Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Pacaya (Guatemala) Strombolian explosions, multiple lava flows, and the formation of a small cone during February-July 2020

Sangeang Api (Indonesia) Two ash plumes and small thermal anomalies during February-June 2020

Stromboli (Italy) Strombolian explosions persist at both summit craters during January-April 2020

Nevado del Ruiz (Colombia) Lava dome confirmed inside Arenas crater; intermittent thermal anomalies and ash emissions, January-June 2020

Asosan (Japan) Daily ash emissions continue through mid-June 2020 when activity decreases

Aira (Japan) Near-daily explosions with ash plumes continue, large block ejected 3 km from Minamidake crater on 4 June 2020

Nevados de Chillan (Chile) Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Kerinci (Indonesia) Intermittent ash emissions during January-early May 2020

Tinakula (Solomon Islands) Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Ibu (Indonesia) Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Suwanosejima (Japan) Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Bagana (Papua New Guinea) Ash plumes during 29 February-2 March and 1 May 2020



Pacaya (Guatemala) — August 2020 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Strombolian explosions, multiple lava flows, and the formation of a small cone during February-July 2020

Pacaya, located in Guatemala, is a highly active volcano that has previously produced continuous Strombolian explosions, multiple lava flows, and the formation of a small cone within the crater due to the constant deposition of ejected material (BGVN 45:02). This reporting period updates information from February through July 2020 consisting of similar activity that dominantly originates from the Mackenney crater. Information primarily comes from reports by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) in Guatemala and various satellite data.

Strombolian explosions were recorded consistently throughout this reporting period. During February 2020, explosions ejected incandescent material 100 m above the Mackenney crater. At night and during the early morning the explosions were accompanied by incandescence from lava flows. Multiple lava flows were active during most of February, traveling primarily down the SW and NW flanks and reaching 500 m on 25 February. On 5 February the lava flow on the SW flank divided into three flows measuring 200, 150, and 100 m. White and occasionally blue gas-and-steam emissions rose up to 2.7 km altitude on 11 and 14 February and drifted in multiple directions. On 16 February Matthew Watson utilized UAVs (Unmanned Aerial Vehicle) to take detailed, close up photos of Pacaya and report that there were five active vents at the summit exhibiting lava flows from the summit, gas-and-steam emissions, and small Strombolian explosions (figure 122).

Figure (see Caption) Figure 122. Drone image of active summit vents at Pacaya on 16 February 2020 with incandescence and white gas-and-steam emissions. Courtesy of Matthew Watson, University of Bristol, posted on 17 February 2020.

Activity remained consistent during March with Strombolian explosions ejecting material 100 m above the crater accompanied by occasional incandescence and white and occasionally blue gas-and-steam emissions drifting in multiple directions. Multiple lava flows were detected on the NW and W flanks reaching as far as 400 m on 9-10 March.

In April, frequent Strombolian explosions were accompanied by active lava flows moving dominantly down the SW flank and white gas-and-steam emissions. These repeated explosions ejected material up to 100 m above the crater and then deposited it within the Mackenney crater, forming a small cone. On 27 April seismicity increased at 2140 due to a lava flow moving SW as far as 400 m (figure 123); there were also six strong explosions and a fissure opened on the NW flank in front of the Los Llanos Village, allowing gas-and-steam to rise.

Figure (see Caption) Figure 123. Infrared image of Pacaya on 28 April 2020, showing a lava flow approximately 500 m long and moving down the S flank on the day after seismicity increased and six strong explosions were detected. Courtesy of ISIVUMEH (Reporte Volcán de Pacaya July 2020).

During May, Strombolian explosions continued to eject incandescent material up to 100 m above the Mackenney crater, accompanied by active lava flows on 1-2, 17-18, 22, 25-26, and 29-30 May down the SE, SW, NW, and NE flanks up to 700 m on 30 May. White gas-and-steam emissions continued to be observed up to 100 m above the crater drifting in multiple directions. Between the end of May and mid-June, the plateau between the Mackenney cone and the Cerro Chiquito had become inundated with lava flows (figure 124).

Figure (see Caption) Figure 124. Aerial views of the lava flows at Pacaya to the NW during a) 18 September 2019 and b) 16 June 2020 showing the lava flow advancement toward the Cerro Chiquito. Courtesy of INSIVUMEH (Reporte Volcán de Pacaya July 2020).

Lava flows extended 700 m on 8 June down multiple flanks. On 9 June, a lava flow traveled N and NW 500 m and originating from a vent on the N flank about 100 m below the Mackenney crater. Active lava flows continued to originate from this vent through at least 19 June while white gas-and-steam emissions were observed rising 300 m above the crater. At night and during the early mornings of 24 and 29 June Strombolian explosions were observed ejecting incandescent material up to 200 m above the crater (figure 125). These explosions continued to destroy and then rebuild the small cone within the Mackenney crater with fresh ejecta. Active lava flows on the SW flank were mostly 100-600 m long but had advanced to 2 km by 30 June.

On 10 July a 1.2 km lava flow divided in two which moved on the NE and N flanks. On 11 July, another 800 m lava flow divided in two, on the N and NE flanks (figure 126). On 14 and 19 July, INSIVUMEH registered constant seismic tremors and stated they were associated with the lava flows. No active lava flows were observed on 18-19 July, though some may have continued to advance on the SW, NW, N, and NE flanks. On 20 July, lava emerged from a vent at the NW base of the Mackenney cone near Cerro Chino, extending SE. Strombolian explosions ejected incandescent material up to 200 m above the crater on 22 July, accompanied by active incandescent lava flows on the SW, N, NW, NE, and W flanks. Three lava flows on the NW flank were observed on 22-24 July originating from the base of the Mackenney cone. Explosive activity during 22 July vibrated the windows and roofs of the houses in the villages of San Francisco de Sales, El Patrocinio, El Rodeo, and others located 4 km from the volcano. The lava flow activity had decreased by 25 July, but remnants of the lava flow on the NW flank persisted with weak incandescence observed at night, which was no longer observed by 26 July. Strombolian explosions continued to be detected through the rest of the month, accompanied by frequent white gas-and-steam emissions that extended up to 2 km from the volcano; no active lava flows were observed.

Figure (see Caption) Figure 125. Photos of Pacaya on 11 July 2020 showing Strombolian explosions and lava flows moving down the N and NE flanks. Courtesy of William Chigna, CONRED, posted on 12 July 2020.
Figure (see Caption) Figure 126. Infrared image of Pacaya on 20 July 2020 showing a hot lava flow accompanied by gas-and-steam emissions. Courtesy of INSIVUMEH (BEPAC 47 Julio 2020-22).

During February through July 2020, multiple lava flows and thermal anomalies within the Mackenney crater were detected in Sentinel-2 thermal satellite imagery (figure 127). These lava flows were observed moving down multiple flanks and were occasionally accompanied by white gas-and-steam emissions. Thermal anomalies were also recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during 10 August through July 2020 within 5 km of the crater summit (figure 128). There were a few breaks in thermal activity from early to mid-March, late April, early May, and early June; however, each of these gaps were followed by a pulse of strong and frequent thermal anomalies. According to the MODVOLC algorithm, 77 thermal alerts were recorded within the summit crater during February through July 2020.

Figure (see Caption) Figure 127. Sentinel-2 thermal satellite images of Pacaya showing thermal activity (bright yellow-orange) primarily as lava flows originating from the summit crater during February to July 2020 frequently accompanied by white gas-and-steam emissions. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 128. The MIROVA thermal activity graph (Log Radiative Power) at Pacaya during 10 August to July 2020 shows strong, frequent thermal anomalies through late July with brief gaps in activity during early to mid-March, late April, early May, and early June. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Matthew Watson, School of Earth Sciences at the University of Bristol (Twitter: @Matthew__Watson, https://twitter.com/Matthew__Watson); William Chigna, CONRED (URL: https://twitter.com/william_chigna).


Sangeang Api (Indonesia) — August 2020 Citation iconCite this Report

Sangeang Api

Indonesia

8.2°S, 119.07°E; summit elev. 1912 m

All times are local (unless otherwise noted)


Two ash plumes and small thermal anomalies during February-June 2020

Sangeang Api is a 13-km-wide island located off the NE coast of Sumbawa Island, part of Indonesia's Lesser Sunda Islands. Documentation of historical eruptions date back to 1512. The most recent eruptive episode began in July 2017 and included frequent Strombolian explosions, ash plumes, and block avalanches. The previous report (BGVN 45:02) described activity consisting of a new lava flow originating from the active Doro Api summit crater, short-lived explosions, and ash-and-gas emissions. This report updates information during February through July 2020 using information from the Darwin Volcanic Ash Advisory Center (VAAC) reports, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, or CVGHM) reports, and various satellite data.

Volcanism during this reporting period was relatively low compared to the previous reports (BGVN 44:05 and BGVN 45:02). A Darwin VAAC notice reported an ash plume rose 2.1 km altitude and drifted E on 10 May 2020. Another ash plume rose to a maximum of 3 km altitude drifting NE on 10 June, as seen in HIMAWARI-8 satellite imagery.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data detected a total of 12 low power thermal anomalies within 5 km from the summit during February through May 2020 (figure 42). No thermal anomalies were recorded during June and July according to the MIROVA graph. Though the MODVOLC algorithm did not detect any thermal signatures between February to July, many small thermal hotspots within the summit crater could be seen in Sentinel-2 thermal satellite imagery (figure 43).

Figure (see Caption) Figure 42. Thermal anomalies at Sangeang Api from 10 August 2019 through July 2020 recorded by the MIROVA system (Log Radiative Power) were infrequent and low power during February through May 2020. No thermal anomalies were detected during June and July. Courtesy of MIROVA.
Figure (see Caption) Figure 43. Sentinel-2 thermal satellite imagery using “Atmospheric penetration” (bands 12, 11, 8A) rendering showed small thermal hotspots (orange-yellow) at the summit of Sangeang Api during February through June 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, Doro Api and Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Stromboli (Italy) — August 2020 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian explosions persist at both summit craters during January-April 2020

Stromboli is a stratovolcano located in the northeastern-most part of the Aeolian Islands composed of two active summit vents: the Northern (N) Crater and the Central-South (CS) Crater that are situated at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano. The ongoing eruption began in 1934 and has been characterized by regular Strombolian explosions in both summit craters, ash plumes, and occasional lava flows (BGVN 45:08). This report updates activity from January to April 2020 with information primarily from daily and weekly reports by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Activity was consistent during this reporting period. Explosion rates ranged from 1-20 per hour and were of variable intensity, producing material that rose from less than 80 to over 250 m above the vents (table 8). Strombolian explosions were often accompanied by gas-and-steam emissions, spattering, and lava flows which has resulted in fallout deposited on the Sciara del Fuoco and incandescent blocks rolling toward the coast up to a few hundred meters down the slopes of the volcano. According to INGV, the average SO2 emissions measured 300-650 tons/day.

Table 8. Summary of activity at Stromboli during January-April 2020. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
Jan 2020 Strombolian activity and degassing continued with some spattering. Explosion rates varied from 2-20 per hour. Ejected material rose 80-150 m above the N crater and 150-200 m above the CS crater. A small cone is growing on the S1 crater and has produced some explosions and ejected coarse material mixed with fine ash. The average SO2 emissions measured 300 tons/day.
Feb 2020 Strombolian activity and degassing continued. Explosion rates varied from 2-14 per hour. Ejected material rose 80-200 m above the N crater and 80-250 m above the CS crater. The average SO2 emissions measured 300 tons/day.
Mar 2020 Strombolian activity and degassing continued with discontinuous spattering. Explosion rates varied from 1-16 per hour. Ejected material rose 80-150 m above the N crater and 150-250 m above the CS crater. Intense spattering was observed in the N crater. The average SO2 emissions measured 300-650 tons/day.
Apr 2020 Strombolian activity and degassing continued with spattering. Explosion rates varied from 1-17 per hour. Ejected material rose 80-150 m above the N crater and 150-250 m above the CS crater. Spattering was observed in the N crater. The average SO2 emissions measured 300-650 tons/day.

During January 2020, explosive activity mainly originated from three vents in the N crater and at least three vents in the CS crater. Ejecta from numerous Strombolian explosions covered the slopes on the upper Sciara del Fuoco, some of which rolled hundreds of meters down toward the coast. Explosion rates varied from 2-12 per hour in the N crater and 9-14 per hour in the CS crater; ejected material rose 80-200 m above the craters. According to INGV, a small cone growing in the S1 crater produced some explosions that ejected coarse material mixed with fine ash. On 18 and 19 January a lava flow was observed, both of which originated in the N crater. In addition, two explosions were detected in the N crater that was associated with two landslide events.

Explosive activity in February primarily originated from 2-3 eruptive vents in the N crater and at least three vents in the CS crater (figure 177). The Strombolian explosions ejected material 80-250 m above the craters, some of which fell onto the upper part of the Sciara. Explosion rates varied from 3-12 per hour in the N crater and 2-14 per hour in the CS crater (figure 178). On 3 February a short-lived lava flow was reported in the N crater.

Figure (see Caption) Figure 177. A drone image showed spattering accompanied by gas-and-steam emissions at Stromboli rising above the N crater on 15 February 2020. Courtesy of INGV (Rep. No. 08/2020, Stromboli, Bollettino Settimanale, 10/02/2020 - 16/02/2020, data emissione 18/02/2020).
Figure (see Caption) Figure 178. a) Strombolian explosions during the week of 17-23 February 2020 in the N1 crater of Stromboli were seen from Pizzo Sopra La Fossa. b) Spattering at Stromboli accompanied by white gas-and-steam emissions was detected in the N1 and S2 craters during the week of 17-23 February 2020. c) Spattering at Stromboli accompanied by a dense ash plume was seen in the N1 and S2 craters during the week of 17-23 February 2020. All photos by F. Ciancitto, courtesy of INGV (Rep. No. 09/2020, Stromboli, Bollettino Settimanale, 17/02/2020 - 23/02/2020, data emissione 25/02/2020).

Ongoing explosive activity continued into March, originating from three eruptive vents in the N crater and at least three vents in the CS crater. Ejected lapilli and bombs rose 80-250 m above the craters resulting in fallout covering the slopes in the upper Sciara del Fuoco with blocks rolling down the slopes toward the coast and explosions varied from 4-13 per hour in the N crater and 1-16 per hour in the CS crater. Discontinuous spattering was observed during 9-19 March. On 19 March, intense spattering was observed in the N crater, which produced a lava flow that stretched along the upper part of the Sciara for a few hundred meters. Another lava flow was detected in the N crater on 28 March for about 4 hours into 29 March, which resulted in incandescent blocks breaking off the front of the flow and rolling down the slope of the volcano. On 30 March a lava flow originated from the N crater and remained active until the next day on 31 March. Landslides accompanied by incandescent blocks rolling down the Sciara del Fuoco were also observed.

Strombolian activity accompanied by gas-and-steam emissions continued into April, primarily produced in 3-4 eruptive vents in the N crater and 2-3 vents in the CS crater. Ejected material from these explosions rose 80-250 m above the craters, resulting in fallout products covering the slopes on the Sciara and blocks rolling down the slopes. Explosions varied from 4-15 per hour in the N crater and 1-10 per hour in the CS crater. On 1 April a thermal anomaly was detected in satellite imagery accompanied by gas-and-steam and ash emissions downstream of the Sciara del Fuoco. A lava flow was observed on 15 April in the N crater accompanied by gas-and-steam and ash emissions; at the front of the flow incandescent blocks detached and rolled down the Sciara (figure 179). This flow continued until 16 April, ending by 0956; a thermal anomaly persisted downslope from the lava flow. Spatter was ejected tens of meters from the vent. Another lava flow was detected on 19 April in the N crater, followed by detached blocks from the front of the flow rolling down the slopes. Spattering continued during 20-21 April.

Figure (see Caption) Figure 179. A webcam image of an ash plume accompanied by blocks ejected from Stromboli on 15 April 2020 rolling down the Sciara del Fuoco. Courtesy of INGV via Facebook posted on 15 April 2020.

Moderate thermal activity occurred frequently during 16 October to April 2020 as recorded in the MIROVA Log Radiative Power graph using MODIS infrared satellite information (figure 180). The MODVOLC thermal alerts recorded a total of 14 thermal signatures over the course of nine different days between late February and mid-April. Many of these thermal signatures were captured as hotspots in Sentinel-2 thermal satellite imagery in both summit craters (figure 181).

Figure (see Caption) Figure 180. Low to moderate thermal activity at Stromboli occurred frequently during 16 October-April 2020 as shown in the MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 181. Thermal anomalies (bright yellow-orange) at Stromboli were observed in thermal satellite imagery from both of the summit vents throughout January-April 2020. Images with Atmospheric Penetration rendering (bands 12, 11, 8A); courtesy of Sentinel Hub Playground.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/en/, Facebook: https://www.facebook.com/ingvvulcani/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevado del Ruiz (Colombia) — August 2020 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Lava dome confirmed inside Arenas crater; intermittent thermal anomalies and ash emissions, January-June 2020

Columbia’s broad, glacier-capped Nevado del Ruiz has an eruption history documented back 8,600 years, and historical observations since 1570. It’s profound notoriety stems from an eruption on 13 November 1985 that produced an ash plume and pyroclastic flows onto the glacier, triggering large lahars that washed down 11 valleys, inundating most severely the towns of Armero (46 km W) and Chinchiná (34 km E) where approximately 25,000 residents were killed. It remains the second deadliest volcanic eruption of the 20th century after Mt. Pelee killed 28,000 in 1902. Ruiz remained quiet for 20 years after the September 1985-July 1991 eruption until a new explosive event occurred in February 2012; a series of explosive events lasted into 2013. Renewed activity beginning in November 2014 included ash and gas-and-steam plumes, ashfall, and the appearance of a lava dome inside the Arenas crater in August 2015 which has regularly displayed thermal anomalies through 2019. This report covers ongoing activity from January-June 2020 using information primarily from reports by the Servicio Geologico Colombiano (SGC) and the Observatorio Vulcanológico y Sismológico de Manizales, the Washington Volcanic Ash Advisory Center (VAAC) notices, and various sources of satellite data.

Gas and ash emissions continued at Nevado del Ruiz throughout January-June 2020; they generally rose to 5.8-6.1 km altitude with the highest reported plume at 7 km altitude during early March. SGC confirmed the presence of the growing lava dome inside Arenas crater during an overflight in January; infrared satellite imagery indicated a continued heat source from the dome through April. SGC interpreted repeated episodes of ‘drumbeat seismicity’ as an indication of continued dome growth throughout the period. Small- to moderate-density sulfur dioxide emissions were measured daily with satellite instruments. The MIROVA graph of thermal activity indicated a heat source consistent with a growing dome from January through April (figure 102).

Figure (see Caption) Figure 102. The MIROVA graph of thermal activity at Nevado del Ruiz from 2 July 2019 through June 2020 indicated persistent thermal anomalies from mid-November 2019-April 2020. Courtesy of MIROVA.

Activity during January-March 2020. During January 2020 some of the frequent tremor seismic events were associated with gas and ash emissions, and several episodes of “drumbeat” seismicity were recorded; they have been related by SGC to the growth of the lava dome on the floor of the Arenas crater. An overflight on 10 January, with the support of the Columbian Air Force, confirmed the presence of the dome which was first proposed in August 2015 (BGVN 42:06) (figure 103). The Arenas crater had dimensions of 900 x 980 m elongate to the SW-NE and was about 300 m deep (figure 104). The dome inside the crater was estimated to be 173 m in diameter and 60 m high with an approximate volume of 1,500,000 m3 (figures 105 and 106). In addition to the dome, the scientists also noted ash deposits on the summit ice cap (figure 107). The Washington VAAC reported an ash plume on 19 January that rose to 5.5 km altitude and drifted SW, dissipating quickly. On 30 January they reported an ash plume visible in satellite imagery extending 15 km NW from the summit at 5.8 km altitude. A single MODVOLC alert was issued on 15 January and data from the VIIRS satellite instrument reported thermal anomalies inside the summit crater on 14 days of the month. Sulfur dioxide plumes with DU values greater than 2 were recorded by the TROPOMI satellite instrument daily during the month.

Figure (see Caption) Figure 103. SGC confirmed the presence of a lava dome inside the Arenas crater at Nevado del Ruiz on 10 January 2020. The dome is shown in brown, and zones of fumarolic activity are labelled around the dome. Courtesy of SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 104. A view of the Arenas crater at the summit of Nevado del Ruiz on 10 January 2020 (left) is compared with a view from 2010 (right). They were both taken during overflights supported by the Colombian Air Force (FAC). Ash deposits on the ice fields are visible in both images. Fumarolic activity rises from the inner walls of the crater in January 2020. Courtesy of SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 105. The dome inside the Arenas crater at Nevado del Ruiz appeared dark against the crater rim and ash-covered ice field on 10 January 2020. Features observed include (A) the edge of the Arenas crater, (B) a secondary crater 150 m in diameter located to the west, (C) interior cornices, (D) the lava dome, (E) a depression in the center of the dome caused by possible subsidence and cooling of the lava, (F) a source of gas and ash emission with a diameter of approximately 15 m (secondary crater), and (G, H, and I) several sources of gas emission located around the crater. Courtesy of SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 106. Images of the summit of Nevado del Ruiz captured by the PlanetScope satellite system on 14 March 2018 (A) and 10 January 2020 (B) show the lava dome at the bottom of Arenas crater. Courtesy Planet Lab Inc. and SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 107. Ash covered the snow and ice field around the Arenas crater at the summit of Nevado del Ruiz on 10 January 2020. The lava dome is the dark area on the right. Courtesy of SGC (posted on Twitter @sgcol).

The Washington VAAC reported multiple ash plumes during February 2020. On 4 February an ash plume was observed in satellite imagery drifting 35 km W from the summit at 5.8 km altitude. The following day a plume rose to 6.1 km altitude and extended 37 km W from the summit before dissipating by the end of the day (figure 108). On 6 February an ash cloud was observed in satellite imagery centered 45 km W of the summit at 5.8 km altitude. Although it had dissipated by midday, a hotspot remained in shortwave imagery until the evening. Late in the day another plume rose to 6.7 km altitude and drifted W. Diffuse ash was seen in satellite imagery on 13 February fanning towards the W at 5.8 km altitude. On 18 February at 1720 UTC the Bogota Meteorological Weather Office (MWO) reported an ash emission drifting NW at 5.8 km altitude; a second plume was reported a few hours later at the same altitude. Intermittent emissions continued the next day at 5.8-6.1 km altitude that reached as far as 50 km NW before dissipating. A plume on 21 February rose to 6.7 km altitude and drifted W (figure 109). Occasional emissions on 25 February at the same altitude reached 25 km SW of the summit before dissipating. A discrete ash emission around 1550 UTC on 26 February rose to 6.1 km altitude and drifted W. Two similar plumes were reported the next day. On 28 and 29 February plumes rose to 5.8 km altitude and drifted W.

Figure (see Caption) Figure 108. Emissions rose from the Arenas crater at Nevado del Ruiz on 5 February 2020. The Washington VAAC reported an ash plume that day that rose to 6.1 km altitude and drifted 37 km W before dissipating. Courtesy of Camilo Cupitre.
Figure (see Caption) Figure 109. Emissions rose from the Arenas crater at Nevado del Ruiz around 0600 on 21 February 2020. The Washington VAAC reported ash emissions that day that rose to 6.7 km altitude and drifted W. Courtesy of Manuel MR.

SGC reported several episodes of drumbeat type seismicity on 2, 8, 9, and 27 February which they attributed to effusion related to the growing lava dome in the summit crater. Sentinel-2 satellite imagery showed ring-shaped thermal anomalies characteristic of dome growth within Arenas crater several times during January and February (figure 110). The VIIRS satellite instrument recorded thermal anomalies on twelve days during February.

Figure (see Caption) Figure 110. Persistent thermal anomalies from Sentinel-2 satellite imagery during January and February 2020 suggested that the lava dome inside Nevado del Ruiz’s Arenas crater was still actively growing. Atmospheric penetration rendering (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

On 4, 14, and 19 March 2020 thermal anomalies were visible in Sentinel-2 satellite data from within the Arenas crater. Thermal anomalies were recorded by the VIIRS satellite instrument on eight days during the month. Several episodes of drumbeat seismicity were recorded during the first half of the month and on 30-31 March. Distinct SO2 plumes with DU values greater than 2 were recorded by the TROPOMI satellite instrument daily throughout February and March (figure 111). The Washington VAAC reported an ash emission on 1 March that rose to 5.8 km altitude and drifted NW; it was centered 15 km from the summit when detected in satellite imagery. The next day a plume was seen in satellite imagery moving SW at 7.0 km altitude, extending nearly 40 km from the summit. Additional ash emissions were reported on 4, 14, 15, 21, 28, 29, and 31 March; the plumes rose to 5.8-6.7 km altitude and drifted generally W, some reaching 45 km from the summit before dissipating.

Figure (see Caption) Figure 111. Distinct SO2 plumes with Dobson values (DU) greater than 2 were recorded by the TROPOMI satellite instrument daily during February and March 2020. Ecuador’s Sangay produced smaller but distinct plumes most of the time as well. Dates are shown at the top of each image. Courtesy of NASA’s Sulfur Dioxide Monitoring Page.

Activity during April-June 2020. The Washington VAAC reported an ash emission that rose to 6.7 km altitude and drifted W on 1 April 2020. On 2 April, emission plumes were visible from the community of Tena in the Cundinamarca municipality which is located 100 km ESE (figure 112). The unusually clear skies were attributed to the reduction in air pollution in nearby Bogota resulting from the COVID-19 Pandemic quarantine. On 4 April the Bogota MWO reported an emission drifting SW at 5.8 km altitude. An ash plume on 8 April rose to 6.7 km altitude and drifted W. On 25 April the last reported ash plume from the Washington VAAC for the period rose to 6.1 km altitude and was observed in satellite imagery moving W at 30 km from the summit; after that, only steam and gas emissions were observed.

Figure (see Caption) Figure 112. On the evening of 2 April 2020, emission plumes from Nevado del Ruiz were visible from Santa Bárbara village in Tena, Cundinamarca municipality which is located 100 km ESE. The unusually clear skies were attributed to the reduction in air pollution in the nearby city of Bogota resulting from the COVID-19 Pandemic quarantine. Photo by Williama Garcia, courtesy of Semana Sostenible (3 April 2020).

Distinct SO2 plumes with DU values greater than 2 were recorded by the TROPOMI satellite instrument daily throughout the month. On 13 April, a Sentinel-2 thermal image showed a hot spot inside the Arenas crater largely obscured by steam and clouds. Cloudy images through May and June prevented observation of additional thermal anomalies in satellite imagery, but the VIIRS thermal data indicated anomalies on 3, 4, and 26 April. SGC reported low-energy episodes of drumbeat seismicity on 4, 9, 10, 12, 15, 16, 20, and 23 April which they interpreted as related to growth of the lava dome inside the Arenas crater. The seismic events were located 1.5-2.0 km below the floor of the crater.

Small emissions of ash and gas were reported by SGC during May 2020 and the first half of June, with the primary drift direction being NW. Gas and steam plumes rose 560-1,400 m above the summit during May and June (figure 113). Drumbeat seismicity was reported a few times each month. Sulfur dioxide emissions continued daily; increased SO2 activity was recorded during 10-13 June (figure 114).

Figure (see Caption) Figure 113. Gas and steam plumes rose 560-1,400 m above the summit of Nevado del Ruiz during May and June 2020, including in the early morning of 11 June. Courtesy of Carlos-Enrique Ruiz.
Figure (see Caption) Figure 114. Increased SO2 activity during 10-13 June 2020 at Nevado del Ruiz was recorded by the TROPOMI instrument on the Sentinel-5P satellite. Sangay also emitted SO2 on those days. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: El Servicio Geológico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www.sgc.gov.co/volcanes, https://twitter.com/sgcol); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Camilo Cupitre (URL: https://twitter.com/Ccupitre/status/1225207439701704709); Manuel MR (URL: https://twitter.com/ElPlanetaManuel/status/1230837262088384512); Semana Sostenible (URL: https://sostenibilidad.semana.com/actualidad/articulo/fumarola-del-nevado-del-ruiz-fue-captada-desde-tena-cundinamarca/49597); Carlos-Enrique Ruiz (URL: https://twitter.com/Aleph43/status/1271800027841794049).


Asosan (Japan) — July 2020 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Daily ash emissions continue through mid-June 2020 when activity decreases

Japan's 24-km-wide Asosan caldera on the island of Kyushu has been active throughout the Holocene. Nakadake has been the most active of 17 central cones for 2,000 years; all historical activity is from Nakadake Crater 1. The largest ash plume in 20 years occurred on 8 October 2016. Asosan remained quiet until renewed activity from Crater 1 began in mid-April 2019; explosions with ash plumes continued through the first half of 2020 and are covered in this report. The Japan Meteorological Agency (JMA) provides monthly reports of activity; the Tokyo Volcanic Ash Advisory Center (VAAC) issues aviation alerts reporting on possible ash plumes, and Sentinel-2 satellite images provide data on ash emissions and thermal activity.

The Tokyo VAAC issued multiple daily reports of ash plumes from Nakadake Crater 1 from 1 January-14 June 2020. They were commonly at 1.8-2.1 km altitude, and often drifted E or S. JMA reported that ashfall continued downwind from the ash plumes until mid-June; seismic activity was relatively high during January and February and decreased steadily after that time. The measured SO2 emissions ranged from 1,000-4,900 tons per day through mid-June and dropped to 500 tons per day during the second half of June. Intermittent thermal activity was recorded at the crater through mid-May.

Explosive activity during January-June 2020. Ash plumes rose up to 1.1 km above the crater rim at Nakadake Crater 1 during January 2020 (figure 70). Ashfall was confirmed downwind of an explosion on 7 January. During February, ash plumes rose up to 1.7 km above the crater, and ashfall was again reported downwind. The crater camera provided by the Aso Volcano Museum occasionally observed incandescence at the floor of the crater during both months. Incandescence was also occasionally observed with the Kusasenri webcam (3 km W) and was seen on 20 February from a webcam in Minamiaso village (8 km SW).

Figure (see Caption) Figure 70. Ash plumes rose up to 1.1 km above the Nakadake Crater 1 at Asosan during January 2020 (left) and up to 1.7 km above the crater during February 2020 (right) as seen in these images from the Kusasenri webcam. Ashfall was reported downwind multiple times. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, January and February 2020).

During March 2020, ash plumes rose as high as 1.3 km. Ashfall was reported on 9 March in Ichinomiyamachi, Aso City (figure 71). In field surveys conducted on the 18th and 25th, there was no visible water inside the crater, and high-temperature grayish-white plumes were observed. The temperature at the base of the plume was measured at 300°C (figure 72).

Figure (see Caption) Figure 71. Ashfall from Asosan appeared on 9 March 2020 in Ichinomiyamachi, Aso City around 10 km N. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, March 2020).
Figure (see Caption) Figure 72. During a field survey of Nakadake Crater 1 at Asosan on 25 March 2020, JMA staff observed a gray ash plume rising from the crater floor (left). The maximum temperature of the ash plume was measured at about 300°C with an infrared thermal imaging device (right). Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, March 2020).

Occasional incandescence was observed at the bottom of the crater during April and May 2020; ash plumes rose 1.1 km above the crater on most days in April and were slightly higher, rising to 1.8 km during May, although activity was more intermittent (figure 73). A brief increase in SO2 activity was reported by JMA during field surveys on 7 and 8 May; satellite data captured small plumes of SO2 on 1 and 6 May (figure 74). A brief increase in tremor amplitude was reported by JMA on 16 May.

Figure (see Caption) Figure 73. Although activity at Asosan’s Nakadake Crater 1 was more intermittent during April and May 2020 than earlier in the year, ash plumes were still reported most days and incandescence was seen at the bottom of the crater multiple times until 15 May. Left image taken 11 May 2020 from the Kusachiri webcam; right image taken from the crater webcam on 10 May provided by the Aso Volcano Museum. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, May 2020).
Figure (see Caption) Figure 74. The TROPOMI instrument on the Sentinel-5P satellite detected small but distinct SO2 plumes from Asosan on 1 and 6 May 2020. Additional small plumes are visible from Aira caldera’s Sakurajima volcano. Courtesy of NASA’s Global Sulfur Dioxide Monitoring Page.

The last report of ash emissions at Nakadake Crater 1 from the Tokyo VAAC was on 14 June 2020. JMA also reported that no eruption was observed after mid-June. On 8 June they reported an ash plume that rose 1.4 km above the crater. During a field survey on 16 June, only steam was observed at the crater; the plume rose about 100 m (figure 75). In addition, a small plume of steam rose from a fumarole on the S crater wall.

Figure (see Caption) Figure 75. A steam plume rose about 100 m from the floor of Nakadake Crater 1 on 16 June 2020. A small steam plume was also observed by the S crater wall. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, June 2020).

Thermal activity during January-June 2020. Sentinel-2 satellite data indicated thermal anomalies present at Nakadake Crater 1 on 2 January, 6 and 21 February, 16 April, and 11 May (figure 76). In addition, thermal anomalies from agricultural fires appeared in satellite images on 11 February, 7 and 17 March (figure 77). The fires were around 5 km from the crater, thus they appear on the MIROVA thermal anomaly graph in black, but are likely unrelated to volcanic activity (figure 78). No thermal anomalies were recorded in satellite data from the Nakadake Crater 1 after 11 May, and none appeared in the MIROVA data as well.

Figure (see Caption) Figure 76. Thermal anomalies appeared at Asosan’s Nakadake Crater 1 on 2 January, 6 and 21 February, 16 April and 11 May 2020. On 2 January a small ash plume drifted SSE from the crater (left). On 6 February a dense ash plume drifted S from the crater (center). Only a small steam plume was visible above the crater on 21 February (right). Images use Atmospheric penetration rendering (bands 12, 11, 8A), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 77. Thermal anomalies from agricultural fires located about 5 km from the crater appeared in satellite images on 11 February, and 7 and 17 March 2020. Although a dense ash plume drifted SSE from the crater on 11 February (left), no thermal anomalies appear at the crater on these dates. Images use Atmospheric penetration rendering (bands 12, 11, 8A), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 78. The MIROVA project plot of Log Radiative Power at Asosan from 29 June 2019 through June 2020 shows only a few small thermal alerts within 5 km of the summit crater during January-June 2020, and a spike in activity during February and March located around 5 km away. These data correlate well with the Sentinel-2 satellite data that show intermittent thermal anomalies at the summit throughout January-May and agricultural fires located several kilometers from the crater during February and March. Courtesy of MIROVA.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Aira (Japan) — July 2020 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Near-daily explosions with ash plumes continue, large block ejected 3 km from Minamidake crater on 4 June 2020

Sakurajima rises from Kagoshima Bay, which fills the Aira Caldera near the southern tip of Japan's Kyushu Island. Frequent explosive and occasional effusive activity has been ongoing for centuries. The Minamidake summit cone has been the location of persistent activity since 1955; the adjacent Showa crater on its E flank has also been intermittently active since 2006. Numerous explosions and ash-bearing emissions have been occurring each month at either Minamidake or Showa crater since the latest eruptive episode began in late March 2017. This report covers ongoing activity at Minamidake from January through June 2020; the Japan Meteorological Agency (JMA) provides regular reports on activity, and the Tokyo VAAC (Volcanic Ash Advisory Center) issues tens of reports each month about the frequent ash plumes.

Activity continued during January-June 2020 at Minamidake crater with tens of explosions each month. The Tokyo VAAC issued multiple daily reports of ash emissions during January and February. Less activity occurred during the first half of March but picked up again with multiple daily reports from mid-March through mid-April. Emissions were more intermittent but continued through early June, when activity decreased significantly. JMA reported explosions with ash plumes rising 2.5-4.2 km above the summit, and ejecta traveling generally up to 1,700 m from the crater, although a big explosion in early June send a large block of tephra 3 km from the crater (table 23). Thermal anomalies were visible in satellite imagery on a few days most months and were persistent in the MIROVA thermal anomaly data from November 2019 through early June 2020 (figure 94). Incandescence was often visible at night in the webcams through early June; the Showa crater remained quiet throughout the period.

Table 23. Monthly summary of eruptive events recorded at Sakurajima's Minamidake crater within the Aira Caldera, January through June 2020. The number of events that were explosive in nature are in parentheses. No events were recorded at the Showa crater during this time. Ashfall is measured at the Kagoshima Local Meteorological Observatory (KLMO), 10 km W of Showa crater. Data courtesy of JMA (January to June 2020 monthly reports).

Month Ash emissions (explosive) Max plume height above crater Max ejecta distance from crater Total amount of ashfall (g/m2) Total ashfall previous month
Jan 2020 104 (65) 2.5 km 1,700 m 75 (12 days) 280,000 tons
Feb 2020 129 (67) 2.6 km 1,800 m 21 (14 days) 230,000 tons
Mar 2020 26 (10) 3.0 km 1,700 m 3 (8 days) 360,000 tons
Apr 2020 51 (14) 3.8 km 1,700 m less than 0.5 (2 days) 160,000 tons
May 2020 51 (24) 4.2 km 1,300 m 19 (8 days) 280,000 tons
Jun 2020 28 (16) 3.7 km 3,000 m 71 (9 days) 150,000 tons
Figure (see Caption) Figure 94. Persistent thermal anomalies were recorded in the MIROVA thermal energy data for the period from 2 July 2019 through June 2020. Thermal activity increased in October 2019 and remained steady through May 2020, decreasing abruptly at the beginning of June. Courtesy of MIROVA.

Explosions continued at Minamidake crater during January 2020 with 65 ash plumes reported. The highest ash plume rose 2.5 km above the crater on 30 January, and incandescent ejecta reached up to 1,700 m from the Minamidake crater on 22 and 29 January (figure 95). Slight inflation of the volcano since September 2019 continued to be measured with inclinometers and extensometers on Sakurajima Island. Field surveys conducted on 15, 20, and 31 January measured the amount of sulfur dioxide gas released as very high at 3,400-4,700 tons per day, as compared with 1,000-3,000 tons in December 2019.

Figure (see Caption) Figure 95. An explosion at the Minamidake summit crater of Aira’s Sakurajima volcano on 29 January 2020 produced an ash plume that rose 2.5 km above the crater rim and drifted SE (left). On 22 January incandescent ejecta reached 1,700 m from the summit during explosive events. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, January 2020).

About the same number of explosions produced ash plumes during February 2020 (67) as in January (65) (figure 96). On 10 February a large block was ejected 1,800 m from the crater, the first to reach that far since 5 February 2016. The tallest plume, on 26 February rose 2.6 km above the crater. Sentinel-2 satellite imagery indicated two distinct thermal anomalies within the Minamidake crater on both 1 and 6 February (figure 97). Activity diminished during March 2020 with only 10 explosions out of 26 eruptive events. On 21 March a large bomb reached 1,700 m from the crater. The tallest ash plume rose 3 km above the crater on 17 March. Scientists noted during an overflight on 16 March that a small steam plume was rising from the inner wall on the south side of the Showa crater; a larger steam plume rose to 300 m above the Minamidake crater and drifted S (figure 98). Sulfur dioxide emissions were similar in February (1,900 to 3,100 tons) and March (1,300 to 3,400 tons per day).

Figure (see Caption) Figure 96. An ash plume rose from the Minamidake crater at the summit of Aira’s Sakurajima volcano on 6 February 2020 at 1752 local time, as seen looking S from the Kitadake crater. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, February 2020).
Figure (see Caption) Figure 97. Sentinel-2 satellite imagery revealed two distinct thermal anomalies within the Minamidake crater at Aira’s Sakurajima volcano on 1 and 6 February 2020. Images use Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub playground.
Figure (see Caption) Figure 98. During an overflight of Aira’s Sakurajima volcano on 16 March 2020, JMA captured this view to the SW of the Kitadake crater on the right, the steam-covered Minamidake crater in the center, and the smaller Showa crater on the left adjacent to Minamidake. Courtesy of JMA and the Maritime Self-Defense Force 1st Air Group P-1 (Sakurajima Volcanic Activity Commentary, March 2020).

During April 2020, ejecta again reached as far as 1,700 m from the crater; 14 explosions were identified from the 51 reported eruptive events, an increase from March. The tallest plume, on 4 April, rose 3.8 km above the crater (figure 99). The same number of eruptive events occurred during May 2020, but 24 were explosive in nature. A large plume on 9 May rose to 4.2 km above the rim of Minamidake crater, the tallest of the period (figure 100). On 20 May, incandescent ejecta reached 1,300 m from the summit. Sulfur dioxide emissions during April (1,700-2,100 tons per day) and May (1,200-2,700 tons per day) were slightly lower than previous months.

Figure (see Caption) Figure 99. A large ash plume at Aira’s Sakurajima volcano rose from Minamidake crater at 1621 on 4 April 2020. The plume rose to 3.8 km above the crater and drifted SE. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, April 2020).
Figure (see Caption) Figure 100. Activity continued at Aira’s Sakurajima volcano during May 2020. A large plume rose to 4.2 km above the summit and drifted N in the early morning of 9 May (left). The Kaigata webcam located at the Osumi River National Highway Office captured abundant incandescent ejecta reaching 1,300 m from the crater during the evening of 20 May. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, May 2020).

A major explosion on 4 June 2020 produced 137 Pa of air vibration at the Seto 2 observation point on Sakurajima Island. It was the first time that air vibrations exceeding 100 Pa have been observed at the Seto 2 station since the 21 May 2015 explosion at the Showa crater. The ash plume associated with the explosion rose 1.5 km above the crater rim. During an 8 June field survey conducted in Higashisakurajima-cho, Kagoshima City, a large impact crater believed to be associated with this explosion was located near the coast 3 km SSW from Minamidake. The crater formed by the ejected block was about 6 m in diameter and 2 m deep (figure 101); fragments found nearby were 10-20 cm in diameter (figure 102). A nearby roof was also damaged by the blocks. Smaller bombs were found in Kurokami-cho, Kagoshima City, around 4- 5 km E of Minamidake on 5 June; the largest fragment was 5 cm in diameter. Multiple ash plumes rose to 3 km or more above the summit during the first ten days of June; explosions on 4 and 5 June reached 3.7 km above the crater (figure 103). Larger than normal inflation and deflation before and after the explosions was recorded during early June in the inclinometers and extensometers located on the island. Incandescence at the summit was observed at night through the first half of June. The Tokyo VAAC issued multiple daily ash advisories during 1-10 June after which activity declined abruptly. Two brief explosions on 23 June and one on 28 June were the only two additional ash explosions reported in June.

Figure (see Caption) Figure 101. A large crater measuring 6 m wide and 2 m deep was discovered 3 km from the Minamidake crater in Higashisakurajima, part of Kagoshima City, on 8 June 2020. It was believed to be from the impact of a large block ejected during the 4 June explosion at Aira’s Sakurajima volcano. Photo courtesy of Kagoshima City and JMA (Sakurajima Volcanic Activity Commentary, June 2020).
Figure (see Caption) Figure 102. Fragments 10-30 cm in diameter from a large bomb that traveled 3 km from Minamidake crater on Sakurajima were found a few days after the 4 June 2020 explosion at Aira. Courtesy of JMA, photo courtesy of Kagoshima City (Sakurajima Volcanic Activity Commentary, June 2020).
Figure (see Caption) Figure 103. An ash plume rose 3.7 km above the Minamidake crater at Aira’s Sakurajima volcano on 5 June 2020 and was recorded in Sentinel-2 satellite imagery. Image uses Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub playground.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevados de Chillan (Chile) — July 2020 Citation iconCite this Report

Nevados de Chillan

Chile

36.868°S, 71.378°W; summit elev. 3180 m

All times are local (unless otherwise noted)


Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Nevados de Chillán is a complex of late-Pleistocene to Holocene stratovolcanoes in the Chilean Central Andes. An eruption started with a phreatic explosion and ash emission on 8 January 2016 from a new crater (Nicanor) on the E flank of the Nuevo crater, itself on the NW flank of the large Volcán Viejo stratovolcano. Strombolian explosions and ash emissions continued throughout 2016 and 2017; a lava dome within the Nicanor crater was confirmed in early January 2018. Explosions and pyroclastic flows continued during 2018 and 2019, with several lava flows appearing in late 2019. This report covers continuing activity from January-June 2020 when ongoing explosive events produced ash plumes, pyroclastic flows, and the growth of new dome inside the crater. Information for this report is provided primarily by Chile's Servicio Nacional de Geología y Minería (SERNAGEOMIN)-Observatorio Volcanológico de Los Andes del Sur (OVDAS), and by the Buenos Aires Volcanic Ash Advisory Center (VAAC).

Explosions with ash plumes rising up to three kilometers above the summit area were intermittent from late January through early June 2020. Some of the larger explosions produced pyroclastic flows that traveled down multiple flanks. Thermal anomalies within the Nicanor crater were recorded in satellite data several times each month from February through June. A reduction in overall activity led SERNAGEOMIN to lower the Alert Level from Orange to Yellow (on a 4-level, Green-Yellow-Orange-Red scale) during the first week of March, although tens of explosions with ash plumes were still recorded during March and April. Explosive activity diminished in early June and SERNAGEOMIN reported the growth of a new dome inside the Nicanor crater. By the end of June, a new flow had extended about 100 m down the N flank. Thermal activity recorded by the MIROVA project showed a drop in thermal energy in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in thermal and explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June (figure 52).

Figure (see Caption) Figure 52. MIROVA thermal anomaly data for Nevados de Chillan from 8 September 2019 through June 2020 showed a drop in thermal activity in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June. Courtesy of MIROVA.

Weak gas emissions were reported daily during January 2020 until a series of explosions began on the 21st. The first explosion rose 100 m above the active crater; the following day, the highest explosion rose 1.6 km above the crater. The Buenos Aires VAAC reported pulse emissions visible in satellite imagery on 21 and 24 January that rose to 3.9-4.3 km altitude and drifted SE and NE, respectively. Intermittent explosions continued through 26 January. Incandescent ejecta was observed during the night of 28-29 January. The VAAC reported an isolated emission on 29 January that rose to 5.2 km altitude and drifted E. A larger explosion on 30 January produced an ash plume that SERNAGEOMIN reported at 3.4 km above the crater (figure 53). It produced pyroclastic flows that traveled down ravines on the NNE and SE flanks. The Washington VAAC reported on behalf of the Buenos Aires VAAC that an emission was observed in satellite imagery on 30 January that rose to 4.9 km altitude and was moving rapidly E, reaching 15 km from the summit at midday. The altitude of the ash plume was revised two hours later to 7.3 km, drifting NNE and rapidly dissipating. Satellite images identified two areas of thermal anomalies within the Nicanor crater that day. One was the same emission center (CE4) identified in November 2019, and the second was a new emission center (CE5) located 60 m NW.

Figure (see Caption) Figure 53. A significant explosion and ash plume from the Nicanor crater at Nevados de Chillan on 30 January 2020 produced an ash plume reported at 7.3 km altitude. The left image was taken within one minute of the initial explosion. Images posted by Twitter accounts #EmergenciasÑuble (left) and T13 (right); original photographers unknown.

When the weather permitted, low-altitude mostly white degassing was seen during February 2020, often with traces of fine-grained particulate material. Incandescence at the crater was observed overnight during 4-5 February. The Buenos Aires VAAC reported an emission on 14 February visible in the webcam. The next day, an emission was visible in satellite imagery at 3.9 km altitude that drifted E. Episodes of pulsating white and gray plumes were first observed by SERNAGEOMIN beginning on 18 February and continued through 25 February (figure 54). The Buenos Aires VAAC reported pulses of ash emissions moving SE on 18 February at 4.3 km altitude. Ash drifted E the next day at 3.9 km altitude and a faint plume was briefly observed on 20 February drifting N at 3.7 km altitude before dissipating. Sporadic pulses of ash moved SE from the volcano on 22 February at 4.3 km altitude, briefly observed in satellite imagery before dissipating. Thermal anomalies were visible from the Nicanor crater in Sentinel-2 satellite imagery on 23 and 28 February.

Figure (see Caption) Figure 54. An ash emission at Nevados de Chillan on 18 February 2020 was captured in Sentinel-2 satellite imagery drifting SE (left). Thermal anomalies within the Nicanor crater were measured on 23 (right) and 28 February. Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

Only low-altitude degassing of mostly steam was reported for the first half of March 2020. When SERNAGEOMIN lowered the Alert Level from Orange to Yellow on 5 March, they reduced the affected area from 5 km NE and 3 km SW of the crater to a radius of 2 km around the active crater. Thermal anomalies were recorded at the Nicanor crater in Sentinel-2 imagery on 4, 9, 11, 16, and 19 March (figure 55). A new series of explosions began on 19 March; 44 events were recorded during the second half of the month (figure 56). Webcams captured multiple explosions with dense ash plumes; on 25 and 30 March the plumes rose more than 2 km above the crater. Fine-grained ashfall occurred in Las Trancas (10 km SW) on 25 March. Pyroclastic flows on 25 and 30 March traveled 300 m NE, SE, and SW from the crater. Incandescence was observed at night multiple times after 20 March. The Buenos Aires VAAC reported several discrete pulses of ash that rose to 4.3 km altitude and drifted SE on 20 and 21 March, SW on 25 March, and SE on 29 and 30 March. Another ash emission rose to 5.5 km altitude later on 30 March and drifted SE.

Figure (see Caption) Figure 55. Sentinel-2 Satellite imagery of Nevados de Chillan during March 2020 showed thermal anomalies on five different dates at the Nicanor crater, including on 9, 11, and 16 March. A second thermal anomaly of unknown origin was also visible on 11 March about 2 km SW of the crater (center). Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Forty-four explosive events were recorded at Nevados de Chillan during the second half of March 2020 including on 19 March. Courtesy of SERNAGEOMIN webcams and chillanonlinenoticia.

In their semi-monthly reports for April 2020, SERNAGEOMIN reported 94 explosive events during the first half of the month and 49 during the second half; many produced dense ash plumes. The Buenos Aires VAAC reported frequent intermittent ash emissions during 1-13 April reaching altitudes of 3.7-4.3 km (figure 57). They reported the plume on 8 April visible in satellite imagery at 7.3 km altitude drifting SE. An emission on 13 April was also visible in satellite imagery at 6.1 km altitude drifting NE.

Figure (see Caption) Figure 57. Sentinel-2 satellite imagery captured a strong thermal anomaly and an ash plume drifting SE from Nevados de Chillan on 10 April 2020. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

During the second half of April 2020, SERNAGEOMIN reported that only one plume exceeded 2 km in height; on 21 April, it rose to 2.4 km above the crater (figure 58). The Buenos Aires VAAC reported isolated pulses of ash on 18, 26, 28, and 30 April. During the second half of April SERNAGEOMIN also reported that a pyroclastic flow traveled about 1,200 m from the crater rim down the SE flank. The ash from the pyroclastic flow drifted SE and S as far as 3.5 km. Satellite images showed continued activity from multiple emission centers around the crater. Pronounced scarps were noted on the internal walls of the crater, attributed to the deepening of the crater from explosive activity.

Figure (see Caption) Figure 58. Tens of explosions were reported at Nevados de Chillan during the second half of April 2020 that produced dense ash plumes. The plume on 21 April rose 2.4 km above the Nicanor crater. Photo by Josefa Carrasco Acuña from San Fabián de Alico; posted by Noticias Valpo Express.

Intermittent explosive activity continued during May 2020. The plumes contained abundant particulate material and were accompanied by periodic pyroclastic flows and incandescent ejecta around the active crater, especially visible at night. The Buenos Aires VAAC reported several sporadic weak ash emissions during the first week of May that rose to 3.7-5.2 km altitude and drifted NE. SERNAGEOMIN reported that only one explosion produced an ash emission that rose more than two km above the crater during the first two weeks of the month; on 6 May it rose to 2.5 km above the crater and drifted NE. They also observed pyroclastic flows on the E and SE flanks that day. Additional pyroclastic flows traveled 450 m down the S flank during the first half of the month, and similar deposits were observed to the N and NE. Satellite observations showed various emission points along the NW-trending lineament at the summit and multiple erosion scarps. Major erosion was noted at the NE rim of the crater along with an increase in degassing around the rim.

During the second half of May 2020 most of the ash plumes rose less than 2 km above the crater; a plume from one explosion on 22 May rose 2.2 km above the crater; the Buenos Aires VAAC reported the plume at 5.5 km altitude drifting NW (figure 59). Continuing pyroclastic emissions deposited material as far as 1.5 km from the crater rim on the NNW flank. There were also multiple pyroclastic deposits up to 500 m from the crater directed N and NE during the period. SERNAGEOMIN reported an increase in steam degassing between Nuevo-Nicanor and Nicanor-Arrau craters.

Figure (see Caption) Figure 59. Explosions produced dense ash plumes and pyroclastic flows at Nevados de Chillan multiple times during May 2020 including on 22 May. Courtesy of SERNAGEOMIN.

Webcam images during the first two weeks of June 2020 indicated multiple incandescent explosions. On 3 and 4 June plumes from explosions reached heights of over 1.25 km above the crater; the Buenos Aires VAAC reported them drifting NW at 3.9 km altitude. Incandescent ejecta on 6 June rose 760 m above the vent and drifted NE. In addition, pyroclastic flows were distributed on the N, NW, E and SE flanks. Significant daytime and nighttime incandescence was reported on 6, 9, and 10 June (figure 60). The VAAC reported emission pulses on 6 and 9 June drifting E and SE at 4.3 km altitude.

Figure (see Caption) Figure 60. Multiple ash plumes with incandescence were reported at Nevados de Chillan during the first ten days of June 2020 including on 6 June, after which explosive activity decreased significantly. Courtesy of SERNAGEOMIIN and Sismo Alerta Mexicana.

SERNAGEOMIN reported that beginning on the afternoon of 9 June 2020 a tremor-type seismic signal was first recorded, associated with continuous emission of gas and dark gray ash that drifted SE (figure 61). A little over an hour later another tremor signal began that lasted for about four hours, followed by smaller discrete explosions. A hybrid-type earthquake in the early morning of 10 June was followed by a series of explosions that ejected gas and particulate matter from the active crater. The vent where the emissions occurred was located within the Nicanor crater close to the Arrau crater; it had been degassing since 30 May.

Figure (see Caption) Figure 61. A tremor-type seismic signal was first recorded on the afternoon of 9 June 2020 at Nevados de Chillan. It was associated with the continuous emission of gas and dark gray ash that drifted SE, and incandescent ejecta visible after dark. View is to the S, courtesy of SERNAGEOMIN webcam, posted by Volcanology Chile.

After the explosions on the afternoon of 9 June, a number of other nearby vents became active. In particular, the vent located between the Nuevo and Nicanor craters began emitting material for the first time during this eruptive cycle. The explosion also generated pyroclastic flows that traveled less than 50 m in multiple directions away from the vent. Abundant incandescent material was reported during the explosion early on 10 June. Deformation measurements showed inflation over the previous 12 days.

SERNAGEOMIN identified a surface feature in satellite imagery on 11 June 2020 that they interpreted as a new effusive lava dome. It was elliptical with dimensions of about 85 x 120 m. In addition to a thermal anomaly attributed to the dome, they noted three other thermal anomalies between the Nuevo, Arrau, and Nicanor craters. They reported that within four days the base of the active crater was filled with effusive material. Seismometers recorded tremor activity after 11 June that was interpreted as associated with lava effusion. Incandescent emissions were visible at night around the active crater. Sentinel-2 satellite imagery recorded a bright thermal anomaly inside the Nicanor crater on 14 June (figure 62).

Figure (see Caption) Figure 62. A bright thermal anomaly was recorded inside the Nicanor crater at Nevados de Chillan on 14 June 2020. SERNAGEOMIN scientists attributed it to the growth of a new lava dome within the crater. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

A special report from SERNAGEOMIN on 24 June 2020 noted that vertical inflation had increased during the previous few weeks. After 20 June the inflation rate reached 2.49 cm/month, which was considered high. The accumulated inflation measured since July 2019 was 22.5 cm. Satellite imagery continued to show the growth of the dome, and SERNAGEOMIN scientists estimated that it reached the E edge of the Nicanor crater on 23 June. Based on these images, they estimated an eruptive rate of 0.1-0.3 m3/s, about two orders of magnitude faster than the Gil-Cruz dome that emerged between December 2018 and early 2019.

Webcams revealed continued low-level explosive activity and incandescence visible both during the day and at night. By the end of June, webcams recorded a lava flow that extended 94 m down the N flank from the Nicanor crater and continued to advance. Small explosions with abundant pyroclastic debris produced recurring incandescence at night. Satellite infrared imagery indicated thermal radiance from effusive material that covered an area of 37,000 m2, largely filling the crater. DEM analysis suggested that the size of the crater had tripled in volume since December 2019 due largely to erosion from explosive activity since May 2020. Sentinel-2 satellite imagery showed a bright thermal anomaly inside the crater on 27 June.

Geologic Background. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/, https://twitter.com/Sernageomin); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); #EmergenciasÑuble (URL: https://twitter.com/urgenciasnuble/status/1222943399185207296); T13, Channel 13 Press Department (URL: https://twitter.com/T13/status/1222951071443771394); Chillanonlinenoticia (URL: https://twitter.com/ChillanOnline/status/1240754211932995595); Noticias Valpo Express (URL: https://twitter.com/NoticiasValpoEx/status/1252715033131388928); Sismo Alerta Mexicana (URL: https://twitter.com/Sismoalertamex/status/1269351579095691265); Volcanology Chile (URL: https://twitter.com/volcanologiachl/status/1270548008191643651).


Kerinci (Indonesia) — July 2020 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent ash emissions during January-early May 2020

Kerinci is a stratovolcano located in Sumatra, Indonesia that has been characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 which has included intermittent explosions and ash plumes. The previous report (BGVN 44:12) described more recent activity consisting of intermittent gas-and-steam and ash plumes which occurred during June through early November 2019. This volcanism continued through May 2020, though little to no activity was reported during December 2019. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity during December 2019 consisted of white gas-and-steam emissions rising 100-500 m above the summit. White and brown emissions continued intermittently through May 2020, rising to a maximum altitude of 1 km above the summit on 14 April. During 3-6 and 8-9 January 2020, the Darwin VAAC and PVMBG issued notices reporting brown volcanic ash rising 150-600 m above the summit drifting S and ESE (figure 19). PVMBG published a VONA notice on 24 January at 0828 reporting ash rising 400 m above the summit. Brown emissions continued intermittently throughout the reporting period. On 1 February, volcanic ash was observed rising 300-960 m above the summit and drifting NE; PVMBG reported continuing brown emissions during 1-3 February. During 16-17 February, two VONA notices reported that brown ash plumes rose 150-400 m above the summit and drifted SW accompanied by consistent white gas-and-steam emissions (figure 20).

Figure (see Caption) Figure 19. Brown ash plume rose 500-600 m above Kerinci on 4 January 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.
Figure (see Caption) Figure 20. White gas-and-steam emissions rose 400 m above Kerinci on 19 February 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

During 1-16 and 25-26 March 2020 brown ash emissions were frequently observed rising 100-500 m above the summit drifting in multiple directions. During 6-8 and 10-15, April brown ash emissions were reported 50-1,000 m above the summit. The most recent Darwin VAAC and VONA notices were published on 14 April, reporting volcanic ash rising 400 and 600 m above the summit, respectively; however, PVMBG reported brown emissions rising up to 1,000 m. By 25-27 April brown ash emissions rose 50-300 m above the summit. Intermittent white gas-and-steam emissions continued through May. The last brown emissions seen in May were reported on the 7th rising 50-100 m above the summit.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com, images at https://twitter.com/OysteinLAnderse/status/1213658331564269569/photo/1 and https://twitter.com/OysteinLAnderse/status/1230419965209018369/photo/1).


Tinakula (Solomon Islands) — July 2020 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Tinakula is a remote stratovolcano located 100 km NE of the Solomon Trench at the N end of the Santa Cruz. In 1971, an eruption with lava flows and ash explosions caused the small population to evacuate the island. Volcanism has previously been characterized by an ash explosion in October 2017 and the most recent eruptive period that began in December 2018 with renewed thermal activity. Activity since then has consisted of intermittent thermal activity and dense gas-and-steam plumes (BGVN 45:01), which continues into the current reporting period. This report updates information from January-June 2020 using primary source information from various satellite data, as ground observations are rarely available.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed weak, intermittent, but ongoing thermal activity during January-June 2020 (figure 41). A small cluster of slightly stronger thermal signatures was detected in late February to early March, which is correlated to MODVOLC thermal alert data; four thermal hotspots were recorded on 20, 27, and 29 February and 1 March. However, observations using Sentinel-2 satellite imagery were often obscured by clouds. In addition to the weak thermal signatures, dense gas-and-steam plumes were observed in Sentinel-2 satellite imagery rising from the summit during this reporting period (figure 42).

Figure (see Caption) Figure 41. Weak thermal anomalies at Tinakula from 26 June 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were intermittent and clustered more strongly in late February to early March.
Figure (see Caption) Figure 42. Sentinel-2 satellite imagery shows ongoing gas-and-steam plumes rising from Tinakula during January through May 2020. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Three distinct thermal anomalies were observed in Sentinel-2 thermal satellite imagery on 22 January, 11 April, and 6 May 2020, accompanied by some gas-and-steam emissions (figure 43). The hotspot on 22 January was slightly weaker than the other two days, and was seen on the W flank, compared to the other two that were observed in the summit crater. According to MODVOLC thermal alerts, a hotspot was recorded on 6 May, which corresponded to a Sentinel-2 thermal satellite image with a notable anomaly in the summit crater (figure 43). On 10 June no thermal anomaly was seen in Sentinel-2 satellite imagery due to the presence of clouds; however, what appeared to be a dense gas-and-steam plume was extending W from the summit.

Figure (see Caption) Figure 43. Sentinel-2 thermal satellite images showing a weak thermal activity (bright yellow-orange) on 22 January 2020 on the W flank of Tinakula (top) and slightly stronger thermal hotspots on 11 April (middle) and 6 May (bottom) in at the summit, which are accompanied by gas-and-steam emissions. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Ibu (Indonesia) — July 2020 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Ibu is an active stratovolcano located along the NW coast of Halmahera Island in Indonesia. Volcanism has recently been characterized by frequent ash explosions, ash plumes, and small lava flows within the crater throughout 2019 (BGVN 45:01). Activity continues, consisting of frequent white-and-gray emissions, ash explosions, ash plumes, and lava flows. This report updates activity through June 2020, using data from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Darwin Volcanic Ash Advisory Centre (VAAC), and various satellites.

Volcanism during the entire reporting period dominantly consisted of white-and-gray emissions that rose 200-800 m above the summit drifting in multiple directions. The ash plume with the maximum altitude of 13.7 km altitude occurred on 16 May 2020. Sentinel-2 thermal satellite imagery detected multiple smaller hotspots within the crater throughout the reporting period.

Continuous ash emissions were reported on 6 February rising to 2.1 km altitude drifting E, accompanied by a hotspot visible in infrared satellite imagery. On 16 February, a ground observer reported an eruption that produced an ash plume rising 800 m above the summit drifting W, according to a Darwin VAAC notice. Ash plumes continued through the month, drifting in multiple directions and rising up to 2.1 km altitude. During 8-10 March, video footage captured multiple Strombolian explosions that ejected incandescent material and produced ash plumes from the summit (figures 21 and 22). Occasionally volcanic lightning was observed within the ash column, as recorded in video footage by Martin Rietze. This event was also documented by a Darwin VAAC notice, which stated that multiple ash emissions rose 2.1 km altitude drifting SE. PVMBG published a VONA notice on 10 March at 1044 reporting ash plumes rising 400 m above the summit. PVMBG and Darwin VAAC notices described intermittent eruptions on 26, 28, and 29 March, all of which produced ash plumes rising 300-800 m above the summit.

Figure (see Caption) Figure 21. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and a dense ash plume. Video footage copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 22. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and ash. Frequent volcanic lightning was also observed. Video footage copyright by Martin Rietze, used with permission.

A majority of days in April included white-and-gray emissions rising up to 800 m above the summit. A ground observer reported an eruption on 9 April, according to a Darwin VAAC report, and a hotspot was observed in HIMAWARI-8 satellite imagery. Minor eruptions were reported intermittently during mid-April and early to mid-May. On 12 May at 1052 a VONA from PVMBG reported an ash plume 800-1,100 m above the summit. A large short-lived eruption on 16 May produced an ash plume that rose to a maximum of 13.7 km altitude and drifted S, according to the Darwin VAAC report. By June, volcanism consisted predominantly of white-and-gray emissions rising 800 m above the summit, with an ash eruption on 15 June. This eruptive event resulted in an ash plume that rose 1.8 km altitude drifting WNW and was accompanied by a hotspot detected in HIMAWARI-8 satellite imagery, according to a Darwin VAAC notice.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected frequent hotspots during July 2019 through June 2020 (figure 23). In comparison, the MODVOLC thermal alerts recorded a total of 24 thermal signatures over the course of 19 different days between January and June. Many thermal signatures were captured as small thermal hotspots in Sentinel-2 thermal satellite imagery within the crater (figure 24).

Figure (see Caption) Figure 23. Thermal anomalies recorded at Ibu from 2 July 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and consistent in power. Courtesy of MIROVA.
Figure (see Caption) Figure 24. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed occasional thermal hotspots (bright orange) in the Ibu summit crater during January through June 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Martin Rietze, Taubenstr. 1, D-82223 Eichenau, Germany (URL: https://mrietze.com/, https://www.youtube.com/channel/UC5LzAA_nyNWEUfpcUFOCpJw/videos, video at https://www.youtube.com/watch?v=qMkfT1e4HQQ).


Suwanosejima (Japan) — July 2020 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Suwanosejima is an active stratovolcano located in the northern Ryukyu Islands. Volcanism has previously been characterized by Strombolian explosions, ash plumes, and summit incandescence (BGVN 45:01), which continues to occur intermittently. A majority of this activity originates from vents within the large Otake summit crater. This report updates information during January through June 2020 using monthly reports from the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and various satellite data.

During 3-10 January 2020, 13 explosions were detected from the Otake crater rising to 1.4 km altitude; material was ejected as far as 600 m away and ashfall was reported in areas 4 km SSW, according to JMA. Occasional small eruptive events continued during 12-17 January, which resulted in ash plumes that rose 1 km above the crater rim and ashfall was again reported 4 km SSW. Crater incandescence was visible nightly during 17-24 January, while white plumes rose as high as 700 m above the crater rim.

Nightly incandescence during 7-29 February, and 1-6 March, was accompanied by intermittent explosions that produced ash plumes rising up to 1.2 km above the crater rim (figure 44); activity during early February resulted in ashfall 4 km SSW. On 19 February an eruption produced a gray-white ash plume that rose 1.6 km above the crater (figure 45), resulting in ashfall in Toshima village (4 km SSW), according to JMA. Explosive events during 23-24 February ejected blocks onto the flanks. Two explosions were recorded during 1-6 March, which sent ash plumes as high as 900-1,000 m above the crater rim and ejected large blocks 300 m from the crater.

Figure (see Caption) Figure 44. Surveillance camera images of summit incandescence at Suwanosejima on 29 January (top left), 21 (middle left) and 23 (top right) February, and 25 March (bottom left and right) 2020. Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).
Figure (see Caption) Figure 45. Surveillance camera images of which and white-and-gray gas-and-steam emissions rising from Suwanosejima on 5 January (top), 19 February (middle), and 24 March 2020 (bottom). Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).

Nightly incandescence continued to be visible during 13-31 March, 1-10 and 17-24 April, 1-8, 15-31 May, 1-5 and 12-30 June 2020; activity during the latter part of March was relatively low and consisted of few explosive events. In contrast, incandescence was frequently accompanied by explosions in April and May. On 28 April at 0432 an eruption produced an ash plume that rose 1.6 km above the crater rim and drifted SE and E, and ejected blocks as far as 800 m from the crater. The MODVOLC thermal alerts algorithm also detected four thermal signatures during this eruption within the summit crater. An explosion at 1214 on 29 April caused glass in windows to vibrate up to 4 km SSW away while ash emissions continued to be observed following the explosion the previous day, according to the Tokyo VAAC.

During 1-8 May explosions occurred twice a day, producing ash plumes that rose as high as 1 km above the crater rim and ejecting material 400 m from the crater. An explosion on 29 May at 0210 produced an off-white plume that rose as high as 500 m above the crater rim and ejected large blocks up to 200 m above the rim. On 5 June an explosion produced gray-white plumes rising 1 km above the crater. Small eruptive events continued in late June, producing ash plumes that rose as high as 900 m above the crater rim.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively stronger thermal anomalies in late February and late April 2020 with an additional six weaker thermal anomalies detected in early January (2), early February (1), mid-April (2), and mid-May (1) (figure 46). Sentinel-2 thermal satellite imagery in late January through mid-April showed two distinct thermal hotspots within the summit crater (figure 47).

Figure (see Caption) Figure 46. Prominent thermal anomalies at Suwanosejima during July-June 2020 as recorded by the MIROVA system (Log Radiative Power) occurred in late February and late April. Courtesy of MIROVA.
Figure (see Caption) Figure 47. Sentinel-2 thermal satellite images showing small thermal anomalies (bright yellow-orange) from two locations within the Otake summit crater at Suwanosejima. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Bagana (Papua New Guinea) — July 2020 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Ash plumes during 29 February-2 March and 1 May 2020

Bagana lies in a nearly inaccessible mountainous tropical rainforest area of Bougainville Island in Papua New Guinea and is primarily monitored by satellite imagery of ash plumes and thermal anomalies. After a state of elevated activity that lasted through December 2018 (BGVN 43:05, 44:06, 44:12), the volcano entered a quieter period that persisted through at least May 2020. This report focuses on activity between December 2019 and May 2020.

Atmospheric clouds often obscured satellite views of the volcano during the reporting period. When the volcano could be observed, light-colored gas plumes were often observed (figure 43). Based on satellite and wind model data, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that during 29 February-2 March ash plumes rose to an altitude of 1.8-2.1 km and drifted SW and N. On 1 May an ash plume rose to an altitude of 3 km and drifted NW and W. According to both Darwin VAAC volcanic ash advisories, the Aviation Color Code was Orange (second highest of four hazard levels).

Figure (see Caption) Figure 43. Sentinel-2 image of Bagana, showing a gas plume drifting SE on 13 March 2020, during a period when the Darwin VAAC had not reported any ash explosions (Natural Color rendering, bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded only intermittent thermal anomalies, all of which were of low radiative power. Sulfur dioxide emissions detected by satellite-based instruments over this reporting period were at low levels.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 28, Number 12 (December 2003)

Managing Editor: Richard Wunderman

Cereme (Indonesia)

During late 2003, 1-9 earthquakes per day at this Javanese volcano

Cotopaxi (Ecuador)

During May-December 2003 seismicity moderate, degassing and inflation variable

Dukono (Indonesia)

December 2003 and January 2004 ash plumes to 3 km altitude extend to 185 km

Etna (Italy)

September-November 2003 volcanism low; web camera and satellites depict small plumes

Ijen (Indonesia)

November 2003:Tremor, type-A volcanic earthquakes; felt earthquake (MM III)

Irazu (Costa Rica)

Tranquil in 2001-3; fumarolic condensate of pH 2.0-3.5, 0-2 earthquakes/day

Karymsky (Russia)

Late 2003 explosions to at least 3.5 km above summit

Klyuchevskoy (Russia)

2003 ends with ~3-km-tall steam plumes, M 2 earthquakes, tremor

Koryaksky (Russia)

News report of a 12 December, M 3.6 earthquake at 6 km depth

Lamington (Papua New Guinea)

Available observations suggest quiet prevails

Lamongan (Indonesia)

Pilot notes 24 September ash emission, but it lacks ground confirmation

Lokon-Empung (Indonesia)

During November, elevated seismicity and a minor gas plume

Nyamuragira (DR Congo)

Political instability limits field access; growing seismicity

Nyiragongo (DR Congo)

Lava lake present and providing gas plumes and night glow in December

Rotorua (New Zealand)

Two hydrothermal blasts on 6 November send solid material 14 m high

Semeru (Indonesia)

November volcanism includes 70-90 explosions per day

Sheveluch (Russia)

Lava dome continues growing in the active crater

Soufriere Hills (United Kingdom)

Dome growth ceased after July 2003 and remained absent 6 months later

Witori (Papua New Guinea)

All vents still degassing; low seismicity (5-7 VT earthquakes per day)



Cereme (Indonesia) — December 2003 Citation iconCite this Report

Cereme

Indonesia

6.895°S, 108.408°E; summit elev. 3039 m

All times are local (unless otherwise noted)


During late 2003, 1-9 earthquakes per day at this Javanese volcano

Ongoing seismicity continued during 27 October-30 November 2003 (table 1). The number of A-type volcanic earthquakes peaked during 3-9 November (53 events). Hot spring temperature measurements were 47°C at Sangkan Hurip, 50°C at Cilengkrang, and 43°C at Ciniru. No significant visual activity was reported, and the hazard status remained at Alert Level 2 (on a scale of 1-4).

Table 1. Seismicity registered at Cereme, 27 October-30 November 2003. Courtesy of VSI.

Date Volcanic (Type-A) Volcanic (Type-B) Tectonic
27 Oct-02 Nov 2003 11 2 7
03 Nov-09 Nov 2003 53 1 6
10 Nov-16 Nov 2003 17 0 6
17 Nov-23 Nov 2003 8 0 3
24 Nov-30 Nov 2003 4 0 8

Geologic Background. The symmetrical stratovolcano Cereme is located closer to the northern coast than other central Java volcanoes. A large crater elongated in an E-W direction, formed by multiple vents, caps the summit of Gunung Cereme, which was constructed on the northern rim of the 4.5 x 5 km Geger Halang caldera. A large landslide deposit to the north may be associated with the origin of the caldera, although collapse may rather be due to a voluminous explosive eruption (Newhall and Dzurisin, 1988). Eruptions have included explosive activity and lahars, primarily from the summit crater.

Information Contacts: Dali Ahmad, Hetty Triastuty, Nia Haerani, and Suswati, Vulcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Cotopaxi (Ecuador) — December 2003 Citation iconCite this Report

Cotopaxi

Ecuador

0.677°S, 78.436°W; summit elev. 5911 m

All times are local (unless otherwise noted)


During May-December 2003 seismicity moderate, degassing and inflation variable

This report contains details of seismicity at Cotopaxi during May through December 2003. In general, seismicity was low and within normal levels, occasionally punctuated by increased activity. Fumarolic and inflationary activity varied throughout the period.

Seismicity during the first week of May was characterized by a high number of fracture-related volcano-tectonic events in the N, NE, and S zones, up to 15 km from the summit. These events were located at depths between 3 and 15 km below the summit. On 2 May at 0949 a volcano-tectonic event on the S flank occurred at ~ 3 km depth. Based on the coda, the event was calculated as M 3.2, a value considered moderate at this volcano. At 1918 on 2 May a long-period event was recorded at the Cotopaxi, Antisana, and Guagua Pichincha seismic stations. It lasted about 180 seconds. The earthquake was followed by a low-frequency (1.6 Hz) tremor signal lasting about 150 seconds.

Between 2 and 4 May deflation was recorded, with slight variations. On 2 May staff at the Refuge felt earthquakes. On 3 May the staff saw steam plumes at heights of 400-800 m above the crater, which blew W. On 3 and 4 May observations were made at the Refuge and the summit. Staff smelled sulfur halfway to the summit; and found new fumaroles in the Yanasacha area. On 4 May these fumaroles generated white steam plumes up to 50 m above the summit. Fumarole temperatures were 29-31°C.

A tectonic earthquake was recorded on 8 May, but although tremor episodes increased, volcano-tectonic earthquakes were fewer during 5-11 May than the previous week. Seismicity continued to drop during the week of 12-18 May. Although some low-amplitude tremor occurred during that interval, activity was dominated by long-period earthquakes. Earthquakes increased slightly the following week, but seismicity remained lower than average for the year. Low-frequency tremor lasting under 10 minutes was recorded on 23 May; tectonic activity on 24 May occurred in the zone of Saquisili and was determined to be unrelated to Cotopaxi. During the final week of May, long-period events and tremor signals increased slightly but seismicity continued to remain within the normal parameters established as of November 2001, when Cotopaxi entered a period of unusual seismic and fumarolic activity.

Activity remained generally constant through June, with episodes of harmonic tremor increasing slightly between 9 and 15 June and again on 23 June. White steam plumes reached 300 m high on 4 June, but later they were under 100 m high. At the end of June there was a slight tendency toward deflation; tremor events increased slightly and usually had fundamental frequencies of ~ 1.7 Hz.

Between 7 and 13 July the number of long-period events increased, as did the number of hybrid events. However, tremor decreased, and the average number of earthquakes per day (8) was lower than in recent periods of increased activity. The average number of earthquakes per day decreased again the following week. Notable tremor occurred on 20 July, with episodes lasting between 80 and 125 seconds and reduced displacement varying from 0.5 to 11 cm2. During the week of 21-27 July activity increased slightly, from 6.6 to 8.3 events per day, but in general seismic data indicated a state of low activity during July.

In early August seismicity rose to an average of 20 events per day, and tremor signals increased, especially on 8-10 August. However, the released energy remained low throughout August. Earthquakes registered that month were generally small, and tremor signals were constant except for two periods of harmonic tremor on 28 August.

Although seismicity remained low in early September, on 6 September instruments registered a low-frequency (0.9 Hz), low-amplitude tremor lasting more than 3 hours. On 18 September a cluster of earthquakes (characterized by long-period events and hybrid events) began around 1300 and lasted ~ 4 hours. A second cluster occurred the next day, lasting ~ 6 hours. The earthquakes associated with these clusters were located between 1 and 4 km below the summit. Fumarolic activity was normal for most of September, although a gas discharge was reported on 21 September. After 21 September seismicity returned to normal levels, and continued to decrease through the following week.

Seismicity generally remained low for the next few months. Volcano-tectonic earthquakes and tremor increased slightly during 13-19 October. Three distinct episodes of tremor on 15, 17, and 18 October consisted of similar events with dominant frequencies of 0.8-0.9 Hz. Seismicity into November remained low, with no significant episodes of tremor and only small events.

By mid-December seismicity increased and although activity remained within normal levels, the occurrence of high-frequency tremor was noteworthy. Also through mid-December, a slight odor of sulfur was reported, as well as occasional columns of steam no higher than 300 m.

Correction: A brown plume mentioned on 7 December 2002 (BGVN 27:12) might be misinterpreted as evidence of an ash-bearing emission. Gorki Ruiz, a colleague of Pete and Patty Hall, clarified events and interpretations from that date. He interviewed guards at the Cotopaxi refugio, who stated that neither they nor others at the refugio that day had observed emissions. They discounted observations of ash emissions and noted that although fumarolic plumes frequently reach 300 m above the summit, no phreatic explosions had occurred. That time interval was also one of low seismicity.

Geologic Background. Symmetrical, glacier-clad Cotopaxi stratovolcano is Ecuador's most well-known volcano and one of its most active. The steep-sided cone is capped by nested summit craters, the largest of which is about 550 x 800 m in diameter. Deep valleys scoured by lahars radiate from the summit of the andesitic volcano, and large andesitic lava flows extend to its base. The modern conical edifice has been constructed since a major collapse sometime prior to about 5000 years ago. Pyroclastic flows (often confused in historical accounts with lava flows) have accompanied many explosive eruptions, and lahars have frequently devastated adjacent valleys. The most violent historical eruptions took place in 1744, 1768, and 1877. Pyroclastic flows descended all sides of the volcano in 1877, and lahars traveled more than 100 km into the Pacific Ocean and western Amazon basin. The last significant eruption took place in 1904.

Information Contacts: Geophysical Institute (IG), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/).


Dukono (Indonesia) — December 2003 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


December 2003 and January 2004 ash plumes to 3 km altitude extend to 185 km

Satellite imagery for 8 December showed ash plumes at ~ 3 km altitude extending 90-190 km WSW from Dukono. During 10-17 and 24-30 December, thin ash plumes were sometimes visible on satellite imagery extending E to a maximum distance of ~ 90 km. During 31 December to 6 January, low-intensity eruptions at Dukono continued to produce plumes to low levels that extended to ~ 185 km SE.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Etna (Italy) — December 2003 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


September-November 2003 volcanism low; web camera and satellites depict small plumes

BGVN 28:08 reported ash emission at Etna during April 2003, and seismicity and ash emission during August 2003. A 12 September 2003 report noted that volcanic activity remained low at Etna's summit, with abundant SO2 and steam emissions at the NE and Bocca Nuova craters. An M 3.3 earthquake occurred on 14 September. It struck beneath the Ionian sea well offshore of Sicily's southeastern-most point. The reported epicenter (36.74°N, 15.60°E) was ~ 120 km SSE of Etna's summit. A Volcanic Ash Advisory noted activity depicted by web camera starting at 0500 on 25 September, with an ash-and-steam plume drifting to the W and visible below 4.5 km altitude. No ash cloud was visible on satellite imagery at 0530.

On 9 November, aviation sources and web camera observations detected an ash-and-steam plume moving S from Etna. The plume rose to ~ 4 km altitude.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sonia Calvari, Istituto Nazionale di Geofisica e Vulcanologia (INGV) Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue G. Coriolis, 31057 Toulouse, France (URL: http://www.meteo.fr/).


Ijen (Indonesia) — December 2003 Citation iconCite this Report

Ijen

Indonesia

8.058°S, 114.242°E; summit elev. 2769 m

All times are local (unless otherwise noted)


November 2003:Tremor, type-A volcanic earthquakes; felt earthquake (MM III)

The pattern of shallow volcanic earthquakes reported at Ijen in BGVN 28:10 continued over the period 27 October-30 November 2003. White gas emissions rose 50-150 m from the crater, and a earthquake was felt on 4 November of Modified Mercali intensity III. Data in table 7 show slight variations in seismicity during the report interval. The volcano remained at alert level 2 (on a scale of 1-4).

Table 7. Seismicity registered at Ijen, 27 October-30 November 2003. Courtesy of VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Tremor Tectonic Emission
27 Oct-02 Nov 2003 0 29 continuous (0.5-2 mm) 2 0
03 Nov-09 Nov 2003 0 18 continuous (0.5-2 mm) 6 2
10 Nov-16 Nov 2003 0 18 continuous (0.5-2 mm) 6 2
17 Nov-23 Nov 2003 0 26 continuous (0.5-4 mm) 7 0
24 Nov-30 Nov 2003 8 32 continuous (0.5-2 mm) 7 1

Geologic Background. The Ijen volcano complex at the eastern end of Java consists of a group of small stratovolcanoes constructed within the large 20-km-wide Ijen (Kendeng) caldera. The north caldera wall forms a prominent arcuate ridge, but elsewhere the caldera rim is buried by post-caldera volcanoes, including Gunung Merapi, which forms the high point of the complex. Immediately west of the Gunung Merapi stratovolcano is the historically active Kawah Ijen crater, which contains a nearly 1-km-wide, turquoise-colored, acid lake. Picturesque Kawah Ijen is the world's largest highly acidic lake and is the site of a labor-intensive sulfur mining operation in which sulfur-laden baskets are hand-carried from the crater floor. Many other post-caldera cones and craters are located within the caldera or along its rim. The largest concentration of cones forms an E-W zone across the southern side of the caldera. Coffee plantations cover much of the caldera floor, and tourists are drawn to its waterfalls, hot springs, and volcanic scenery.

Information Contacts: Dali Ahmad, Hetty Triastuty, Nia Haerani, and Suswati, Vulcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Irazu (Costa Rica) — December 2003 Citation iconCite this Report

Irazu

Costa Rica

9.979°N, 83.852°W; summit elev. 3432 m

All times are local (unless otherwise noted)


Tranquil in 2001-3; fumarolic condensate of pH 2.0-3.5, 0-2 earthquakes/day

This report consists of contributions from investigators at OVSICORI-UNA and UCR-ICE, who both monitor Irazú. Small-magnitude seismicity and stable fumarolic and crater lake conditions were noted in the previous Irazú report (BGVN 26:10). Weak seismicity and stable conditions continued through at least December 2003.

OVSICORI-UNA observations. Seismicity and fumarolic emissions at the volcano remained low over the reporting interval September 2001 to December 2003.

The color of the principal crater lake varied from greenish yellow (January, October, and December 2002; January and May 2003) to light yellow (June 2002), to yellow (February and March 2002), and strong yellow (February, March, and April 2003). From May 2003 on the color remained green, particularly dark green. The strong yellow color correlated with mass wasting from the crater walls, which introduced strongly colored fine-grained material into the lake. On 8 February 2003 the color briefly shifted from yellow to reddish due to mass wasting in zones along the E and ENE walls. The February mass-wasting events did not produce definable seismic signals at the volcano's sole station (IRZ2, located 5 km from the crater).

In January, September, October, and November 2002, the lake's surface was comparatively high, covering the crater floor. An interval of dry weather with consequent lower lake levels, bubbling along the lake's margins, and small landslides into the crater were noted during February and March 2002. In March and April 2002, the lake temperature was 17°C. During March 2002, fumaroles on the NE shore had temperatures of 39-50°C. The lake temperature measured 15°C during November 2002, with one fumarole measuring 42°C. During August 2003 a fumarolic temperature of 47°C was measured on the NE lake shore.

The highest temperature of the reporting interval was in July 2003 when the NE-flank fumarole was measured at 88°C (N-flank fumarole temperatures over 80°C have been reported for almost 40 years).

Seismicity seldom averaged more than about one or two local earthquakes per day (table 7). A few volcano-tectonic and long-period earthquakes were reported (e.g., 6 LP earthquakes in September 2001; 2 in November 2002; and 4 in May 2003). Tremor was not reported.

Table 7. Earthquakes registered at the Irazú seismic instrument, 5 km SW of the crater. "--" indicates a lack of mention or a malfunctioning system. When the system functioned for only part of the month, the number of functional days is in parenthesis. Courtesy of OVSICORI-UNA.

Month Total earthquakes (days of operation)
Sep 2001 39 (20 days)
Oct 2001 56
Nov 2001 --
Dec 2001 --
Jan 2002 50
Feb 2002 23 (16 days)
Mar 2002 50
Apr 2002 --
May 2002 --
Jun 2002 54
Jul 2002 19
Aug 2002 11
Sep 2002 --
Oct 2002 24
Nov 2002 29
Dec 2002 --
Jan 2003 16
Feb 2003 20
Mar 2003 15
Apr 2003 7
May 2003 24
Jun 2003 11
Jul 2003 8
Aug 2003 23
Sep 2003 29
Oct 2003 43
Nov 2003 11
Dec 2003 --

UCR-ICE observations. Mora (2001 and 2002) presented monthly temperature and condensate-pH data for a sulfurous fumarole on the outer N slopes of Irazú. Measurements of the temperature began in 2001. The temperature remained at 90.0 ± 1°C throughout that year except in June (88.6°C) and December (86.0°C). The year 2002 began with the fumarole at 79.6°C in January, but by April it was at 89.6°C and remained relatively constant (87.5-89.6°C) until cooling in December to 86.5°C. The cooler fumarole temperatures seen annually around December-January are well established and are thought to be caused by cool water descending from the summit into the headwater regions.

During the period January-August 2002, the pH of the fumarole's condensate was 2.0; increasing to 3.5 in September, and remaining near that value (3.0-3.5) throughout the rest of year. During 2002 the crater lake level changed by less than ~ 2 m overall. Mora commented that the green-colored water seen frequently in 2002 was the result of algae adapting to the low-pH conditions.

Heavy rains during November and December 2001 formed an ephemeral lake on the floor of the inactive oblong-shaped Diego de la Haya crater (SE of the principal crater), which grew to ~ 100 x 20 m.

References. Mora, R., 2002, Informe anual de la actividad de la Cordillera Volcánica Central, 2002, Costa Rica (proofed and revised by Alvarado, G., Fernández, M., Mora, M., Paniagua S., and Ramírez, C.): Universidad de Costa Rica, Red Sismológica Nacional, UCR-ICE, Sección de Sismología, Vulcanología y Exploración Geofísica (published June 2003 as mini-CD Rom with PDF files).

Mora, R., 2001a, Informe semestral de la actividad de la Cordillera Volcánica Central, Enero-Junio 2001, Costa Rica: Universidad de Costa Rica, Red Sismológica Nacional, UCR-ICE, Sección de Sismología, Vulcanología y Exploración Geofísica (published November 2001 as mini-CD Rom with PDF files).

Mora, R., 2001b, Informe semestral de la actividad de la Cordillera Volcánica Central, Julio-Diciembre 2001, Costa Rica (proofed and revised by Alvarado, G., Fernández, M., Montero, W., and Ramírez, C.): Universidad de Costa Rica, Red Sismológica Nacional, UCR-ICE, Sección de Sismología, Vulcanología y Exploración Geofísica (published 6 May 2001 as mini-CD Rom with PDF files).

Geologic Background. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

Information Contacts: E. Fernández, E. Duarte, E. Malavassi, R. Sáenz, V. Barboza, R. Van der Laat, T. Marino, E. Hernández, and F. Chavarría, Observatorio Vulcanológico y Sismológico de Costa Rica (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; Jorge Barquero and Wendy Sáenz, Laboratory de Química de la Atmósfera (LAQAT), Depto. de Química, Universidad Nacional, Heredia, Costa Rica; María Martínez (at both affiliations above); Orlando Vaselli and Franco Tassi, Department of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italy; R. Mora (Amador), C. Ramírez, and M. Fernández, Universidad de Costa Rica, Laboratory de Sismología, Vulcanología y Exploración Geofisico, Apptd. 560-2300, Curridabat, San José, Costa Rica.


Karymsky (Russia) — December 2003 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Late 2003 explosions to at least 3.5 km above summit

The intermittent explosions and elevated seismicity reported in BGVN 28:11 continued through December 2003. The Tokyo Volcanic Ash Advisory Center (VAAC) reported, for the period 28 November-5 December, that intermittent explosive eruptions emitted ash up to ~ 3.5 km altitude. The Kamchatkan Volcanic Eruption Response Team (KVERT) reported on 12 December 2003 that intermittent explosive eruptive activity at Karymsky was continuing, with occasional explosions sending ash up to 3.5 km above the volcano and local ashfall possible. Seismicity was above background levels, with 200-250 shallow long-period events per day during the previous week and possible ash-gas explosions rising up to 1-1.5 km above the volcano. Seismic data showed, at 0745 on December 5, a possible ash-gas explosion up to 4 km. Satellite data from 5-10 December showed a 1- to 5-pixel thermal anomaly over the volcano.

KVERT reported similar conditions for the week ending 19 December, with ash to 1-2.5 km above the crater and 160-240 events per day. On 16 December, they reported possible ash plumes up to 3 km above the crater and 1- to 5-pixel thermal anomalies on 11-17 December. These conditions continued during the week ending 26 December, with seismic events fluctuating at 40-200 per day and ash-and-gas plumes rising 1-2 km over the volcano. The number of earthquakes decreased during 18-20 December and increased during 21-24 December, with probable ash explosions to 3.5 km on 21 December.

At 0359 on 23 December and 1605 on 24 December possible explosions with pyroclastic flows were recorded. A 1- to 3-pixel thermal anomaly was observed by satellite on 21-22 and 24-25 December. For the week ending 2 January 2004, local shallow earthquakes took place 200-270 times per day with possible ash-gas explosions to 2-3.5 km. Possible explosions accompanied by pyroclastic flow were recorded on 25, 29, and 31 December; a 1- to 4-pixel thermal anomaly was also observed. On 29 December a very narrow gas-steam plume extended 97 km SE. The color code alert remained at orange during the month.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Olga Girina, Kamchatka Volcanic Eruptions Response Team (KVERT), a cooperative program of the Institute of Volcanic Geology and Geochemistry, Far East Division, Russian Academy of Sciences, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia, the Kamchatka Experimental and Methodical Seismological Department (KEMSD), GS RAS (Russia), and the Alaska Volcano Observatory (USA); Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), the Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and the Alaska Division of Geological and Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Klyuchevskoy (Russia) — December 2003 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


2003 ends with ~3-km-tall steam plumes, M 2 earthquakes, tremor

Ash explosions and Strombolian activity was reported at Kliuchevskoi through early December 2003 (BGVN 28:11). KVERT reported that unrest continued at Kliuchevskoi over the month of December, with occasional and repeated explosions containing ash, gas and steam rising to 7-8 km altitude, and possible lava flows from the central crater. Seismicity was above background levels over the month. The alert level remained Orange.

Strombolian activity was seen from the town of Klyuchi on 7 December. At 1300 on 6 December an ash explosion up to 1 km above the crater was registered and, on the same day, a 3 km high gas-steam plume was evident. Gas plumes, possibly containing small amounts of ash, rose 100-500 m on 7-16 December, generally extending in various directions and visible to distances of 3-10 km. During this time satellites detected 1- to 9-pixel thermal anomalies. Strombolian activity was again noted from Klyuchi on 12 December.

During the week ending 12 December there were approximately 150 large shallow earthquakes of ML 1.2-2.25 and a large number of weak shallow earthquakes. For example, on 8 December, an earthquake of ML greater than 1.75 was registered at a depth of 5 km under the central crater. On 11 December, 3 earthquakes of ML 1.75-2.0 were registered at a depth of 3-6 km under the central crater. The number of earthquakes was similar during the week ending 19 December.

Tremor occurred often. An index of the tremor's size, reported in terms of relative velocity between the Earth and the seismograph's suspended mass (the ground motion), was 19-23 µm/s on 4-5 December, decreasing to ~ 6.7 µm/s on 9-10 December. On 12 December continuous spasmodic tremor had velocities of 2.5-9.2 µm/s. During the week ending 2 January, tremor had velocities of 2-4 µm/s.

During the week ending 26 December there were 135 large shallow earthquakes of ML 1.9-2.3 and a large number of weak shallow earthquakes were reported. On 19 December, one earthquake at a depth of 11 km and two earthquakes at a depth of 30 km below the central crater (ML less than 2.0) were registered. Continuous spasmodic tremor had velocities of 2.7-5.3 µm/s. Gas-steam plumes were seen rising up to 100 m above the crater on 22-23 December. The volcano was obscured by cloud at other times. A 1-pixel thermal anomaly over the volcano was registered by satellite on 23 December.

During the week ending 2 January 2004, the number of large (ML1.9-2.2) shallow earthquakes dropped to ~ 33, with a large number of weak shallow earthquakes. A 1-pixel thermal anomaly was registered on 26-27 December. On 27-29 December, gas plumes were observed rising up to 50-500 m above the volcano, but the volcano was obscured at other times.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Olga Girina, Kamchatka Volcanic Eruptions Response Team (KVERT), a cooperative program of the Institute of Volcanic Geology and Geochemistry, Far East Division, Russian Academy of Sciences, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia, the Kamchatka Experimental and Methodical Seismological Department (KEMSD), GS RAS (Russia), and the Alaska Volcano Observatory (USA); Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), the Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and the Alaska Division of Geological and Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Koryaksky (Russia) — December 2003 Citation iconCite this Report

Koryaksky

Russia

53.321°N, 158.712°E; summit elev. 3430 m

All times are local (unless otherwise noted)


News report of a 12 December, M 3.6 earthquake at 6 km depth

Our last report for Koryaksky was BGVN 22:11, discussing seismicity in 1997. According to a Russian Information Agency Novosti press report, on 12 December 2003 instruments detected an M 3.6 earthquake followed by ~ 2 hours of seismicity at ~ 6 km depth beneath Koryaksky. A cyclonic weather system over the peninsula obstructed visual observations.

Geologic Background. The large symmetrical Koryaksky stratovolcano is the most prominent landmark of the NW-trending Avachinskaya volcano group, which towers above Kamchatka's largest city, Petropavlovsk. Erosion has produced a ribbed surface on the eastern flanks of the 3430-m-high volcano; the youngest lava flows are found on the upper W flank and below SE-flank cinder cones. Extensive Holocene lava fields on the western flank were primarily fed by summit vents; those on the SW flank originated from flank vents. Lahars associated with a period of lava effusion from south- and SW-flank fissure vents about 3900-3500 years ago reached Avacha Bay. Only a few moderate explosive eruptions have occurred during historical time, but no strong explosive eruptions have been documented during the Holocene. Koryaksky's first historical eruption, in 1895, also produced a lava flow.

Information Contacts: Russian Information Agency Novosti (URL: http://russia-insider.com/).


Lamington (Papua New Guinea) — December 2003 Citation iconCite this Report

Lamington

Papua New Guinea

8.95°S, 148.15°E; summit elev. 1680 m

All times are local (unless otherwise noted)


Available observations suggest quiet prevails

Lamington remained quiet during 10 October-14 December 2003. Cloud cover over the summit area made visual observations difficult, and the earthquake recorder did not function due to technical problems. Although it was difficult to make a reliable prognosis based on very limited data and information, Rabaul Volcano Observatory expected Lamington to remain quiet.

Geologic Background. Lamington is an andesitic stratovolcano with a 1.3-km-wide breached summit crater containing a lava dome. Prior to its renowned devastating eruption in 1951, the forested peak had not been recognized as a volcano. Mount Lamington rises above the coastal plain north of the Owen Stanley Range. A summit complex of lava domes and crater remnants tops a low-angle base of volcaniclastic deposits dissected by radial valleys. A prominent broad "avalanche valley" extends northward from the breached crater. Ash layers from two early Holocene eruptions have been identified. After a long quiescent period, the volcano suddenly became active in 1951, producing a powerful explosive eruption during which devastating pyroclastic flows and surges swept all sides of the volcano, killing nearly 3000 people. The eruption concluded with growth of a 560-m-high lava dome in the summit crater.

Information Contacts: Ima Itikarai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.


Lamongan (Indonesia) — December 2003 Citation iconCite this Report

Lamongan

Indonesia

7.981°S, 113.341°E; summit elev. 1641 m

All times are local (unless otherwise noted)


Pilot notes 24 September ash emission, but it lacks ground confirmation

When last discussed in 1988 (SEAN 13:02), a seismic swarm had occurred here. Except for an uncertain 1953 eruption, 20th- and 21st-century eruptions are unknown. Darwin Volcanic Ash Advisory 2003/1 notified aircraft personnel that, on 24 September 2003, ash was visible to ~ 900 m over Lamongan.

In this 2003 case, no confirmations of a plume or other signs of volcanism were available from observers on the scene. Concrete confirmations can establish that the plume did indeed vent here, rather than at another volcano and that it did not result from similar-looking processes of non-volcanic origin (eg., forest fires, crop burning, lofted dust).

Geologic Background. Lamongan, a small stratovolcano located between the massive Tengger and Iyang-Argapura volcanic complexes, is surrounded by numerous maars and cinder cones. The currently active cone has been constructed 650 m SW of Gunung Tarub, the volcano's high point. As many as 27 maars with diameters from 150 to 700 m, some containing crater lakes, surround the volcano, along with about 60 cinder cones and spatter cones. Lake-filled maars, including Ranu Pakis, Ranu Klakah, and Ranu Bedali, are located on the E and W flanks; dry maars are predominately located on the N flanks. None of the maars has erupted during historical time, although several of the youthful maars cut drainage channels from Gunung Tarub. The volcano was very active from the time of its first historical eruption in 1799 through the end of the 19th century, producing frequent explosive eruptions and lava flows from vents on the western side ranging from the summit to about 450 m elevation.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/).


Lokon-Empung (Indonesia) — December 2003 Citation iconCite this Report

Lokon-Empung

Indonesia

1.358°N, 124.792°E; summit elev. 1580 m

All times are local (unless otherwise noted)


During November, elevated seismicity and a minor gas plume

Ongoing seismicity at Lokon was reported in BGVN 28:10. The Volcanological Survey of Indonesia (VSI) report for 27 October-30 November showed continuing seismicity (table 8), and a white gas plume rising 75-150 m from the Tompaluan crater. The volcano remained at alert level 2 (on a scale of 1-4).

Table 8. Seismicity recorded at Lokon-Empung, 27 October-30 November 2003. Courtesy of VSI.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Tectonic
27 Oct-02 Nov 2003 3 29 22
03 Nov-09 Nov 2003 15 171 26
10 Nov-16 Nov 2003 9 146 43
17 Nov-23 Nov 2003 22 96 20
24 Nov-30 Nov 2003 7 116 21

Geologic Background. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2 km apart), has a flat, craterless top. The morphologically younger Empung volcano to the NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred. A ridge extending WNW from Lokon includes Tatawiran and Tetempangan peak, 3 km away.

Information Contacts: Dali Ahmad, Hetty Triastuty, Nia Haerani and Suswati, Vulcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Nyamuragira (DR Congo) — December 2003 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Political instability limits field access; growing seismicity

On 15 December 2003, the Goma Volcano Observatory (GVO) reported growing seismicity around Nyamuragira during the past few weeks. Because of political instability, the team lacked access to the field. The seismic observations have been made using the distant seismic network. According to the data they acquired, GVO felt that a new eruption was likely in the next weeks.

Because the volcano is located inside the National Park ~ 40 km NNW of Goma, potential lava flows were not expected to threaten the city. Other areas on the W side of the volcano could be affected by gas and dust clouds or by ash falls.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Baluku Bajope and Kasereka Mahinda, Observatoire Volcanologique de Goma, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Jacques Durieux, UN-OCHA resident volcanologist, c/o UN Office for the Coordination of Humanitarian Affairs, United Nations Geneva , Palais des Nations,1211 Geneva 10, Switzerland (URL: http://www.unog.ch).


Nyiragongo (DR Congo) — December 2003 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Lava lake present and providing gas plumes and night glow in December

In December 2003 activity at Nyiragongo remained at relatively low levels, with the constant presence of an active lava lake inside the crater. Goma residents saw voluminous gas plume and intense red glow at night; however, activity was considered normal and the alert level remained at yellow.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Baluku Bajope and Kasereka Mahinda, Observatoire Volcanologique de Goma, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Jacques Durieux, UN-OCHA resident volcanologist, c/o UN Office for the Coordination of Humanitarian Affairs, United Nations Geneva , Palais des Nations,1211 Geneva 10, Switzerland (URL: http://www.unog.ch).


Rotorua (New Zealand) — December 2003 Citation iconCite this Report

Rotorua

New Zealand

38.08°S, 176.27°E; summit elev. 757 m

All times are local (unless otherwise noted)


Two hydrothermal blasts on 6 November send solid material 14 m high

Reported hydrothermal activity at Rotorua on 26 January 2001 involved the ejection of mud and ballistic blocks (BGVN 26:03). The New Zealand Institute of Geological and Nuclear Sciences reported that two subsequent hydrothermal eruptions in Rotorua caldera at Kuirau Park on 6 November 2003 blasted mud, rock, and ash 14 m into the air. Gray mud and small rocks littered a zone ~ 20 m wide and the eruption destroyed trees around the crater where it vented. The eruptions occurred just meters from the site of the large blowout in 2001. The area is known for this kind of geothermal activity.

Geologic Background. The 22-km-wide Rotorua caldera is the NW-most caldera of the Taupo volcanic zone. It is the only single-event caldera in the Taupo Volcanic Zone and was formed about 220,000 years ago following eruption of the more than 340 km3 rhyolitic Mamaku Ignimbrite. Although caldera collapse occurred in a single event, the process was complex and involved multiple collapse blocks. The major city of Rotorua lies at the south end of the lake that fills much of the caldera. Post-collapse eruptive activity, which ceased during the Pleistocene, was restricted to lava dome extrusion without major explosive activity. The youngest activity consisted of the eruption of three lava domes less than 25,000 years ago. The major thermal areas of Takeke, Tikitere, Lake Rotokawa, and Rotorua-Whakarewarewa are located within the caldera or outside its rim, and the city of Rotorua lies within and adjacent to active geothermal fields.

Information Contacts: Brad Scott, Wairakei Research Center, Institute of Geological and Nuclear Sciences (IGNS), Private Bag 2000, Taupo, New Zealand (URL: http://www.gns.cri.nz/).


Semeru (Indonesia) — December 2003 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


November volcanism includes 70-90 explosions per day

Volcanic activity at Semeru continued at a high level over the period 27 October-30 November, with a white-grey ash plume 300-600 m above the crater. A summary of seismicity (table 15) shows a ~ 20 percent reduction in the number of explosions compared to the previous four weekly intervals (BGVN 28:10). Semeru's hazard status remained at alert level 2 (on a scale of 1-4).

Table 15. Seismicity recorded at Semeru, 27 October-30 November. Courtesy of VSI.

Dates Volcanic A Tremor Tectonic Explosion Avalanche
27 Oct-02 Nov 2003 1 -- -- -- 2
03 Nov-09 Nov 2003 22 15 11 41 8
10 Nov-16 Nov 2003 4 13 12 3 7
17 Nov-23 Nov 2003 565 585 524 596 568
24 Nov-30 Nov 2003 11 17 14 15 7

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Dali Ahmad, Hetty Triastuty, Nia Haerani, and Suswati, Vulcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Sheveluch (Russia) — December 2003 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Lava dome continues growing in the active crater

A lava dome continued to grow in the active crater at Shiveluch (also called Sheveluch). In accord with the hazard associated with lava dome growth, the level of concern from 7 November 2003 to 2 January 2004 was yellow. During this ~ 2-month interval, US and Russian satellites recorded thermal anomalies averaging 1-3 pixels.

Increasing seismicity in December was accompanied by gas-steam plumes with varying heights of 50-800 m. Sometimes the plumes extended over 10-30 km to the E, as was noted on 30 November and 2-3 December.

Seismicity was at background levels during most of November. On 29-30 November instruments detected a series of shallow events lasting 3-4 minutes. On November 29-30 and December 1-4, weak shallow earthquakes were registered. Similar earthquakes also occurred at depths of 0-5 km beneath the active dome during 19 December 2003 to 2 January 2004.

On 13 December geophysicists noted a series of weak, local, and continuous seismic events interpreted as possibly resulting from the descent of hot avalanches, but visual observations revealed only weak fumarolic activity. Later, on 11, 12, 15, and 16 December, people in the town of Klyuchi saw gas-steam plumes rise up to 100-400 m above the dome.

Eight strong earthquakes registered in December. Two occurred on 14 and 16 December; ;they were of ML over 2.25 in the depth range 0-5 km. Three occurred on 20 December; they were of ML 1.9-2.0 in the depth range 0-10 km. Three total earthquakes occurred in the two days 28 December and 1 January; they were of ML 1.7-2.5 in the depth range 2-5 km.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga Girina, Kamchatka Volcanic Eruptions Response Team (KVERT), a cooperative program of the Institute of Volcanic Geology and Geochemistry, Far East Division, Russian Academy of Sciences, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia, the Kamchatka Experimental and Methodical Seismological Department (KEMSD), GS RAS (Russia), and the Alaska Volcano Observatory (USA); Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), the Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and the Alaska Division of Geological and Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Soufriere Hills (United Kingdom) — December 2003 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Dome growth ceased after July 2003 and remained absent 6 months later

Weekly summaries of seismic activity at Soufrière Hills for the period 7 November 2003 to 16 January 2004 are given in table 51. During the week of 14 to 21 November a prominent swarm of hybrid earthquakes lasted for three days. Good views and surveys of the dome during this week confirmed that no growth or changes took place. On 9 December and on 31 December 2003 swarms of small hybrid earthquakes were observed on the drum records, but most of the events were too small to be recorded on the network. Visual observations confirmed that no new dome growth has occurred in the crater since July 2003, although there has been some slumping of old dome material from the crater walls, and degradation of the wall rocks by steam activity.

Table 51. Summary of seismicity recorded at Soufrière Hills, 7 November 2003 to 15 January 2004. Courtesy of Montserrat Volcano Observatory.

Date Rockfall Long-period / Rockfall Long-period Hybrid Volcano-tectonic
07 Nov-13 Nov 2003 1 3 1 36 --
14 Nov-20 Nov 2003 7 -- 13 287 4
21 Nov-27 Nov 2003 5 -- 1 50 1
28 Nov-04 Dec 2003 1 -- -- 12 0
05 Dec-11 Dec 2003 -- -- 4 13 --
12 Dec-18 Dec 2003 2 -- -- 12 --
19 Dec-25 Dec 2003 1 -- -- 2 --
26 Dec-01 Jan 2004 2 -- -- 9 --
02 Jan-08 Jan 2004 2 -- -- 2 --
09 Jan-15 Jan 2004 5 -- 1 18 --

Table 52 shows a summary of the gas emissions (mainly sulfur dioxide, but one HCl estimate for 18 December). Instrument problems or unfavorable wind directions disrupted measurements for a number of days during the report interval (dashed lines).

Table 52. Summary of gas emissions recorded at Soufrière Hills, 7 November 2003 to 16 January 2004. The HCl data listed were collected on 18 December. Courtesy of Montserrat Volcano Observatory.

Date SO2 emissions (tons/day) HCI emissions (tons/day)
07 Nov-13 Nov 2003 200-800 --
14 Nov-21 Nov 2003 260-450 --
21 Nov-27 Nov 2003 500 --
28 Nov-04 Dec 2003 300-600 --
05 Dec-11 Dec 2003 300-900 --
12 Dec-18 Dec 2003 500-3,600 1,260 (HCl:SO2 = 0.35)
19 Dec-25 Dec 2003 -- --
26 Dec-01 Jan 2004 500 --
02 Jan-08 Jan 2004 300 --
09 Jan-15 Jan 2004 200-590 --

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Gill Norton, Montserrat Volcano Observatory (MVO), Mongo Hill, Montserrat, West Indies (URL: http://www.mvo.ms/).


Witori (Papua New Guinea) — December 2003 Citation iconCite this Report

Witori

Papua New Guinea

5.576°S, 150.516°E; summit elev. 724 m

All times are local (unless otherwise noted)


All vents still degassing; low seismicity (5-7 VT earthquakes per day)

Pago remained quiet, with all vents continuing to release weak, thin white vapor during 10 October-14 December 2003. Seismicity was generally low, with daily averages of 5-7 small volcano-tectonic earthquakes. The highest number of daily events through 26 November were the 45 recorded on 28 October.

Geologic Background. The 5.5 x 7.5 km Witori caldera on the northern coast of central New Britain contains the young historically active cone of Pago. The Buru caldera cuts the SW flank of Witori volcano. The gently sloping outer flanks of Witori volcano consist primarily of dacitic pyroclastic-flow and airfall deposits produced during a series of five major explosive eruptions from about 5600 to 1200 years ago, many of which may have been associated with caldera formation. The post-caldera Pago cone may have formed less than 350 years ago. Pago has grown to a height above that of the Witori caldera rim, and a series of ten dacitic lava flows from it covers much of the caldera floor. The youngest of these was erupted during 2002-2003 from vents extending from the summit nearly to the NW caldera wall.

Information Contacts: Ima Itikarai, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports