Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Klyuchevskoy (Russia) Renewed activity in October 2020 with explosions, lava flows, and ash plumes

Kadovar (Papua New Guinea) Occasional ash and gas-and-steam plumes along with summit thermal anomalies

Tinakula (Solomon Islands) Intermittent gas-and-steam plumes and weak thermal anomalies during July-December 2020

Erebus (Antarctica) Fewer thermal anomalies during 2020 compared to recent years

Aira (Japan) Intermittent explosions continue during July through December 2020

Nishinoshima (Japan) Eruption ends in late August 2020; lengthy cooling from extensive lava flows and large crater

Nyiragongo (DR Congo) Strong thermal anomalies and gas emission from lava lake through November 2020

Whakaari/White Island (New Zealand) Gas-and-steam emissions with some re-suspended ash in November 2020

Kerinci (Indonesia) Intermittent ash plumes and gas-and-steam emissions during June-November 2020

Suwanosejima (Japan) Explosion rate increases during July-December 2020, bomb ejected 1.3 km from crater on 28 December

Karangetang (Indonesia) Hot material on the NW flank in November 2020; intermittent crater thermal anomalies

Nevado del Ruiz (Colombia) Dome growth and ash emissions continue during July-December 2020



Klyuchevskoy (Russia) — January 2021 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Renewed activity in October 2020 with explosions, lava flows, and ash plumes

Klyuchevskoy, located in northern Kamchatka, has had historical eruptions dating back 3,000 years characterized by major explosive and effusive eruptions from the flank craters. The current eruption began in April 2019 and has recently consisted of Strombolian activity, ash plumes, and an active lava flow descending the SE flank (BGVN 45:09). This report covers September-December 2020 and describes similar activity of Strombolian explosions, ash plumes, and active lava flows beginning in early October. Information primarily comes from weekly and daily reports from the Kamchatkan Volcanic Eruption Response Team (KVERT), the Tokyo Volcanic Ash Advisory (VAAC), and satellite data.

Activity from July through September was relatively low, with no thermal activity detected during August-September. On 2 October renewed Strombolian explosions began at 1003, ejecting ash 300-400 m above the summit and producing gas-and-steam plumes with some ash that drifted down the E flank (figure 48). That night, crater incandescence was visible. On 5 October KVERT reported that a lava flow began to effuse along the Apakhonchich chute at 0100. During 7-8 October activity intensified and was characterized by strong explosions, collapses of the sides of the drainage, strong thermal anomalies, and ash plumes that extended over 200 km SE from the crater; the lava flow remained active and continued to descend the SE flank. A Tokyo VAAC advisory issued on 7 October reported that an ash plume rose to 8.8 km altitude and drifted E and SE; during 8-9 October ash plumes rose to 5.5 km altitude and drifted as far as 270 km SE. A strong, bright, thermal anomaly was observed daily in satellite imagery, which represented the new lava flow. Strombolian explosions continued throughout the month, accompanied by gas-and-steam plumes containing some ash and an active lava flow advancing down the Apakhonchich chute on the SE flank (figure 49).

Figure (see Caption) Figure 48. Photos of a gray ash plume (left) and the beginning of the lava flow (right), represented as summit crater incandescence at Klyuchevskoy on 2 October 2020 at 1030 and 2100, respectively. Photos by Y. Demyanchuk; courtesy of Volkstat.
Figure (see Caption) Figure 49. Photo of Strombolian explosions at the summit of Klyuchevskoy accompanied by ash emissions and a lava flow advancing down the SE-flank Apakhonchich chute on 25 October 2020. Photo by Y. Demyanchuk (color corrected); courtesy of Volkstat.

Similar activity continued to be reported in November, consisting of Strombolian explosions, ash plumes, and a lava flow advancing down the SE flank. A bright thermal anomaly was observed in thermal satellite imagery each day during the month. During 16-19 November explosions recorded in satellite and video data showed ash plumes rising to 7.5 km altitude and drifting as far as 108 km to the NE, E, SE, and S (figure 50). On 19 November an ash cloud 65 x 70 km in size drifted 50 km SE, according to a KVERT VONA (Volcano Observatory Notice for Aviation). During 26-30 November video and satellite data showed that gas-and-steam plumes containing some ash rose to 7 km altitude and extended as far as 300 km NW and E, accompanied by persistent moderate explosive-effusive activity (figure 51).

Figure (see Caption) Figure 50. Photo of the Strombolian and Vulcanian explosions at Klyuchevskoy on 18 November 2020 which produced a dense gray ash plume. Photo by Yu. Demyanchuk, IVS FEB RAS, KVERT
Figure (see Caption) Figure 51. Photo of the summit of Klyuchevskoy (right foreground) showing incandescent Strombolian explosions, the lava flow descending the Apakhonchich chute on the SE flank, and a gray ash plume on 29 November 2020. Kamen volcano is the cone at back left. Photo by Y. Demyanchuk (color corrected); courtesy of Volkstat.

Moderate explosive-effusive activity continued through December; a strong daily thermal anomaly was visible in satellite images. During 2-3 December gas-and-steam plumes containing some ash rose to 7 km altitude and extended 300 km NW and E. Intermittent gas-and-ash plumes continued through the month. On 7 December KVERT reported that a new lava flow began to advance down the Kozyrevsky chute on the S flank, while the flow on the SE flank continued. Strombolian explosions in the crater ejected incandescent material up to 300 m above the crater on 8 December while hot material was deposited and traveled 350 m below the crater. A cinder cone was observed growing in the summit crater and measured 75 m tall.

Strombolian and Vulcanian activity continued during 11-25 December, accompanied by the lava flow on the S flank; according to Sentinel-2 thermal satellite images, the effusion on the SE flank had stopped around 13 December and had begun to cool. The lava flow in the Kozyrevsky chute spalled off incandescent material that continued to travel an additional 350 m. Gas-and-steam plumes that contained some ash rose to 6 km altitude and drifted up to 350 km generally E. On 24 December the Kamchatka Volcanological Station field team visited Klyuchevskoy to do work on the field stations. The scientists observed explosions that ejected incandescent material 300 m above the crater and the S-flank lava flow (figure 52). On 28 December KVERT reported that the moderate explosive-effusive eruption continued, but the intensity of the explosions had significantly decreased. The lava flow on the S flank continued to effuse, but its flow rate had already decreased.

Figure (see Caption) Figure 52. Photos of a dense ash plume (left) and a color corrected photo of the lava flow advancing on the S flank (right) of Klyuchevskoy on 24 December 2020, accompanied by incandescent Strombolian explosions and a gray ash plume. Photos by Y. Demyanchuk; courtesy of Volkstat.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent and strong thermal activity beginning in early October and continuing through December 2020, which is represented by the active lava flows reported in the summit crater (figure 53). According to the MODVOLC thermal algorithm, a total of 615 thermal alerts were detected at or near the summit crater from 1 October to 31 December; none were reported in September. Sentinel-2 thermal satellite imagery frequently showed the progression of the active lava flows as a strong thermal anomaly descending the SE flank during October through late November and the SW flank during December, sometimes even through weather clouds (figure 54). The thermal anomalies were commonly accompanied by a gas-and-steam plume that drifted mainly E and NE. A total of 164 VAAC advisories were issued from 2 October through 31 December.

Figure (see Caption) Figure 53. Strong and frequent thermal anomalies were detected in early October at Klyuchevskoy and continued through December 2020, as recorded by the MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 54. Sentinel-2 thermal satellite images showing the progression of two lava flows (bright yellow-orange) originating from the summit crater at Klyuchevskoy from 4 October through December 2020. Crater incandescence was visible on 4 October (top left), which marked the beginning of the lava flow. By 31 October (top right) the active flow had traveled down the Apakhonchich chute on the SE flank, accompanied by a gas-and-steam plume that drifted NE. On 10 November (bottom left) the lava flow continued down the SE flank; the darker black color represents parts of the lava flow that began to cool. The gas-and-steam plume drifted E from the summit. On 25 December (bottom right) a new lava flow was observed descending the SW flank, also accompanied by a strong gas-and-steam plume. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kadovar (Papua New Guinea) — January 2021 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Occasional ash and gas-and-steam plumes along with summit thermal anomalies

Kadovar is located in the Bismark Sea offshore from the mainland of Papua New Guinea about 25 km NNE from the mouth of the Sepik River. Its first confirmed eruption began in early January 2018, characterized by ash plumes and a lava extrusion that resulted in the evacuation of around 600 residents from the N side of the island (BGVN 43:03). Activity has recently consisted of intermittent ash plumes, gas-and-steam plumes, and thermal anomalies (BGVN 45:07). Similar activity continued during this reporting period of July-December 2020 using information from the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

RVO issued an information bulletin on 15 July reporting minor eruptive activity during 1-5 July with moderate light-gray ash emissions rising a few hundred meters above the Main Crater. On 5 July activity intensified; explosions recorded at 1652 and 1815 generated a dense dark gray ash plume that rose 1 km above the crater and drifted W. Activity subsided that day, though fluctuating summit crater incandescence was visible at night. Activity increased again during 8-10 July, characterized by explosions detected on 8 July at 2045, on 9 July at 1145 and 1400, and on 10 July at 0950 and 1125, each of which produced a dark gray ash plume that rose 1 km above the crater. According to Darwin VAAC advisories issued on 10, 16, and 30 July ash plumes were observed rising to 1.5-1.8 km altitude and drifting NW.

Gas-and-steam emissions and occasional ash plumes were observed in Sentinel-2 satellite imagery on clear weather days during August through December (figure 56). Ash plumes rose to 1.2 and 1.5 km altitude on 3 and 16 August, respectively, and drifted NW, according to Darwin VAAC advisories. On 26 August an ash plume rose to 2.1 km altitude and drifted WNW before dissipating within 1-2 hours. Similar activity was reported during September-November, according to several Darwin VAAC reports; ash plumes rose to 0.9-2.1 km altitude and drifted mainly NW. VAAC notices were issued on 12 and 22 September, 4, 7-8, and 18 October, and 18 November. A single MODVOLC alert was issued on 27 November.

Figure (see Caption) Figure 56. Sentinel-2 satellite data showing a consistent gas-and-steam plume originating from the summit of Kadovar during August-December 2020 and drifting NW. On 21 September (top right) a gray plume was seen drifting several kilometers from the island to the NW. Images with “Natural color” (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent low-power anomalies during July through December 2020 (figure 57). Some of this thermal activity in the summit crater was observed in Sentinel-2 thermal satellite imagery, accompanied by gas-and-steam emissions that drifted primarily NW (figure 58).

Figure (see Caption) Figure 57. Intermittent low-power thermal anomalies at Kadovar were detected in the MIROVA graph (Log Radiative Power) during July through December 2020. The island location is mislocated in the MIROVA system by about 5.5 km SE due to older mis-registered imagery; the anomalies are all on the island. Courtesy of MIROVA.
Figure (see Caption) Figure 58. Sentinel-2 satellite data showing thermal anomalies at the summit of Kadovar on 23 July (top left), 7 August (top right), 1 September (bottom left), and 21 September (bottom right) 2020, occasionally accompanied by a gas-and-steam plume drifting dominantly NW. Two thermal anomalies were visible on the E rim of the summit crater on 23 July (top left) and 7 August (top right). Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Tinakula (Solomon Islands) — January 2021 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam plumes and weak thermal anomalies during July-December 2020

Tinakula is located 100 km NE of the Solomon Trench at the N end of the Santa Cruz. The current eruption began in December 2018 and has recently been characterized by intermittent small thermal anomalies and gas-and-steam plumes (BGVN 45:07), which continued into the current reporting period of July-December 2020. Information primarily comes from various satellite data, as ground observations are rarely available.

Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) showed a total of ten low-power thermal anomalies during July through December; one anomaly was detected in early July, two in late August, three in November, and four in December (figure 44). A single MODVOLC alert was issued on 16 December, which was visible in Sentinel-2 thermal satellite imagery on 17 December (figure 45). Though clouds often obscured the view of the summit crater, Sentinel-2 satellite imagery showed intermittent dense gas-and-steam plumes rising from the summit that drifted in different directions (figure 45).

Figure (see Caption) Figure 44. Low-power thermal anomalies at Tinakula were detected intermittently during April-December 2020 by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 45. Sentinel-2 satellite imagery shows ongoing gas-and-steam plumes rising from Tinakula during July-December 2020. A small thermal anomaly (bright yellow-orange) is visible on 17 December (bottom right) using “Atmospheric penetration” (bands 12, 11, 8a) rendering. All other images using “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Erebus (Antarctica) — January 2021 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


Fewer thermal anomalies during 2020 compared to recent years

Erebus, located on Ross Island, Antarctica, and overlooking the McMurdo research station, is the southernmost active volcano in the world. The stratovolcano, which frequently has active lava lakes in its 250-m wide summit crater, is primarily monitored by satellite.

Thermal activity during 2020 was at lower levels than in recent years. The total number of thermal pixels, as recorded by MODIS thermal emission instruments aboard NASA’s Aqua and Terra satellites, was 76 (table 6), similar to low totals recorded in 2000 and 2015.

Table 6. Number of monthly MODIS-MODVOLC thermal alert pixels recorded at Erebus during 2017-2020. See BGVN 42:06 for data from 2000 through 2016. The table was compiled using data provided by the Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec SUM
2017 0 21 9 0 0 1 11 61 76 52 0 3 234
2018 0 21 58 182 55 17 137 172 103 29 0 0 774
2019 2 21 162 151 55 56 75 53 29 19 1 0 624
2020 0 2 16 18 4 4 1 3 18 3 1 6 76

Sentinel-2 satellite images showed two lava lakes, with one diminishing in size during the year (figure 29). Occasionally a gas plume could be observed. The volcano was frequently covered by atmospheric clouds on days when the satellite passed over.

Figure (see Caption) Figure 29. Infrared Sentinel-2 thermal images of the summit crater area of Erebus in 2020. Left: Image on 28 February 2020 showing two lava lakes in the summit crater. Right: Image on 4 October 2020 showing a single primary lake, with a much diminished second lake immediately SW. The main crater is 500 x 600 m wide. Both images are using the Atmospheric Penetration filter (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Aira (Japan) — January 2021 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Intermittent explosions continue during July through December 2020

Sakurajima is the active volcano within the Aira Caldera in Kyushu, Japan. With several craters historically active, the current activity is concentrated in the Minamidake summit crater. Activity usually consists of small explosions producing ashfall and ballistic ejecta, with occasional pyroclastic flows and lahars. The current eruption has been ongoing since 25 March 2017, but activity has been frequent over the past few hundred years. This bulletin summarizes activity that occurred during July through December 2020 and is largely based on reports by the Japan Meteorological Agency (JMA) and satellite data. The Alert Level remains at 3 on a 5-level scale. There was no activity at the Showa crater in 2020.

The number of recorded explosive and ash eruptions for 2020 at the Minamidake crater were 221 and 432, respectively (228 and 393 the previous year). Activity declined in July and remained low through the end of December. There was ash reported on 79 days of the year, most frequently in January, and only 26 of those days during August-December (table 24 and figure 104). The largest ash plumes during this time reached 5 km at 0538 on 9 August, 3 km at 1959 on 17 December, and 3.5 km at 1614 on 29 December. The decline in events was reflected in thermal data, with a decline in energy detected during June through October (figure 105). Recorded SO2 was generally high in the first half of the year then began to decrease from April to around 1,000 tons/day until around late May. Emissions increased after August and were extremely high in October. There were no notable changes in the geothermal areas around the craters.

Table 24. Number of monthly total eruptions, explosive eruptions, days of ashfall, and ashfall amounts from Sakurajima's Minamidake crater at Aira during 2020. Note that smaller events that did not reach the threshold of explosions or eruptions also occurred. Ashfall was measured at Kagoshima Local Meteorological Observatory; ash weights are rounded down to the nearest 0.5 g/m2 and zero values indicate that less than this amount was recorded. Data courtesy of JMA.

MonthExplosive EruptionsAsh EruptionsDays of AshfallAshfall Amount (g/m2)
Jan 2020 65 104 12 75
Feb 2020 67 129 14 21
Mar 2020 10 26 8 3
Apr 2020 14 51 2 0
May 2020 24 51 8 19
Jun 2020 16 28 9 71
Jul 2020 0 0 0 0
Aug 2020 1 1 1 0
Sep 2020 0 7 4 2
Oct 2020 0 2 6 2
Nov 2020 6 8 11 5
Dec 2020 18 25 4 14
Total 2020 221 432 79 212
Figure (see Caption) Figure 104. The total calculated observed ash erupted from Aira's Sakurajima volcano. Top: Annual values from January 1980 to November 2020. Bottom: the monthly values during January 2009 through November 2020. Courtesy of JMA (January 2021 Sakurajima monthly report).
Figure (see Caption) Figure 105. Thermal data detected at Aira's Sakurajima volcano during February through December 2020 by the MIROVA thermal detection system that uses MODIS satellite middle infrared data. There was a decline in activity during June-September, with energy emitted in November-December remaining lower than earlier in the year. Courtesy of MIROVA.

During July "very small" explosions were observed on the 1st, 2nd, and 8th, with the last explosion producing a plume up to 600 m above the crater. These events didn't generate enough of an ash plume to be counted as either a quiet or explosive eruption, leaving no eruptions reported during July. No incandescence was observed at the crater since 3 June. Field surveys on 2, 13, and 21 July detected 600 to 1,300 tons of SO2 per day.

An explosion occurred at 0538 on 9 August, producing an ash plume to 5 km above the crater, dispersing NE (figure 106). This was the largest explosion observed through the Sakurajima surveillance camera since 8 November 2019. Ashfall was reported in Kagoshima City, Aira City, Kirishima City, Yusui Town, and parts of Miyazaki and Kumamoto Prefectures. Ashfall measured to be 300 g/m2 in Shirahama on Sakurajima island (figure 106). No ballistic ejecta were observed due to clouds at the summit, but very small explosions were occasionally observed afterwards.

Figure (see Caption) Figure 106. An explosion at Aira's Sakurajima volcano at 0538 on 9 August 2020 (top, taken from the Ushine surveillance camera in Kagoshima) produced ashfall in Shirahama on Sakurajima (bottom). The plume contains a white steam-rich portion on the left, and a darker relatively ash-rich portion on the right. Images courtesy of JMA (Sakurajima August 2020 monthly report).

A small lake or pond in the eastern Minamidake crater was first observed in PlanetScope satellite imagery on 1 August (through light cloud cover) and intermittently observed when the summit was clear through to the 22nd (figure 107). The summit is obscured by cloud cover in many images before this date. An observation flight on 14 August confirmed weak gas emission from the inner southern wall of the Showa crater, and a 200-m-high gas plume rose from the Minamidake crater, dispersing SE (figure 108). Thermal imaging showed elevated temperatures within the crater. SO2 measurements were conducted during field surveys on the 3rd, 13th, 24th and 31st, with amounts similar to July at 600 to 1,400 tons per day.

Figure (see Caption) Figure 107. A crater lake is visible in the eastern part of the Minamidake summit crater at Aira's Sakurajima volcano on 5, 18, and 22 August 2020. Four-band PlanetScope satellite images courtesy of Planet Labs.
Figure (see Caption) Figure 108. Gas emissions from the Minamidake and Showa craters at Sakurajima in the Aira caldera on 14 August 2020. Photos taken from the from Kagoshima Prefecture disaster prevention helicopter at 1510-1513. Courtesy of JMA (Sakurajima August monthly report).

Activity continued at Minamidake crater throughout September with seven observed eruptions sending plumes up to 1.7 km above the crater, and additional smaller events (figure 109). An ash plume reached 1 km at 0810 on the 15th. Ashfall was reported on four days through the month with a total of 2 g/m2 measured. Incandescence was observed in nighttime surveillance cameras from the 9-10th for the first time since 2 June, then continued through the month. There was an increase in detected SO2, with measurements on the 11th and 25th ranging from 1,300 to 2,000 tons per day.

Figure (see Caption) Figure 109. Examples of activity at Aira's Sakurajima volcano on 4, 10, and 14 September 2020. The images show an ash plume reaching 1.7 km above the crater (top left), a gas-and-steam plume (bottom left), and incandescence at night visible in a gas-and steam plume (right). Images courtesy of JMA (September 2020 Sakurajima monthly report).

During October two eruptions and occasional smaller events occurred at the Minamidake crater and there were six days where ashfall occurred at the Kagoshima Local Meteorology Observatory (including remobilized ash). An ash plume rose to 1.7 km above the crater at 1635 on the 3rd and 1 km on the 30th. Incandescence was observed at night through the month (figure 110). Gas surveys on the 20th, 21st, 23rd, and 26th recorded 2,200-6,600 tons of SO2 per day, which are high to very high levels and a large increase compared to previous months. An observation flight on the 13th confirmed lava in the bottom of the Minamidake crater (figure 111). Gas emissions were rising to 300 m above the Minamidake crater, but no emissions were observed at the Showa crater (figure 112).

Figure (see Caption) Figure 110. Gas emissions and incandescence seen above the Sakurajima Minamidake crater at Aira on 10 and 23 October 2020. Courtesy of JMA (Sakurajima October 2020 monthly report).
Figure (see Caption) Figure 111. Lava was observed on the floor of the Minamidake summit crater at Aira's Sakurajima volcano on 13 October 2020, indicated by the yellow dashed line. Courtesy of JMA (Sakurajima October 2020 monthly report).
Figure (see Caption) Figure 112. An observation flight on 13 October 2020 noted gas emissions up to 300 m above the Minamidake crater at Sakurajima, but no emissions from the Showa crater. Courtesy of JMA (Sakurajima October 2020 monthly report).

Eight ash eruptions and six explosive eruptions occurred during November as well as additional very small events. At 1551 on the 3rd an ash plume reached 1.8 km above the crater and an event at 1335 on the 10th produced large ballistic ejecta out to 600-900 m from the crater (figure 113). Ashfall was reported on 11 days this month (including remobilized ash). Incandescence was observed at night and elevated temperatures in the Minamidake crater were detected by satellites (figure 114). Detected SO2 was lower this month, with amounts ranging between 1,300 and 2,200 on the 9th, 18th and 24th.

Figure (see Caption) Figure 113. Ash plumes at Aira's Sakurajima volcano rise from the Minamidake crater in November 2020. Left: an ash plume rose to 1.8 km above the crater at 1551 on the 3rd and drifted SE. on 3 (left) and 10 (right) November 2020. Right: An explosion at 1335 on the 10th produced an ash plume to 1.6 km above the crater and ballistic ejecta out to 600-900 m, with one projectile indicated by the red arrow. Courtesy of JMA (Sakurajima November 2020 monthly report).
Figure (see Caption) Figure 114. An ash plume drifts SE from the Minamidake crater at Aira's Sakurajima volcano on 8 November 2020. This thermal image also shows elevated temperatures in the crater. Sentinel-2 False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

During December there were 25 ash eruptions and 18 explosive eruptions recorded, with large ballistic ejecta reaching 1.3-1.7 km from the crater (figure 115). An explosion on the 2nd sent an ash plume up to 1 km above the crater and ballistic ejecta out to 1-1.3 km, and an event at 0404 on the 12th produced incandescent ballistic ejecta reached out to 1.3-1.7 km from the crater. At 1959 on 17 December an explosion generated an ash plume up to 3 km above the crater and ejecta out to 1.3-1.7 km. A photograph that day showed an ash plume with volcanic lightning and incandescent ejecta impacting around the crater (figure 116). On the 18th an ash plume reached 1.8 km and ejecta impacted out to 1-1.3 km. An event at 1614 on the 29th produced an ash plume reaching 3.5 km above the crater. Elevated temperatures within the Minamidake crater and plumes were observed intermittently in satellite data through the month (figure 117). This month there were four days where ashfall was recorded with a total of 14 g/m2. Incandescence continued to be observed at night through the month. High levels of gas emission continued, with field surveys on 2nd, 7th, 16th and 21st recording values ranging from 1,500 to 2,900 tons per day at the Observatory located 11 km SW.

Figure (see Caption) Figure 115. Explosions at Aira's Sakurajima volcano from the Minamidake summit crater in December 2020. Top: An explosion recorded at 0404 on the 12th produced incandescent ballistic ejecta out to 1.3-1.7 km from the crater, with an example indicated in the red circle. Bottom: An explosion at 1614 on the 29th produced an ash plume up to 3.5 km above the crater, and ballistic ejecta out to 1.3-1.7 km. Courtesy of JMA (top, from Sakurajima December 2020 monthly report) and Volcano Time Lapse (bottom).
Figure (see Caption) Figure 116. An explosion from Sakurajima's Minamidake crater at Aira produced an ash plume with volcanic lightning on 17 December 2020. Photograph taken from Tarumizu city, courtesy of Kyodo/via Reuters.
Figure (see Caption) Figure 117. Activity at Aira's Sakurajima volcano during December 2020. Top: Sentinel-2 thermal satellite image showing a diffuse gas-and-steam plume dispersing to the SE with elevated temperatures within the Minamidake summit crater on the 22nd. PlanetScope satellite image showing an ash plume dispersing between the N and E on the 26th. Sentinel-2 False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground. PlanetScope satellite image courtesy of Planet Labs.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); Kyodo/via REUTERS, "Photos of the Week" (URL: https://www.reuters.com/news/picture/photos-of-the-week-idUSRTX8HYLR); Volcano Time-Lapse, YouTube (URL: https://www.youtube.com/watch?v=jTgd152oGVo).


Nishinoshima (Japan) — February 2021 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 25 m

All times are local (unless otherwise noted)


Eruption ends in late August 2020; lengthy cooling from extensive lava flows and large crater

Japan’s Nishinoshima volcano, located about 1,000 km S of Tokyo in the Ogasawara Arc, erupted above sea level in November 2013 after 40 years of dormancy. Activity lasted for two years followed by two brief eruptions in 2017 and 2018. The next eruption, from early December 2019 through August 2020, included ash plumes, incandescent ejecta, and lava flows; it produced a large pyroclastic cone with a wide summit crater and extensive lava flows that significantly enlarged the island. This report covers the end of the eruption and cooling during September 2020-January 2021. Information is provided primarily from Japan Meteorological Agency (JMA) monthly reports and the Japan Coast Guard (JCG), which makes regular observation overflights.

Ash emissions were last reported on 27 August 2020. The very high levels of thermal energy from numerous lava flows, ash, and incandescent tephra that peaked during early July decreased significantly during August and September. Continued cooling of the fresh lava and the summit crater lasted into early January 2021 (figure 107). Monthly overflights and observations by scientists confirmed areas of steam emissions at the summit and on the flanks and discolored water around the island, but no eruptive activity.

Figure (see Caption) Figure 107. High levels of thermal activity at Nishinoshima during June and July 2020 resulted from extensive lava flows and explosions of incandescent tephra. Although the last ash emission was reported on 27 August 2020, cooling of new material lasted into early January 2021. The MIROVA log radiative power graph of thermal activity covers the year ending on 3 February 2021. Courtesy of MIROVA.

Thermal activity declined significantly at Nishinoshima during August 2020 (BGVN 45:09). Only two days had two MODVOLC alerts (11 and 30), and four other days (18, 20, 21, 29) had single alerts. During JCG overflights on 19 and 23 August there were no ash emissions or lava flows observed, although steam plumes rose over 2 km above the summit crater during both visits. The last ash emission was reported by the Tokyo VAAC on 27 August 2020. No eruptive activity was observed by JMA during an overflight on 5 September, but steam plumes were rising from the summit crater (figure 108). No significant changes were observed in the shape of the pyroclastic cone or the coastline. Yellowish brown discolored water appeared around the western half of the island, and high temperature was still measured on the inner wall of the crater. Faint traces of SO2 plumes were present in satellite images in early September; the last plume identified was on 18 September. Six days with single MODVOLC alerts were recorded during 3-19 September, and the final thermal alert appeared on 1 October 2020.

Figure (see Caption) Figure 108. No eruptive activity was observed during a JMA overflight of Nishinoshima on 5 September 2020, but steam rose from numerous places within the enlarged summit crater (inset). Courtesy of JMA and JCG (Monthly report of activity at Nishinoshima, September 2020).

Steam plumes and high temperatures were noted at the summit crater on 28 October, and brown discolored water was present around the S coast of the island (figure 109), but there were no other signs of volcanic activity. Observations from the sea conducted on 2 November 2020 by researchers aboard the Maritime Meteorological Observatory marine weather observation ship "Ryofu Maru" confirmed there was no ongoing eruptive activity. In addition to steam plumes at the summit, they also noted steam rising from multiple cracks on the cooling surface of the lava flow area on the N side of the pyroclastic cone (figure 110). Only steam plumes from inside the summit crater were observed during an overflight on 24 November.

Figure (see Caption) Figure 109. On a JCG overflight above Nishinoshima on 28 October 2020 there were no signs of eruptive activity; steam plumes were present in the summit crater and brown discolored water was visible around the S coast of the island. Courtesy of JMA and JCG (Monthly report of activity at Nishinoshima, October 2020).
Figure (see Caption) Figure 110. Observations of Nishinoshima by staff aboard the Maritime Meteorological Observatory ship "Ryofu Maru" on 2 November 2020 showed a steam plume rising from the lava flow area on the N side of the pyroclastic cone (arrow) and minor steam above the cone. Courtesy of JMA (Monthly report of activity at Nishinoshima, November 2020).

JMA reduced the warning area around the crater on 18 December 2020 from 2.5 to 1.5 km due to decreased activity. On 7 December a steam plume rose from the inner wall of the summit crater and thermal imaging indicated the area was still hot. Brown discolored water was observed on the SE and SW coasts. Researchers aboard a ship from the Earthquake Research Institute at the University of Tokyo and the Marine Research and Development Organization reported continued steam plumes in the summit crater, around the lava flows on the N flank, and along the S coast during 15-29 December (figure 111). Steam plumes and elevated temperatures were still measured inside the summit crater during an overflight by the Japan Coast Guard on 25 January 2021, and discolored water persisted on the SE and SW coasts; there was no evidence of eruptive activity.

Figure (see Caption) Figure 111. Observations of Nishinoshima from the sea by researchers from the Earthquake Research Institute (University of Tokyo) and the Marine Research and Development Organization, which took place from 15-29 December 2020, showed fumarolic acitivity not only inside the summit crater, but also in the lava flow area on the N side of the pyroclastic cone (left, 20 December) and in places along the southern coast (right, 23 December). (Monthly report of activity at Nishinoshima, December 2020).

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: http://www.kaiho.mlit.go.jp/info/kouhou/h29/index.html); Volcano Research Center (VRC-ERI), Earthquake Research Institute, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan (URL: http://www.eri.u-tokyo.ac.jp/topics/ASAMA2004/index-e.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Nyiragongo (DR Congo) — December 2020 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Strong thermal anomalies and gas emission from lava lake through November 2020

Nyiragongo is a stratovolcano in the DR Congo with a deep summit crater containing a lava lake and a small active cone. During June 2018-May 2020, the volcano exhibited strong thermal signals primarily due to the lava lake, along with incandescence, seismicity, and gas-and-steam plumes (BGVN 44:05, 44:12, 45:06). The volcano is monitored by the Observatoire Volcanologique de Goma (OVG). This report summarizes activity during June-November 2020, based on satellite data.

Infrared MODIS satellite data showed almost daily strong thermal activity during June-November 2020 from MIROVA (Middle InfraRed Observation of Volcanic Activity), consistent with a large lava lake. Numerous hotspots were also identified every month by MODVOLC. Although clouds frequently obscured the view from space, a clear Sentinel-2 image in early June showed a gas-and-steam plume as well as a strong thermal anomaly (figure 76).

Figure (see Caption) Figure 76. Sentinel-2 satellite imagery of Nyiragongo on 1 June 2020. A gas-and-steam is visible in the natural color image (bands 4, 3, 2) rising from a pit in the center of the crater (left), while the false color image (bands 12, 11, 4) reveals a strong thermal signal from a lava lake (right). Courtesy of Sentinel Hub Playground.

During the first half of June 2020, OVG reported that SO2 levels had decreased compared to levels in May (7,000 tons/day); during the second half of June the SO2 flux began to increase again. High levels of sulfur dioxide were recorded almost every day in the region above or near the volcano by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite (figure 77). According to OVG, SO2 flux ranged from 819-5,819 tons/day during June. The number of days with a high SO2 flux decreased somewhat in July and August, with high levels recorded during about half of the days. The volume of SO2 emissions slightly increased in early July, based on data from the DOAS station in Rusayo, measuring 6,787 tons/day on 8 July (the highest value reported during this reporting period), and then declined to 509 tons/day by 20 July. The SO2 flux continued to gradually decline, with high values of 5,153 tons/day in August and 4,468 tons/day in September. The number of days with high SO2 decreased further in September and October but returned to about half of the days in November.

Figure (see Caption) Figure 77. TROPOMI image of SO2 plume on 27 June 2020 in the Nyiragongo-Nyamulagira area. The plume drifted SSE. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

During 12-13 July a multidisciplinary team of OVG scientists visited the volcano to take measurements of the crater using a TCRM1102 Plus2 laser. They noted that the crater had expanded by 47.3 mm in the SW area, due to the rise in the lava lake level since early 2020. The OVG team took photos of the small cone in the lava lake that has been active since 2014, recently characterized by white gas-and-steam emissions (figure 78). OVG noted that the active lava lake had subsided roughly 20 m (figure78).

Figure (see Caption) Figure 78. Photos (color corrected) of the crater at Nyiragongo showing the small active cone generating gas-and-steam emissions (left) and the active lava lake also characterized by white gas-and-steam emissions on 12 July 2020 (right). Courtesy of OVG (Rapport OVG Juillet 2020).

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Whakaari/White Island (New Zealand) — December 2020 Citation iconCite this Report

Whakaari/White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Gas-and-steam emissions with some re-suspended ash in November 2020

Whakaari/White Island, located in the Bay of Plenty 50 km offshore of North Island, has been New Zealand’s most active volcano since 1976. Activity has been previously characterized by phreatic activity, explosions, and ash emissions (BGVN 42:05). The most recent eruption occurred on 9 December 2019, which consisted of an explosion that generated an ash plume and pyroclastic surge that affected the entire crater area, resulting in 21 fatalities and many injuries (BGVN 45:02). This report updates information from February through November 2020, which includes dominantly gas-and-steam emissions along with elevated surface temperatures, using reports from the New Zealand GeoNet Project, the Wellington Volcanic Ash Advisory Centre (VAAC), and satellite data.

Activity at Whakaari/White Island has declined and has been dominated by white gas-and-steam emissions during the reporting period; no explosive eruptive activity has been detected since 9 December 2019. During February through 22 June, the Volcanic Activity Level (VAL) remained at a 2 (moderate to heightened volcanic unrest) and the Aviation Color Code was Yellow. GeoNet reported that satellite data showed some subsidence along the W wall of the Main Crater and near the 1914 landslide scarp, though the rate had reduced compared to previous months. Thermal infrared data indicated that the fumarolic gases and five lobes of lava that were first observed in early January 2020 in the Main Crater were 550-570°C on 4 February and 660°C on 19 February. A small pond of water had begun to form in the vent area and exhibited small-scale gas-and-steam-driven water jetting, similar to the activity during September-December 2019. Gas data showed a steady decline in SO2 and CO2 levels, though overall they were still slightly elevated.

Similar activity was reported in March and April; the temperatures of the fumaroles and lava in the Main Crater were 746°C on 10 March, the highest recorded temperature to date. SO2 and CO2 gas emissions remained elevated, though had overall decreased since December 2019. Small-scale water jetting continued to be observed in the vent area. During April, public reports mentioned heightened gas-and-steam activity, but no eruptions were detected. A GeoNet report issued on 16 April stated that high temperatures were apparent in the vent area at night.

Whakaari remained at an elevated state of unrest during May, consisting of dominantly gas-and-steam emissions. Monitoring flights noted that SO2 and CO2 emissions had increased briefly during 20-27 May. On 20 May, the lava lobes remained hot, with temperatures around 500°C; a nighttime glow from the gas emissions surrounding the lava was visible in webcam images. Tremor levels remained low with occasional slightly elevated episodes, which included some shallow-source volcanic earthquakes. Satellite-based measurements recorded several centimeters of subsidence in the ground around the active vent area since December 2019. During a gas observation flight on 28 May there was a short-lived gas pulse, accompanied by an increase in SO2 and CO2 emissions, and minor inflation in the vent area (figure 96).

Figure (see Caption) Figure 96. Photo of a strong gas-and-steam plume rising above Whakaari/White Island on 28 May 2020. Courtesy of GeoNet.

An observation flight made on 3 June reported a decline in gas flux compared to the measurements made on 28 May. Thermal infrared images taken during the flight showed that the lava lobes were still hot, at 450°C, and continued to generate incandescence that was visible at night in webcams. On 16 June the VAL was lowered to 1 (minor volcanic unrest) and on 22 June the Aviation Color Code had decreased to Green.

Minor volcanic unrest continued in July; the level of volcanic tremors has remained generally low, with the exception of two short bursts of moderate volcanic tremors in at the beginning of the month. Temperatures in the active vents remained high (540°C) and volcanic gases persisted at moderate rate, similar to those measured since May, according to an observation flight made during the week of 30 July. Subsidence continued to be observed in the active vent area, as well as along the main crater wall, S and W of the active vents. Recent rainfall has created small ponds of water on the crater floor, though they did not infiltrate the vent areas.

Gas-and-steam emissions persisted during August through October at relatively high rates (figures 97 and 98). A short episode of moderate volcanic tremor was detected in early August, but otherwise seismicity remained low. Updated temperatures of the active vent area were 440°C on 15 September, which had decreased 100°C since July. Rain continued to collect at the crater floor, forming a small lake; minor areas of gas-and-steam emissions can be seen in this lake. Ongoing subsidence was observed on the Main Crater wall and S and W of the 2019 active vents.

Figure (see Caption) Figure 97. Photo of an observation flight over Whakaari/White Island on 8 September 2020 showing white gas-and-steam emissions from the vent area. Photo courtesy of Brad Scott, GeoNet.
Figure (see Caption) Figure 98. Image of Whakaari/White Island from Whakatane in the North Island of New Zealand showing a white gas-and-steam plume on 26 October 2020. Courtesy of GeoNet.

Activity during November was primarily characterized by persistent, moderate-to-large gas-and-steam plumes that drifted downwind for several kilometers but did not reach the mainland. The SO2 flux was 618 tons/day and the CO2 flux was 2,390 tons/day. New observations on 11 November noted some occasional ash deposits on the webcams in conjunction with mainland reports of a darker than usual plume (figure 99). Satellite images provided by MetService, courtesy of the Japan Meteorological Agency, confirmed the ash emission, but later images showed little to no apparent ash; GNS confirmed that no eruptive activity had occurred. Initial analyses indicated that the ash originated from loose material around the vent was being entrained into the gas-and-steam plumes. Observations from an overflight on 12 November showed that there was no substantial change in the location and size of the active vents; rainfall continued to collect on the floor of the 1978/90 Crater, reforming the shallow lake. A small sequence of earthquakes was detected close to the volcano with several episodes of slightly increased volcanic tremors.

During 12-14 November the Wellington VAAC issued multiple advisories noting gas, steam, and ash plumes that rose to 1.5-1.8 km altitude and drifted E and SE, based on satellite data, reports from pilots, and reports from GeoNet. As a result, the VAL was increased to 2 and the Aviation Color Code was raised to Yellow. Scientists on another observation flight on 16 November reported that small amounts of ash continued to be present in gas-and-steam emissions, though laboratory analyses showed that this ash was resuspended material and not from new eruptive or magmatic activity. The SO2 and CO2 flux remained above background levels but were slightly lower than the previous week’s measurements: 710 tons/day and 1,937 tons/day. Seismicity was similar to the previous week, characterized by a sequence of small earthquakes, a larger than normal volcanic earthquake located near the volcano, and ongoing low-level volcanic tremors. During 16-17 November plumes with resuspended ash were observed rising to 460 m altitude, drifting E and NE, according to a VAAC advisory (figure 99). During 20-24 November gas-and-steam emissions that contained a minor amount of resuspended ash rose to 1.2 km altitude and drifted in multiple directions, based on webcam and satellite images and information from GeoNet.

Figure (see Caption) Figure 99. Left: Photo of a gas observation flight over Whakaari/White Island on 11 November 2020 showing some dark particles in the gas-and-steam plumes, which were deposited on some webcams. Photo has been color corrected and straightened. Courtesy of GeoNet. Right: Photo showing gas, steam, and ash emissions rising above the 2019 Main Crater area on 16 November 2020. Courtesy of GNS Science (17 November 2020 report).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a total of eleven low-power thermal anomalies during January to late March 2020; a single weak thermal anomaly was detected in early July (figure 100). The elevated surface temperatures during February-May 2020 were detected in Sentinel-2 thermal satellite images in the Main Crater area, occasionally accompanied by gas-and-steam emissions (figure 101). Persistent white gas-and-steam emissions rising above the Main Crater area were observed in satellite imagery on clear weather days and drifting in multiple directions (figure 102). The small lake that had formed due to rainfall was also visible to the E of the active vents.

Figure (see Caption) Figure 100. Low-power, infrequent thermal activity at Whakaari/White Island was detected during January through late March 2020, as reflected in the MIROVA data (Log Radiative Power). A single thermal anomaly was shown in early July. Courtesy of MIROVA.
Figure (see Caption) Figure 101. Sentinel-2 thermal satellite images in the Main Crater area of Whakaari/White Island show residual elevated temperatures from the December 2019 eruption, accompanied by gas-and-steam emissions and drifting in different directions during February-May 2020. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 102. Sentinel-2 images showing persistent white gas-and-steam plumes rising from Main Crater area of Whakaari/White Island during March-November 2020 and drifting in multiple directions. A small pond of water (light blue-green) is visible in the vent area to the E of the plumes. On 11 November (bottom right), the color of the plume is gray and contains a small amount of ash. Images using “Natural color” rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari ("The Dramatic Volcano") and White Island (referencing the constant steam plume) given by Captain James Cook in 1769.

Information Contacts: New Zealand GeoNet Project, a collaboration between the Earthquake Commission and GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.geonet.org.nz/); GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brad Scott, GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: https://twitter.com/Eruptn).


Kerinci (Indonesia) — December 2020 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent ash plumes and gas-and-steam emissions during June-November 2020

Kerinci, located in Sumatra, Indonesia, has had numerous explosive eruptions since 1838, with more recent activity characterized by gas-and-steam and ash plumes. The current eruptive episode began in April 2018 and has recently consisted of intermittent brown ash emissions and white gas-and-steam emissions (BGVN 45:07); similar activity continued from June through November 2020. Information primarily comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data.

Activity has been characterized by dominantly white and brown gas-and-steam emissions and occasional ash plumes, according to PVMBG. Near daily gas-and-steam emissions were observed rising 50-6,400 m above the crater throughout the reporting period: beginning in late July and continuing intermittently though November. Sentinel-2 satellite imagery showed frequent brown emissions rising above the summit crater at varying intensities and drifting in different directions from July to November (figure 21).

Figure (see Caption) Figure 21. Sentinel-2 satellite imagery of brown emissions at Kerinci from July through November 2020 drifting in multiple directions. On 27 July (top left) the brown emissions drifted SW. On 31 August (top right) the brown emissions drifted W. On 2 September (bottom left) slightly weaker brown emissions drifting W. On 4 November (bottom right) weak brown emissions mostly remained within the crater, some of which drifted E. Images using “Natural Color” rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.

During June through July the only activity reported by PVMBG consisted of white gas-and-steam emissions and brown emissions. On 4 June white gas-and-steam emissions rose to a maximum height of 6.4 km above the crater. White-and-brown emissions rose to a maximum height of 700 m above the crater on 2 June and 28 July.

Continuous white-and-brown gas-and-steam emissions were reported in August that rose 50-1,000 m above the crater. The number of ash plumes reported during this month increased compared to the previous months. In a Volcano Observatory Notice for Aviation (VONA) issued on 7 August at 1024, PVMBG reported an ash plume that rose 600 m above the crater and drifted E, SE, and NE. In addition, the Darwin VAAC released two notices that described continuous minor ash emissions rising to 4.3 km altitude and drifting E and NE. On 9 August an ash plume rose 600 m above the crater and drifted ENE at 1140. An ash plume was observed rising to a maximum of 1 km above the crater, drifting E, SE, and NE on 12 August at 1602, according to a PVMBG VONA and Darwin VAAC advisory. The following day, brown emissions rose to a maximum of 1 km above the crater and were accompanied by a 600-m-high ash plume that drifted ENE at 1225. Ground observers on 15 August reported an eruption column that rose to 4.6 km altitude; PVMBG described brown ash emissions up to 800 m above the crater drifting NW at 0731 (figure 22). During 20-21 August pilots reported an ash plume rising 150-770 m above the crater drifting NE and SW, respectively.

Figure (see Caption) Figure 22. Webcam image of an ash plume rising above Kerinci on 15 August 2020. Courtesy of MAGMA Indonesia.

Activity in September had decreased slightly compared to the previous month, characterized by only white-and-brown gas-and-steam emissions that rose 50-300 m above the crater; solely brown emissions were observed on 30 September and rose 50-100 m above the crater. This low level of activity persisted into October, with white gas-and-steam emissions to 50-200 m above the crater and brown emissions rising 50-300 m above the crater. On 16 October PVMBG released a VONA at 0340 that reported an ash plume rising 687 m above the crater and drifting NE. On 17 October white, brown, and black ash plumes that rose 100-800 m above the crater drifted NE according to both PVMBG and a Darwin VAAC advisory (figure 23). During 18-19 October white, brown, and black ash emissions rose up to 400 m above the crater and drifted NE and E.

Figure (see Caption) Figure 23. Webcam image of a brown ash emission from Kerinci on 17 October 2020. Courtesy of MAGMA Indonesia.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Suwanosejima (Japan) — January 2021 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Explosion rate increases during July-December 2020, bomb ejected 1.3 km from crater on 28 December

Suwanosejima, an andesitic stratovolcano in Japan's northern Ryukyu Islands, was intermittently active for much of the 20th century, producing ash plumes, Strombolian explosions, and ashfall. Continuous activity since October 2004 has included intermittent explosions which generate ash plumes that rise hundreds of meters above the summit to altitudes between 1 and 3 km. Incandescence is often observed at night and ejecta periodically reaches over a kilometer from the summit. Ashfall is usually noted several times each month in the nearby community on the SW flank of the island. Ongoing activity for the second half of 2020, which includes significantly increased activity in December, is covered in this report with information provided by the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

A steady increase in activity was reported during July-December 2020. The number of explosions recorded increased each month from only six during July to 460 during December. The energy of the explosions increased as well; ejecta was reported 600 m from the crater during August, but a large bomb reached 1.3 km from the crater at the end of December. After an increased period of explosions late in December, JMA raised the Alert Level from 2 to 3 on a 5-level scale. The MIROVA graph of thermal activity indicated intermittent anomalies from July through December 2020, with a pulse of activity in the second half of December (figure 48).

Figure (see Caption) Figure 48. MIROVA thermal activity for Suwanosejima for the period from 3 February through December 2020 shows pulses of activity in February and April, with intermittent anomalies until another period of frequent stronger activity in December. Courtesy of MIROVA.

Six explosions were recorded during July 2020, compared with only one during June. According to JMA, the tallest plume rose 2,000 m above the crater rim. Incandescent ejecta was occasionally observed at night. The Tokyo VAAC reported a number of ash plumes that rose to 1.2-2.7 km altitude and drifted NW and W during the second half of the month (figure 49). Activity increased during August 2020 when thirteen explosions were reported. The Tokyo VAAC reported a few ash plumes during 1-6 August that rose to 1.8-2.4 km altitude and drifted NW; a larger pulse of activity during 18-22 August produced plumes that rose to altitudes ranging from 1.8 to over 2.7 km. Ashfall was reported on 19 and 20 August in the village located 4 km SSW of the crater; incandescence was visible at the summit and ash plumes drifted SW in satellite imagery on 19 August (figure 50). A MODVOLC thermal alert was issued on 19 August. On 21 August a large bomb was ejected 600 m from the Otake crater in an explosion early in the day; later that afternoon, an ash plume rose to more than 2,000 m above the crater rim. During 19-22 August, SO2 emissions were recorded each day by the TROPOMI instrument on the Sentinel-5P satellite (figure 51).

Figure (see Caption) Figure 49. An ash emission at Suwanosejima rose to 2.7 km altitude and drifted NW on 27 July 2020. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, July 2020).
Figure (see Caption) Figure 50. Ash drifted SW from the summit crater of Suwanosejima on 19 August 2020 and a bright thermal anomaly was present at the summit. Residents of the village 4 km SW reported ashfall that day and the next. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 51. A period of increased activity at Suwanosejima during 19-22 August 2020 produced SO2 emissions that were measured by the TROPOMI instrument on the Sentinel-5P satellite. Nishinoshima, was also producing significant SO2 at the same time. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Thirteen explosions were recorded during September 2020, with the highest ash plumes reaching 2,000 m above the crater rim, and bombs falling 400 m from the crater. Ashfall was recorded on 20 September in the community located 4 km SSW. The Tokyo VAAC reported intermittent ash plumes during the month that rose to 1.2-2.1 km altitude and drifted in several directions. Incandescence was frequently observed at night (figure 52). Explosive activity increased during October with 22 explosions recorded. Ash plumes rose over 2,000 m above the crater rim, and bombs reached 700 m from the crater. Steam plumes rose 2,300 m above the crater rim. Ashfall and loud noises were confirmed several times between 2 and 14 October in the nearby village. A MODVOLC thermal alert was issued on 6 October. The Tokyo VAAC reported multiple ash plumes throughout the month; they usually rose to 1.5-2.1 km altitude and drifted in many directions. The plume on 28 October rose to over 2.7 km altitude and was stationary.

Figure (see Caption) Figure 52. Incandescence at night and ash emissions were observed multiple times at Suwanosejima during September and October 2020 including on 21 and 26 September (top) and 29 October 2020. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, September and October 2020).

Frequent explosions occurred during November 2020, with a sharp increase in the number of explosions to 105 events compared with October. Ash plumes rose to 1,800 m above the crater rim and bombs were ejected 700 m. Occasional ashfall and loud noises were reported from the nearby community throughout the month. Scientists measured no specific changes to the surface temperature around the volcano during an overflight early on 5 November compared with the previous year. At 0818 on 5 November a small ash explosion at the summit crater was photographed by the crew during an observation flight (figure 53). On 12 and 13 November, incandescent ejecta fell 600 m from the crater and ash emissions rose 1,500 m above the crater rim (figure 54).

Figure (see Caption) Figure 53. A minor explosion produced a small ash plume at Suwanosejima during an overflight by JMA on the morning of 5 November 2020. The thermal activity was concentrated at the base of the explosion (inset). Image taken from off the E coast. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, November 2020).
Figure (see Caption) Figure 54. On 12 and 13 November 2020 incandescent ejecta from Suwanosejima reached 600 m from the crater (top) and ash emissions rose 1,500 m above the crater rim (bottom). Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, November 2020).

During December 2020 there were 460 explosions reported, a significant increase from the previous months. Ash plumes reached 1,800 m above the summit. Three MODVOLC thermal alerts were issued on 25 December and two were issued the next day. The number of explosions increased substantially at the Otake crater between 21 and 29 December, and early on 28 December a large bomb was ejected to 1.3 km SE of the crater (figure 55). A second explosion a few hours later ejected another bomb 1.1 km SE. An overflight later that day confirmed the explosion, and ash emissions were still visible (figure 56), although cloudy weather prevented views of the crater. Ashfall was noted and loud sounds heard in the nearby village. A summary graph of observations throughout 2020 indicated that activity was high from January through May, quieter during June, and then increased again from July through the end of the year (figure 57).

Figure (see Caption) Figure 55. Early on 28 December 2020 a large explosion at Suwanosejima sent a volcanic bomb 1.3 km SE from the summit (bright spot on left flank in large photo). Thermal imaging taken the same day showed the heat at the eruption site and multiple fragments of warm ejecta scattered around the crater area (inset). Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, December 2020).
Figure (see Caption) Figure 56. Ash emissions were still visible midday on 28 December 2020 at Suwanosejima during a helicopter overflight by the 10th Regional Coast Guard. Image taken from the SW flank of the volcano. Two large explosions earlier in the day had sent ejecta more than a kilometer from the crater. Courtesy of JMA (Volcanic activity commentary material on Suwanosejima, December 2020).
Figure (see Caption) Figure 57. Activity summary for Suwanosejima for January-December 2020 when 764 explosions were recorded. Black bars represent the height of steam, gas, or ash plumes in meters above the crater rim, gray volcano icons represent explosions, usually accompanied by an ash plume, red icons represent large explosions with ash plumes, orange diamonds indicate incandescence observed in webcams. Courtesy of JMA (Suwanosejima volcanic activity annual report, 2020).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Karangetang (Indonesia) — December 2020 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Hot material on the NW flank in November 2020; intermittent crater thermal anomalies

Karangetang (also known as Api Siau) is located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia and consists of two active summit craters: a N crater (Kawah Dua) and a S crater (Kawah Utama, also referred to as the “Main Crater”). More than 50 eruptions have been observed since 1675. The current eruption began in November 2018 and has recently been characterized by frequent incandescent block avalanches, thermal anomalies in the crater, and gas-and-steam plumes (BGVN 45:06). This report covers activity from June through November 2020, which includes dominantly crater anomalies, few ash plumes, and gas-and-steam emissions. Information primarily comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, and various satellite data.

Activity decreased significantly after mid-January 2020 and has been characterized by dominantly gas-and-steam emissions and occasional ash plumes, according to PVMBG. Daily gas-and-steam emissions were observed rising 25-600 m above the Main Crater (S crater) during the reporting period and intermittent emissions rising 25-300 m above Kawah Dua (N crater).

The only activity reported by PVMBG in June, August, and October was daily gas-and-steam emissions above the Main Crater and Kawah Dua (figure 47). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows intermittent low-power thermal anomalies during June through late July, which includes a slight increase in power during late July (figure 48). During 14-15 July strong rumbling from Kawah Dua was accompanied by white-gray emissions that rose 150-200 m above the crater. Crater incandescence was observed up to 10 m above the crater. According to webcam imagery from MAGMA Indonesia, intermittent incandescence was observed at night from both craters through 25 July. In a Volcano Observatory Notice for Aviation (VONA) issued on 5 September, PVMBG reported an ash plume that rose 800 m above the crater.

Figure (see Caption) Figure 47. Webcam image of gas-and-steam plumes rising above the two summit craters at Karangetang on 16 June 2020. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 48. Intermittent low-power thermal anomalies at Karangetang were reported during June through July 2020 with a slight increase in power in late July, according to the MIROVA graph (Log Radiative Power). No thermal activity was detected during August to late October; in mid-November a short episode of increased activity occurred. Courtesy of MIROVA.

Thermal activity increased briefly during mid-November when hot material was reported extending 500-1,000 m NW of the Main Crater, accompanied by gas-and-steam emissions rising 200 m above the crater. Corresponding detection of MODIS thermal anomalies was seen in MIROVA graphs (see figure 48), and the MODVOLC system showed alerts on 13 and 15 November. On 16 November blue emissions were observed above the Main Crater drifting W. Sentinel-2 thermal images showed elevated temperatures in both summit craters throughout the reporting period, accompanied by gas-and-steam emissions and movement of hot material on the NW flank on 19 November (figure 49). White gas-and-steam emissions rose to a maximum height of 300 m above Kawah Dua on 22 November and 600 m above the Main Crater on 28 November.

Figure (see Caption) Figure 49. Persistent thermal anomalies (bright yellow-orange) at Karangetang were detected in both summit craters using Sentinel-2 thermal satellite imagery during June through November 2020. Gas-and-steam emissions were also occasionally detected in both craters as seen on 17 June (top left) and 20 September (bottom left) 2020. On 19 November (bottom right) the Main Crater (S) showed a hot thermal signature extending NW. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevado del Ruiz (Colombia) — January 2021 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Dome growth and ash emissions continue during July-December 2020

Colombia’s broad, glacier-capped Nevado del Ruiz has an eruption history documented back 8,600 years, including documented observations since 1570. Ruiz remained quiet for 20 years after the deadly September 1985-July 1991 eruption until a period of explosive activity from February 2012 into 2013. Renewed activity beginning in November 2014 included ash and gas-and-steam plumes, ashfall, and the appearance of a slowly growing lava dome inside the Arenas crater in August 2015. Additional information has caused a revision to earlier reporting that eruptive activity ended in May 2017 and began again that December (BGVN 44:12); activity appears to have continued throughout 2017 with intermittent ash emissions and thermal evidence of dome growth. Periods of increased thermal activity alternated with periods of increased explosive activity during 2018-2019 and into 2020; SO2 emissions persisted at significant levels. The lava dome has continued to grow through 2020. This report covers ongoing activity from July-December 2020 using information from reports by the Servicio Geologico Colombiano (SGC) and the Observatorio Vulcanológico y Sismológico de Manizales, the Washington Volcanic Ash Advisory Center (VAAC) notices, and various sources of satellite data.

Gas and ash emissions continued throughout July-December 2020; they generally rose to 5.8-6.1 km altitude with the highest reported plume at 6.7 km altitude on 7 December. SGC interpreted repeated episodes of “drumbeat seismicity” as an indication of continued dome growth throughout the period. Satellite thermal anomalies also suggested that dome growth continued. The MIROVA graph of thermal activity suggests that the dome was quiet in July and early August, but small pulses of thermal energy were recorded every few weeks for the remainder of 2020 (figure 115). Plots of the cumulative number and magnitude of seismic events at Nevado del Ruiz between January 2010 and November 2020 show a stable trend with periodic sharp increases in activity or magnitude throughout that time. SGC has adjusted the warning levels over time according to changes in the slope of the curves (figure 116).

Figure (see Caption) Figure 115. Thermal energy shown in the MIROVA graph of log radiative power at Nevado del Ruiz from 3 February 2020 through the end of the year indicates that higher levels of thermal energy lasted through April 2020; a quieter period from late May-early August was followed by low-level persistent anomalies through the end of the year. Courtesy of MIROVA.
Figure (see Caption) Figure 116. Changes in seismic frequency and energy at Nevado del Ruiz have been monitored by SGC for many years. Left: the cumulative number of daily VT, LP-VLP, TR, and HB seismic events, recorded between 1 January 2010 and 30 November 2020. The arrows highlight the days with the highest number of seismic events; the number and type of event is shown under the date. Right: The cumulative VT and HB seismic energy recorded between 1 January 2010 and 30 November 2020. The arrows highlight the days with the highest energy; the local magnitude of the event is shown below the date. SGC has adjusted the warning levels over time (bar across the bottom of each graph) according to changes in the slope of the curves. Courtesy of SGC (INFORME TÉCNICO – OPERATIVO DE LA ACTIVIDAD VOLCÁNICA, SEGMENTO VOLCÁNICO NORTE DE COLOMBIA – NOVIEMBRE DE 2020).

Activity during July-December 2020. Seismic energy increased during July compared to June 2020 with events localized around the Arenas crater. The depth of the seismicity varied from 0.3-7.8 km. Some of these signals were associated with small emissions of gas and ash, which were confirmed through webcams and by reports from officials of the Los Nevados National Natural Park (NNNP). The Washington VAAC reported a possible ash emission on 8 July that rose to 6.1 km altitude and drifted NW. On 21 July a webcam image showed an ash emission that rose to the same altitude and drifted W; it was seen in satellite imagery possibly extending 35 km from the summit but was difficult to confirm due to weather clouds. Short- to moderate-duration (less than 40 minutes) episodes of drumbeat seismicity were recorded on 5, 13, 17, and 21 July. SCG interprets this type of seismic activity as related to the growth of the Arenas crater lava dome. Primarily WNW drifting plumes of steam and SO2 were observed in the webcams daily. The gas was occasionally incandescent at night. The tallest plume of gas and ash reached 1,000 m above the crater rim on 30 July and was associated with a low-energy tremor pulse; it produced ashfall in parts of Manizales and nearby communities (figure 117).

Figure (see Caption) Figure 117. Images captured by a traditional camera (top) and a thermal camera (bottom) at Nevado del Ruiz showed a small ash emission in the early morning of 30 July 2020. Ashfall was reported in Manizales. The cameras are located 3.7 km W of the Arenas crater. Courtesy of SGC (Emisión de ceniza Volcan Nevado del Ruiz Julio 30 de 2020).

Seismicity increased in August 2020 with respect to July. Some of the LP and TR (tremor) seismicity was associated with small emissions of gas and ash, confirmed by web cameras, park personnel, and the Washington VAAC. The Washington VAAC received a report from the Bogota MWO of an ash emission on 1 August that rose to 6.1 km altitude and drifted NW; it was not visible in satellite imagery. Various episodes of short duration drumbeat seismicity were recorded during the month. The tallest steam and gas plume reached 1,800 m above the rim on 31 August. Despite the fact that in August the meteorological conditions made it difficult to monitor the surface activity of the volcano, three ash emissions were confirmed by SGC.

Seismicity decreased during September 2020 with respect to August. Some of the LP and TR (tremor) seismicity was associated with small emissions of gas and ash, confirmed by web cameras, park personnel and the Washington VAAC. The Washington VAAC reported an ash emission on 16 September that rose to 6.1 km altitude and drifted NW. A minor ash emission on 20 September drifted W from the summit at 5.8 km altitude. A possible emission on 23 September drifted NW at 6.1 km altitude for a brief period before dissipating. Two emissions were reported drifting WNW of the summit on 26 September at 5.8 and 5.5 km altitude. Continuous volcanic tremors were registered throughout September, with the higher energy activity during the second half of the month. One episode of drumbeat seismicity on 15 September lasted for 38 minutes and consisted of 25 very low energy earthquakes. Steam and gas plumes reached 1,800 m above the crater rim during 17-28 September (figure 118). Five emissions of ash were confirmed by the webcams and park officials during the month, in spite of difficult meteorological conditions; three of them occurred between 15 and 20 September.

Figure (see Caption) Figure 118. A dense plume of steam rose from Nevado del Ruiz in the morning of 17 September 2020. Courtesy of Gonzalo.

Seismicity increased during October with respect to September. A few of the LP and tremor seismic events were associated with small emissions of gas and ash, confirmed by web cameras, park personnel, and the Washington VAAC. The Washington VAAC issued advisories of possible ash emissions on 2, 6, 9, 11, 15, 17, 18, and 21 October. The plumes rose to 5.6-6.4 km altitude and drifted primarily W and NW. Steam plumes were visible most days of the month (figure 119). Only a few were visible in satellite data, but most were visible in the webcams. Several episodes of drumbeat seismicity were recorded on 13, 22-25, and 27 October, which were characterized by being of short duration and consisting of very low energy earthquakes. The tallest plume during the month rose about 2 km above the crater rim on 18 October. Ash emissions were recorded eight times during the month by SGC.

Figure (see Caption) Figure 119. A steam plume mixed with possible ash drifted SE from Nevado del Ruiz on 7 October 2020. Courtesy of vlucho666.

During November 2020, the number of seismic events decreased relative to October, but the amount of energy released increased. Some of the seismicity was associated with small emissions of gas and ash, confirmed by webcams around the volcano. The Washington VAAC reported ash emissions on 22 and 30 November; the 22 November event was faintly visible in satellite images and was also associated with an LP seismic event. They rose to 5.8-6.1 km altitude and drifted W. Various episodes of drumbeat seismicity registered during November were short- to moderate-duration, very low energy, and consisted of seismicity associated with rock fracturing (VT). Multiple steam plumes were visible from communities tens of kilometers away (figure 120).

Figure (see Caption) Figure 120. Multiple dense steam plumes were photographed from communities around Nevado del Ruiz during November 2020, including on 18 (top) and 20 (bottom) November. Top image courtesy of Jose Fdo Cuartas, bottom image courtesy of Efigas Oficial.

Seismic activity increased in December 2020 relative to November. It was characterized by continuous volcanic tremor, tremor pulses, long-period (LP) and very long-period (VLP) earthquakes. Some of these signals were associated with gas and ash emissions, one confirmed through the webcams. The Washington VAAC reported ash emissions on 5 and 7 December. The first rose to 5.8 km altitude and drifted NW. The second rose to 6.7 km altitude and drifted W. A single discrete cloud was observed 35 km W of the summit; it dissipated within six hours. Drumbeat seismic activity increased as well in December; the episode on 3 December was the most significant. Steam and gas emissions continued throughout the month; a plume of gas and ash reached 1,700 m above the summit on 20 December, and drifted NW.

Sentinel-2 satellite data showed at least one thermal anomaly inside the Arenas crater each month during August-December 2020, corroborating the seismic evidence that the dome continued to grow throughout the period (figure 121). Sulfur dioxide emissions were persistent, with many days every month recording DU values greater than two with the TROPOMI instrument on the Sentinel 5-P satellite (figure 122).

Figure (see Caption) Figure 121. Thermal anomalies at Nevado del Ruiz were recorded at least once each month during August-December 2020 suggesting continued growth of the dome within the Arenas crater at the summit. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 122. Sulfur dioxide emissions were persistent at Nevado del Ruiz during August-December 2020, with many days every month recording DU values greater than two with the TROPOMI instrument on the Sentinel 5-P satellite. Ecuador’s Sangay had even larger SO2 emissions throughout the period. Dates are at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Additional reports of activity during 2017. Activity appears to have continued during June-December 2017. Ash emissions were reported by the Bogota Meteorological Weather Office (MWO) on 13 May, and by SGC on 28 May. During June, some of the recorded seismic events were associated with minor emissions of ash; these were confirmed by webcams and by field reports from both the staff of SGC and the Los Nevados National Natural Park (PNNN). Ash emissions were confirmed in webcams by park officials on 3, 16, and 17 June. Gas emissions from the Arenas crater during July 2017 averaged 426 m above the crater rim, generally lower than during June. The emissions were mostly steam with small amounts of SO2. Emissions were similar during August, with most steam and gas plumes drifting NW. No ash emissions were reported during July or August.

SGC reported steam and gas plumes during September that rose as high as 1,650 m above the crater rim and drifted NW. On 21 September the Washington VAAC received a report of an ash plume that rose to 6.4 km altitude and drifted NNW, although it was not visible in satellite imagery. Another ash emission rising to 6.7 km altitude was reported on 7 October; weather clouds prevented satellite observation. An episode of drumbeat seismicity was recorded on 9 October, the first since April 2017. While SGC did not explicitly mention ash emissions during October, several of the webcam images included in their report show plumes described as containing ash and gas (figure 123).

Figure (see Caption) Figure 123. Plumes of steam, gas, and ash rose from Arenas crater at Nevado del Ruiz most days during October 2017. Photographs were captured by the webcams installed in the Azufrado Canyon and Cerro Gualí areas. Courtesy of SGC (INFORME DE ACTIVIDAD VOLCANICA SEGMENTO NORTE DE COLOMBIA, OCTUBRE DE 2017).

The Washington VAAC received a report from the Bogota MWO of an ash emission that rose to 6.1 km altitude and drifted NE on 8 November 2017. A faint plume was visible in satellite imagery extending 15 km NE from the summit. SGC reported that plumes rose as high as 2,150 m above the rim of Arenas crater during November. The plumes were mostly steam, with minor amounts of SO2. A diffuse plume of ash was photographed in a webcam on 24 November. SGC did not report any ash emissions during December 2017, but the Washington VAAC reported “a thin veil of volcanic ash and gases” visible in satellite imagery and webcams on 18 December that dissipated within a few hours. In addition to the multiple reports of ash emissions between May and December 2017, Sentinel-2 thermal satellite imagery recorded at least one image each month during June-December showing a thermal anomaly at the summit consistent with the slowly growing dome first reported in August 2015 (figure 124).

Figure (see Caption) Figure 124. Thermal anomalies from the growing dome inside Arenas crater at the summit of Nevado del Ruiz appeared at least once each month from June-December 2017. A strong anomaly was slightly obscured by clouds on 3 June (top left). On 2 August, a steam plume obscured most of the crater, but a small thermal anomaly is visible in its SE quadrant (top right). Strong anomalies on 30 November and 20 December (bottom) have a ring-like form suggestive of a growing dome. Atmospheric penetration rendering (bands 12, 11, 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Gonzalo (URL: https://twitter.com/chaloc22/status/1306581929651843076); Jose Fdo Cuartas (URL: https://twitter.com/JoseFCuartas/status/1329212975434096640); Vlucho666 (URL: https://twitter.com/vlucho666/status/1313791959954268161); Efigas Oficial (URL: https://twitter.com/efigas_oficial/status/1329780287920873472).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 33, Number 06 (June 2008)

Managing Editor: Richard Wunderman

Arenal (Costa Rica)

Continuing explosive and effusive eruptions; block-and-ash flows

Barren Island (India)

Thermal anomalies and red glow indicate that a new eruption started in May 2008

Chaiten (Chile)

Events of June-July include diminished plumes, substantial seismicity, and lateral blast

Erta Ale (Ethiopia)

Active lava lake visited in February 2008

Lengai, Ol Doinyo (Tanzania)

Explosive eruptions continue into June 2008

Llaima (Chile)

Summary of January-February 2008 eruption; minor eruptions late March-early April 2008

Okmok (United States)

Large explosive eruption started on 12 July, ash plumes initially rose to 15.2 km altitude

Papandayan (Indonesia)

Minor seismic activity and fumarolic plumes through 16 April 2008

Raung (Indonesia)

New eruption during 12-17 June sends ash plumes to 4.5 km altitude

Tungurahua (Ecuador)

Explosions up to 14 km altitude during July 2007 to February 2008

Ubinas (Peru)

Frequent ash plumes pose risk to aviation and residents

Witori (Papua New Guinea)

Ejection of lava fragments in late August 2007; quiet steaming



Arenal (Costa Rica) — June 2008 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Continuing explosive and effusive eruptions; block-and-ash flows

Our last report covered generally low-level activity at Arenal through September 2007 (BGVN 32:09). Behavior then included pyroclastic flows to a runout distance of ~ 1 km and a new lava flow emerging from Crater C. This report covers the interval October 2007?June 2008 and originated from those of both the Observatorio Vulcanologico Sismologica de Costa Rica- Universidad Nacional (OVSICORI-UNA) and (ICE).

Impressive incandescent avalanches (block-and-ash flows or pyroclastic flows) traveled down several flanks during June 2008. At least portions of those avalanches broke off from a cone in Crater C and active lava flows high on the edifice.

During the reporting interval, Crater C continued to produce lava flows, gases, sporadic Strombolian eruptions, and avalanches from the lava flow fronts. Observers noticed acid rain and small amounts of ejected pyroclastic material impacting the NE, E, and SE flanks. They also cited loss of vegetation, steep slopes, poorly consolidated material, and high precipitation as factors that triggered small cold avalanches in Calle de Arenas, Manolo, Guillermina, and the river Agua Caliente. Crater D remained fumarolic. Except for the June avalanches, eruptive activity generally remained modest. Some reports noted that the eruptive vigor continued to drop both in terms of the number of eruptions and the amount of ejected pyroclastic material.

OVSICORI-UNA reported that by March 2008, the flow of lava down the S flank had stopped, but a new flow that had begun in February 2008 toward the SW flank was still active. A few eruptions produced ash columns that exceeded 500 m above the vent.

During April 2008, lava moving toward the S flank descended to about 1,400 m elevation. Some blocks had detached near the border of the crater. Sporadically small avalanches occurred and some blocks managed to reach vegetation below, igniting small fires. Some April eruptions produced dark gray ash columns.

Glowing avalanches of June. Jorge Barquero sent us a report on Arenal's behavior during June 2008. Prior to the June events a distinct cone had appeared in Crater C. Its steep sides generated small avalanches of loosened rocks. At about 1000 on 6 June, that cone collapsed, causing a pyroclastic (block-and-ash) flow that descended SE, forming a gully or channel, and laying down a deposit that fanned out at the base of Arenal. Lava also descended into or towards the gully, causing small avalanches.

Some residents heard noises and felt ashfall starting at 0600 on 10 June. At about 0800 these block-and-ash flows became larger. The wind blew ash NW to 4 km from the crater.

After 1730 on 14 June, the failure of the lava flow front sent down an avalanche more violent than those earlier. An hour later the largest block-and-ash flow of the month descended. It descended the channel and produced a large quantity of ash that blew SE and W to distances of 6 km. The area of greatest impact was in the SW portion of the Arenal National Park, where the branches of some vegetation cracked under the weight of the ash. More block-and-ash flows were also observed on 15 and 18 June.

On 11 June Eliecer Duarte and E. Fernández (OVSICORI-UNA) visited the distal parts of the new deposits, documenting the new flow field (figures 102 and 103). The distal area occurred at ~ 900 m elevation on Arenal's outer margins where the slope changes abruptly. A series of alternating lobes contained deposits that were 500°C on 11 June. The individual lobe's thickness reached up to about 3-4 m. The heterogeneous nature of the often angular blocks contrasted with a gray and quite sandy matrix, and included both pre-existing material eroded from the valley walls and more recent juvenile material from the summit. Conspicuous blocls from the block-and-ash flow (10% were 2-3 m in diameter and ~ 20% were ~ 1 m in diameter) are mostly juvenile material from the lava flow. The margins of the fan were covered by a fine dust layer several centimeters thick. On the S flanks, the block-and-ash deposit barely reached a few meters thick. On the N flanks, the deposit reached many tens of meters thick, the result of wind carrying the abundant fine materials in that direction.

Figure (see Caption) Figure 102. A view of the early June 2008 incandescent avalanche deposits on Arenal's S flanks. Courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 103. Previously incandescent avalanche deposits at Arenal seen on 11 June 2008. Courtesy of OVSICORI-UNA.

Major S-flank avalanches reported on 6 and 10 June 2008 eroded a radially oriented gully (an avalanche chute). Later avalanches down this direction tended to form channelized deposits. A dark colored thick lava flow present at the summit (figure 104) provided an important source of materials in the deposits. The S-flank avalanches funneled through the gully, fracturing particles into finer grain sizes and generating columns of ash. During the visit, the team observed several avalanches containing large blocks that were similarly reduced in volume as they bounced through the gully. Some of these blocks arrived at the lower part of the fan with temperatures between 800 and 1,000°C. The large blocks seemingly cracked as the result of thermal shock, a process accelerated during a strong rainstorm.

Figure (see Caption) Figure 104. Arenal's summit as seen looking up the new avalanche chute (steaming). At the head of the chute lies a thick black lava flow (labeled lava front "Frente de colada"). Courtesy of OVSICORI-UNA.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: E. Fernández, E. Duarte, W. Sáenz, V. Barboza, M. Martinez, E. Malavassi, and R. Sáenz, Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Jorge Barquero Hernandez, Instituto Costarricense de Electricidad (ICE), Apartado 5 -2400, Desamparados, San José, Costa Rica.


Barren Island (India) — June 2008 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Thermal anomalies and red glow indicate that a new eruption started in May 2008

A scientific expedition in February 2008 observed that the morphology of the volcano had changed considerably since 2005. The eruption that began in May 2005 (BGVN 30:05) ejected lava and tephra that built a new scoria cone NE of the previous central cone. Lava flows covered all of the earlier flows, and several new spatter cones were formed. Fumarolic activity was continuing in February, with a large amount of steam from the central cone.

Activity seemingly decreased in late March 2006, as shown by a significant decline in the number and frequency of thermal anomalies (BGVN 32:07). However, intermittent anomalies continued until 5 October 2007, and ash plumes were seen in satellite imagery on 23 December 2007 (BGVN 33:02). Thermal anomalies detected by MODIS instruments began to be detected again on 12 May 2008 at 1935 (UTC), suggesting a renewal of eruptive activity. Anomalies continued to be identified on 19 days through the end of June.

During 15-30 June 2008 observers on an Indian Coast Guard patrol boat could see red glow from the central cone summit at night from a distance of about 10 km. There were also twelve earthquakes between 27 and 29 June, centered SW of Port Blair (140 km SW of Barren Island) in the Andaman Islands.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: Dornadula Chandrasekharam, Dept. Earth Sciences, Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India (URL: http://www.geos.iitb.ac.in/index.php/dc); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Chaiten (Chile) — June 2008 Citation iconCite this Report

Chaiten

Chile

42.833°S, 72.646°W; summit elev. 1122 m

All times are local (unless otherwise noted)


Events of June-July include diminished plumes, substantial seismicity, and lateral blast

Follow previous reports of May 2008 activity (BGVN 33:04, 33:05), this report summarizes Chaitén's behavior from 31 May through 25 July 2008. The bulk of this report came from SERNAGEOMIN (Servicio Nacional de Geología y Minería) and to some extent ONEMI (Oficina Nacional de Emergencia - Ministerio del Interior). A web camera located on a tower in Chaitén town and aimed upstream along the Blanco (Chaitén) river has helped authorities assess both the state of the volcano's plumes and the river (see URL in Information Contacts). In a later section are included some descriptions and photos by Richard Roscoe taken on 9 July.

On 3 June it was reported that lateral blasts or surges (or related processes) had devastated ~ 25 km2 of native forest. Other behavior during this interval included consistent ash plumes, which were generally present when the volcano was visible, and continued growth of the intracrater dome and tephra cone. Vent areas and the dome and tephra cone's morphology changed as the dome grew more elongate.

The late May to early June behavior included a short-term seismic decrease, and a weakened eruptive column. During the reporting interval, the column was often noticeably weaker than in early May, but the seismicity was still relatively high. The two main seismic instruments monitoring the volcano (figure 13) registered numerous sustained events through late July, which began to cluster NNE of Chaitén. Some of the earthquakes were up to M 2.6.

Figure (see Caption) Figure 13. Monitoring instrumentation includes two telemetered seismic stations, PUMA (short for Pumalín) and STAB (short for Santa Barbara), which sit adjacent the coast and monitor Chaitén volcano (Cv). On 12 July the stations detected two earthquakes centered NE of the volcano along a major fault trace there (the Liquiñe-Ofqui fault system). The colored versions of the map distinguish second-order faults, which mostly have left-lateral kinematics (red lines), and eroded scarps (yellow lines). Snow-covered Michinmahuida stratovolcano is also a prominent feature (M, along the E margin of map), as is the town of Chaitén (Ct). Courtesy of Luis E. Lara.

SERNAGEOMIN repeatedly interpreted the earthquakes to signify magma ascending from depth. If this magma reached the surface, they noted, vigorous eruptions might return. The high-viscosity of rhyolitic magmas seen here increases potential explosivity. This rhyolitic eruption at Chaitén is the first historically at a monitored volcano. The last significant rhyolitic eruption was at Novarupta volcano in Alaska in 1912.

Chaitén town has largely survived the lahars thus far. A deeper concern is that the growing dome and tephra cone sent bouncing rocks and smaller debris into the caldera's moat. In an early July SERNAGEOMIN report, the authors noted that the caldera's breach, located on the S, appeared blocked by recently eroded products. Small lakes were also then seen on the crater floor. Since the moat area drains to the S through this breach and feeds into the Blanco river, temporary dams in the moat area might seal the caldera's outflow, only to suddenly fail and release large volumes of debris towards the town. Despite this concern, as of 25 July such an event had been absent; however, on 12 July a sudden flood struck Chaitén town (see below).

Activity during June 2008. On 1 June, Chaitén's plume blew W, affecting Chiloé island (including the towns of Queilen, Lebjn, Chonchi, Dalcahue, and Castro, the island's capital). These conditions thwarted work on the seismic network. On 2 June dense fog affected the Gulf of Corcovado, especially adjacent Chiloé island, an atmosphere attributed to remobilization of air-fall ash by wind. That day, a helicopter managed to take off and the view enabled scientists to see an eruptive column to no higher than 3.0 km altitude dispersing SSE.

Seismicity on 2 July was higher than the previous days. Abundant were VT earthquakes, followed by long- period (LP) earthquakes. Between 1 and 2 July, seismic stations registered an average of 5 VT earthquakes per hour (below M 2). At some stations, some of the LP signals were sporadic, lasting less than a minute.

A 5 June SERNAGEOMIN report noted that explosions diminished gradually. Although ash was present, vapor dominated the emissions. A 3 June aerial inspection revealed that the dome's volume and footprint had increased, although it still had not reached the caldera's N wall.

The effects of N and NE flank blasts (or surges, pyroclastic flows, or related processes) were noted during aerial observations from the 3 June flight. The surges had scorched and burned an area of native forest. On this day observers computed an estimate of the damaged area, ~ 2,500 hectares (~ 25 km2). An undated photo looking down on part of the destruction appeared in BGVN 33:05 and more photos appear below. Several SERNAGEOMIN reports mentioned small pyroclastic flows during early and mid-May (12 May in particular, BGVN 33:05). Bulletin editors take the 3 June estimate as reflecting the sum of all devastation to that point in time.

On 3 and 4 June the plume's top stood below 3 km altitude. A 10 June SERNAGEOMIN report noted the continued lowered eruptive and seismic intensity through that time. Plumes continued to remain under 3 km altitude and they still affected air travel.

On 12 June observers at Chaitén town noticed tephra-bearing emissions. Noises had emanated from the volcano that day and the previous one. The SERNAGEOMIN report associated these emissions with two new vents seen on the S flank of the old dome, where craters had developed. Vapor-rich plumes had emerged from these areas and the observers inferred that the vents were possibly due to magma-water interactions. In addition, sudden floods swept into Chaitén town in the afternoon on 12 June, despite a lack of evidence for greater rains across the region. They were inferred as related to the emissions the same day.

Seismicity beneath the volcano on 12 June increased in the morning both in terms of the number of earthquakes and their magnitudes. Most of these events were less than M 2. Two prominent earthquakes struck ~ 5 km farther NE of the volcano, along the Liquiñe-Ofqui fault zone.

The 22 June report noted that observers looking at the contact between the old and new domes had seen two craters there that emitted ash plumes. The observers also noted near-source falls of both blocks and ash.

The same report said that a 17 June aerial inspection documented an ash plume to over 2 km over the volcano's summit that blew N and NW. Roars and associated noise from the eruption included the sound of an explosion at 1430 on 17 June. The resulting column rose to a height above the summit of over 3 km but later dropped to 2 km. Emissions continued from a crater S of the contact between the old and new domes. Immediately to the W of this crater, a new and growing crater issued increasingly large emissions of ash and gas. Numerous smaller vents were also apparent, chiefly emitting steam. Loose material covered parts of the old dome, forming a ring-shaped structure (a tephra cone). That structure's steep sides and inner and outer walls occasionally underwent mass wasting. Poor weather during 19-25 June halted aerial inspections then, but ash fell in Chaitén town and to the W and SE, as well as Queilen and other portions of E Chiloé island.

Following 20 June, seismicity remained stable with ~ 40-45 earthquakes per day. Sporadic numbers of VT earthquakes took place; there was no change in the number of LP earthquakes. Investigators inferred a lack of pressure increase in the volcanic system. During bad weather on 23-25 June some earthquakes again occurred on the Liquiñe-Ofqui fault zone, with epicenters in an area 2-3 km E of the volcano. A power outage struck midday on 25 June. A back-up power supply (UPS) worked for a while, but ultimately the outage caused several hours of lost seismic data at the Queilen processing center. Available data suggested a small increase in both the number and amplitudes of earthquakes during 24-25 June. During 0000-1200 on 25 June, instruments recorded 35 VT earthquakes, and four of those were M 2.2; LP earthquakes were absent.

Seismicity during the days leading up the SERNAGEOMIN report issued on 27 June reflected VT earthquakes generally below M 2, reaching 50 per day. An exception was on the 25th when four earthquakes exceeded M 2.0.

July 2008. On 1 July an ash column rose ~ 3 km above the top of the new dome. It blew N and NE. An aerial observation at close hand discerned two roughly vertical, sub-parallel eruption plumes issuing from vents in the crater. One plume, most active in recent weeks, came from a sector S of the new dome. The second plume came from a sector more to the W of the new dome. A photo of the scene in the 3 July SERNAGEOMIN report also depicted the area of eruption largely engulfed in white clouds from numerous fumaroles on the dome. On 3 July SERNAGEOMIN began a series of reports on unrest at Llaima stratovolcano (which went to Red alert on 10 July). Around 16 July a weather front also moved in across the Chiloé island region. Consecutive SERNAGEOMIN reports discussing Chaitén were only issued on 3 and 21 July, with a lack of much discussion on that volcano for the interval 3-15 July.

During 15-20 July seismicity stood relatively high, with an average of 350-400 VT earthquakes per day. On 20 July more than 20 earthquakes surpassed M 2.6. The next reports noted that on 21 and 22 July VT earthquakes occurred 330 times per day; 60 of those were near M 2.6, and that the number of earthquakes decreased on 24 July. Still, some of the minor earthquakes reached M 2.6 and were detected up to 300 km away. Seismic data around this time were interpreted to reflect magma at depth moving towards the surface, possibly implying a reactivation of the system, although the earthquake's depth was poorly constrained.

Chaitén's plume blew E at ~ 2 km altitude above the summit and appeared weaker than usual when seen as the weather cleared after 1500 on 23 July. During 22-24 July, earthquakes had increased both in number and magnitude, with the largest M ~ 2.6.

A new area of epicenters appeared during 22 and 23 July at a location 6 km ENE of the volcano. Seismic stations located 176 and 296 km from Chaitén, respectively monitoring the volcanoes Calbuco and Puyehue-Cordón Caulle, recorded these events, the first such occurrence since the eruption began. Previously, conspicuous epicenters had mainly occurred to the S and SE. Preliminary hypocenter calculations suggested the larger earthquakes in this NNE area were deeper, at 10-15 km depth.

Arrival times of S- and P-waves at stations Pumalín and Santa Bárbara indicated that the smaller magnitude earthquakes still occurred S and SE of Chaitén, whereas the larger magnitude earthquakes struck in the area 6 km ENE. An inspection flight carried viewers to the N and NE of the volcano on 24 July where they saw that the single active central vent sat to the S of the new dome. The emissions then were intermittent, white, and ash poor. When strongest, a thin plume rose to under 2 km altitude, with strong winds causing dispersion to the S and SE. When viewed on 24 July, the new dome also contained a significant depression in the S sector, at a point immediately N of the main active vent mentioned above. This depression emitted steam and gases. The new dome seemed to have decreased its growth rate, at least in the N sector. Strong steaming emerged from base of the dome's E sector. The observers looked around the new dome on the NW, N and NE sides, and they saw neither ponded areas nor lakes. During 24-27 July, the ash column rose to 2.5 km and occasionally 3.0 km altitude. The most active vent was the previously mentioned one located S of the new dome. The plume blew N and NW where it affected various localities along the coast.

Floating pumice. By early June, the white pumice from the eruption accumulated at river mouths to the volcano's W. Some fragments of pumice were as large as 40 cm in diameter. In addition to the Blanco river, those carrying the pumice included the Yelcho and Negro (respectively entering the sea 2 km and 5 km S of Chaitén town). Pumice rafts in the Gulf were seen in May (BGVN 33:05). During June and at least early July, along beaches of Chiloé (and particularly at Lelbjn, 12 km N of Queilen, a town almost directly W of Chaitén town) floating pumice continued to arrive. This area lies 60-100 km across Corcorvado gulf from the mouth of the Blanco river at Chaitén town. The pumice deposits, which included tree trunks and other debris, covered a thin zone along the shoreline stretching ~ 20 m from the sea's edge when photographed the afternoon of 1 July.

Roscoe's July 2008 photos. One of the subjects Roscoe presented on his PhotoVolcanica website was Chaitén's N devastated area, and some of those photos appear here (figures 14 and 15). The captions were brief and omitted the direction the camera was aimed. He visited the devastated area on 9 July 2008.

Figure (see Caption) Figure 14. One of the parts of the devastation zone containing large lithic blocks (~ 1 m across), the most conspicuous being the one at left, which may have been perched above fallen timber. Trees here fell away from the viewer. Courtesy of Richard Roscoe, PhotoVolcanica.com.
Figure (see Caption) Figure 15. Drainages redirected by Chaitén's eruption caused erosion of this road to the volcano's N. Courtesy of Richard Roscoe, PhotoVolcanica.com.

Roscoe noted that in the area he photographed, "Most trees were snapped off a couple of meters above the ground. The [pyroclastic] flow does not appear to have been hot enough to burn the leaves off the trees at the point we visited at the base of the volcano. Many branches with brown leaves were lying around. Very little pumice was found in the area although much of it may have been swept away during subsequent heavy rainfall."

In Chaitén town, Roscoe documented damage-mitigation and salvaging efforts (figure 16). Two of Roscoe's photos showed heavy equipment (a large backhoe and a bulldozer) reshaping the lahar deposits in an attempt to control encroaching lahars. Other scenes included people retrieving belongings, excavating lahar deposits covering the floor and lower shelves of a grocery store, and improving drainage from and access to their homes.

Figure (see Caption) Figure 16. Work in Chaitén town to strengthen river banks to protect town from lahars. Although laden with tree trunks, the lahars appear quite uniform in color and character, devoid of coarse lithics or large rafted pumices. Courtesy of Richard Roscoe, PhotoVolcanica.com.

Geologic Background. Chaitén is a small, glacier-free caldera with a compound Holocene lava dome located 10 km NE of the town of Chaitén on the Gulf of Corcovado. Early work had identified only a single explosive eruption during the early Holocene prior to the major 2008 eruption, but later work has identified multiple explosive eruptions throughout the Holocene. A rhyolitic obsidian lava dome occupies much of the caldera floor. Obsidian cobbles from this dome found in the Blanco River are the source of prehistorical artifacts from archaeological sites along the Pacific coast as far as 400 km from the volcano to the N and S. The caldera is breached on the SW side by a river that drains to the bay of Chaitén. The first historical eruption, beginning in 2008, produced major rhyolitic explosive activity and growth of a lava dome that filled much of the caldera.

Information Contacts: Servicio Nacional de Geología y Minería(SERNAGEOMIN), Avda Sta María No 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Oficina Nacional de Emergencia - Ministerio del Interior (ONEMI), Beaucheff 1637 / 1671, Santiago, Chile (URL: http://www.onemi.cl/); Luis E. Lara, Departamento de Geología Aplicada, SERNAGEOMIN; Richard Roscoe, Photovolcanica.com (URL: http://www.photovolcanica.com/).


Erta Ale (Ethiopia) — June 2008 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Active lava lake visited in February 2008

Around 2-3 February 2008, a Volcano Discovery tour visited Erta Ale (figures 18-21). Tom Pfeiffer reported that the northern pit crater contained a lake of molten lava ~ 75 m across. Strong spattering and bursting bubbles were seen. At times, the lava lake rose and flooded the lower terrace. During this phase the usual fountains ceased. Richard Roscoe, who also visited during February 2008, presents animations of the flooding on his Photovolcanica website. He also shows photos of strong fountaining associated with falling lava lake levels.

Figure (see Caption) Figure 18. Wide-angle photo showing the lava lake at Erta Ale, February 2008. Taken with fisheye-lens and a digital reflex camera. Courtesy Marco Fulle.
Figure (see Caption) Figure 19. Folds developed in the crust of the lava lake at Erta Ale, February 2008. Courtesy of Tom Pfeiffer (Volcano Discovery).
Figure (see Caption) Figure 20. Rising magmatic gases drove fountains like this one emerging above the surface of the lava lake at Erta Ale, February 2008. Courtesy of Tom Pfeiffer (Volcano Discovery).
Figure (see Caption) Figure 21. Unusual egg-like sulfate structures at Erta Ale in February 2008. The delicate-looking incrustations cover an area of wet fumaroles on the rim of the North crater. Courtesy of Tom Pfeiffer (Volcano Discovery).

Occasionally, magmatic gas released in the middle of the lake created a zone a few meters in diameter where fountains typically lasted ~ 1 minute (figure 20). Thin threads of lava (Pelee's hair) are visible in some lava-fountain photographs. Richard Roscoe also features similar photos. Marco Fulle noted strong spattering when lava was drawn down (subducted) into the lake.

A Volcanologique de Genève (SVG) trip on 8-9 February 2008 noted extensions of ropy lava in the N crater. The lake was little changed from the group's last visit in 2005. The group visited the N Crater, and, given its constant degassing, was able to take gas samples. They also measured the lake's surface temperature (700°C). The descent into this crater, seemingly easy, was made difficult by a mantle of very unstable lava scoria. An elevated level of the lava lake halted a subsequent descent.

References. Rivallin, P., and Mougin, D., 2008, Trip report of Pierrette Rivallin and Dédé Mougin: LAVE Bulletin, no. 79, May 2008.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: Tom Pfeiffer, Volcano Discovery (URL: http://www.VolcanoDiscovery.com/); Marco Fulle, Osservatorio Astronomico, Trieste, Italy; Richard Roscoe (URL: http://www.photovolcanica.com/).


Ol Doinyo Lengai (Tanzania) — June 2008 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Explosive eruptions continue into June 2008

According to government authorities in the Ngorongoro district of Tanzania and the 22 March 2008 edition of Arusha Times, nine months after the mountain began continuous eruptive activity (BGVN 33:02), many residents had moved to other villages at a safe distance. Ngorongoro district member of parliament Saning'o Ole Telele told reporters that up to 5,000 people may have moved out of the area. The last major eruption was in August 1966. Since then there had not been an eruption of such magnitude, although notable ones were recorded in 1983, 1993, 2002 and 2006.

Recent observations. Table 19 lists recent observations from April through early July 2008.

On 2 April 2008, Chris Daborn of Tropical Veterinary Services Ltd reported that the color of ash plumes changed from "salty" white to a more inert black, and eruptions were much smaller, barely rising above the mountain. Heavy rains made movement in the area difficult, washing away ash.

Table 19. Summary of visitors to Ol Doinyo Lengai and their brief observations (from a climb, aerial overflight, flank, or satellite) April-early July 2008 (continued from BGVN 33:02). Most of this list is courtesy of Frederick Belton.

Date Observer Observation Location Brief Observations
02 Apr 2008 Chris Daborn Flank? See text.
03 Apr 2008 Jurgis Klaudius Satellite MODIS thermal anomaly data from N crater indicated that eruptions continued (see table 20).
07-08 Apr 2008 Ben Wilhelmi Aerial See text.
early Apr 2008 Ben Wilhelmi, Michael Dalton-Smith Aerial See text.
17 Apr 2008 Matthieu Kervyn Satellite MODIS/MODLEN data indicated a significant hotspot on Lengai on 17 April, showing that activity, although intermittent, continued (see text).
14-16 May 2008 Chris Weber, Marc Szeglat Climb See text.
03, 10, 12 Jun 2008 Ben Wilhelmi Aerial No activity observed.
08 Jun 2008 Ben Wilhelmi Aerial Ash eruption.
12 Jun 2008 Fred Belton Aerial? Ash-poor plume above Lengai ~1500 m.
17 Jun 2008 Local Masaai from Engare Sero village Climb Climbed Lengai via the W route through the Pearly Gates (closed to climbers for several months due to dangerous activity).
18 Jun 2008 Fred Belton, Paul Hloben, Paul Mongi, Mweena Hosa, Peter (Masaai guide) Climb See text.
18 Jun 2008 Ben Wilhelmi Aerial See text.
19 Jun 2008 Ben Wilhelmi Aerial No activity observed.
30 Jun 2008 Ben Wilhelmi Aerial Gray plumes emerging from crater.
01 Jul 2008 Ben Wilhelmi Aerial Small collapse of the S part of the new crater rim.

Ben Wilhelmi flew over on 7 and 8 April 2008 just prior to an eruption on the 7th and following the start of an eruption on the 8th. The flanks showed newly formed erosion gullies in the recently deposited ash (figure 111). Pilots Wilhelmi and Michael Dalton-Smith observed little activity during early April, although visibility was hampered by atmospheric clouds on several occasions; aerial photos showed no activity on 11 April.

Figure (see Caption) Figure 111. Aerial photographs of Ol Doinyo Lengai crater on (a, top) 7 April and (b, bottom) 8 April 2008. Photos courtesy Ben Wilhelmi.

On 14-16 May 2008, Chris Weber and Marc Szeglat visited. Weber noted that only minor ash eruptions were reported by local Masaai after the eruptions on 8 and 17 April 2008. Some of the evacuated Masaai had returned to their settlements, but part of the livestock had not returned by the middle of May. The fall-out of pyroclastics was still visible around the volcano. Due to a heavy rain season, vegetation damage was not as severe as it could have been. Up to an altitude of ~ 1,000 m the vegetation (mostly 'Elephant grass', normal grass, and some Akazia trees) was undamaged except for the W side, where severe damage occurred as far as 10 km from the summit. Some lahars had occurred on the N and NE sides. The former trekking route was not recommended because of rockfalls and poor conditions. Weber and Szeglat used a very steep route on the SE side (named "simba route"). From ~ 1,000 m altitude ash layers were clearly visible on the ground, but new grass had grown since the eruption. Above ~ 1,500 m on the SE flank all vegetation was covered by pyroclastic material. From an altitude of ~ 2,500 m, additional impacts of volcanic bombs were visible. In the inactive S crater, at their campsite, all vegetation was destroyed, and volcanic bomb impacts from the explosive events on April 2008 were quite impressive.

The active N crater had a new morphology (figure 112). The N-S diameter of the crater was 300 m and it was 283 m E-W. The crater floor was at ~ 2,740 m elevation, ~ 130 m deep below the W crater rim. Two vents, designated as c1 and c2, were present inside the crater (figure 112). Both vents were strongly degassing. On 15 May 2008, fine powdered ash was ejected until midday. It was not possible to determine which vent was responsible for this. After descent, Weber and Szeglat visited an abandoned Masaai boma (hut) a few kilometers W of the summit where ashfall had forced a family to flee.

Figure (see Caption) Figure 112. (a) Sketch map of Lengai, May 2008, and (b) cross section AB. Two vents were located as c1 and c2 inside the crater; older hornito locations are marked as Txx on the map (see hornitos on sketch map of Lengai as of 23 August 2007 in BGVN 32:11). Courtesy of Chris Weber.

On 8 June Wilhelmi saw a small eruption during a flyover. Photos made by Wilhelmi during overflights on 3, 10, and 12 June showed no activity. However, an ash-poor plume was seen by Fred Belton on 12 June.

On 17 June 2008 a group of Masaai from Engare Sero climbed via the W route through the Pearly Gates, which has been closed for several months. Fred Belton and Paul Hloben climbed on 18 June with a Masaai guide, Peter, and two other Tanzanians Paul Mongi and Mweena Hosa, following the route of the group from the previous day, which was covered by thick ash deposits. The route is subject to danger should there be a significant eruption. Belton's group spent about an hour on the rim of the active cone.

The new active cone covered the former crater floor entirely except for a region just N of the summit. The W, N, and E sides of the former crater were ~ 30 m higher than before and enclosed a deep pit crater with a couple of small vents. To the S, the rim of the new cone rested on the crater floor. To the E and W the new cone merged with and covered up the old rim at the points where it intersects the arc formed by the summit ridge. Thus, there was a section of the former crater floor which was bounded to the N by the new cone's S rim and to the E, S, and W by the original curving summit ridge.

From approximately 0920-1020 the pit crater frequently emitted an ash-poor plume from the SW part of its floor, and there was light ashfall on the rim. Loud rumbling was continuous and occasional sounds of gas jetting and rockfalls were heard amid other noises. Occasionally there was a sloshing/hissing noise resembling the sound of 'lava at depth' often heard in the past, but there was no evidence of lava in the crater. The summit and S crater were not visited due to atmospheric clouds around the summit.

On 18 June, Ben Wilhelmi photographed the climbers with Belton during a flyover (figure 113). No activity was seen the next day, but on 30 June Wilhelmi saw gray plumes emerging. A small crater rim collapse was seen on the S part of the crater wall on 1 July 2008.

Figure (see Caption) Figure 113. View of the crater rim on 18 June 2008 showing four climbers at left center just below the rim. Photo courtesy of Ben Wilhelmi.

Satellite thermal anomalies. Table 20 lists MODIS/MODVOLC thermal anomalies measured between November 2007 through July 2008; MODVOLC is the algorithm for identifying thermal anomalies used by the HIGP Thermal Alerts System Group. On 17 April 2008, as noted in table 19, MODIS data analyzed by Matthieu Kervyn's algorithm MODLEN (sensitive to lower temperature anomalies than MODVOLC) indicated a significant hotspot, showing that activity, although intermittent, continued.

Table 20. MODVOLC thermal anomalies measured by MODIS satellite at Ol Doinyo Lengai from November 2007 through July 2008. Courtesy of the MODIS Thermal Alerts System Group at the Hawai'i Institute of Geophysics and Planetology (HIGP).

Date Time (UTC) Number of pixels Satellite
17 Nov 2007 2000 2 Terra
31 Nov 2007 2310 1 Aqua
30 Dec 2007 0815 1 Terra
08 Jan 2008 2030 2 Terra
17 Jan 2008 2025 2 Terra
17 Feb 2008 2240 3 Aqua
22 Feb 2008 2300 1 Aqua
28 Feb 2008 1135 1 Aqua
29 Feb 2008 2305 1 Aqua
07 Mar 2008 2310 1 Aqua
10 Mar 2008 2045 4 Terra
03 Apr 2008 1955 1 Terra

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: Frederick Belton, Developmental Studies Department, PO Box 16, Middle Tennessee State University, Murfreesboro, TN 37132, USA (URL: http://oldoinyolengai.pbworks.com/); Christoph Weber, Volcano Expeditions International (VEI), Muehlweg 11, 74199, Entergruppenbach, Germany (URL: http://www.volcanic-hazards.de/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Matthieu Kervyn De Meerendre, Dept of Geology and Soil Science, Gent University, Krijgslaan 281, S8/A.310, B-9000 Ghent, Belgium (URL: http://homepages.vub.ac.be/~makervyn/).


Llaima (Chile) — June 2008 Citation iconCite this Report

Llaima

Chile

38.692°S, 71.729°W; summit elev. 3125 m

All times are local (unless otherwise noted)


Summary of January-February 2008 eruption; minor eruptions late March-early April 2008

A report from OVDAS-SERNAGEOMIN (Volcanological Observatory of the Southern Andes ? National Service of Geology and Mining) by Naranjo, Peña, and Moreno (2008) summarized the eruption at Llaima of January through February 2008. This and other reports from OVDAS-SERNAGEOMIN supplements earlier reports (BGVN 33:01) and extends observations through late April 2008.

Summary of January-February 2008 eruption. Shortly after 1730 (local time) on 1 January 2008, Llaima began a new eruptive cycle that was very similar in character to a large eruption that had occurred in February 1957. The 2008 activity was centered at the principal crater, a feature 350 x 450 m in diameter with the major axis trending NW-SE. This new continuous eruptive phase began with strong Strombolian eruptions. Strong ejections of lava fragments fell on the glaciers on the high flanks NE and W of the principal cone (figure 18), generating lahars that flowed ~15 km to reach the Captrén River to the N and the Calbuco River to the W (figure 19). The eruptive plume rose to an altitude of ~ 11 km and blew ESE; ash accumulated to a depth of ~11 cm at a distance of 7 km from the crater.

Figure (see Caption) Figure 18. Satellite images depicting Llaima before and after the recent eruptions. The left image shows Llaima on 17 September 2006 covered with a white blanket of snow and ice; the right image shows Llaima on 22 February 2008 after numerous eruptions, with ash covering the remnants of the glacier. Courtesy of the Japan Aerospace Exploration Agency-Earth Observation Research Center (JAXA-EORC) Advanced Land-Observing Satellite (ALOS) website.
Figure (see Caption) Figure 19. Map showing areas of principal effects of the eruption at Llaima on 1 January 2008. Courtesy of OVDAS-SERNAGEOMIN.

The 1 January 2008 phase was preceded by a slight increase in tremor and a swarm of low frequency earthquakes, but with an absence of volcano-tectonic (VT) or hybrid (HB) events. On 2 January 2008, the activity began to decline. However, a plume of sulfur dioxide (SO2) was tracked by satellite (figure 20).

Figure (see Caption) Figure 20. A plume of sulfur dioxide (SO2) was released on 2 January 2008. The initially intense plume thinned as it moved E. On 4 January 2008, the plume passed over Tristan da Cunha. This image, acquired by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite, shows the progress of that plume from 2-4 January 2008. OMI measures the total column amount of SO2 in Dobson Units. (If all the SO2 in a column of atmosphere is compressed into a flat layer at standard temperature (0°C) and pressure (1 atmosphere), a single Dobson Unit of SO2 would measure 0.01 mm in thickness and would contain 0.0285 grams of SO2/m2.) Courtesy, NASA Earth Observatory website.

An explosion on 7 January 2008 resulted in an ash plume that rose 5 km above the crater and traveled E toward Argentina. This explosion was associated with a low frequency, large magnitude event.

On 9 January, a series of explosions occurred. The seismicity included a swarm of low frequency, high-amplitude events and an abrupt increase in microseismicity that decreased gradually until 14 January and more slowly thereafter. On 18 January, after discrete low frequency tremors, explosions from the crater resulted in a pyroclastic flow on the upper E flank (figure 21).

Figure (see Caption) Figure 21. Pyroclastic flow on Llaima's E flank on 18 January 2008. Courtesy, OVDAS-SERNAGEOMIN and Gentileza M. Yarur.

On 21 January seismic activity increased. This was followed on 25 January by continuous Strombolian activity in the main crater. During the night of 26 January, a significant increase in activity occured. Pyroclastic-flow deposits were noted during 28 January on the E flank.

A lava lake that had formed in the main crater began to overflow the W rim on 3 February and a lava flow descended for 2.5 km, making channels in the ice tens of meters deep. The 'a'a lava flow, which was 30-40 m wide and 10 m thick, lasted until 13 February.

Between 8-13 February, explosions in the main crater propelled incandescent material 200-500 m in the air. Explosions occasionally alternated between N and S cones in the main crater. On 9 February, the Calbuco River was about 1 m higher than the normal level, likely due to melt water from the lava and glacier interaction. Strombolian eruptions from the main crater were observed during an overflight on 10 February. A strong explosion ejected bombs onto the E and NE flanks of the volcano on 12 February. Then, on 13 February, incandescence at the summit was noted. Thereafter seismic activity decreased, with only sporadic low frequency signals. The volcano was quiet until 21 February, when a small explosion occurred. Pyroclastic flows were also observed on 21 February descending the E and possibly the W flanks.

During the January-February eruptive phase, various types of plumes were observed, including steam plumes, sulfur dioxide plumes, small ash plumes, and ash-and-gas plumes. The Alert Level remained at Yellow.

March-April 2008. Fumarolic activity from the central pyroclastic cone in Llaima's main crater reactivated on 13 March and intensified during 15-17 March. SO2 plumes rose to an altitude of 3.6 km and drifted E. During 20-21 March, incandescent material propelled from the crater was observed at night.

During 28 March-4 April, fumarolic plumes from Llaima drifted several tens of kilometers, mainly to the SE. Explosions produced ash and gas emissions, and on 4 April, incandescence was reflected in a gas-and-ash plume. An overflight of the main crater on 2 April revealed pyroclastic material and ash and gas emissions, accompanied by small explosions, that originated from three cones.

On 24 April 2008, seismicity from Llaima again increased. Bluish gas (SO2) rose from the main crater, and ash-and-gas plumes associated with explosions rose to an altitude of 4.6 km. No morphological changes to the summit were observed during an overflight on 25 April except for a small increase of the diameter of the SE crater.

Thermal anomalies. Thermal anomalies measured by MODIS in 2008 began with an eruption on 1 January 2008 (BGVN 33:01) and continued almost daily through 13 February (table 3). Following a brief period of no measured anomalies, a new group occurred 30 March through 4 April, after which none were recorded through 1 June 2008. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images and reports by ground observers from Projecto Observación Visual Volcán Llaima (POVI) indicated incandescence at the volcano during periods when no anomalies were measured by the MODIS satellites (19-21 March and 24 April 2008), perhaps due to cloud cover. All periods of reported incandescence by ground observers during January 2008 were substantiated by MODIS measured thermal anomalies.

Table 3. MODIS thermal anomalies over Llaima from February through 1 June 2008; data processed by MODVOLC analysis. Daily anomalies were measured from 1-13 February 2008, followed by no anomalies through 29 March. After a period of anomalies from 30 March through 4 April 2008, none were measured through 1 June 2008. Some absences may be due to weather. Courtesy of HIGP Thermal Alerts System.

Date Time (UTC) Pixels Satellite
01 Feb 2008 0305 2 Terra
01 Feb 2008 0620 2 Aqua
01 Feb 2008 1405 1 Terra
01 Feb 2008 1820 1 Aqua
02 Feb 2008 0345 2 Terra
02 Feb 2008 0525 1 Aqua
02 Feb 2008 1450 2 Terra
03 Feb 2008 0250 4 Terra
03 Feb 2008 0430 4 Terra
03 Feb 2008 0605 2 Aqua
03 Feb 2008 1355 1 Terra
03 Feb 2008 1535 2 Terra
03 Feb 2008 1810 1 Aqua
04 Feb 2008 0335 4 Terra
04 Feb 2008 0510 6 Aqua
04 Feb 2008 1850 2 Aqua
05 Feb 2008 0415 2 Terra
05 Feb 2008 0555 4 Aqua
05 Feb 2008 1520 2 Terra
06 Feb 2008 0320 3 Terra
06 Feb 2008 0500 3 Aqua
06 Feb 2008 0640 4 Aqua
06 Feb 2008 1425 2 Terra
07 Feb 2008 0405 4 Terra
07 Feb 2008 0545 2 Aqua
07 Feb 2008 1510 2 Terra
08 Feb 2008 0625 6 Aqua
08 Feb 2008 1415 3 Terra
09 Feb 2008 0350 3 Terra
09 Feb 2008 0530 6 Aqua
09 Feb 2008 1455 2 Terra
09 Feb 2008 1910 2 Aqua
10 Feb 2008 0255 4 Terra
10 Feb 2008 0435 4 Aqua
10 Feb 2008 0615 5 Aqua
10 Feb 2008 1540 4 Terra
11 Feb 2008 0340 4 Terra
11 Feb 2008 0520 4 Aqua
11 Feb 2008 1445 5 Terra
11 Feb 2008 1855 1 Aqua
12 Feb 2008 0425 4 Terra
12 Feb 2008 0600 7 Aqua
12 Feb 2008 1525 5 Terra
12 Feb 2008 1940 4 Aqua
13 Feb 2008 0330 2 Terra
13 Feb 2008 0645 2 Aqua
30 Mar 2008 0340 1 Terra
01 Apr 2008 0505 1 Aqua
02 Apr 2008 0550 1 Aqua
04 Apr 2008 0400 1 Terra
04 Apr 2008 0535 2 Aqua

Reference. Naranjo, J.A., Peña, P., and Moreno, H., 2008, Summary of the eruption at Llaima through February 2008: National Service of Geology and Mining (Servico Nacional de Geologia y Mineria - SERNAGEOMIN).

Geologic Background. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other, Pichillaima, to the SE. The massive, dominantly basaltic-to-andesitic, stratovolcano has a volume of 400 km3. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following the eruption of the 24 km3 Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7200 years ago, construction of the present edifice began, characterized by Strombolian, Hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century.

Information Contacts: OVDAS-SERNAGEOMIN (Observatorio Volcanológico de los Andes del Sur-Servico Nacional de Geologia y Mineria) (Southern Andes Volcanological Observatory-National Geology and Mining Service), Avda Sta María 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/productos.php); POVI (Projecto Observación Visual Volcán Llaima) (Project of Visual Observation of Llaima Volcano) (URL: http://www.povi.cl/llaima/); Japan Aerospace Exploration Agency-Earth Observation Research Center (JAXA-EORC) (URL: http://www.eorc.jaxa.jp/); ONEMI (Oficina Nacional de Emergencia - Ministerio del Interior) (National Bureau of Emergency - Ministry of Interior), Chile (URL: http://www.onemi.cl/).


Okmok (United States) — June 2008 Citation iconCite this Report

Okmok

United States

53.43°N, 168.13°W; summit elev. 1073 m

All times are local (unless otherwise noted)


Large explosive eruption started on 12 July, ash plumes initially rose to 15.2 km altitude

The Alaska Volcano Observatory (AVO) reported that on 12 July 2008 at 1143 a strong explosive eruption at Okmok began abruptly after about an hour of rapidly escalating earthquake activity. The Volcano Alert Level was raised to Warning and the Aviation Color Code was raised to Red from the previous Alert Level of Normal/Green. The last explosive eruption began on 13 February, 1997 (BGVN 22:01) from a cone on the south side of the caldera floor. Lava flowed across the caldera floor until 9 May. Ash plumes generally rose to altitudes of 1.5-4.9 km from 13 February to about 23 May, when thermal anomalies and plumes were no longer seen on satellite imagery. One ash plume rose to an altitude of 10.5 km on 11 March. In May 2001 a small seismic swarm (BGVN 26:08) was detected in the vicinity of the volcano. The earthquake locations could not be pinpointed because Okmok is not monitored by a local seismic network.

The initial phase of the 2008 eruption was very explosive, with high levels of seismicity that peaked at 2200 then began to decline. A wet gas-and-ash-rich plume was estimated to have risen to altitudes of 10.7-15.2 km or greater. Wet, sand-sized ash fell within minutes of the onset of the eruption in Fort Glenn, about 10 km WSW. Heavy ashfall occurred on the eastern portion of Umnak Island; a dusting of ash that started at 0345 also occurred for several hours about 105 km NE in Unalaska/Dutch Harbor. News media reported that residents of Umnak Island heard thundering noises the morning of 12 July and quickly realized an eruption had begun. After calling the US Coast Guard for assistance, they began to evacuate to Unalaska using a small helicopter. A fishing boat evacuated the remaining residents after heavy ashfall made further flights impossible.

On 13 July, reports from Unalaska indicated no ashfall had occurred in Unalaska/Dutch Harbor since the previous night. The National Weather Service reported that the ash plume rose to an altitude of 13.7 km (figure 1). Plumes drifted SE and E. Based on observations of satellite imagery, the ash plume altitude was 9.1 km and drifted SE. However, satellite tracking of the ash cloud by traditional techniques was hampered by the high water content due to interaction of rising magma with very shallow groundwater and surficial water inside the caldera.

Figure (see Caption) Figure 1. Photograph of Okmok by flight attendant Kelly Reeves during Alaska airlines flight on 13 July 2008. Image courtesy of Alaska Airlines.

Ash erupted from a vent or vents near composite cinder cone called Cone D in the eastern portion of the 9.7-km wide caldera. Activity during the past three significant eruptions (1945, 1958, and 1997) occurred from Cone A, a cinder cone on the far western portion of the caldera floor. Each of the three previous eruptions was generally mildly to moderately explosive with most ash clouds produced rising to less than 9.1 km altitude. Each eruption also produced a lava flow that traveled about 5 km across the caldera floor.

AVO reported that during 15-16 July seismicity changed from nearly continuous to episodic volcanic tremor, and the overall seismic intensity declined. Little to no ash was detected by satellite, but meteorological clouds obscured views. Satellite imagery from 0533 on 16 July indicated elevated surface temperatures in the NE sector of the caldera. On 16 July, a light dusting of ash was reported in Unalaska/Dutch Harbor. A plume at an altitude of 9.1 km was visible on satellite imagery at 0800. On 17 July, a pilot reported that an ash plume rose to altitudes of 4.6-6.1 km and drifted E and NE. The sulfur dioxide plume had drifted at least as far as eastern Montana (figure 2). On 18 July, the eruption was episodic, with occasional ash-producing explosions occurring every 15 to 30 minutes. The plumes from these explosions were limited to about 6.1 km.

Figure (see Caption) Figure 2. OMI composite image from NOAA showing the extent of the sulfur dioxide gas cloud from the eruption of Okmok imaged at about 1200 AKDT on 17 July, 2008. The large mass shows the location of the high altitude sulfur dioxide cloud from the main explosive phase on 12 July 2008. Image created by Rick Wessels (AVO); courtesy of the OMI near-real-time decision support project funded by NASA.

Geologic Background. The broad, basaltic Okmok shield volcano, which forms the NE end of Umnak Island, has a dramatically different profile than most other Aleutian volcanoes. The summit of the low, 35-km-wide volcano is cut by two overlapping 10-km-wide calderas formed during eruptions about 12,000 and 2050 years ago that produced dacitic pyroclastic flows that reached the coast. More than 60 tephra layers from Okmok have been found overlying the 12,000-year-old caldera-forming tephra layer. Numerous satellitic cones and lava domes dot the flanks of the volcano down to the coast, including 1253-m Mount Tulik on the SE flank, which is almost 200 m higher than the caldera rim. Some of the post-caldera cones show evidence of wave-cut lake terraces; the more recent cones, some of which have been active historically, were formed after the caldera lake, once 150 m deep, disappeared. Hot springs and fumaroles are found within the caldera. Historical eruptions have occurred since 1805 from cinder cones within the caldera.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA; Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA; and Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.avo.alaska.edu/); Associated Press (URL: http://www.ap.org/).


Papandayan (Indonesia) — June 2008 Citation iconCite this Report

Papandayan

Indonesia

7.32°S, 107.73°E; summit elev. 2665 m

All times are local (unless otherwise noted)


Minor seismic activity and fumarolic plumes through 16 April 2008

Our last report on Papandayan (BGVN 29:08) described a modest surge in seismicity that began in July 2004, which rose for a short time but began to subside in mid-August 2004. We received no subsequent reports until June 2005. This report discusses non-eruptive restlessness from early June 2005 through the middle of April 2008, including wide fumarolic temperature variations, seismicity, and occasional minor steam plumes.

Beginning in early June 2005, the number of volcanic earthquakes increased in comparison to the previous months, and fumarole temperatures increased 3-9°C above normal levels. People were not permitted to visit Mas and Baru craters. On 16 June 2005, the Center of Volcanology and Geological Hazard Mitigation (CVGHM) in Indonesia raised the Alert Level at Papandayan from 1 to 2 (on a scale of 1-4) due to increased activity at the volcano. The Alert Level remained at 2 at least through 13 December 2005.

No subsequent reports were received until July 2007. On 15 July there was one volcanic earthquake; the next day 2-10 volcanic earthquakes were recorded. By 31 July, fumarole temperatures had increased 10°C above normal levels in Mas crater. On 1 August up to 53 volcanic earthquakes were recorded and a diffuse white plume rose to an altitude of 2.7 km. Residents and tourists were not permitted within a 1 km radius of the active craters.

On 2 August 2007, CVGHM raised the Alert Level from 1 to 2 (on a scale of 1-4) due to increased seismic activity at the volcano. Seismic events decreased in number after 2 August; earthquake tremors were not recorded after 14 November 2007, and on 7 January 2008, CVGHM lowered the Alert Level at Papandayan from 2 to 1 due to the decrease in activity during the previous four months. Data from deformation-monitoring instruments indicated deflation. White fumarolic plumes rose to an altitude of 2.9 km.

No subsequent reports were received until April 2008. According to the CVGHM, on 15 April the seismic network recorded one tremor signal. On 16 April, measurements of summit fumaroles revealed that the temperature had increased and water chemistry had changed since 7 April. White plumes continued to rise to an altitude of 2.7 km. CVGHM again increased the Alert Level to 2 and warned people not to venture within 1 km of the active crater.

Geologic Background. Papandayan is a complex stratovolcano with four large summit craters, the youngest of which was breached to the NE by collapse during a brief eruption in 1772 and contains active fumarole fields. The broad 1.1-km-wide, flat-floored Alun-Alun crater truncates the summit of Papandayan, and Gunung Puntang to the north gives a twin-peaked appearance. Several episodes of collapse have created an irregular profile and produced debris avalanches that have impacted lowland areas. A sulfur-encrusted fumarole field occupies historically active Kawah Mas ("Golden Crater"). After its first historical eruption in 1772, in which collapse of the NE flank produced a catastrophic debris avalanche that destroyed 40 villages and killed nearly 3000 people, only small phreatic eruptions had occurred prior to an explosive eruption that began in November 2002.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://vsi.esdm.go.id/).


Raung (Indonesia) — June 2008 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


New eruption during 12-17 June sends ash plumes to 4.5 km altitude

In an Antara News report, Balok Suryadi, an observer at the Center of Volcanology and Geological Hazard Mitigation (CVGHM) Raung monitoring post at Sumber Arum village, described clouds of "smoke and ash" that occurred on 12 and 13 June. He was also quoted in the 19 June article as saying that activity was "likely" continuing but that it could not be clearly monitored from the observation post.

Another ash eruption was seen rising through the clouds on 17 June 2008 around 1500. This event was photographed by Karim Kebaili while flying from Bali to Jakarta approximately 30 minutes after take-off (figure 4). The same eruption was seen at 1430 by pilot Nigel Demery, who stated that the ash cloud initially rose to about 4.5 km altitude but had dissipated on his return flight about two hours later. The Darwin VAAC was unable to identify the plume in satellite imagery due to meteorological clouds.

Figure (see Caption) Figure 4. Ash plume rising from Raung at about 1500 on 17 June 2008. Courtesy of Karim Kebaili.

Thermal anomalies were detected by the MODIS instrument aboard the Terra satellite on 23 July 2005 and 15 August 2005. No additional thermal anomalies were detected through the end of June 2008. However, ash plumes were reported by pilots on 26 July 2007 and seen in satellite imagery on 26 August 2007 (BGVN 32:09).

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: Rebecca Patrick, Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, Northern Territory 0811, Australia (URL: http://www.bom.gov.au/info/vaac); Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Nigel Demery, Indonesia; Karim Kebaili, Indonesia; Antara News (URL: http://www.antara.co.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Tungurahua (Ecuador) — June 2008 Citation iconCite this Report

Tungurahua

Ecuador

1.467°S, 78.442°W; summit elev. 5023 m

All times are local (unless otherwise noted)


Explosions up to 14 km altitude during July 2007 to February 2008

Our previous report on Tungurahua (BGVN 32:08) discussed the volcano's activity during March-July 2007. During that period, Ecuador's Instituto Geofisico (IG) reported significant, but variable eruptive behavior, along with many lahars, ash plumes that reached 4 km above the summit, and semi-continuous ashfall.

Table 15 presents a brief summary of the weekly activity at Tungurahua between 18 July 2007 and 19 February 2008. The plumes were described variously as ash, ash-and-gas, steam-and-gas, steam, or steam-and-ash. They rose up to 13 or 14 km altitude (25-26 October 2007 and 7 February 2008, respectively) but more typically, for many weeks, to below 8 km altitude. Around December 2007 IG stated a caution. They likened Tungurahua's behavior as similar to after its explosive phase of 14 July 2006. In that case, volcanic activity kept going, and this lead to the most explosive phase on 16 August 2006. That dramatic pattern was not repeated the next month, but the pace of volcanism kept up and led to the vigorous 7 February eruption.

Table 15. Summary of weekly activity at Tungurahua between 18 July 2007 and 19 February 2008. Courtesy of IG.

Date Plume altitude Activity
18 Jul-24 Jul 2007 5.2-8 km Roaring, noises resembling cannon shots or rolling blocks, lahars, ashfall.
25 Jul-31 Jul 2007 up to 2-3 km above crater Many small ash-bearing explosions and several unusually large ones, blocks fell up to 0.5 km below crater's rim, ashfall.
01 Aug-07 Aug 2007 up to 5.5 km Roaring, explosions, rolling blocks, steam emissions, ashfall.
08 Aug-14 Aug 2007 up to 6 km Explosions, incandescent material fell inside the crater and on the flanks, ashfalls, lahars down NW drainage disrupted road traffic between Ambato and Banos.
15 Aug-21 Aug 2007 5.5 km Cannon shot noises, explosions, ash emissions, ashfall.
22 Aug-28 Aug 2007 6-9 km Explosions, incandescent blocks down flanks, lahars in the NW drainage disrupted road traffic, ashfall.
29 Aug-04 Sep 2007 7 km Explosions, roaring and cannon shot noises, incandescent blocks ejected, lahars disrupted road traffic, ashfall. On 4 September incandescence and rolling blocks on the E and N flanks.
05 Sep-11 Sep 2007 5.3-8 km Explosions, incandescent blocks rolled down flanks, ashfall.
12 Sep-18 Sep 2007 5.5-8 km Strombolian eruption, explosions, incandescent material ejected above the summit and blocks rolled 100 m down the flanks, roaring and cannon shot noises, ashfall.
19 Sep-25 Sep 2007 5.3-7 km Explosions, roaring and cannon shot noises, incandescent material ejected above the summit and blocks rolled 500 m down the flanks, ashfall.
26 Sep-02 Oct 2007 6-7 km Roaring and cannon shot noises, 28 September, blocks ejected above the summit and descended 500 m down the flanks, ashfall.
03 Oct-09 Oct 2007 6-8 km Ash plumes, roaring and cannon shot noises, noise of rolling blocks, ashfall.
10 Oct-16 Oct 2007 6.2-8 km Ash plumes. During 11-12 October incandescent blocks ejected and descended 300 m down the W flank; roaring noises from multiple areas on 11, 13, and 14 October. Ashfall.
17 Oct-23 Oct 2007 5.5-9 km Ash plumes. 17 October, roaring, incandescent material erupted from the summit fell onto the flanks. Fumarolic activity on NW flank, lahars closed road on NW drainage. Ashfall SW on 21 October.
24 Oct-30 Oct 2007 up to 13 km Ash and steam plumes. 25-26 October, incandescence at summit, roaring and cannon shot noises, blocks rolling down the flanks; ashfall.
31 Oct-06 Nov 2007 5.5-8 km Explosions, roaring, incandescent blocks at summit, lahars closed road, ashfall.
07 Nov-13 Nov 2007 6-9 km Roaring and cannon shot noises, incandescent blocks rolled a few hundred meters (1 km on 12 Nov) down the flanks, fumarolic activity, lahar, ashfall.
14 Nov-20 Nov 2007 up to 7.3 km Roaring and cannon shot noises, incandescent blocks rolled down flanks, thermal anomaly detected.
21 Nov-27 Nov 2007 6-8 km Explosions, roaring, incandescent blocks 1 km down the flanks, lahars (4-5 m high in one area) closed road, ashfall.
28 Nov-04 Dec 2007 6-8 km Elevated seismicity, explosions, continuous emissions of steam and ash, roaring and cannon shot noises, incandescent blocks 0.5-1 km down flanks, ashfall.
05 Dec-11 Dec 2007 6-8 km Explosions, roaring and cannon shot noises, incandescent material about 1 km down flanks, ashfall.
12 Dec-18 Dec 2007 6-7 km Explosions, roaring and cannon shot noises, almost constant emission of of ash plumes, incandescent blocks rolled down flanks, ashfall.
19 Dec-25 Dec 2007 6-8.5 km Roaring and cannon shot noises, incandescent blocks hundreds of meters down flanks, ashfall. News reports indicated that 1,200 people from Penipe were evacuated nightly.
26 Dec-01 Jan 2008 6-8 km Explosions, roaring, and cannon-shot noises, incandescent blocks 500 m down flanks, ashfall.
02 Jan-08 Jan 2008 5.5-8 km Explosions, roaring and cannon shot noises, continuous ash emissions, incandescent blocks 500 m down flanks, ashfall. News reports indicated that nearly 1,000 people were evacuated for the night on 6 Jan.
09 Jan-15 Jan 2008 6-9 km Strombolian eruption, roaring and cannon shot noises, incandescent blocks 0.5-1 km down flanks. News reports indicated that residents from two provinces evacuated at night and about 20,000 health masks were distributed in Banos and Quero.
16 Jan-22 Jan 2008 5.5-9 km Strombolian eruption, roaring and cannon shot noises, incandescent blocks 1-2 km down flanks, small pyroclastic flow 400 m down NW side of crater, ashfall.
23 Jan-29 Jan 2008 5.5-9 km Roaring and cannon shot noises, incandescent blocks 500-800 m down flanks, lahars blocked road to Banos, ashfall up to at least 40 km from summit.
30 Jan-06 Feb 2008 6-9 km Explosions (65-208 per day), roaring and cannon shot noises, incandescent blocks rolled 600 m down flanks, lahar, ashfall.
06 Feb 2008 -- New phase of eruptions began with a moderate explosion.
07 Feb 2008 6-14.3 km Tremors of variable intensity, ash columns to heights of 3 km beginning a new phase of eruptive activity; satellite images show a hot spot in the crater. Strombolian eruptions, explosions, strong roaring and cannon shot noises, incandescent material rolled 1.2 km down the flanks, tremors followed by pyroclastic flows on the NW and W flank, tephra fall SW, ashfall. News articles stated several hundred to 2,000 people evacuated.
08 Feb 2008 -- Internal volcanic activity as well as emissions of ash, incandescent material, and explosions and roaring noises slowly diminished; current eruptive episode should not be considered as finished.
09 Feb-12 Feb 2008 -- Strombolian eruptions, explosions, strong roaring and cannon shot noises, incandescent material rolled 1.2 km down the flanks, pyroclastic flows, tephra fall, ashfall. News articles stated several hundred to 2,000 people evacuated.
13 Feb-19 Feb 2008 6-9 km Roaring, noises resembling blocks rolling down flanks, lahar, ashfall.

Geologic Background. Tungurahua, a steep-sided andesitic-dacitic stratovolcano that towers more than 3 km above its northern base, is one of Ecuador's most active volcanoes. Three major edifices have been sequentially constructed since the mid-Pleistocene over a basement of metamorphic rocks. Tungurahua II was built within the past 14,000 years following the collapse of the initial edifice. Tungurahua II itself collapsed about 3000 years ago and produced a large debris-avalanche deposit and a horseshoe-shaped caldera open to the west, inside which the modern glacier-capped stratovolcano (Tungurahua III) was constructed. Historical eruptions have all originated from the summit crater, accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. Prior to a long-term eruption beginning in 1999 that caused the temporary evacuation of the city of Baños at the foot of the volcano, the last major eruption had occurred from 1916 to 1918, although minor activity continued until 1925.

Information Contacts: Geophysical Institute (IG), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Washington Volcanic Ash Advisory Center, Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); Reuters (URL: http://www.reuters.com/); Associated Press (URL: http://www.ap.org/); Pan American Health Organization (PAHO), 525 23rd St. NW, Washington, DC 20037, USA (URL: http://www.paho.org/).


Ubinas (Peru) — June 2008 Citation iconCite this Report

Ubinas

Peru

16.355°S, 70.903°W; summit elev. 5672 m

All times are local (unless otherwise noted)


Frequent ash plumes pose risk to aviation and residents

Our most recent report on Ubinas (BGVN 33:01) discussed ongoing eruptions with continuous emissions of volcanic ash, rock, and gases during 2006-2007. During that previously discussed interval, ash plumes sometimes reached ~ 9 km altitudes at times, posing a hazard to aviation, ashfall was heavy. The current report discusses activity from the end of the previous report (17 December 2007) through 15 July 2008. During this period, ash plumes were frequent, as indicated in table 4. No thermal alerts have been detected by the University of Hawaii's Institute of Geophysics and Planetology (HIGP) MODIS satellite-based thermal alert system since 27 December 2006.

Table 4. Compilation of Volcanic Ash Advisories for aviation from Ubinas during 19 December 2007 through July 1, 2008. Courtesy of the Buenos Aires Volcanic Ash Advisory Center (VAAC) and the Instituto Geológical Minero y Metalúrgico (INGEMMET).

Date Plume altitude (km) Plume direction
19-25 Dec 2007 5.5-7 NE, SW
23 Feb 2008 5.5-8.5 SE
02 Mar 2008 5.5-6.1 SE
09 Mar 2008 7 W, SW
17 Mar 2008 5.5-6.1 N
26 Mar 2008 3.7-6.7 SW
01 Apr 2008 3.7-6.7 NW
06 Apr 2008 5.5-6.7 E
15 Apr 2008 5.5-7 ENE
19-22 Apr 2008 5.5-7.6 ESE, NE
23 Apr 2008 5.5-9.1 SE, S
30 Apr-03 May 2008 5.5-9.1 NE, E, SE
09 May 2008 5.5-7 E
12 May 2008 5.5-7 SE
15 May 2008 5.5 E, SW
19 May 2008 8.5 E, SW
22-24 May 2008 4.9-7.9 S, E, NE, SE
26 May 2008 5.4 SSE
28-29 May 2008 5.5-6.1 NE, SE
03 Jun 2008 4.6 SSW
07 Jun 2008 7.3 S
13 Jun 2008 6.7 S
18 Jun 2008 5.5-5.8 S, SE, and NE
22 Jun 2008 5.5-7.6 S, SE, NE
26 Jun 2008 5.5-6.1 NE
07 Jul 2008 5.5-5.8 NE
09-10 Jul 2008 5.5-5.8 E
15 Jul 2008 5.5-5.8 E

According to the ash advisories issued from the Buenos Aires VAAC, the aviation warning color code for Ubinas during the reporting period was variously orange or red. In terms of hazard status on the ground, a news article on 30 June 2008 indicated that local civil defense officials had maintained the Alert level at Yellow. They noted that small explosions and ash-and-gas emissions had continued during the previous two months. Families at immediate risk from the village of San Pedro de Querapi in the vicinity of the volcano have been relocated but have returned to their fields to pursue their agacultural activities. The population of local communities and their livestock had suffered the effects of gas and ash emissions, and local authorities had begun to discuss the possible relocation of about 650 affected families from six towns (Escacha, Tonoaya, San Migues, San Pedro de Querapi, Huataga and Ubinas). The article noted that officials recognized that the relocation process could take several years and should be the villager's decision and not one forced on them.

Geologic Background. A small, 1.4-km-wide caldera cuts the top of Ubinas, Perú's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3,700 years ago extend 10 km from the volcano. Widespread Plinian pumice-fall deposits include one of Holocene age about 1,000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

Information Contacts: Instituto Geológical Minero y Metalúrgico (INGEMMET), Av. Canadá 1470, San Borja, Lima 41, Perú (URL: http://www.ingemmet.gob.pe/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/productos.php); La República Online (URL: http://www.larepublica.com.pe).


Witori (Papua New Guinea) — June 2008 Citation iconCite this Report

Witori

Papua New Guinea

5.576°S, 150.516°E; summit elev. 724 m

All times are local (unless otherwise noted)


Ejection of lava fragments in late August 2007; quiet steaming

Reports about Pago early in 2006 (BGVN 31:02) noted small vapor emissions, but no noises or glow, and low levels of seismicity. Similar observations were reported by the Rabaul Volcano Observatory (RVO) for December 2006. A local security company reported that sometime during 27-31 October 2006 there was a single booming noise accompanied by a white-gray emissions above the summit. Volcanologists were sent to verify the activity, but no report about the event was received. A March 2007 report only noted diffuse white vapor emissions and low seismicity.

On 28 August 2007 lava fragments were observed being ejected during the daytime from one of the Upper vents (2nd Crater). People in a nearby village heard only a single booming noise in the early hours of 27 August. The residents also indicated increased white vapor emissions from 2nd Crater on the 27th that returned to normal levels the following day. Seismic activity had increased on 27-28 August, and the Real-Time Seismic Amplitude Measurement (RSAM) increased from background level (around 100 units) to a peak of about 400 units. RSAM levels began to decline on the 29th, returning to background levels on 30 August. An inspection on 1 October revealed that only the 2nd Crater of the Upper Vents was releasing diffuse white vapor, and that there were no noises or glow.

Pago remained quiet during September-November 2007. When observations were made, only diffuse white vapor was being released from the Upper Vents. A handful of high-frequency earthquakes and 18 low-frequency events were recorded during September. The daily number of earthquakes ranged from 1 to 4 from 1 to 24 September, with none after through the end of the month. There was a slight increase in gas emission during 9-11 November. The vapor plume was blown N, where villagers reported nose and windpipe irritation, and watery eyes. The daily number of high-frequency earthquakes ranged from 1 to 3, while low-frequency earthquakes ranged from 1 to 9. During January 2008 Pago was still quiet with diffuse white vapor from the upper vents and very occasional low-frequency seismic events.

Geologic Background. The 5.5 x 7.5 km Witori caldera on the northern coast of central New Britain contains the young historically active cone of Pago. The Buru caldera cuts the SW flank of Witori volcano. The gently sloping outer flanks of Witori volcano consist primarily of dacitic pyroclastic-flow and airfall deposits produced during a series of five major explosive eruptions from about 5600 to 1200 years ago, many of which may have been associated with caldera formation. The post-caldera Pago cone may have formed less than 350 years ago. Pago has grown to a height above that of the Witori caldera rim, and a series of ten dacitic lava flows from it covers much of the caldera floor. The youngest of these was erupted during 2002-2003 from vents extending from the summit nearly to the NW caldera wall.

Information Contacts: Ima Itikarai and Herman Patia, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports