ash plumes, SO2 emissions, and persistent thermal anomalies from the summit crater. OVI and INGEMMET confirmed the presence of a second dome inside the summit crater in mid-November. Ash plumes rose 1-2 km above the summit on most days; higher plumes occasionally reached 2.5-3.0 km above the summit. Ash most commonly drifted W and SW, but there were significant periods where the wind sent ash N and NE. Ashfall was reported in communities around the volcano on 3-8 days each month. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued three or four daily reports of ongoing ash emissions throughout the period. The plumes generally rose to 7.3-8.2 km altitude and drifted in various directions, often visible in satellite imagery.

Moderate levels of thermal energy were reported by the MIROVA project during July 2020-March 2021. Power values were generally consistent, with a small increase in November and a brief drop from late December through January 2021 (figure 90). The MODVOLC system reported nine thermal alerts in October, 12 in November, one in December, none in January, and four each both February and March. Moderate to strong SO2 emissions were recorded virtually every day during the period by the TROPOMI instrument on the Sentinel-5P satellite (figure 91).

Figure (see Caption) Figure 90. Thermal anomalies at Sabancaya from July 2020-March 2021 persisted at low to moderate power levels through the period. A small increase in frequency occurred during November 2020 and a decrease in thermal activity was apparent from late December through January 2021. Courtesy of MIROVA.
Figure (see Caption) Figure 91. High levels of SO2 emissions from Sabancaya were recorded by the TROPOMI instrument on the Sentinel-5P satellite during October 2020-March 2021. Examples of the larger plumes each month are shown here; the date is along the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

The Buenos Aires VAAC reported intermittent pulses of ash moving SE from the summit at 7.6 km altitude on 1 October 2020 (figure 92). Continuous ash emissions were reported at 7.3-7.9 km altitude throughout the month, resulting in several reports of ashfall. Ash was reported in Lluta on 5-6 October, in Taya on 6 October, in Huanca on 10 and 15 October, in Maca and Lari on 18, 27, and 28 October, in Madrigal on 18 and 27-29 October, and in Chivay on 27 and 29 October. Ash was also visible in satellite imagery on 16 and 26 October. Thermal anomalies were present in satellite images on 1, 6, 11, 16, and 26 October (figure 93).

Figure (see Caption) Figure 92. A dense plume of ash rose to 7.6 km altitude and drifted SE from the summit of Sabancaya on 1 October 2020. Courtesy of OVI-INGEMMET (REPORTE DIARIO DE LA ACTIVIDAD DEL VOLCAN Sabancaya, RDSAB-250-2020 / DGAR-INGEMMET Diario: 01 de octubre del 2020).
Figure (see Caption) Figure 93. Thermal anomalies and ash emissions appeared in Sentinel-2 satellite imagery at Sabancaya multiple times during October 2020. On 11 October a strong thermal anomaly was present along with a dense steam plume drifting W (left). On 26 October both an ash plume and a thermal anomaly were present (right). Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Strong thermal anomalies appeared in satellite images on 5, 10, 15, 20, and 25 November 2020. Two distinct ash plumes rose from the summit crater on 5 November, and thermal anomalies were also present in multiple areas of the crater in satellite images that day (figure 94). OVI reported the existence of a second dome in the summit crater the next day. In a report issued on 17 November INGEMMET named the second dome “Iskay” and identified it in the NE part of the crater using satellite images; it was about 12,000 m2 in size (figure 95). On 25 November thermal signals from both domes were visible in satellite imagery along with an ash plume drifting W that rose to 2,900 m above the summit (figure 96). Ashfall was reported in both Madrigal and Lari on 14 and 16 November, in Lluta on 25 November, and in Huambo on 25-28 November.

Figure (see Caption) Figure 94. Thermal and ash activity at Sabancaya on 5 November 2020 both suggested the presence of a second dome inside the summit crater. Two ash plumes rose from the summit (left) and a strong thermal anomaly appeared in the NE quadrant of the crater (right). Left image is from INGEMMET webcam. Right image is Atmospheric penetration rendering (bands 12, 11, 8a) of Sentinel-2 satellite image. Courtesy of OVI-INGEMMET (REPORTE DIARIO DE LA ACTIVIDAD DEL VOLCAN, RDSAB-285 2020 / DGAR INGEMMET Diario: 05 de noviembre del 2020) and Sentinel Hub Playground.
Figure (see Caption) Figure 95. OVI-INGEMMET used webcams and satellite imagery to identify a new dome inside the summit crater of Sabancaya in November 2020. (A) Incandescence over the crater taken by a surveillance camera ~25 km NE on 9 November. (B) Incandescent ejecta rises from two locations within the summit crater taken by a surveillance camera ~4.7 km N on 9 November. (C) Sentinel-2 near-infrared satellite image from 15 November showing hotspots inside the crater; source: MOUNTS. (D) Planet Labs satellite image taken on 16 November showing the location of the growing dome; source: PlanetLabs Inc. Figure prepared by C. Laverde (SGC). Courtesy of OVI-INGEMMET (OVI / 17 noviembre, 2020 / Comentarios desactivados en INGEMMET RATIFICA LA PRESENCIA DEL SEGUNDO DOMO DE LAVA EN EL CRÁTER DEL VOLCÁN SABANCAYA DURANTE SU ACTUAL PROCESO ERUPTIVO / Noticias, Novedades).
Figure (see Caption) Figure 96. The dense ash plume that rose 2.9 km above the summit of Sabancaya on 25 November 2020 (left) could be seen drifting W in satellite imagery that day (right). It rose from the new dome in the NE quadrant of the crater, which appeared as a strong thermal anomaly in the Sentinel-2 satellite image using Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of OVI-INGEMMET (REPORTE DIARIO DE LA ACTIVIDAD DEL VOLCAN Sabancaya, RDSAB-305 2020 / DGAR INGEMMET Diario: 25 de noviembre del 2020) and Sentinel Hub Playground.

Ash emissions continued from both areas of the summit during December 2020 (figure 97); a thermal anomaly was recorded in a satellite image on 15 December. Ashfall was reported in Cabanaconde on 1, 8, and 10 December and was also reported in Pinchollo and Madrigal on 10 December. Two dense ash plumes on 5 January 2021 confirmed that both summit domes were still active (figure 98). Ash emissions appeared in satellite images on 4, 9, and 29 January 2021, along with a thermal anomaly on 29 January (figure 99). Ashfall was reported in Huanca on 15 January, Huambo on 18 January, Madrigal and Pinchollo on 27 January, and in Chivay on 29 January. A lahar descended the Pinchollo ravine near Huayraray around 1610 on 20 January.

Figure (see Caption) Figure 97. Ash emissions continued from two areas within the summit crater of Sabancaya during December 2020. On 9 December the taller plume rose to 2,400 m above the summit (left). On 16 December two dense ash plumes were captured by one of the webcams (right). Courtesy of OVI-INGEMMET (REPORTE DIARIO DE LA ACTIVIDAD DEL VOLCAN Sabancaya, RDSAB –319-2020/ DGAR –INGEMMET Diario: 09 de diciembre del 2020 and RDSAB –324-2020/ DGAR –INGEMMET Diario: 16 de diciembre del 2020).
Figure (see Caption) Figure 98. Two dense ash plumes rising from the summit of Sabancaya on 5 January 2021 confirmed that both domes were still active. Courtesy of OVI-INGEMMET (VOLCAN SABANCAYA Reporte de monitoreo volcanico, 05 enero del 2021, RMVSAB, 002 2021 / DGAR INGEMMET).
Figure (see Caption) Figure 99. Ash emissions from Sabancaya appeared in Sentinel-2 satellite images on 4, 9, and 29 January 2021. The plume on 9 January (left) was visible in the Natural color rendering (bands 4, 3, 2) and the plume on 29 January (right) partially obscured a thermal anomaly at the summit in an Atmospheric penetration rendering (bands 12, 11, 8a) image. Courtesy of Sentinel Hub Playground.

Daily ash emissions continued during February 2021 with plumes that rose as high as 3 km above the summit (figure 100). Ash plumes were visible in satellite images on 13 and 18 February (figure 101). Ashfall was reported in Huanca on 5 February, Pinchollo on 11 February, and in Madrigal on 11, 15, and 16 February. Two small to moderate lahars were reported in the area of Sallalli on 4 February. Ashfall was also reported in Huambo on 8, 9, and 17 March, Cabanaconde on 9 March, and in Huanca on 15 and 25 March. Satellite images indicated ash emissions on 10 March and thermal anomalies on 10 and 25 March (figure 102).

Figure (see Caption) Figure 100. Daily ash emissions rose from Sabancaya during February 2021. On 4 February the plume rose to 2.6 km above the summit and drifted S and SE. Courtesy of OVI-INGEMMET (VOLCAN SABANCAYA, Region Arequipa, Reporte de monitoreo volcanico, RMVSAB-024 2021 / DGAR INGEMMET 04 febrero del 2021).
Figure (see Caption) Figure 101. Ash plumes were a daily occurrence at Sabancaya during February 2021. A large plume covered the volcanic edifice and nearby area on 13 February (left). A smaller plume on 18 February was concentrated over the summit (right). Natural color rendering (bands 4, 3, 2) of Sentinel-2 images. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 102. Ash emissions and thermal activity continued at Sabancaya during March 2021. On 4 March ash emissions rose to 1.8 km above the summit and drifted W and SW (left). On 10 March ash emissions rose to 900 m and drifted W and NW while a strong thermal anomaly was evident inside the summit crater (right). Sentinel-2 satellite image uses Atmospheric penetration rendering (bands 12, 11, 8a) courtesy of Sentinel Hub Playground. Left image courtesy of INGEMMET (VOLCAN SABANCAYA, Region Arequipa, Reporte de monitoreo volcanico, RMVSAB-044 2021/ DGAR INGEMMET 04 marzo del 2021).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URLhttps://www.igp.gob.pe/servicios/centro-vulcanologico-nacional/inicio); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Telica (Nicaragua) — March 2021 Citation iconCite this Report

Telica

Nicaragua

12.606°N, 86.84°W; summit elev. 1036 m

All times are local (unless otherwise noted)


Numerous explosions and ash plumes during late November-early December 2020

During January-October 2020, activity at Telica consisted of frequent seismicity, fumarolic emissions, and beginning in July, explosions that generated gas-and-ash plumes (BGVN 45:11). The following report describes activity between November 2020 and February 2021 using monthly and special bulletins published by the Instituto Nicaragüense de Estudios Territoriales (INETER) and satellite images.

Following some small ash explosions in late October, activity decreased in November 2020. INETER scientists visiting the volcano on 24 November observed small pulses of gas and ash originating from the SW walls and flanks, and heard jet sounds inside the crater. The team also noted abundant gas emissions on the N and NW walls and subsidence inside the crater.

A new series of ash explosions began at 0538 on 30 November (figure 52). Similar activity later that morning ejected incandescent ballistics and generated a small gas-and-ash plume (figure 53). Almost continuous explosions for more than three days produced gas-and-ash plumes that rose 50-400 m above the crater rim, depositing most of the ash on the SW slope. The explosive activity on 2 December was visible in satellite imagery (figure 54), and ash plumes the next day reached the ocean (figure 55). After more than three days of almost continuous explosions, explosions became sporadic until 1450 on 8 December. A total of 1,315 small explosions were recorded between 30 November and 8 December. Ashfall during this period was reported in communities to the SW, including Zarandaj (6 km WSW), Cristo Rey (6 km W), Las Colinas (7 km WSW), Garrobo Empinado (8 km SSW), El Panal (9 km SSW), Canta Rana (10 km SW), Ceibo Chachagua (10 km SW), Las Mercedes (10 km SW), Punta Arena (10 km SW), La Virgen (12 km WSW), Filiberto Morales (15 km WSW), Los Cocos (9 km SSW), Verónica Lacayo (10 km SW), and Nuevo Belén.

Figure (see Caption) Figure 52. Webcam photo of an explosion at Telica at 0538 on 30 November 2020. This event was the first in a series of explosions that continued until 8 December. Courtesy of INETER.
Figure (see Caption) Figure 53. Webcam photo of an explosion at Telica at 0921 on 30 November 2020 that generated a dense brown ash plume. Courtesy of INETER.
Figure (see Caption) Figure 54. Sentinel-2 images of Telica on 2 December 2020 in natural color (bands 4, 3, 2) showing a brown gas-and-ash plume streaming SW. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 55. Landsat 8 false-color image (bands B4, B7, B1) of a gas plume (light blue) from Telica extending SW over the Pacific Ocean on 3 December 2020. Courtesy of INETER.

Thermal anomalies seen in Sentinel-2 satellite images were identified again starting on 14 December 2020, for the first time since 10 September. The hotspot in the eastern part of the crater was detected intermittently through 22 February 2021.

SO2 emissions measured by the Mobile-DOAS technique using 5-7 transects, averaged 99 metric tons/day for November and 821 metric tons/day for December. These values were outside the normal range and represented among the lowest and highest averages, respectively, since at least 2009. SO2 emissions averaged 129 metric tons/day during January. Small landslides were heard in February, and weak degassing was evident.

According to INETER, about 907,863 seismic events were recorded during 2020, of which 51,275 were long-period (LP) earthquakes; the source of which was 6-10 km deep. In December alone, seismicity was dominated by volcano-tectonic (VT) earthquakes, of which 262,549 were counted. Tremor remained between 20-50 RSAM units. Seismicity continued in early 2021, though INETER did not report any explosive activity. In January 2021 about 140,000 seismic events occurred, of which 24,652 were LP earthquakes. In February about 86,243 seismic events occurred, of which 1,725 were LP earthquakes, 431 were VT earthquakes, and 15,093 were hybrid earthquakes. During both months, tremor remained between 20-50 RSAM units.

During a field visit on 19 January 2021, INETER observed that the crater had increased in diameter to 20 m and in depth to 5 m. The main crater displayed weak gas emissions. During the visit, temperatures of the four fumaroles on the eastern rim were 55-57°C, somewhat lower than the previous three months and significantly lower than during February-July 2020. Temperatures during a visit on 11 February were even lower.

Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 23, Number 09 (September 1998)

Managing Editor: Richard Wunderman

Ambrym (Vanuatu)

Long-active lava lake continues to hold bubbling lava

Azul, Cerro (Ecuador)

Flank and caldera eruptions continue

Colima (Mexico)

Explosion on 6 July follows seven months of seismic unrest

Etna (Italy)

Summary of summit eruptive activity during August 1997-January 1998

Fournaise, Piton de la (France)

Activity ends with fissure eruptions outside the caldera

Guagua Pichincha (Ecuador)

Phreatic discharges and shallow, near-vent seismicity continue

Hokkaido-Komagatake (Japan)

Phreatic eruption spreads ash 25 October

Iwatesan (Japan)

Nearby M 6.2 earthquake on 3 September, but volcano still slumbering

Klyuchevskoy (Russia)

Explosions, ash 2-3 September raise concern to yellow alert

Lengai, Ol Doinyo (Tanzania)

New cones, vigorous activity since February

Masaya (Nicaragua)

Integrated scientific studies of the caldera area

Obituary Notices (Unknown)

Death of Oleg Volynets in Petropavlovsk-Kamchatsky

Popocatepetl (Mexico)

Several episodes of ash emission during September

Sete Cidades (Portugal)

Seismic swarm on submarine flank

Sheveluch (Russia)

Ash explosions and pyroclastic flow during 3 September

Soufriere Hills (United Kingdom)

Continuing decrease in activity; hazards reassessed

Yasur (Vanuatu)

Ongoing eruption, felt earthquake, and fresh glass chemical analysis



Ambrym (Vanuatu) — September 1998 Citation iconCite this Report

Ambrym

Vanuatu

16.25°S, 168.12°E; summit elev. 1334 m

All times are local (unless otherwise noted)


Long-active lava lake continues to hold bubbling lava

This long-active caldera was visited by John Seach during 4-7 September 1998. At Niri Mbwelesu Taten, a small collapse pit, strong degassing was observed as well as yellow sulfurous deposits on the NW wall. During the night, degassing was heard from a distance of 4 km and white vapor tinged with blue was constantly emitted from the pit.

Niri Mbelesu crater was constantly full of vapor resulting in poor visibility. But bubbling lava was heard and at night the clouds reflected a red glow from the crater.

At Mbwelesu crater, an active elongated lava lake (~100 x 30 m) was observed. The larger explosions threw lava high into the air and onto the crater wall. To the east of the lava lake a smaller elongated vent contained lava. On the NW wall of the crater was a circular vent 20 m in diameter from which no lava was extruded.

Benbow crater was climbed from the S. The sound of bubbling lava was heard but not observed, and there was a very intense night glow.

Geologic Background. Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides Arc. A thick, almost exclusively pyroclastic sequence, initially dacitic then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major Plinian eruption with dacitic pyroclastic flows about 1,900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.

Information Contacts: John Seach, P.O. Box 16, Chatsworth Island, N.S.W. 2469, Australia.


Cerro Azul (Ecuador) — September 1998 Citation iconCite this Report

Cerro Azul

Ecuador

0.92°S, 91.408°W; summit elev. 1640 m

All times are local (unless otherwise noted)


Flank and caldera eruptions continue

This eruption began between 1229 and 1304 on 15 September (BGVN 23:08). The event was first recognized by University of Hawaii scientists monitoring thermal images from the GOES-8 geostationary satellite. A dominant plume reaching over 150 km SW developed between 1345 and 1545 on 15 September, and a minor plume trended NW carried by the prevailing surface winds. Overflights revealed two new vents in the summit caldera, and a flank fissure eruption 8 km SE of the caldera (figure 1).

Figure (see Caption) Figure 1. Photograph of the S part of Isabela Island, taken from the Space Shuttle in 1983, showing the site of the September 1998 flank eruption. Puerto Villamil and the scientific station at Tomas de Berlanga (or Santo Tomas) are the only inhabited locations on the island. White zones over the island are clouds. Courtesy of the GOES Hotspot Monitoring System.

The first scientists reaching the volcano were from Ecuador's Instituto Geofísico-Escuela Politécnica Nacional (IG-EPN) and ORSTOM. They described the flank eruption site as a SE-directed radial fissure, 400-500 m long, and between 680 and 630 m elevation. Lava fountaining (to ~200 m) built an elongate cinder cone 50 m high during the team's 19-25 September observations. The main cone was breeched on the E, issuing flows that traveled over 8 km E before turning S toward the sea. During the night of 24-25 September a break in the main cone fed a new flow to the SE. All were 3-5-m-thick aa flows, and the longest ended 2 km from the coast.

University of Idaho graduate student Rachel Ellisor arrived on the night of 22 September, and described additional details of the flank eruption, including a smaller cone (NW of the main cone) with low fountains feeding a flow moving more directly S toward the sea. This flow was sampled daily; its velocity ranged from 0.001 to 10-20 km/hour and its thickness was described as 2-3 m at the front but 10-12 m in the interior. Gas clouds billowed from the fissure's SE end, and fountains issued from the main vent.

Ellisor took a 1 October overflight and described the intracaldera flows. One issued from a small vent (20-30 m high) on the S bench and flowed NW onto the caldera floor, while a larger cone (~60 m high) on the W caldera floor fed flows eastward into the shallow lake. Intracaldera activity had ended by 1 October.

Returning to the flank eruption, Ellisor reported that three large cones (60-80 m high) had been built in a N-S orientation. The mid-September flows (to the E, then S) had stagnated on the coastal flats, and their thickness was estimated at 5-15 m (interior) to 1-3 m (fronts). Increased activity on 6 October fed new flows building a channel system directly S of the main fissure. Ellisor's most recent report was dated 13 October, but GOES-8 images showed a thermal anomaly continuing through 4 November, the eruption's 51st day.

During 19-25 September, scientists from IG-EPN and ORSTOM installed three digital and one analog seismic station between the coast and the active vent. The distance between end stations was 8.5 km. Seismic signals registered during the study were composed of permanent tremor with an amplitude of 20 µm/s (2.4 km from the vent) and with a dominant frequency of 1.6 Hz. No rock-fall or long-period events were registered. One station 4 km from the vent continued working after the group returned to Quito.

Geologic Background. Located at the SW tip of the J-shaped Isabela Island, Cerro Azul contains a steep-walled 4 x 5 km nested summit caldera complex that is one of the smallest diameter, but at 650 m one of the deepest in the Galápagos Islands. The shield volcano is the second highest of the archipelago. A conspicuous bench occupies the SW and west sides of the caldera, which formed during several episodes of collapse. Youthful lava flows cover much of the caldera floor, which has also contained ephemeral lakes. A prominent tuff cone located at the ENE side of the caldera is evidence of episodic hydrovolcanism. Numerous spatter cones dot the western flanks. Fresh-looking lava flows, many erupted from circumferential fissures, descend the NE and NW flanks. Historical eruptions date back only to 1932, but Cerro Azul has been one of the most active Galápagos volcanoes since that time. Solfataric activity continues within the caldera.

Information Contacts: P. Samaniego, F. Desmulier, J.P. Metaxian, M. Ruiz, and M. Vaca, Instituto Geofísico, Escuela Politécnica Nacional, AP 17-01-2759, Quito, Ecuador; ORSTOM (L'Institut Français de Recherche Scientifique pour le Développement en Coopération), AP 17-11-6596, Quito, Ecuador (URL: http://www.ird.fr/); Rachel Ellisor and Dennis Geist, Dept. of Geology and Geological Engineering, University of Idaho, Moscow, ID 83843 USA (URL: https://www.uidaho.edu/sci/geology/); Peter Mouginis-Mark and Luke Flynn, GOES Hotspot Monitoring System, Hawaii Institute of Geophysics and Planetology, University of Hawaii, 2525 Correa Road, Honolulu, Hawaii 96822 USA (URL: http://modis.higp.hawaii.edu/).


Colima (Mexico) — September 1998 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Explosion on 6 July follows seven months of seismic unrest

After seven months of seismic unrest (small swarms, with durations lasting some few hours to as much as 90 hours), at 1858 on 6 July an explosion at the summit dome was similar in behavior and about half of the magnitude of an explosion in 1994.

A microbarograph 8 km SW of the summit at La Yerbabuena failed to register the explosion's shock wave, and the events were not noticed by residents of that settlement or La Becerrera (12 km SW of the summit), nor were these effects noticed by rangers at Rancho El Jabali (12 km SSW of the summit). Residents did report light rain and a bit of thunder and lightning at 1900, which may have helped conceal, or have been confused with, the sound of the explosion.

Seen through a microscope, plant leaves contained ash residue left after rainfall: mineral particles and hydrothermally altered rock fragments under 0.5 mm in diameter, often of light cream color, and similar to those collected at Yerbabuena after the 1994 explosion.

Melchor Ursua of the Civil Defense reported that at 1900 residents of Tonila (13.5 km SE of the summit) observed a small black mushroom cloud rise above the summit accompanied by the sound of thunder or explosion. At 2300 that day from La Yerbabuena, observers Navarro, Breton, and Santaana saw fumarolic gases blown around the W face of the volcano, but in the faint moonlight he failed to discern any glow or ash from the crater.

The last seismic crisis started around 2200 on 2 July 1998 and ended at 1858 on 6 July: a vigorous swarm of earthquakes, which according to Gabriel Reyes comprised ~1,000 events a day for the last 3 days. One event with coda magnitude (Mc) 3.5-4.0 gained registry at all network stations including those near the coast at Tecoman and Armeria; it was interpreted as related to the above-discussed explosion. The seismic quiet afterwards consisted of zero events in a pattern reminiscent of 1994 when quiet prevailed for about 12 hours.

Noteworthy swarms during 1997 occurred on 20 March, 16, 21, and 30 June, 28 November, and 5 December. Compared to the 1997 swarms, this one (2-6 July 1998) was the largest and most energetic.

During the latest swarm the volcano was only visible from 0800 to 1000. After 160 mm of rain had fallen at La Yerbabuena, a lahar swept downslope between 1400 and 1800 on 2 July, blocking passage across the Becerrera River valley 12.5 km SW of the summit.

During 1900-2000 on 7 July, the seismic station closest to the W flank (SOMA, 1.7 km NW from the summit) registered strong, continuous mass wasting and later, during 2200-2300, a relatively strong volcanic event. Seismic quiet returned later, but vigorous fumarolic emissions were blown W. An update on 28 October noted that for a few weeks after the explosion the volcano displayed unrest, including about 23 seismic swarms, each enduring for 2 to 6-8 hours. All the seismic information was provided by the Colima seismic network (RESCO). The last swarm occurred on 25 October and prevailed for 13 hours.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Carlos Navarro Ochoa, Colima Volcano Observatory, Universidad de Colima, Ave. 25 de Julio 965, Colima 28045, Colima, México.


Etna (Italy) — September 1998 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Summary of summit eruptive activity during August 1997-January 1998

The following report summarizes activity observed at each of the four summit craters of Etna from August 1997 through 15 January 1998. Events through 8 January 1998 at Bocca Nuova, Southeast Crater, Northeast Crater, and Voragine are described below separately. A seismic crisis during 9-12 January was followed by a brief decrease in activity at all of the craters. Significant eruptive episodes after mid-January 1998 will be described in future issues.

Information for this report was compiled by Boris Behncke at the University of Catania and published on his internet web site. The compilation was based on personal visits to the summit, telescopic observations from Catania, monitoring of images posted on the internet from the camera maintained by the Istituto Internazionale di Vulcanologia (IIV), and other sources.

Visits to the summit craters in late September and early October 1997 revealed continuing vigorous activity from Bocca Nuova and Southeast Crater while more sporadic activity was occurring at the Voragine and Northeast Crater. This pattern continued through November and December. The overall activity on 8 January 1998 at Bocca Nuova, Northeast Crater, and Voragine was notably diminished; it was the lowest observed in six months.

Activity at Bocca Nuova. During late August, lava ejections from Bocca Nuova (BN) became significantly more vigorous. Both eruptive centers in this crater often ejected lava bombs outside the crater, with many falling on its S rim. Occasional explosions ejected bombs on the lower S flank of the central cone. The number of active vents in Bocca Nuova increased to seven on 28 August, but was down to five just two days later. The bombardment and explosions led to collapse on the E side of Bocca Nuova, lowering the septum between BN and Voragine (informally named "diaframma" among local volcanologists), and eroding the remains of a 1964 cone.

Visits to the summit in late September and early October revealed continuing activity. As of 14 October, Bocca Nuova's activity was gradually increasing, and the crater was being filled in. The northern of its two eruptive centers had a broad cone with a crater 50-100 m wide, which at times was completely filled with fountaining lava. Fountains often sent spatter and bombs high above the rim, and large ejecta fell outside the crater up to 100 m away. Bombs as large as 40 cm in diameter fell onto the area where the best views of the erupting cone in BN are obtained. Explosions in the SE eruptive center at times sent pyroclastic material all over the S flank of Etna's summit cone.

On 6 November the northern eruptive center was vigorously active. The cone at that site had grown to ~50 m below the NW crater rim. The SE eruptive center was much less violent than in previous months; on the crater wall above it a large overhanging hollow had been carved out by explosions. On the evening of 6 November, Strombolian explosions occurred at intervals of 1-5 seconds, with some jets rising up to 200 m above the cone's summit. An episode of spectacular lava fountaining from BN occurred on 25 November when huge bursts of incandescent bombs developed into a continuous fountain from the SE eruptive center. On 28 November the clouds over the mountain cleared, permitting the view of a huge vapor column rising almost vertically to about 1,500 m above the summit. This unusually large plume was due to an approaching cold front that led to increased condensation.

Explosive activity and gas emissions within BN accompanied a lava flow from Southeast Crater during 9-11 December. Intermittent activity on 12 December, stronger than during the previous 17 days, ejected high bursts of incandescent bombs from BN's southeastern vents. Activity through 15 December was very vigorous, and eruptions continued through 21 December. Glow was visible above BN's two eruptive centers on 26 December and over the E part of the crater on 31 December.

On the evening of 7 January, several jets of incandescent bombs rose over the SE crater lip, and a few bombs fell onto the remains of the 1964 cone. As of 8 January the large cone in the N part of the crater floor had partially collapsed, creating a crater ~150 m in diameter. Frequent rockfalls occurred within this crater. Subsidence of the cone and the adjacent crater floor had created a set of circumferential fractures several meters wide. The most recent activity at this eruptive center appears to have been the extrusion of a lava flow that covered the E and SE sides of the BN floor. The vents at the SE eruptive center were the site of weak Strombolian explosions every 10-15 minutes. Most, if not all, activity occurred from the lowermost vent in the SW part of the eruptive center. A complex cone around these vents had grown notably since the visit on 6 November 1997, with the rim of the highest vent being at about the same elevation as the N rim of Bocca Nuova. Large parts of the crater wall above the SE eruptive center had collapsed, probably before the most recent cone growth (all collapse debris was buried).

Activity at Southeast Crater. Strombolian and effusive activity continued from Southeast Crater (SEC), whose intracrater cone could be seen on 1 September through a gap in the NE crater rim from coastal areas to the E. During a visit on 30 August, lava fountains rose up to 150 m above the cone, and three vents were active. There had been significant infilling of the deep southern part of SEC since effusive activity shifted to the cone's NW flank sometime before 11 August. Before then, lava had repeatedly spilled onto the SE flank of the cone.

Visits to the summit craters in late September and early October revealed continuing vigorous activity. While effusive vents were active on the W base of the cone from 10 August to mid-September, lava again issued from E-flank vents in late September, causing renewed overflows onto the outer SW flank of the cone. By mid-October the cone within SEC had grown to about the height of the highest point on the crater rim. Explosive activity was the same as during previous months, and lava effusion continued from the flanks of the cone.

At dusk on 2 November there were continuous Strombolian bursts from SEC. A visit on 6 November revealed very weak and erratic Strombolian activity. For the first time in many months there was no lava effusion at SEC, although guides at Torre del Filosofo reported that a small lava flow had spilled over the low SE rim of the crater three days earlier. After sunset on 6 November, Strombolian bursts from SEC could be seen from Catania (Palazzo delle Scienze).

Telescope observations from the roof of the Palazzo delle Scienze in Catania on 3-4 December revealed vigorous Strombolian activity at SEC and significant growth of its central conelet, which stood much higher than the surrounding crater rims. Activity on the evening of 5 December was documented with the IIV camera until bad weather hid the summit. At dusk, activity at SEC increased, and strong explosions heralded lava emission to the NE side of the intracrater cone. A more significant lava flow was erupted from SEC on the late afternoon of 9 December, accompanied by vigorous explosive activity at the intracrater cone and within Bocca Nuova. The SEC lava flow overrode previous flows on the SE flank of the cone.

The 9 December lava flow was visible on 11 December, contrasting against freshly fallen snow. Seen from Palazzo delle Scienze, this flow extended much farther downslope than previous flows on the SE flank of the cone, but its front was still several hundred meters from the steep W flank of Valle del Bove. The flow had apparently stopped (no steam was visible at the contact of the lava with the snow). Two smaller lava lobes were erupted onto the SE flank of SEC's cone, about two-thirds of the way down the cone's flank. The active central cone appeared to have lost some height during the strong explosions; Strombolian activity was still vigorous and at times accompanied by weak ash emissions. Vigorous activity at SEC, with some large explosions, continued during 12-15 December, with lava flows spilling over the SE rim and some SE-flank lava extending far beyond the base of the cone. The new flow passed only about 600 meters NE from the Torre del Filosofo mountain hut, ~1 km from SEC. As of 17 December the lava flows erupted from SEC during the previous few days were still confined to the SE flank of the cone. None of the new flows had extended as far as those on 9 and 12-13 December. Over 20-21 December, nearly continuous explosive activity at the SEC intracrater cone sent lava onto its SE and SSE flanks. The cone regained the height lost after 5 December. A 22 December afternoon episode of vigorous lava fountaining as high as 200 m from SEC lasted about 1 hour. A lava flow erupted onto the SE flank of SEC appeared to be no longer than ~200 m.

Activity at SEC in late December and early January was spectacular. On 25 December, continuous Strombolian activity occurred from the central conelet and lava flowed down the SE flank to its base, covering previous flows. Three active lava flows were visible on the SE flank on the 26th. Sometime between early 29 and early 30 December, more lava flows spilled down the S flank of SEC, and a peculiar flow moved down on the SW flank, bifurcating on the lower slope. On the evening of the 30th, active flows were visible on the S flank while the SW flow only showed incandescence in its upper part. On the evening of 31 December, incandescent lava was visible on the lip of SEC in many places while active flows were descending on the S flank. On 7 January the SW flow was incandescent along its full length, with the W lobe extending to the base of the SEC cone.

On 8 January Southeast Crater gave off continuous Strombolian explosions from two vents at the summit of the intracrater cone and lava emission from its SE base. The summit of the cone was distinctly (~5-7 m) higher than the highest point ("Fortino") on the NE rim of SEC. Lateral growth of the cone was most significant in the N and NE parts of SEC where all lava flows and effusive vents active between July and September 1997 had been buried. The lava field surrounding the central cone had risen significantly, causing overflows on the E, SE, S, and SW sides. Only a segment of the NE crater rim stood a few meters above the lava fill; the W and NW part of the rim stood 20 m above the lava field and the cone's base. Three craters were present on the central cone, two of which were erupting. Activity would occur from one vent at any given time while the other was silent. The N vent ejected bombs and scoriae onto the N and NW crater rim and beyond. The S vent produced loud bangs and showered the E and SE flanks of the cone with pyroclastics. The effusive vent on the SE side of the cone had crusted over, and lava issued only on the SW rim of SEC where it overflowed, forming a narrow (1.5 m) flow with distinct lateral levees extending to the base of the SEC cone. The flow bypassed a cone formed in 1971 on its E side; when reaching the almost horizontal plain below the steep SW flank of SEC, it broadened and thickened notably and advanced slowly in the direction of the 1971 "Observatory cone." Within 3.5 hours on 8 January, the flow front advanced ~15 m through thick snow, forming an offshoot on the W side of the ~20-m-wide lava front. None of the other flows on the S flank of SEC showed any signs of movement or incandescence. The distance from the Torre del Filosofo mountain hut to the nearest flow front was ~1 km; the active flow did not threaten this structure.

Activity at Northeast Crater. During the second half of July Northeast Crater (NEC) occasionally ejected incandescent bombs from a deep pit in the central part of the crater; fine ash fell outside the pit. Visits to the summit craters in late September and early October revealed sporadic activity. NEC frequently emitted ash plumes during the first week of October, and on the evening of 10 October, incandescent ejections rose as high as 50 m above the crater rim. Strong gas emission was occurring from NEC on 11 December. NEC was essentially quiet on 8 January, with only light steam emissions from its central pit and some of the June-August 1996 vents in the SW part of the crater. Steam emission was more abundant, and at times pulsating, from a collapse pit in the S part of the crater. This pit was also the site of frequent avalanching and rockfalls that generated plumes of brown ash. No fresh magmatic products were found in the vicinity of the central and southern pits.

Activity at Voragine. A small cone began to form on the floor of Voragine in late July, and Strombolian activity was observed on 5 August. On 30 August, the cone was mildly steaming, and the surrounding deposit of black scoriae was partly covered by blocks that had collapsed from the septum between Voragine and Bocca Nuova. The first effusive activity from the Voragine in many years occurred in late September, forming a small lava field on the crater floor. Strombolian activity was weak on 28 September but very vigorous on 9 October; one day later it was again weak. The Voragine was explosively active from the central conelet on 6 November, and another weakly explosive vent had formed at the SW base of the diaframma between the Voragine from Bocca Nuova.

The cone in the central part of the Voragine was quiet on 8 January, with only slight emission of bluish gas. Its horseshoe-shaped crater was open to the SE; a small lava flow had issued from the open side of the cone. The vent on the SW side of the crater floor, which was first observed on 6 November 1997, had enlarged and was surrounded by a low half-cone leaning against the base of the diaframma. This vent produced weak explosions that mainly expulsed hot gas and a few pyroclasts. When viewed from the E rim of the Voragine, the conduit of this vent was seen to be inclined SW, diving below the diaframma.

Seismic crisis of 9-12 January 1998. The most intense seismic crisis during the current eruptive cycle occurred during 9-12 January and caused widespread media attention. From the afternoon of 9 January through 11 January about 200 earthquakes occurred in an area on the W and SW flanks of the volcano. The strongest shock (M 3.7) damaged a church in Biancavilla. No other damage or injuries were reported. Most epicenters were between Monte Nunziata and Monte Palestra, two ancient cones on the W flank. Seismicity diminished late on 10 January.

Strong ash emissions from BN on the morning of 11 January indicated further collapse in that crater, caused by earlier subsidence of the magmatic column. It is assumed that the magma intruded into a new fracture within the W side of the volcanic edifice. On 12 January ash emission from BN was almost continuous, but strong ash emissions also occurred from NEC. Activity at SEC continued with Strombolian bursts and emission of lava flows onto the SW, S, and SE flanks of the cone. The peculiar SW flow seemed to be waning; during the previous few days it had formed several minor lobes adjacent to the main one; the flow front seemed to have reached the base of the 1971 "Observatory cone."

Another seismic swarm occurred below the W flank on the afternoon of 12 January, with twelve earthquakes in 20 minutes, the strongest being M 3.1. Epicenters were closer to the summit craters than those of the preceding swarm, clustering 2-3 km E of Monte Palestra. Focal depths were ~4 km below sea level; no damage was reported. No significant change was noted in the eruptive activity at Southeast Crater, which had three active flows moving down its SW, S, and SE flanks.

Summit activity during 13-15 January 1998. Strombolian activity on the evening of 13 January at the intracrater cone in SEC was vigorous, while active lava was only visible near the crater rim in three places. A very faint glow reappeared at the SE eruptive center in BN. Strong ash emissions occurred from BN throughout the day. Seismic and eruptive activity were low on 14 January. The only visibly active crater was SEC, which was vigorous on the 13th but showed a marked diminution of activity towards midnight. At nightfall on 14 January SEC had very few and weak explosions, and there was no active lava flow on its outer flanks. No glow was visible above BN. This was the lowest level of activity observed in about a year. Seismic activity resumed late on 14 January with a series of about ten weak earthquakes below the W flank (Monte Palestra area) and several shocks beneath the SW slope, some 5 km above Biancavilla. Hypocenters were ~6 km below the surface on the W flank but much shallower on the SW flank. Activity at SEC dropped to very low levels: very few and weak explosions from the intracrater cone were observed on 14 January and no active lava was visible on the outer flanks of the crater.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Boris Behncke, Istituto di Geologia e Geofisico, Palazzo delle Scienze, Università di Catania, Corso Italia 55, 95129 Catania, Italy.


Piton de la Fournaise (France) — September 1998 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Activity ends with fissure eruptions outside the caldera

The eruption that began in March (BGVN 23:03) diminished during August and September. Observatoire Volcanologique du Piton de la Fournaise (OVPF) considers the eruption ended. The most significant activity during the last two months took place outside the caldera.

A small fissure eruption began on 9 August north of the caldera. Lava issued from this fissure, which was located ~500 m from the caldera wall near Nez Coupé Sainte Rose (figure 49). The initial eruption lasted only 24 hours, but a second fissure eruption began 14 August in the same area closer to the caldera wall. No fountains were observed with the second fissure, although the lava was very fluid. Flows eventually measured 200-300 m wide and ~2 km long. They moved parallel to the caldera wall until 14 September when they stopped ~500 m above Trou Caron. Some of the lava reached the edge of the caldera and spilled over onto the Plaine des Osmondes through three separate rivulets. A flow that was moving towards the upper part of Bois Blanc (a village located on the east coast) stopped by 25 August.

Figure (see Caption) Figure 49. Map of the NE quadrant of Piton de la Fournaise showing important craters and other features. The dark tone represents the caldera wall, the light-gray areas indicate the extent of lava flows dating from 1972. The medium-gray shows flows since March 1998. Courtesy of OVPF.

During September, some night incandescence due to the lava lake at Piton Kapor was seen. Only weak tremor was observed. Beginning 5 September some gas-piston events were recorded; these had likely taken place before, but had remained undetected during stronger episodes of tremor.

This eruption, including all tremor and degassing at Piton Kapor, ended 21 September, after 196 days of activity. It thus comprised the volcano's longest and one of it's most voluminous eruptions of this century.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Thomas Staudacher, Observatoire Volcanologique du Piton de la Fournaise (OVPF), 14 RN3, le 27Km, 97418 La Plaine des Cafres, La Réunion, France.


Guagua Pichincha (Ecuador) — September 1998 Citation iconCite this Report

Guagua Pichincha

Ecuador

0.171°S, 78.598°W; summit elev. 4784 m

All times are local (unless otherwise noted)


Phreatic discharges and shallow, near-vent seismicity continue

The volcanic crisis near Quito (figure 10) continued with a series of phreatic discharges and an E-dipping zone of earthquakes that rose to within a few kilometers of the surface (figure 2). With potentially dramatic significance to Ecuador's Capital (1995 urban population, 1,270,000 residents; suburban, 258,000 residents), the eruption has spurred a strong educational response in both the regional press and on an official web site. These discourses have repeated noteworthy points: the volcano's last vigorous eruption was in 1660; its recurrence intervals have oscillated between about 400 and 600 years; its last major eruption took place 338 years ago; and its phreatic eruptions have repeated during the past 15 years. Phreatic eruptions began on on 7 August (BGVN 23:08); since then the Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN) has made available daily reports on activity during 30 September to 27 October, which we summarize here.

Figure (see Caption) Figure 10. Simplified schematic showing Guagua Pichincha, Quito's urban areas (elongate zone with selected roads), and hazard designations associated with the volcano. Revised from a color hazard map on the IG-EPN website and keyed as follows: 1) Maximum danger (including major risks of hot volcanic flows, lahars, and ashfall - requiring total evacuation); 2) Minor danger (minor risk of ash clouds, hot volcanic flows, and lahars - areas immediately abandoned should an eruption be either imminent or large); 3) Lahar risk along drainage areas; and 4-6) graded risk of ashfalls. The bold arrows help identify the location of source vents and portray ejecta trajectories representative of those that might occur during an eruption. For more detail, see Hall and von Hillebrandt (1988). Courtesy of the Instituto Geofisico, Escuela Politécnica Nacional.

Activity and observations. The epicenters of located earthquakes during April-October 1988 generally clustered around the caldera (figure 11). This was particularly the case for volcano-tectonic (VT) earthquakes, which in cross-section view tended to lie underneath the caldera. The located long-period (LP) events generally propagated from greater depths and in cross-section view defined a broad E-dipping zone. Thus far in the crisis there has been an alternating pattern of seismicity and seismically detected explosions (figure 12). During late September through late October there were often 1-2 daily explosions.

Figure (see Caption) Figure 11. (top) Located seismic events at Guagua Pichincha during April-October 1998 were mainly centered around the caldera. The abbreviations VT and LP refer to volcano-tectonic and long-period events. The LP events showed a tendency to lie farther outboard, on the volcano's E slopes. (bottom) A cross section showing hypocenters for the same seismic events, which reveals the E-dipping attitude of located events. Courtesy of the Instituto Geofisico, Escuela Politécnica Nacional.
Figure (see Caption) Figure 12. Histograms for Guagua Pichincha showing both the daily number of earthquakes, including (a) volcano tectonic (VT), (b) long-period (LP), (c) multiphase (MP), and (d) the daily number of seismically detected explosions. Courtesy of the Instituto Geofisico, Escuela Politécnica Nacional.

On 3 October observers confirmed the presence of new fumaroles on the dome's W edge; nearby, in the headwaters of the Rio Cristal, they noted a new fumarole field. A phreatic explosion was heard at 0400 on 5 October by residents of Lloa. The explosion was the thirty-first such event in the sequence initiated on 7 August. It ranked among the most energetic seen to this point of the crisis, comparable to those on 8 and 24 August, and 29 September. The 5 October explosion followed 50 minutes of tremor registered at station YANA (7 km NE of the crater; "C" on figure 13). Small seismic events continued until 0800 that day. This explosion left a fresh ash layer in the caldera that revealed a new vent near the older one but above it to the S.

Figure (see Caption) Figure 13. Contour map (200-m interval) indicating noteworthy sites surrounding Guagua Pichincha, including the valley embracing Quito and some of the key W-slope rivers that drain the breached caldera and environs. The map indicates settlements of Nono and Lloa (darkened rectangles) and seismic stations installed and maintained by various groups (open rectangles). These stations are designated by the following call letters: A, FARH; B, NONO; C, YANA; D, PINO; E, QWR; F, TERV; G, GGP; H, (uncertain); J, TOAZ; K, PIEZ; L, JORG; and M, MGUL. Courtesy of the Instituto Geofisico, Escuela Politécnica Nacional.

The seismic swarm NE of the caldera (BGVN 23:08) continued; between June and early October there were 3,200 events; ~10 had a magnitude (MR) over 3.9. On 4 October instruments detected ~30 earthquakes, the strongest MR 3.5. A MR 3.6 earthquake struck this zone on 10 October and was felt locally in the settlements of Pomasqui and San Antonio.

Measured deformation was not detected for the interval 15 September-7 October. Although not plotted, tremor has occurred. For example, at 2214 on 7 October station PINO detected tremor for 19 minutes while station YANA registered it for 7 minutes. On 11 and 12 October tremor followed phreatic explosions and in the former case, prevailed for 20 minutes at stations near the crater.

Mass wasting on the SE flank ~11 km from the caldera (in Quito's San Roque sector) on 9 October covered an old school, part of a church, threatened several smaller structures, and blocked vehicular traffic. Roughly 20 people were evacuated.

On 12 October condensing gases escaping the dome at a fumarole called "La Locomotora" rose 200 m. Around this time the 1981 explosion crater also emitted a moderate flow of gray gases but new fractures or fumaroles were absent.

At 1621 on 14 October a phreatic explosion at the 1981 vent sent fine material over the NE part of the caldera and left a visible coating ~300 m up the caldera walls. The associated grayish-white plume formed a ~3-km-tall column. Clear weather enabled residents of Quito to see the plume. Geophysical instruments detected the event at widely scattered locations. COSPEC registered the first clear SO2 signal, a 300 ppm concentration in the plume. Guards at a local observation post smelled strong sulfur, particularly when gases from La Locomotra fumarole blew past.

An explosion at 0947 on 16 October sent a plume to ~2 km. Again, Quito residents saw the plume, but an explosion the next morning was shrouded from view by weather clouds. The latter explosion was considered moderate; it was associated with ~5 minutes of tremor centered around 1.2-Hz frequency and scientists working nearby (at station PINO) saw a gray-white cloud develop. A 17 October explosion was shrouded in clouds. The phreatic explosions on 14, 15, 16, and 17 October yielded respective reduced seismic displacements of 11, 4.2, 9.8, and 3.2 cm2.

A view into the caldera on the morning of 18 October disclosed relatively passive outgassing from the 1981 and 1988 explosion craters. La Locomotra and other fumaroles on the central dome had clearly increased their output, feeding a plume ~700 m high. Another moderate explosion on 25 October was followed by 3 hours of tremor.

A flight on the morning of 27 October revealed only modest degassing, a 300-m-high plume, and an SO2 concentration below the COSPEC's detection limit. Minard Hall also recognized that the 1981 crater and one formed in September 1998 had coalesced. The wall isolating them had apparently been weakened by repeated phreatic eruptions.

Risk mapping. The highest risk settlements include Lloa (figures 1 and 4) and Mindo. The latter lies on the river of the same name about 22 km NW of the caldera; it lies off of maps in this report but is depicted on the larger hazard map of Hall and von Hillebrandt (1988). One branch of the Mindo river's headwaters begin just N of the breach in the caldera (figure 4). Rivers draining the breached W-flank and nearby NW-flank (e.g. Rio Cristal and Rio Mindo) were assigned a higher category of risk for lahars than any lahar-risk zones on the E flanks (figure 1).

New fieldwork has been aimed at inspecting older lahar deposits in vicinity of the settlements of Mindo and Nono. Nono, on the NNE flank (figures 2 and 4), lies at mouth of a narrow N-S valley that cuts across much of the volcano's E to NNE flanks.

Partnerships. The following describes some of the civic and media efforts to communicate volcanic hazards. On 30 September Ecuador's president requested that a safety committee be formed (Comité Especial de Seguimento, CES). The committee was charged with integrating Civil Defense, the IG-EPN, and the City of Quito. In overcast conditions on 24 August a film crew from TeleAmazonas shot footage of an explosion plume not otherwise visible in Quito. These glimpses, and later examples of widely visible plumes, surely helped residents grasp the immediacy and some of the power of the eruption.

Authorities raised the hazard status to Yellow on 1 October. On 3 October a new video system started to monitor the inner crater. This advance was supported by "Ecuavista" in coordination with "911 of the City of Quito," the phone number for the City's communications base.

A 2 October announcement told of a downtown Quito information center implemented to release daily circulars at bearing official volcanological information. Thanks to a partnership between the information center and IBM of Ecuador, the former gained access to the internet, email, and a modern computing environment The radio station "Zaracay," which can be received widely, including the urban and Mindo areas, was also designated as a conduit for public announcements.

By 7 October the seismic network consisted of 12 stations with real-time data transmission. Collaborating scientific teams and monitoring equipment have come from both the U.S. Geological Survey as well as ORSTOM (the French Scientific Research Institute for Development through cooperation). Contingency plans have surfaced, dealing with the issue of transportation during the higher stages of alert (Orange and Red). Public announcements have broached the need to maintain the integrity of the municipal infrastrucure in the event of an eruption, including crews to clean ash (from roads, power lines, etc.).

Reference. Hall, Minard, and von Hillebrandt M., Christa G., 1988, Mapa de los peligros volcanicos poteciales asociados con el volcan Guagua Pichincha; Republica del Ecuador (1:50,000).

Geologic Background. Guagua Pichincha and the older Pleistocene Rucu Pichincha stratovolcanoes form a broad volcanic massif that rises immediately to the W of Ecuador's capital city, Quito. A lava dome is located at the head of a 6-km-wide breached caldera that formed during a late-Pleistocene slope failure ~50,000 years ago. Subsequent late-Pleistocene and Holocene eruptions from the central vent in the breached caldera consisted of explosive activity with pyroclastic flows accompanied by periodic growth and destruction of the central lava dome. One of Ecuador's most active volcanoes, it is the site of many minor eruptions since the beginning of the Spanish era. The largest historical eruption took place in 1660, when ash fell over a 1000 km radius, accumulating to 30 cm depth in Quito. Pyroclastic flows and surges also occurred, primarily to then W, and affected agricultural activity, causing great economic losses.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador; El Comercio newspaper, Quito, Ecuador (URL: http://www.elcomercio.com); El Universo newspaper, Quito, Ecuador (URL: http://www.eluniverso.com); La Hora newspaper, Quito, Ecuador (URL: http://www.lahora.com); Volcanic Disaster Assistance Program, U.S. Geological Survey, 5400 MacArthur Blvd., Vancouver, Washington 98661 USA (URL: https://volcanoes.usgs.gov/observatories/cvo/); ORSTOM, A.P. 17-11-6596, Quito, Ecuador (URL: http://www.ird.fr/).


Hokkaido-Komagatake (Japan) — September 1998 Citation iconCite this Report

Hokkaido-Komagatake

Japan

42.063°N, 140.677°E; summit elev. 1131 m

All times are local (unless otherwise noted)


Phreatic eruption spreads ash 25 October

The Japan Meteorological Agency (JMA) issued an advisory and three observation reports concerning Hokkaido-Komaga-take volcano on 25 October following a small-scale phreatic eruption that began at 0912 the same day. Ash rose in a column to a height of ~1,200 m above the crater. The eruptive activity soon declined. There were no report of injuries or damage caused by the eruption, and no evacuation order was issued.

Volcanologists surveyed the activity from a helicopter the afternoon of 25 October (figure 2). They reported that the eruption originated from the same crater that opened during the 1929 eruption, which was also the site of the March 1996 eruption. Ash covered a significant area around and to the E of the crater. The scale of this eruption apparently was smaller than that of the March 1996 eruption.

Figure (see Caption) Figure 2. An aerial view of Komaga-take showing fuming activity from the 1929 Crater about 6 hours after the 25 October 1998 eruption. View is from the SE looking towards the Komanose Rim (back) and the Sawaradake Rim (back right). The 1942 Large Fissure (middle, diagonal) and the 1996 Southern Fissure Crater (middle center) can also be seen. Hyoutan Crater (front center) is adjacent to the 1929 Crater. Photograph by Bousai Heli; courtesy of Hiromu Okada, Usu Volcano Observatory.

Volcanic tremor lasting six minutes was associated with this eruption. In addition, five volcanic earthquakes were recorded in the 12 hours following the first eruption signs.

Komaga-take is located 30 km N of Hakodate City (population 320,000). The andesitic stratovolcano has a 2-km-wide horseshoe-shaped caldera open to the E. The volcano has generated large pyroclastic eruptions, including major historical eruptions in 1640, 1856, and 1929. In the 1640 eruption, debris from a partial summit collapse entered the sea resulting in a tsunami that killed 700 people. Although the 1929 eruption was one of the largest 20th-century eruptions in Japan, it may not have had clear geophysical precursors.

Geologic Background. Much of the truncated Hokkaido-Komagatake andesitic volcano on the Oshima Peninsula of southern Hokkaido is Pleistocene in age. The sharp-topped summit lies at the western side of a large breached crater that formed as a result of edifice collapse in 1640 CE. Hummocky debris avalanche material occurs at the base of the volcano on three sides. Two late-Pleistocene and two Holocene Plinian eruptions occurred prior to the first historical eruption in 1640, which began a period of more frequent explosive activity. The 1640 eruption, one of the largest in Japan during historical time, deposited ash as far away as central Honshu and produced a debris avalanche that reached the sea. The resulting tsunami caused 700 fatalities. Three Plinian eruptions have occurred since 1640; in 1694, 1856, and 1929.

Information Contacts: J. Miyamura, Sapporo District, Japan Meteorological Agency, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan; Hiromu Okada, Usu Volcano Observatory, Institute of Seismology and Volcanology, Hokkaido University, Sohbetsu-cho, Hokkaido 052-0103, Japan.


Iwatesan (Japan) — September 1998 Citation iconCite this Report

Iwatesan

Japan

39.853°N, 141.001°E; summit elev. 2038 m

All times are local (unless otherwise noted)


Nearby M 6.2 earthquake on 3 September, but volcano still slumbering

A strong earthquake occurred 10 km SW of the summit of Iwate volcano at 1658 on 3 September. The Richter magnitude was 6.1 and the depth ~7 km. The mechanism was E-W compression on a reverse fault. A N-S-trending surface rupture appeared, despite the event's non-extreme magnitude. The aftershock area resulting from the earthquake differed from typical earthquakes on Iwate and the relationship between the earthquake and the volcano, if any, is not understood. This was the largest earthquake since August 1996 when a M 5.9 tremor struck.

A 3 September Reuters news article mentioned that a powerful earthquake took place, centered in the ski resort area of Shizukuishi, a mountainous region near Iwate volcano. The report claimed the epicenter was 5 km underground and police said that the event slightly injured at least nine people.

Geologic Background. Viewed from the east, Iwatesan volcano has a symmetrical profile that invites comparison with Fuji, but on the west an older cone is visible containing an oval-shaped, 1.8 x 3 km caldera. After the growth of Nishi-Iwate volcano beginning about 700,000 years ago, activity migrated eastward to form Higashi-Iwate volcano. Iwate has collapsed seven times during the past 230,000 years, most recently between 739 and 1615 CE. The dominantly basaltic summit cone of Higashi-Iwate volcano, Yakushidake, is truncated by a 500-m-wide crater. It rises well above and buries the eastern rim of the caldera, which is breached by a narrow gorge on the NW. A central cone containing a 500-m-wide crater partially filled by a lake is located in the center of the oval-shaped caldera. A young lava flow from Yakushidake descended into the caldera, and a fresh-looking lava flow from the 1732 eruption traveled down the NE flank.

Information Contacts: Yukio Hayakawa, Faculty of Education, Gunma University, Aramaki, Maebashi 371, Japan; Reuters Limited, 1700 Broadway, New York, NY 10019 USA (URL: http://www.reuters.com/).


Klyuchevskoy (Russia) — September 1998 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Explosions, ash 2-3 September raise concern to yellow alert

During 2-28 September, seismicity under the volcano was generally above background levels. Hypocenters were concentrated at two levels: near the summit crater and at depths of 25-30 km. Clouds often prevented observations.

On 2 September a fumarolic plume was observed during the daylight hours rising 50 m above the summit. Beginning at 2218 that day, a 33-minute series of explosive earthquakes was recorded, and at 2245 an ash explosion produced a plume that rose 4-5 km above the crater. On 3 September, scientists noticed that ash had been deposited in a 2-km-long zone on the NE slope. A plume of gas, with no ash content, rose 500 m above the volcano during 3-4 September, but had stopped by 5 September. Because of the increase in activity, the alert status was changed to Yellow, meaning more significant eruptions may occur.

No fumarolic plumes were seen during 8, 18, and 27 September, but plumes rising up to 100 m above the summit were seen during 13, 16, 17, 21, and 24 September. The alert color code returned to Green on 21 September, indicating normal activity.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Ol Doinyo Lengai (Tanzania) — September 1998 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


New cones, vigorous activity since February

From February through August 1998, several visitors to the crater of Ol Doinyo Lengai produced photographs and descriptions of eruptive activity. The following are taken from a summary of those visits provided by Celia Nyamweru, including detailed observations of certain hornitos made by Fred Belton and Chris Weber during their visits in June and August.

Orientation. Figure 51 locates the prominent features in the crater based on a photograph taken on 23 February 1998. A similar sketch map based on a photograph taken in February 1997 from nearly the same perspective appeared in a previous report (BGVN 23:06). Among the conspicuous new features appearing in 1998 are three large hornitos labeled T45, T46, and T47. T45 was described in February 1998 as being "possibly a new cone," but it may have been active as early as December 1997; by August it had grown to a height of ~7 m and was the dominant landmark in the E of the crater. T46 is a broad, darkly colored feature near the T20/T44 cluster. T46 was erroneously identified as T47 in the last Bulletin report. T47 is a tall, very narrow cone with a pointed top. It is located in the south-central area of the crater near the site of T23, which has nearly vanished. The cone cluster known as "A" has completely disappeared beneath recent lava.

Figure (see Caption) Figure 51. View of the crater of Ol Doinyo Lengai looking N from the S crater wall as it appeared 23 February 1998. The oblique view has a variable scale: it is ~ 300 m from T47 to C, and ~ 100 m from T47 to both T37S and T26/T27. Courtesy of C. Nyamweru from a photo by J.S. Antonio.

General appearance. During a visit to the summit on 12 March, observers noted no major changes to the crater since 23 February. Pale-brown, brown, and gray lava of differing ages covered the floor (figure 52). Pahoehoe flow patterns were clear in some areas, particularly N and NE of T45. An open vent in the T23 area contained a bubbling lava pool and steam issued from various vents. T47 was described as a very tall cone with a vertical crack and sharp peak, making it easily distinguishable from other nearby cones.

Figure (see Caption) Figure 52. Composite panoramic view to the SW from the E crater rim taken on 12 March. T45 is prominent in the foreground. The scale is oblique: it is ~ 150 m from T45 to T47 and ~ 100 m from T45 to T40. Courtesy of C. Nyamweru; photos by B.A. Gadiye.

An aerial photograph taken during May showed no important changes (figure 53). No steam or fresh lava was seen. The crater floor was covered with white or pale gray lava. A summit visit on 12 June revealed few changes (figure 54). No fresh lavas were seen, but recent flows of gray and brown lava were noticed, particularly in the area of T45 and from T37S in the direction of T24.

Figure (see Caption) Figure 53. Aerial view of the Ol Doinyo Lengai crater looking to the SE in May 1998. Courtesy of C. Nyamweru; photo by B. Wangermez.
Figure (see Caption) Figure 54. Composite panoramic view of Ol Doinyo Lengai looking SW from the E crater rim (compare with figure 52) taken on 12 June. Courtesy of C. Nyamweru; photos by B.A. Gadiye.

There were no signs of fresh surface activity when observers arrived on 17 June. The entire crater floor was grayish white and mostly soft, and no new spatter was visible on any hornito. The lowest point on the crater rim, to the NW, was 30 cm above the crater floor. T47 was the tallest cone in the crater (~11 m) and was lightly steaming. A 150-m-long steaming fracture, rich in sulfur deposits, was oriented SW-NE; the fracture passed over the site of T41 and T42, both of which had disappeared.

During visits through the first week of August, the steaming fissure was no longer visible, but a new fissure of the same type had developed. This was oriented NW-SE with its SE end located near the base of T20. T37S had two small cones recently added to the S part of its summit and a small lava flow down its W flank. A few clots of lava were ejected from T44C around 1300 on 2 August; although no taller, it showed recently added lava cascades on its N flank. At 0615 on 7 August T44 splashed black liquid lava out of its 6-m-high peak.

T37N1. On 17 June, T37N1 was open to the SE and contained a lava platform consisting of a 2-m-diameter circular pit beneath a 5-m overhanging wall. The pit opened into a cave that was ~4 m deep. A small spatter cone, 4 m W and 2.5 m above the pit, was located on the shoulder of the overhanging wall. At 0630 on 18 June a vigorously sloshing pond of very gas-rich lava rose slowly inside the circular pit. Lava was also visible through the vent of the spatter cone. Within an hour the pond overflowed and the spatter cone began ejecting lava clots up to 2 m above the cone, eventually producing pahoehoe and aa flows that traveled ~100 m ESE. This activity continued until 1200. At 1815 on 19 June a 20-minute eruption resulted in an overflow of the pond. Continuous lava fountains rose up to 1 m above the spatter cone, covering the flows from the previous day. At 1600 on 20 June an eruption lasting more than 15 hours began with a high-volume pond overflow and explosions every 2 seconds from the spatter cone. By 2245 the explosions had stopped and an orange flame was seen at the cone's vent. Lava continued to pour from the pond all night. A tube-fed flow first traveled N, then curved E as a narrow strip ~80 m long containing a single tube, and finally spread out into a wide stacked flow-field that piled up against the E rim.

At 1800 on 5 August a lava lake was seen in the cave under the spatter cone, ~5 m below the rim. At 1930 the lake began to glow dull red in the darkness, revealing that the cave was much larger than it had first appeared. The entire T37N1 hornito was hollow with a lake slowly rising inside that flowed toward the SW and entered a westward-directed tube or cave. As the lake rose higher lava appeared on the crater floor at the W base of T37N1, flowing slowly along the bottom of an old tube. Within 10 minutes the lake rose up to vent level and began to slosh over the rim, but lava could no longer be seen on the crater floor. From 2000 to 2330 the lake overflowed numerous times and lava advanced to a point near the base of T5T9. Due to frequent fluctuations in lake level, no long tubes developed; instead the flows were short and thickly stacked.

Similar activity occurred in the early morning hours of 6 August; just before 0715 the lake was ~3 m below the rim of the spatter cone, which had been increased in height and reduced in diameter during the eruption. The open interior of T37N1 filled with lava to a depth of 2 m, completely burying the pit that had contained the overflowing lava pond in June. The T37N1 spatter cone, positioned on the W side of the new, higher lava platform, was taller and had a larger vent than in June. Foaming white to pale gray carbonatite lava splashed out and fed short lava flows a few meters long down the W slope. Its vent opened into a large cave, ~8 m deep. A recent tube-fed flow from the vent extended to the W crater wall. The vesiculation of the gas-rich lava was high. Activity stopped around 1100 causing a 4-m drop of the lava level.

T48. At 0800 on 18 June (while T37N1 was erupting) T48 produced lava fountains up to 3 m high for 10 minutes, forming short aa flows on its N side. Throughout the morning of 19 June it occasionally ejected solid lapilli along with loud puffs of steam. At 2335 that night it began exploding loudly every 2 seconds and produced lava fountains up to 7 m high. After less than 2 minutes of these explosions the fountains decreased in height to 3 m but increased in volume. Each explosion covered the NW half of T48 with a thick layer of spatter that glowed dull red.

By August T48 had increased in height by at least 2 m and had produced many fresh flows extending in all directions. Aerial photographs taken by Benoit Wangermez on 1 August showed several fresh lava flows originating from vents in the approximate location of T48 and T49 extending to the NE and W crater rims. At 1300 on 2 August, low lava fountaining began from the summit vent and within an hour a lava stream was cascading down the nearly vertical SW flank of T48. Over the next 7 hours a large tube formed from the summit down the SW flank. Lava from this tube advanced past the N slope of T20 more than halfway to the WNW crater wall. Near the base of T48 the tube was ~60 cm in diameter and had several skylights from which lava often overflowed. The lava was gas-rich with a surface that appeared to be covered with gray foam.

The eruption continued all night but lava never reached the crater wall. At 0800 on 3 August a close inspection of the vertical lava tube revealed a small crack expelling hot air. Near 1000 the tube ruptured at that point, creating a powerful horizontal lava fountain that played on the N flank and base of nearby T44C. As the rupture progressed, other fountains directed at various angles of inclination developed, and eventually a flow began to form a second tube. The original tube was still full of flowing lava. By 1800 no lava was visible in the skylights. At 1930 a thin lava stream was spraying horizontally from the E side of T48's summit. At 0600 on 4 August T48 was inactive but at 0800 fountains developed on its upper east flank, creating pahoehoe and aa flows that reached the base of T40B. Similar activity continued until 2000. There was no further activity until 2330 on 5 August when a wide lava fountain sprayed horizontally for 20 minutes from just above a small ledge on the E flank, 2 m below the summit.

On 6 August at 1400 lava splashed out of two openings close to the peak of T48. Black, degassed, very liquid lava fed little lava flows reaching 8 m down the E slope. The activity stopped shortly after 1600.

T40. Sloshing lava was heard inside T40 during the entire June visit. During the night of June 19 a pahoehoe flow traveled ~10 m from a small vent in its base. Lava flowed into a cave under a low, broad hornito just NE of T40. This new lava flow was ~1 m thick. The cave had contained an impressive group of white lava stalactites. On 20 June a 3-m2 section of the SW flank collapsed into its interior.

On 2 August at 1000 occasional lava clots were being ejected from T40's summit, but this continued for only ~30 minutes. During the August visit T40 was noisily degassing. The collapse pit that formed on 20 June in the SW flank of T40 was no longer visible, having been filled in by lava. Recent flows extended a short distance SW and SE of T40, partially covering a low mound to the SE. A tall, narrow cone had very recently been formed on the summit of T40 and was the source of several very fresh aa flows extending to the base of T40.

T49. A small cone just NE of T49 extended toward the NW and grew in height between visits. Sloshing lava was frequently heard there. After several earthquakes during the night of 6 August, at 0408 on 7 August a loud explosion blew off the top and N side of T49. Rocks up to 1 m3 were thrown or rolled a few meters. A dark-red lava fountain ~15 m high continued until 0413 with a loud, jet-like noise. Pahoehoe lava with little viscosity (1-5 Pa s) splashed N of T49 and traveled NW. The flow was thin (10-20 cm) and stopped shortly after the end of the eruption. The amount of erupted lava was ~70-100 m3. Lava pearls up to 4 mm diameter and fine ash were blown over 200 m NW.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: Celia Nyamweru, Department of Anthropology, St. Lawrence University, Canton, NY 13617 USA (URL: http://blogs.stlawu.edu/lengai/); Fredrick A. Belton, 3555 Philsdale Ave., Memphis, TN 38111; Christoph Weber, Kruppstr 171, 42113 Wuppertal, Germany.


Masaya (Nicaragua) — September 1998 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Integrated scientific studies of the caldera area

Four teams of Canadian, British, and Nicaraguan volcanologists carried out studies of Masaya caldera during January-April and September 1998. The volcano was examined using correlation spectroscopy (COSPEC), microgravity, Open Path Fourier Transform Infrared spectroscopy (OP-FTIR), and soil-gas studies.

Vent degassing appeared to have increased significantly. COSPEC measurements during February-April 1998 showed SO2 flux varying from 680 t/d to a maximum of 5,580 t/d. Measurements made during the previous year (January-March 1997) showed more stable fluxes of approximately 380 t/d. Measurements in September 1998 showed flux levels varying from 320 to 1,420 t/d.

OP-FTIR measured from the Plaza Oviedo overlooking the "Santiago" pit crater showed consistent SO2/HCl and HCl/HF volume ratios of 2 and 7, respectively. Using the COSPEC-derived SO2 flux, scientists inferred HCl fluxes of 340 to 2,790 t/d and HF fluxes of 97 to 797 t/d.

CO2 soil-gas measurements at the foot of the Comalito cinder cone increased from 23 to 31.3% between March 1997 and February 1998. Fumarole temperatures also increased from 70 to 84°C during February 1998.

Microgravity surveys during March 1997-February 1998 showed a slight increase in gravity immediately beneath the Santiago pit crater. They also showed evidence (increased noise recorded on the meter) of significant seismic activity around the Santiago crater. Similar measurements acquired in September 1998 indicated increased seismic activity throughout the caldera.

Temperatures at the active vent, measured using a Cyclops infrared camera, ranged between 170 and 400°C. The higher measurements occurred when incandescence of the vent walls was visible. In March, a small fumarole emitting low levels of gas appeared, ~15 m from the active vent.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Glyn Williams-Jones, Dave Rothery, Hazel Rymer, Peter Francis, and Lisa Boardman, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; Alexandre Beaulieu, Dany Harvey, Pierre Delmelle, Katie St-Amand, and John Stix, Département de Géologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Mike Burton, Clive Oppenheimer, and Matthew Watson, Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, United Kingdom (URL: http://www.geog.cam.ac.uk/); Hélène Gaonac'h, Département des sciences de la Terre, Université du Québec - Montréal, Montréal, Québec H3C 3P8, Canada; Martha Navarro and Wilfried Strauch, INETER, Apartado Postal 2110, Managua, Nicaragua; Benjamin van Wyk de Vries, Departement des Sciences de la Terre, Universite Blaise Pascal, 63038 Clermont-Ferrand, France.


Obituary Notices (Unknown) — September 1998 Citation iconCite this Report

Obituary Notices

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Death of Oleg Volynets in Petropavlovsk-Kamchatsky

On 24 October, in Petropavlovsk-Kamchatsky, the volcano community lost a distinguished scientist and an exceptionally kind, warm human being. Oleg Volynets worked for over 39 years on the volcanoes of the NW Pacific rim, and died at the peak of an unusually productive career. His colleague Vera Ponomareva wrote that he "combined the qualities of a unique expert in Kamchatka rocks with broad knowledge in modern geochemistry. More important, he was our conscience, a true 'chevalier sans peur et sans reproche.' His death is a deep personal grief for many people." He found time to share his extensive knowledge of Russian volcanoes with us here at the Smithsonian, and we are among those "many people."

Geologic Background. Obituary notices for volcanologists are sometimes written when scientists are killed during an eruption or have had a special relationship with the Global Volcanism Program.

Information Contacts:


Popocatepetl (Mexico) — September 1998 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Several episodes of ash emission during September

Following a large ash exhalation on 8 September (BGVN 23:08), eruptive activity at Popocatépetl decreased in intensity and duration. CENEPRED reported a few moderate emissions during September that caused local ashfall.

Small-volume, discrete, short-duration emissions containing ash, sometimes accompanied by steam and gas, were recorded occasionally during the period 9-15 September. Brief episodes of harmonic tremor were also recorded. During the night of 14 September glow reflected from clouds over the crater was seen.

Moderate exhalations of steam, gas, and light ash took place during 16 September. Several brief episodes of high-frequency tremor were recorded that afternoon; the largest emissions occurred at 1546-1552, 1604, and 1611. Ashfall was reported at Amecameca, 20 km NW of the volcano. Despite bad weather that reduced visibility most of the day, a dense column of steam and gas was seen rising 700 m above the summit before being blown to the NW. Activity decreased to stable background levels on 17 September. A dense steam and gas cloud seen on the morning of 18 September dispersed to the NE; as the cloud gained altitude, its direction changed to the south. SO2 measurements showed significant increases following the 16 September explosion over levels earlier in the month.

Another moderate increase in eruptive activity began a few days later. A steam and gas column rising 1 km above the summit was observed during 20 September. Brief, moderately intense emissions of steam and gas, sometimes with light ash puffs, took place throughout the morning of 21 September. An explosion at 1148 that morning produced light ashfall in towns up to 20 km NW of Popocatépetl. A similar but less intense event occurred at 1543. Emissions decreased to relatively low levels until 1225 on 22 September when a moderate explosion lasting 7 minutes produced a steam, gas, and ash plume that rose 4 km above the summit. Visibility during 22 August was poor due to bad weather, but a large ash cloud near the crater was detected by Doppler radar. Ash was dispersed during the afternoon NW of the volcano, producing light ash falls in the suburban SE of metropolitan México City.

Following the explosion on 22 September, eruptive activity paused until a similar explosion occurred at 1829 on 23 September. This explosion lasted 6 minutes and produced a 3-km high column of steam, gas, and ash. Ash fall was reported in towns SW of the volcano. Eruptive activity soon decreased again, stabilizing at low levels of small, isolated emissions of steam and gas, typical of earlier in September. An exhalation at 1025 on 24 September was followed by 30 minutes of low-frequency harmonic tremor. An A-type earthquake of M 2.1 located 1.8 km E of the crater at a depth of 3.9 km was recorded at 2224 on 24 September, and another moderate exhalation lasting 7 minutes began at 2332.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Servando De la Cruz-Reyna1,2 Roberto Quaas1,2 Carlos Valdés G.2 and Alicia Martinez Bringas1; 1 Centro Nacional de Prevencion de Desastres (CENAPRED) Delfin Madrigal 665, Col. Pedregal de Santo Domingo, Coyoacan, 04360, México D.F. (URL: https://www.gob.mx/cenapred/); and 2 Instituto de Geofisico, UNAM, Coyoacán 04510, México D.F., México.


Sete Cidades (Portugal) — September 1998 Citation iconCite this Report

Sete Cidades

Portugal

37.865°N, 25.785°W; summit elev. 842 m

All times are local (unless otherwise noted)


Seismic swarm on submarine flank

Since June 1998, increasing seismic activity in the vicinity of Sete Cidades volcano has resulted in occasional seismic swarms. On the night of 2-3 August about 120 events were registered in 3 hours. During that period, five earthquakes were felt along the W coast, the strongest with a magnitude of 3.1 reached a maximum intensity of V (MM) at Ginetes e Varzea. Similarly, on 2 September in Sao Miguel more than 120 events occurred beneath the sea floor over a period of about 4 hours near shore between Ponta da Ferraria and Mosteiros. One of the five felt earthquakes during this period also reached an intensity of V (MM). There were no reports of injury or damage from any of these events.

Geologic Background. Sete Cidades volcano at the western end of Sao Miguel Island contains a 5-km-wide summit caldera occupied by two caldera lakes. The steep-walled, 500-m-deep caldera was formed about 22,000 years ago, and at least 22 post-caldera eruptions have occurred. A large group of Pleistocene post-caldera trachytic lava domes, lava flows, and pyroclastic-flow deposits is found on the western-to-northern flanks. A nearly circular ring of six Holocene pyroclastic cones on the caldera floor have been the source of a dozen trachytic pumice-fall deposits erupted during the past 5,000 years. Recorded eruptions date back to the 15th century and have occurred both within the caldera and from submarine vents off the west coast.

Information Contacts: João Luis Gaspar and Nicolau Wallenstein, Departamento de Geociencias, Centro de Vulcanologia, Universidade dos Açores, Rua Mae de Deus, 9500 - Ponta Delgada, Sao Miguel, Açores, Portugal.


Sheveluch (Russia) — September 1998 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Ash explosions and pyroclastic flow during 3 September

Seismicity remained generally at background levels during 2-28 September. A plume on 2-3 September was seen rising 200 m above the volcano. At 1622 on 3 September, ash explosions produced a cloud that rose 5 km above the summit, and extended 100 km NNE. Pyroclastic flows moving SW were observed at this time. The explosion was also accompanied by a 9-minute series of shallow earthquakes and tremor. The level-of-concern color code remained Green. Observation was restricted by cloud during much of the month.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Soufriere Hills (United Kingdom) — September 1998 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Continuing decrease in activity; hazards reassessed

The following summarizes the Montserrat Volcano Observatory's (MVO) scientific reports for July and August, except information concerning the 3 July pyroclastic flows, which was reported in BGVN 23:07.

Summary. In the weeks following the 3 July pyroclastic flows, no fresh magma reached the surface; however, vesicular ballistic blocks were recovered from craters on Perches Mountain suggesting that there may have been a small Vulcanian explosion. SO2-flux levels declined steadily throughout July to an average of 1,000 metric tons/day (t/d). Vigorous steam-and-ash venting continued from the dome-collapse scar until the end of July. Activity in August was dominated by several small dome-collapse events and a period of enhanced steam-and-ash venting in the middle of the month. The dome-collapse events were caused by the gravitational collapse of weakened dome rock. The ash venting was intense one day but waned over following days to normal levels. MiniCOSPEC results showed a peak that coincided with the enhanced venting, but there was an overall decline from ~1,000 t/d at the beginning of the month to ~500 t/d at the end of the month.

Visual observations. Ash-and-steam venting immediately after the 3 July event was vigorous. Significant pulses of steam-and-ash continued for 2-3 weeks and fumarolic activity was evident on the S and N flanks of the dome.

A steep buttress overhanging the 3 July scar collapsed on 16 August generating pyroclastic flows that reached the Tar River delta. Large fragments of the buttress were left in the area of the scar's mouth. On 19 August fumarolic activity in the scar increased in intensity: fumaroles on the back wall and at the base of the scar discharged copious quantities of steam and ash in jets. The next day activity decreased in intensity and the fumaroles were generally issuing steam only. Some of the fumaroles were temporarily buried following a rockfall within the scar on 20 August. The fumarolic activity declined steadily, and by 22 August activity had declined to levels observed in the first week of August.

Mudflows continued to be a problem in July. Mudflow deposits built up beneath the Belham Bridge until there was a clearance of only about 30 cm.

Seismicity. After 5 July, seismicity returned to levels similar to the previous month, with the exception of a swarm of volcano-tectonic earthquakes on 25 July (figure 43). This swarm had no outward manifestation at the volcano and activity returned to low levels by the next day.

Figure (see Caption) Figure 43. Seismicity recorded at Soufriere Hills by type during July and August 1998. Data courtesy of MVO.

Seismicity during August was generally low. Activity was dominated by small volcano-tectonic earthquakes located ~3 km below the dome, with occasional rockfalls and pyroclastic-flow signals. On 13 August there were two episodes (at 0519 and 1455) of pyroclastic flow in the White River valley. These flows traveled 1.8 km from the dome and were caused by the collapse of weakened dome rock. Active fumaroles on the Galways side of the dome near Chances Peak undermined part of the dome. A scar immediately above the fumarolic area is believed to be the source of the pyroclastic flows. Each episode was followed by about an hour of continuous rockfall activity. On 19 August a rockfall signal was followed by tremor, which corresponded to vigorous ash venting. The signal lasted two days and varied in amplitude. At times of highest amplitude the tremor was nearly monochromatic at 4 Hz.

Ground deformation. Measurements from GPS survey sites on the flanks of the volcano and in the N of the island indicated widespread major reductions in movement during July. The Hermitage site indicated continued slow movement NE at rate of ~0.5 cm/month. The GPS site at Perches was destroyed in the 3 July event; ballistics were scattered over Perches Mountain and the GPS site was later found at the edge of a 3.4 m diameter impact crater. The rates of movement of sites in August were within the instrumental error. The GPS kit was used for one week by volcanologists from the University of Rhode Island who were conducting a bathymetric survey of the fans at the mouths of the Tar River and White Rivers valleys.

The EDM reflector on Peak B was measured from Windy Hill. The increase in distance of 5 cm during the period May-July may have been caused partially by release associated with the 3 July collapse. The line had shortened by 9 cm between 25 January and 13 May, but between May and August the distance lengthened by a total 8 cm (within 1 cm of its original length) possibly indicating a relaxation in the confining pressure.

Volume measurements. A kinematic GPS survey of the Tar River fan was completed in July. The total volume of the fan was estimated to be 22.1 x 106 m3. A previous survey in August 1997 gave a volume of 15.7 x 106 m3. Much of the increase resulted from the 3 July collapse, which extended the fan 350 m N, although a small part of the increase was due to the accumulation of pyroclastic-flow deposits during the September-October 1997 explosion sequence (BGVN 22:10 and 22:11). The E limit of the fan, defined by a steep shelf extending into the sea, was unchanged. A small deposit was left on the S side of the fan, although above the established shoreline there was only a thin layer of pyroclastic-flow deposits.

No volume measurements were made in August. Attempts to survey the 3 July collapse scar were foiled by deteriorating weather conditions and a lack of helicopter fuel.

Environmental monitoring. MiniCOSPEC observations recommenced on 5 July. In early July SO2 flux was generally between 1,000 and 2,500 metric tons/day (t/d). On 13 July SO2 flux measured 4,150 t/d, the highest ever recorded at Montserrat. Throughout the remainder of July there was a gradual decline in SO2 flux to an average of 1,000 t/d at the end of the month. The cause of the relatively high gas flux in the apparent absence of magmatic activity was being investigated, but may relate to perturbations in the hydrothermal system caused by the dome collapse on 3 July 1998.

MiniCOSPEC measurements in early August showed a consistent SO2 flux of ~500-1000 t/d. On 19 August levels rose to 1,400 t/d as a result of enhanced venting. Towards the end of the month poor weather limited the number of COSPEC measurements, but there appeared to be a slight decrease to an average of ~500 t/d. Throughout late August the wind direction was variable due to tropical storms in the area. On occasions when the wind blew to the N or NW a strong smell of sulfurous gases was detected in the inhabited area of Montserrat.

Sulfur dioxide diffusion tubes exposed between 29 June and 13 July clearly reflect the high emissions in early July (table 31). The Plymouth area in particular was subjected to very high concentrations of gas. In the second half of July SO2 concentrations in Plymouth were reduced by half. Populated areas N of the Belham River valley were, as usual, only subjected to very low SO2 levels in July. In August there was a general decline of SO2 in the atmosphere. An additional monitoring site in the N of the island was installed to assess SO2 during shifts in wind direction.

Table 31. Sulfur dioxide diffusion-tube results, 29 June-11 August 1998. Levels are in parts per billion (ppb). Courtesy of MVO.

Station 29 Jun-13 Jul 1998 13 Jul-27 Jul 1998 27 Jul-11 Aug 1998
Police HQ, Plymouth 207.9 116.5 131.5
St. George's Hill 22.05 8.55 9.55
Weekes 5.75 4.1 2.85
MVO south 4.3 3.85 --
Lawyers 2.2 0 3.8
Vue Pointe Hotel -- -- 3.25

Hazard assessment. A meeting was held 14-16 July at McChesney's Estate to assess the current hazards and risks associated with Soufriere Hills Volcano. The meeting brought together many of the senior scientists who have worked at MVO during the three-year volcanic crisis. Those who took part were Richie Robertson, Lloyd Lynch and John Shepherd from the Seismic Research Unit in Trinidad; Simon Young, Sue Loughlin, Tony Reedman, and Gill Norton from the British Geological Survey; and many other senior scientists from around the world including Steve Sparks from Bristol University, Peter Baxter from Cambridge University, Barry Voight from Penn State University, Joe Devine from Brown University, Peter Francis from the Open University, Keith Rowley, and Willy Aspinall. Richard Luckett and Richard Herd from MVO provided up-to-date information about the current status of Soufriere Hills volcano.

Discussion was held on various aspects of the activity over the previous six months, including the event on 3 July. Related issues, including the safety of Bramble airport, were also addressed. An assessment of the level of risk associated with the volcano was undertaken. A report was presented to the government of Montserrat and the U.K. on 29 July after which the findings were made public.

According to the report, MVO judged it likely that the volcano has entered a period of repose, with the probability of no further magmatic eruptions in the next 6 months set at about 95%. MVO was confident that renewed magma ascent and escalation to dangerous levels of activity could be identified, although they cautioned that escalation might take place in a very short period of time (e.g. a matter of hours). Most of the island was perceived to be under reduced risk, but areas S of the Belham River Valley remain vulnerable to serious volcanic hazards including pyroclastic flows related to the collapse of the dome, mud flows, and exposure to fine ash. Further dome collapses were deemed likely and could affect all flanks of the volcano, especially the Tar River, Gages Valley, Plymouth area, Galways, and the NE slopes. There is potential for a variety of events to take place, including steam explosions, mud flows, and ash falls, for many years to come but the risks will decline with time. Health risk analysis showed that if magmatic activity does not resume, the potential for harmful exposure to ash will be limited and the risk of developing silicosis will be low in Zones 1 to 3. The same would apply to Population Zone 4 north of the Belham Valley after a clean-up operation has been safely completed. A public education program on the health risks of ash was recommended, including guidance on protection measures during the clean up. Certain groups could be at risk from much higher exposure (e.g. outdoor workers and asthma sufferers) and there may be unknown long-term health risks to young children.

The Volcanic Executive Group (VEG), chaired by Governor Tony Abbott, met to consider the Scientific Review. A statement from the Governor's Office following the meeting rescinded the recommendation that residents leave the Central Zone. Also, there was no longer any objection to commercial organizations operating within the Central Zone. The clean up of Friths, Salem, and Old Towne, which commenced some weeks ago, was intensified. The VEG sought advice on how to ensure that the Zone will be cleaned so that children and those with respiratory problems will not be affected on reoccupation.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat, West Indies (URL: http://www.mvo.ms/); Richard Aspin, Information & Education Unit, Emergency Dept., St Johns Village, Montserrat, Leeward Islands, West Indies.


Yasur (Vanuatu) — September 1998 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Ongoing eruption, felt earthquake, and fresh glass chemical analysis

On 9 September 1998, an earthquake was felt in a village 3 km from Yasur; simultaneously, loud explosions were heard from the volcano. When the summit was visited by John Seach during 10-11 September, five craters inside the main summit crater in the pyroclastic cone were found to be active. Crater A, large and on the S, displayed quiet explosions followed by brown ash emission. Other craters were quiet with only gas emissions. These included the smaller Crater B, in the center of the main crater; the larger Crater C, on the N; the small Crater D located W of Crater B; and Crater E, on the SW wall of the main crater.

During 4 hours of observation on 10 September, 51 explosions were observed from four craters: Crater A, 25 explosions; Crater B, 9; Crater C, 13; and Crater D, 4. Bombs thrown from Craters B, C, and D fell back into the vent or onto the crater wall. Some larger explosions, every 20-30 minutes, threw bombs 350 m high. During the night, bombs thrown onto the crater wall glowed for up to 6 minutes. The explosions and shaking were felt up to 3 km away.

A fresh bomb collected in August 1997 (BGVN 22:08) was recently analyzed by microprobe (table 1).

Table 1. Major element analysis of Yasur glass taken from an average of five analyses on fresh glass bomb collected in August 1997. All iron is shown as FeO. Microprobe analysis courtesy of Timothy O'Hearn; sample courtesy of Steve and Donna O'Meara, and Robert Benward.

Component Weight %
SiO2 58.61
TiO2 0.95
Al203 15.07
FeOt 8.68
MnO 0.25
MgO 2.49
CaO 5.44
Na2O 3.52
K2O 3.78
P2O5 0.66
Total 99.46

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: John Seach, P.O. Box 16, Chatsworth Island, N.S.W. 2469, Australia; Tim O'Hearn, Department of Mineral Sciences, Smithsonian Institution, Washington, DC 20560-0119 USA.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports