Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Pacaya (Guatemala) Strombolian explosions, multiple lava flows, and the formation of a small cone during February-July 2020

Sangeang Api (Indonesia) Two ash plumes and small thermal anomalies during February-June 2020

Stromboli (Italy) Strombolian explosions persist at both summit craters during January-April 2020

Nevado del Ruiz (Colombia) Lava dome confirmed inside Arenas crater; intermittent thermal anomalies and ash emissions, January-June 2020

Asosan (Japan) Daily ash emissions continue through mid-June 2020 when activity decreases

Aira (Japan) Near-daily explosions with ash plumes continue, large block ejected 3 km from Minamidake crater on 4 June 2020

Nevados de Chillan (Chile) Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Kerinci (Indonesia) Intermittent ash emissions during January-early May 2020

Tinakula (Solomon Islands) Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Ibu (Indonesia) Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Suwanosejima (Japan) Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Bagana (Papua New Guinea) Ash plumes during 29 February-2 March and 1 May 2020



Pacaya (Guatemala) — August 2020 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Strombolian explosions, multiple lava flows, and the formation of a small cone during February-July 2020

Pacaya, located in Guatemala, is a highly active volcano that has previously produced continuous Strombolian explosions, multiple lava flows, and the formation of a small cone within the crater due to the constant deposition of ejected material (BGVN 45:02). This reporting period updates information from February through July 2020 consisting of similar activity that dominantly originates from the Mackenney crater. Information primarily comes from reports by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) in Guatemala and various satellite data.

Strombolian explosions were recorded consistently throughout this reporting period. During February 2020, explosions ejected incandescent material 100 m above the Mackenney crater. At night and during the early morning the explosions were accompanied by incandescence from lava flows. Multiple lava flows were active during most of February, traveling primarily down the SW and NW flanks and reaching 500 m on 25 February. On 5 February the lava flow on the SW flank divided into three flows measuring 200, 150, and 100 m. White and occasionally blue gas-and-steam emissions rose up to 2.7 km altitude on 11 and 14 February and drifted in multiple directions. On 16 February Matthew Watson utilized UAVs (Unmanned Aerial Vehicle) to take detailed, close up photos of Pacaya and report that there were five active vents at the summit exhibiting lava flows from the summit, gas-and-steam emissions, and small Strombolian explosions (figure 122).

Figure (see Caption) Figure 122. Drone image of active summit vents at Pacaya on 16 February 2020 with incandescence and white gas-and-steam emissions. Courtesy of Matthew Watson, University of Bristol, posted on 17 February 2020.

Activity remained consistent during March with Strombolian explosions ejecting material 100 m above the crater accompanied by occasional incandescence and white and occasionally blue gas-and-steam emissions drifting in multiple directions. Multiple lava flows were detected on the NW and W flanks reaching as far as 400 m on 9-10 March.

In April, frequent Strombolian explosions were accompanied by active lava flows moving dominantly down the SW flank and white gas-and-steam emissions. These repeated explosions ejected material up to 100 m above the crater and then deposited it within the Mackenney crater, forming a small cone. On 27 April seismicity increased at 2140 due to a lava flow moving SW as far as 400 m (figure 123); there were also six strong explosions and a fissure opened on the NW flank in front of the Los Llanos Village, allowing gas-and-steam to rise.

Figure (see Caption) Figure 123. Infrared image of Pacaya on 28 April 2020, showing a lava flow approximately 500 m long and moving down the S flank on the day after seismicity increased and six strong explosions were detected. Courtesy of ISIVUMEH (Reporte Volcán de Pacaya July 2020).

During May, Strombolian explosions continued to eject incandescent material up to 100 m above the Mackenney crater, accompanied by active lava flows on 1-2, 17-18, 22, 25-26, and 29-30 May down the SE, SW, NW, and NE flanks up to 700 m on 30 May. White gas-and-steam emissions continued to be observed up to 100 m above the crater drifting in multiple directions. Between the end of May and mid-June, the plateau between the Mackenney cone and the Cerro Chiquito had become inundated with lava flows (figure 124).

Figure (see Caption) Figure 124. Aerial views of the lava flows at Pacaya to the NW during a) 18 September 2019 and b) 16 June 2020 showing the lava flow advancement toward the Cerro Chiquito. Courtesy of INSIVUMEH (Reporte Volcán de Pacaya July 2020).

Lava flows extended 700 m on 8 June down multiple flanks. On 9 June, a lava flow traveled N and NW 500 m and originating from a vent on the N flank about 100 m below the Mackenney crater. Active lava flows continued to originate from this vent through at least 19 June while white gas-and-steam emissions were observed rising 300 m above the crater. At night and during the early mornings of 24 and 29 June Strombolian explosions were observed ejecting incandescent material up to 200 m above the crater (figure 125). These explosions continued to destroy and then rebuild the small cone within the Mackenney crater with fresh ejecta. Active lava flows on the SW flank were mostly 100-600 m long but had advanced to 2 km by 30 June.

On 10 July a 1.2 km lava flow divided in two which moved on the NE and N flanks. On 11 July, another 800 m lava flow divided in two, on the N and NE flanks (figure 126). On 14 and 19 July, INSIVUMEH registered constant seismic tremors and stated they were associated with the lava flows. No active lava flows were observed on 18-19 July, though some may have continued to advance on the SW, NW, N, and NE flanks. On 20 July, lava emerged from a vent at the NW base of the Mackenney cone near Cerro Chino, extending SE. Strombolian explosions ejected incandescent material up to 200 m above the crater on 22 July, accompanied by active incandescent lava flows on the SW, N, NW, NE, and W flanks. Three lava flows on the NW flank were observed on 22-24 July originating from the base of the Mackenney cone. Explosive activity during 22 July vibrated the windows and roofs of the houses in the villages of San Francisco de Sales, El Patrocinio, El Rodeo, and others located 4 km from the volcano. The lava flow activity had decreased by 25 July, but remnants of the lava flow on the NW flank persisted with weak incandescence observed at night, which was no longer observed by 26 July. Strombolian explosions continued to be detected through the rest of the month, accompanied by frequent white gas-and-steam emissions that extended up to 2 km from the volcano; no active lava flows were observed.

Figure (see Caption) Figure 125. Photos of Pacaya on 11 July 2020 showing Strombolian explosions and lava flows moving down the N and NE flanks. Courtesy of William Chigna, CONRED, posted on 12 July 2020.
Figure (see Caption) Figure 126. Infrared image of Pacaya on 20 July 2020 showing a hot lava flow accompanied by gas-and-steam emissions. Courtesy of INSIVUMEH (BEPAC 47 Julio 2020-22).

During February through July 2020, multiple lava flows and thermal anomalies within the Mackenney crater were detected in Sentinel-2 thermal satellite imagery (figure 127). These lava flows were observed moving down multiple flanks and were occasionally accompanied by white gas-and-steam emissions. Thermal anomalies were also recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during 10 August through July 2020 within 5 km of the crater summit (figure 128). There were a few breaks in thermal activity from early to mid-March, late April, early May, and early June; however, each of these gaps were followed by a pulse of strong and frequent thermal anomalies. According to the MODVOLC algorithm, 77 thermal alerts were recorded within the summit crater during February through July 2020.

Figure (see Caption) Figure 127. Sentinel-2 thermal satellite images of Pacaya showing thermal activity (bright yellow-orange) primarily as lava flows originating from the summit crater during February to July 2020 frequently accompanied by white gas-and-steam emissions. All images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 128. The MIROVA thermal activity graph (Log Radiative Power) at Pacaya during 10 August to July 2020 shows strong, frequent thermal anomalies through late July with brief gaps in activity during early to mid-March, late April, early May, and early June. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Matthew Watson, School of Earth Sciences at the University of Bristol (Twitter: @Matthew__Watson, https://twitter.com/Matthew__Watson); William Chigna, CONRED (URL: https://twitter.com/william_chigna).


Sangeang Api (Indonesia) — August 2020 Citation iconCite this Report

Sangeang Api

Indonesia

8.2°S, 119.07°E; summit elev. 1912 m

All times are local (unless otherwise noted)


Two ash plumes and small thermal anomalies during February-June 2020

Sangeang Api is a 13-km-wide island located off the NE coast of Sumbawa Island, part of Indonesia's Lesser Sunda Islands. Documentation of historical eruptions date back to 1512. The most recent eruptive episode began in July 2017 and included frequent Strombolian explosions, ash plumes, and block avalanches. The previous report (BGVN 45:02) described activity consisting of a new lava flow originating from the active Doro Api summit crater, short-lived explosions, and ash-and-gas emissions. This report updates information during February through July 2020 using information from the Darwin Volcanic Ash Advisory Center (VAAC) reports, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, or CVGHM) reports, and various satellite data.

Volcanism during this reporting period was relatively low compared to the previous reports (BGVN 44:05 and BGVN 45:02). A Darwin VAAC notice reported an ash plume rose 2.1 km altitude and drifted E on 10 May 2020. Another ash plume rose to a maximum of 3 km altitude drifting NE on 10 June, as seen in HIMAWARI-8 satellite imagery.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data detected a total of 12 low power thermal anomalies within 5 km from the summit during February through May 2020 (figure 42). No thermal anomalies were recorded during June and July according to the MIROVA graph. Though the MODVOLC algorithm did not detect any thermal signatures between February to July, many small thermal hotspots within the summit crater could be seen in Sentinel-2 thermal satellite imagery (figure 43).

Figure (see Caption) Figure 42. Thermal anomalies at Sangeang Api from 10 August 2019 through July 2020 recorded by the MIROVA system (Log Radiative Power) were infrequent and low power during February through May 2020. No thermal anomalies were detected during June and July. Courtesy of MIROVA.
Figure (see Caption) Figure 43. Sentinel-2 thermal satellite imagery using “Atmospheric penetration” (bands 12, 11, 8A) rendering showed small thermal hotspots (orange-yellow) at the summit of Sangeang Api during February through June 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, Doro Api and Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Stromboli (Italy) — August 2020 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian explosions persist at both summit craters during January-April 2020

Stromboli is a stratovolcano located in the northeastern-most part of the Aeolian Islands composed of two active summit vents: the Northern (N) Crater and the Central-South (CS) Crater that are situated at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano. The ongoing eruption began in 1934 and has been characterized by regular Strombolian explosions in both summit craters, ash plumes, and occasional lava flows (BGVN 45:08). This report updates activity from January to April 2020 with information primarily from daily and weekly reports by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Activity was consistent during this reporting period. Explosion rates ranged from 1-20 per hour and were of variable intensity, producing material that rose from less than 80 to over 250 m above the vents (table 8). Strombolian explosions were often accompanied by gas-and-steam emissions, spattering, and lava flows which has resulted in fallout deposited on the Sciara del Fuoco and incandescent blocks rolling toward the coast up to a few hundred meters down the slopes of the volcano. According to INGV, the average SO2 emissions measured 300-650 tons/day.

Table 8. Summary of activity at Stromboli during January-April 2020. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month Activity
Jan 2020 Strombolian activity and degassing continued with some spattering. Explosion rates varied from 2-20 per hour. Ejected material rose 80-150 m above the N crater and 150-200 m above the CS crater. A small cone is growing on the S1 crater and has produced some explosions and ejected coarse material mixed with fine ash. The average SO2 emissions measured 300 tons/day.
Feb 2020 Strombolian activity and degassing continued. Explosion rates varied from 2-14 per hour. Ejected material rose 80-200 m above the N crater and 80-250 m above the CS crater. The average SO2 emissions measured 300 tons/day.
Mar 2020 Strombolian activity and degassing continued with discontinuous spattering. Explosion rates varied from 1-16 per hour. Ejected material rose 80-150 m above the N crater and 150-250 m above the CS crater. Intense spattering was observed in the N crater. The average SO2 emissions measured 300-650 tons/day.
Apr 2020 Strombolian activity and degassing continued with spattering. Explosion rates varied from 1-17 per hour. Ejected material rose 80-150 m above the N crater and 150-250 m above the CS crater. Spattering was observed in the N crater. The average SO2 emissions measured 300-650 tons/day.

During January 2020, explosive activity mainly originated from three vents in the N crater and at least three vents in the CS crater. Ejecta from numerous Strombolian explosions covered the slopes on the upper Sciara del Fuoco, some of which rolled hundreds of meters down toward the coast. Explosion rates varied from 2-12 per hour in the N crater and 9-14 per hour in the CS crater; ejected material rose 80-200 m above the craters. According to INGV, a small cone growing in the S1 crater produced some explosions that ejected coarse material mixed with fine ash. On 18 and 19 January a lava flow was observed, both of which originated in the N crater. In addition, two explosions were detected in the N crater that was associated with two landslide events.

Explosive activity in February primarily originated from 2-3 eruptive vents in the N crater and at least three vents in the CS crater (figure 177). The Strombolian explosions ejected material 80-250 m above the craters, some of which fell onto the upper part of the Sciara. Explosion rates varied from 3-12 per hour in the N crater and 2-14 per hour in the CS crater (figure 178). On 3 February a short-lived lava flow was reported in the N crater.

Figure (see Caption) Figure 177. A drone image showed spattering accompanied by gas-and-steam emissions at Stromboli rising above the N crater on 15 February 2020. Courtesy of INGV (Rep. No. 08/2020, Stromboli, Bollettino Settimanale, 10/02/2020 - 16/02/2020, data emissione 18/02/2020).
Figure (see Caption) Figure 178. a) Strombolian explosions during the week of 17-23 February 2020 in the N1 crater of Stromboli were seen from Pizzo Sopra La Fossa. b) Spattering at Stromboli accompanied by white gas-and-steam emissions was detected in the N1 and S2 craters during the week of 17-23 February 2020. c) Spattering at Stromboli accompanied by a dense ash plume was seen in the N1 and S2 craters during the week of 17-23 February 2020. All photos by F. Ciancitto, courtesy of INGV (Rep. No. 09/2020, Stromboli, Bollettino Settimanale, 17/02/2020 - 23/02/2020, data emissione 25/02/2020).

Ongoing explosive activity continued into March, originating from three eruptive vents in the N crater and at least three vents in the CS crater. Ejected lapilli and bombs rose 80-250 m above the craters resulting in fallout covering the slopes in the upper Sciara del Fuoco with blocks rolling down the slopes toward the coast and explosions varied from 4-13 per hour in the N crater and 1-16 per hour in the CS crater. Discontinuous spattering was observed during 9-19 March. On 19 March, intense spattering was observed in the N crater, which produced a lava flow that stretched along the upper part of the Sciara for a few hundred meters. Another lava flow was detected in the N crater on 28 March for about 4 hours into 29 March, which resulted in incandescent blocks breaking off the front of the flow and rolling down the slope of the volcano. On 30 March a lava flow originated from the N crater and remained active until the next day on 31 March. Landslides accompanied by incandescent blocks rolling down the Sciara del Fuoco were also observed.

Strombolian activity accompanied by gas-and-steam emissions continued into April, primarily produced in 3-4 eruptive vents in the N crater and 2-3 vents in the CS crater. Ejected material from these explosions rose 80-250 m above the craters, resulting in fallout products covering the slopes on the Sciara and blocks rolling down the slopes. Explosions varied from 4-15 per hour in the N crater and 1-10 per hour in the CS crater. On 1 April a thermal anomaly was detected in satellite imagery accompanied by gas-and-steam and ash emissions downstream of the Sciara del Fuoco. A lava flow was observed on 15 April in the N crater accompanied by gas-and-steam and ash emissions; at the front of the flow incandescent blocks detached and rolled down the Sciara (figure 179). This flow continued until 16 April, ending by 0956; a thermal anomaly persisted downslope from the lava flow. Spatter was ejected tens of meters from the vent. Another lava flow was detected on 19 April in the N crater, followed by detached blocks from the front of the flow rolling down the slopes. Spattering continued during 20-21 April.

Figure (see Caption) Figure 179. A webcam image of an ash plume accompanied by blocks ejected from Stromboli on 15 April 2020 rolling down the Sciara del Fuoco. Courtesy of INGV via Facebook posted on 15 April 2020.

Moderate thermal activity occurred frequently during 16 October to April 2020 as recorded in the MIROVA Log Radiative Power graph using MODIS infrared satellite information (figure 180). The MODVOLC thermal alerts recorded a total of 14 thermal signatures over the course of nine different days between late February and mid-April. Many of these thermal signatures were captured as hotspots in Sentinel-2 thermal satellite imagery in both summit craters (figure 181).

Figure (see Caption) Figure 180. Low to moderate thermal activity at Stromboli occurred frequently during 16 October-April 2020 as shown in the MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 181. Thermal anomalies (bright yellow-orange) at Stromboli were observed in thermal satellite imagery from both of the summit vents throughout January-April 2020. Images with Atmospheric Penetration rendering (bands 12, 11, 8A); courtesy of Sentinel Hub Playground.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/en/, Facebook: https://www.facebook.com/ingvvulcani/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevado del Ruiz (Colombia) — August 2020 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Lava dome confirmed inside Arenas crater; intermittent thermal anomalies and ash emissions, January-June 2020

Columbia’s broad, glacier-capped Nevado del Ruiz has an eruption history documented back 8,600 years, and historical observations since 1570. It’s profound notoriety stems from an eruption on 13 November 1985 that produced an ash plume and pyroclastic flows onto the glacier, triggering large lahars that washed down 11 valleys, inundating most severely the towns of Armero (46 km W) and Chinchiná (34 km E) where approximately 25,000 residents were killed. It remains the second deadliest volcanic eruption of the 20th century after Mt. Pelee killed 28,000 in 1902. Ruiz remained quiet for 20 years after the September 1985-July 1991 eruption until a new explosive event occurred in February 2012; a series of explosive events lasted into 2013. Renewed activity beginning in November 2014 included ash and gas-and-steam plumes, ashfall, and the appearance of a lava dome inside the Arenas crater in August 2015 which has regularly displayed thermal anomalies through 2019. This report covers ongoing activity from January-June 2020 using information primarily from reports by the Servicio Geologico Colombiano (SGC) and the Observatorio Vulcanológico y Sismológico de Manizales, the Washington Volcanic Ash Advisory Center (VAAC) notices, and various sources of satellite data.

Gas and ash emissions continued at Nevado del Ruiz throughout January-June 2020; they generally rose to 5.8-6.1 km altitude with the highest reported plume at 7 km altitude during early March. SGC confirmed the presence of the growing lava dome inside Arenas crater during an overflight in January; infrared satellite imagery indicated a continued heat source from the dome through April. SGC interpreted repeated episodes of ‘drumbeat seismicity’ as an indication of continued dome growth throughout the period. Small- to moderate-density sulfur dioxide emissions were measured daily with satellite instruments. The MIROVA graph of thermal activity indicated a heat source consistent with a growing dome from January through April (figure 102).

Figure (see Caption) Figure 102. The MIROVA graph of thermal activity at Nevado del Ruiz from 2 July 2019 through June 2020 indicated persistent thermal anomalies from mid-November 2019-April 2020. Courtesy of MIROVA.

Activity during January-March 2020. During January 2020 some of the frequent tremor seismic events were associated with gas and ash emissions, and several episodes of “drumbeat” seismicity were recorded; they have been related by SGC to the growth of the lava dome on the floor of the Arenas crater. An overflight on 10 January, with the support of the Columbian Air Force, confirmed the presence of the dome which was first proposed in August 2015 (BGVN 42:06) (figure 103). The Arenas crater had dimensions of 900 x 980 m elongate to the SW-NE and was about 300 m deep (figure 104). The dome inside the crater was estimated to be 173 m in diameter and 60 m high with an approximate volume of 1,500,000 m3 (figures 105 and 106). In addition to the dome, the scientists also noted ash deposits on the summit ice cap (figure 107). The Washington VAAC reported an ash plume on 19 January that rose to 5.5 km altitude and drifted SW, dissipating quickly. On 30 January they reported an ash plume visible in satellite imagery extending 15 km NW from the summit at 5.8 km altitude. A single MODVOLC alert was issued on 15 January and data from the VIIRS satellite instrument reported thermal anomalies inside the summit crater on 14 days of the month. Sulfur dioxide plumes with DU values greater than 2 were recorded by the TROPOMI satellite instrument daily during the month.

Figure (see Caption) Figure 103. SGC confirmed the presence of a lava dome inside the Arenas crater at Nevado del Ruiz on 10 January 2020. The dome is shown in brown, and zones of fumarolic activity are labelled around the dome. Courtesy of SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 104. A view of the Arenas crater at the summit of Nevado del Ruiz on 10 January 2020 (left) is compared with a view from 2010 (right). They were both taken during overflights supported by the Colombian Air Force (FAC). Ash deposits on the ice fields are visible in both images. Fumarolic activity rises from the inner walls of the crater in January 2020. Courtesy of SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 105. The dome inside the Arenas crater at Nevado del Ruiz appeared dark against the crater rim and ash-covered ice field on 10 January 2020. Features observed include (A) the edge of the Arenas crater, (B) a secondary crater 150 m in diameter located to the west, (C) interior cornices, (D) the lava dome, (E) a depression in the center of the dome caused by possible subsidence and cooling of the lava, (F) a source of gas and ash emission with a diameter of approximately 15 m (secondary crater), and (G, H, and I) several sources of gas emission located around the crater. Courtesy of SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 106. Images of the summit of Nevado del Ruiz captured by the PlanetScope satellite system on 14 March 2018 (A) and 10 January 2020 (B) show the lava dome at the bottom of Arenas crater. Courtesy Planet Lab Inc. and SGC (El Nuevo Domo de Lava del Volcán Nevado del Ruiz y la Geomorfología Actual del Cráter Arenas 2020).
Figure (see Caption) Figure 107. Ash covered the snow and ice field around the Arenas crater at the summit of Nevado del Ruiz on 10 January 2020. The lava dome is the dark area on the right. Courtesy of SGC (posted on Twitter @sgcol).

The Washington VAAC reported multiple ash plumes during February 2020. On 4 February an ash plume was observed in satellite imagery drifting 35 km W from the summit at 5.8 km altitude. The following day a plume rose to 6.1 km altitude and extended 37 km W from the summit before dissipating by the end of the day (figure 108). On 6 February an ash cloud was observed in satellite imagery centered 45 km W of the summit at 5.8 km altitude. Although it had dissipated by midday, a hotspot remained in shortwave imagery until the evening. Late in the day another plume rose to 6.7 km altitude and drifted W. Diffuse ash was seen in satellite imagery on 13 February fanning towards the W at 5.8 km altitude. On 18 February at 1720 UTC the Bogota Meteorological Weather Office (MWO) reported an ash emission drifting NW at 5.8 km altitude; a second plume was reported a few hours later at the same altitude. Intermittent emissions continued the next day at 5.8-6.1 km altitude that reached as far as 50 km NW before dissipating. A plume on 21 February rose to 6.7 km altitude and drifted W (figure 109). Occasional emissions on 25 February at the same altitude reached 25 km SW of the summit before dissipating. A discrete ash emission around 1550 UTC on 26 February rose to 6.1 km altitude and drifted W. Two similar plumes were reported the next day. On 28 and 29 February plumes rose to 5.8 km altitude and drifted W.

Figure (see Caption) Figure 108. Emissions rose from the Arenas crater at Nevado del Ruiz on 5 February 2020. The Washington VAAC reported an ash plume that day that rose to 6.1 km altitude and drifted 37 km W before dissipating. Courtesy of Camilo Cupitre.
Figure (see Caption) Figure 109. Emissions rose from the Arenas crater at Nevado del Ruiz around 0600 on 21 February 2020. The Washington VAAC reported ash emissions that day that rose to 6.7 km altitude and drifted W. Courtesy of Manuel MR.

SGC reported several episodes of drumbeat type seismicity on 2, 8, 9, and 27 February which they attributed to effusion related to the growing lava dome in the summit crater. Sentinel-2 satellite imagery showed ring-shaped thermal anomalies characteristic of dome growth within Arenas crater several times during January and February (figure 110). The VIIRS satellite instrument recorded thermal anomalies on twelve days during February.

Figure (see Caption) Figure 110. Persistent thermal anomalies from Sentinel-2 satellite imagery during January and February 2020 suggested that the lava dome inside Nevado del Ruiz’s Arenas crater was still actively growing. Atmospheric penetration rendering (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.

On 4, 14, and 19 March 2020 thermal anomalies were visible in Sentinel-2 satellite data from within the Arenas crater. Thermal anomalies were recorded by the VIIRS satellite instrument on eight days during the month. Several episodes of drumbeat seismicity were recorded during the first half of the month and on 30-31 March. Distinct SO2 plumes with DU values greater than 2 were recorded by the TROPOMI satellite instrument daily throughout February and March (figure 111). The Washington VAAC reported an ash emission on 1 March that rose to 5.8 km altitude and drifted NW; it was centered 15 km from the summit when detected in satellite imagery. The next day a plume was seen in satellite imagery moving SW at 7.0 km altitude, extending nearly 40 km from the summit. Additional ash emissions were reported on 4, 14, 15, 21, 28, 29, and 31 March; the plumes rose to 5.8-6.7 km altitude and drifted generally W, some reaching 45 km from the summit before dissipating.

Figure (see Caption) Figure 111. Distinct SO2 plumes with Dobson values (DU) greater than 2 were recorded by the TROPOMI satellite instrument daily during February and March 2020. Ecuador’s Sangay produced smaller but distinct plumes most of the time as well. Dates are shown at the top of each image. Courtesy of NASA’s Sulfur Dioxide Monitoring Page.

Activity during April-June 2020. The Washington VAAC reported an ash emission that rose to 6.7 km altitude and drifted W on 1 April 2020. On 2 April, emission plumes were visible from the community of Tena in the Cundinamarca municipality which is located 100 km ESE (figure 112). The unusually clear skies were attributed to the reduction in air pollution in nearby Bogota resulting from the COVID-19 Pandemic quarantine. On 4 April the Bogota MWO reported an emission drifting SW at 5.8 km altitude. An ash plume on 8 April rose to 6.7 km altitude and drifted W. On 25 April the last reported ash plume from the Washington VAAC for the period rose to 6.1 km altitude and was observed in satellite imagery moving W at 30 km from the summit; after that, only steam and gas emissions were observed.

Figure (see Caption) Figure 112. On the evening of 2 April 2020, emission plumes from Nevado del Ruiz were visible from Santa Bárbara village in Tena, Cundinamarca municipality which is located 100 km ESE. The unusually clear skies were attributed to the reduction in air pollution in the nearby city of Bogota resulting from the COVID-19 Pandemic quarantine. Photo by Williama Garcia, courtesy of Semana Sostenible (3 April 2020).

Distinct SO2 plumes with DU values greater than 2 were recorded by the TROPOMI satellite instrument daily throughout the month. On 13 April, a Sentinel-2 thermal image showed a hot spot inside the Arenas crater largely obscured by steam and clouds. Cloudy images through May and June prevented observation of additional thermal anomalies in satellite imagery, but the VIIRS thermal data indicated anomalies on 3, 4, and 26 April. SGC reported low-energy episodes of drumbeat seismicity on 4, 9, 10, 12, 15, 16, 20, and 23 April which they interpreted as related to growth of the lava dome inside the Arenas crater. The seismic events were located 1.5-2.0 km below the floor of the crater.

Small emissions of ash and gas were reported by SGC during May 2020 and the first half of June, with the primary drift direction being NW. Gas and steam plumes rose 560-1,400 m above the summit during May and June (figure 113). Drumbeat seismicity was reported a few times each month. Sulfur dioxide emissions continued daily; increased SO2 activity was recorded during 10-13 June (figure 114).

Figure (see Caption) Figure 113. Gas and steam plumes rose 560-1,400 m above the summit of Nevado del Ruiz during May and June 2020, including in the early morning of 11 June. Courtesy of Carlos-Enrique Ruiz.
Figure (see Caption) Figure 114. Increased SO2 activity during 10-13 June 2020 at Nevado del Ruiz was recorded by the TROPOMI instrument on the Sentinel-5P satellite. Sangay also emitted SO2 on those days. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: El Servicio Geológico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www.sgc.gov.co/volcanes, https://twitter.com/sgcol); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Camilo Cupitre (URL: https://twitter.com/Ccupitre/status/1225207439701704709); Manuel MR (URL: https://twitter.com/ElPlanetaManuel/status/1230837262088384512); Semana Sostenible (URL: https://sostenibilidad.semana.com/actualidad/articulo/fumarola-del-nevado-del-ruiz-fue-captada-desde-tena-cundinamarca/49597); Carlos-Enrique Ruiz (URL: https://twitter.com/Aleph43/status/1271800027841794049).


Asosan (Japan) — July 2020 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Daily ash emissions continue through mid-June 2020 when activity decreases

Japan's 24-km-wide Asosan caldera on the island of Kyushu has been active throughout the Holocene. Nakadake has been the most active of 17 central cones for 2,000 years; all historical activity is from Nakadake Crater 1. The largest ash plume in 20 years occurred on 8 October 2016. Asosan remained quiet until renewed activity from Crater 1 began in mid-April 2019; explosions with ash plumes continued through the first half of 2020 and are covered in this report. The Japan Meteorological Agency (JMA) provides monthly reports of activity; the Tokyo Volcanic Ash Advisory Center (VAAC) issues aviation alerts reporting on possible ash plumes, and Sentinel-2 satellite images provide data on ash emissions and thermal activity.

The Tokyo VAAC issued multiple daily reports of ash plumes from Nakadake Crater 1 from 1 January-14 June 2020. They were commonly at 1.8-2.1 km altitude, and often drifted E or S. JMA reported that ashfall continued downwind from the ash plumes until mid-June; seismic activity was relatively high during January and February and decreased steadily after that time. The measured SO2 emissions ranged from 1,000-4,900 tons per day through mid-June and dropped to 500 tons per day during the second half of June. Intermittent thermal activity was recorded at the crater through mid-May.

Explosive activity during January-June 2020. Ash plumes rose up to 1.1 km above the crater rim at Nakadake Crater 1 during January 2020 (figure 70). Ashfall was confirmed downwind of an explosion on 7 January. During February, ash plumes rose up to 1.7 km above the crater, and ashfall was again reported downwind. The crater camera provided by the Aso Volcano Museum occasionally observed incandescence at the floor of the crater during both months. Incandescence was also occasionally observed with the Kusasenri webcam (3 km W) and was seen on 20 February from a webcam in Minamiaso village (8 km SW).

Figure (see Caption) Figure 70. Ash plumes rose up to 1.1 km above the Nakadake Crater 1 at Asosan during January 2020 (left) and up to 1.7 km above the crater during February 2020 (right) as seen in these images from the Kusasenri webcam. Ashfall was reported downwind multiple times. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, January and February 2020).

During March 2020, ash plumes rose as high as 1.3 km. Ashfall was reported on 9 March in Ichinomiyamachi, Aso City (figure 71). In field surveys conducted on the 18th and 25th, there was no visible water inside the crater, and high-temperature grayish-white plumes were observed. The temperature at the base of the plume was measured at 300°C (figure 72).

Figure (see Caption) Figure 71. Ashfall from Asosan appeared on 9 March 2020 in Ichinomiyamachi, Aso City around 10 km N. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, March 2020).
Figure (see Caption) Figure 72. During a field survey of Nakadake Crater 1 at Asosan on 25 March 2020, JMA staff observed a gray ash plume rising from the crater floor (left). The maximum temperature of the ash plume was measured at about 300°C with an infrared thermal imaging device (right). Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, March 2020).

Occasional incandescence was observed at the bottom of the crater during April and May 2020; ash plumes rose 1.1 km above the crater on most days in April and were slightly higher, rising to 1.8 km during May, although activity was more intermittent (figure 73). A brief increase in SO2 activity was reported by JMA during field surveys on 7 and 8 May; satellite data captured small plumes of SO2 on 1 and 6 May (figure 74). A brief increase in tremor amplitude was reported by JMA on 16 May.

Figure (see Caption) Figure 73. Although activity at Asosan’s Nakadake Crater 1 was more intermittent during April and May 2020 than earlier in the year, ash plumes were still reported most days and incandescence was seen at the bottom of the crater multiple times until 15 May. Left image taken 11 May 2020 from the Kusachiri webcam; right image taken from the crater webcam on 10 May provided by the Aso Volcano Museum. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, May 2020).
Figure (see Caption) Figure 74. The TROPOMI instrument on the Sentinel-5P satellite detected small but distinct SO2 plumes from Asosan on 1 and 6 May 2020. Additional small plumes are visible from Aira caldera’s Sakurajima volcano. Courtesy of NASA’s Global Sulfur Dioxide Monitoring Page.

The last report of ash emissions at Nakadake Crater 1 from the Tokyo VAAC was on 14 June 2020. JMA also reported that no eruption was observed after mid-June. On 8 June they reported an ash plume that rose 1.4 km above the crater. During a field survey on 16 June, only steam was observed at the crater; the plume rose about 100 m (figure 75). In addition, a small plume of steam rose from a fumarole on the S crater wall.

Figure (see Caption) Figure 75. A steam plume rose about 100 m from the floor of Nakadake Crater 1 on 16 June 2020. A small steam plume was also observed by the S crater wall. Courtesy of JMA (Volcanic activity commentary material for Mt. Aso, June 2020).

Thermal activity during January-June 2020. Sentinel-2 satellite data indicated thermal anomalies present at Nakadake Crater 1 on 2 January, 6 and 21 February, 16 April, and 11 May (figure 76). In addition, thermal anomalies from agricultural fires appeared in satellite images on 11 February, 7 and 17 March (figure 77). The fires were around 5 km from the crater, thus they appear on the MIROVA thermal anomaly graph in black, but are likely unrelated to volcanic activity (figure 78). No thermal anomalies were recorded in satellite data from the Nakadake Crater 1 after 11 May, and none appeared in the MIROVA data as well.

Figure (see Caption) Figure 76. Thermal anomalies appeared at Asosan’s Nakadake Crater 1 on 2 January, 6 and 21 February, 16 April and 11 May 2020. On 2 January a small ash plume drifted SSE from the crater (left). On 6 February a dense ash plume drifted S from the crater (center). Only a small steam plume was visible above the crater on 21 February (right). Images use Atmospheric penetration rendering (bands 12, 11, 8A), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 77. Thermal anomalies from agricultural fires located about 5 km from the crater appeared in satellite images on 11 February, and 7 and 17 March 2020. Although a dense ash plume drifted SSE from the crater on 11 February (left), no thermal anomalies appear at the crater on these dates. Images use Atmospheric penetration rendering (bands 12, 11, 8A), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 78. The MIROVA project plot of Log Radiative Power at Asosan from 29 June 2019 through June 2020 shows only a few small thermal alerts within 5 km of the summit crater during January-June 2020, and a spike in activity during February and March located around 5 km away. These data correlate well with the Sentinel-2 satellite data that show intermittent thermal anomalies at the summit throughout January-May and agricultural fires located several kilometers from the crater during February and March. Courtesy of MIROVA.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Aira (Japan) — July 2020 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Near-daily explosions with ash plumes continue, large block ejected 3 km from Minamidake crater on 4 June 2020

Sakurajima rises from Kagoshima Bay, which fills the Aira Caldera near the southern tip of Japan's Kyushu Island. Frequent explosive and occasional effusive activity has been ongoing for centuries. The Minamidake summit cone has been the location of persistent activity since 1955; the adjacent Showa crater on its E flank has also been intermittently active since 2006. Numerous explosions and ash-bearing emissions have been occurring each month at either Minamidake or Showa crater since the latest eruptive episode began in late March 2017. This report covers ongoing activity at Minamidake from January through June 2020; the Japan Meteorological Agency (JMA) provides regular reports on activity, and the Tokyo VAAC (Volcanic Ash Advisory Center) issues tens of reports each month about the frequent ash plumes.

Activity continued during January-June 2020 at Minamidake crater with tens of explosions each month. The Tokyo VAAC issued multiple daily reports of ash emissions during January and February. Less activity occurred during the first half of March but picked up again with multiple daily reports from mid-March through mid-April. Emissions were more intermittent but continued through early June, when activity decreased significantly. JMA reported explosions with ash plumes rising 2.5-4.2 km above the summit, and ejecta traveling generally up to 1,700 m from the crater, although a big explosion in early June send a large block of tephra 3 km from the crater (table 23). Thermal anomalies were visible in satellite imagery on a few days most months and were persistent in the MIROVA thermal anomaly data from November 2019 through early June 2020 (figure 94). Incandescence was often visible at night in the webcams through early June; the Showa crater remained quiet throughout the period.

Table 23. Monthly summary of eruptive events recorded at Sakurajima's Minamidake crater within the Aira Caldera, January through June 2020. The number of events that were explosive in nature are in parentheses. No events were recorded at the Showa crater during this time. Ashfall is measured at the Kagoshima Local Meteorological Observatory (KLMO), 10 km W of Showa crater. Data courtesy of JMA (January to June 2020 monthly reports).

Month Ash emissions (explosive) Max plume height above crater Max ejecta distance from crater Total amount of ashfall (g/m2) Total ashfall previous month
Jan 2020 104 (65) 2.5 km 1,700 m 75 (12 days) 280,000 tons
Feb 2020 129 (67) 2.6 km 1,800 m 21 (14 days) 230,000 tons
Mar 2020 26 (10) 3.0 km 1,700 m 3 (8 days) 360,000 tons
Apr 2020 51 (14) 3.8 km 1,700 m less than 0.5 (2 days) 160,000 tons
May 2020 51 (24) 4.2 km 1,300 m 19 (8 days) 280,000 tons
Jun 2020 28 (16) 3.7 km 3,000 m 71 (9 days) 150,000 tons
Figure (see Caption) Figure 94. Persistent thermal anomalies were recorded in the MIROVA thermal energy data for the period from 2 July 2019 through June 2020. Thermal activity increased in October 2019 and remained steady through May 2020, decreasing abruptly at the beginning of June. Courtesy of MIROVA.

Explosions continued at Minamidake crater during January 2020 with 65 ash plumes reported. The highest ash plume rose 2.5 km above the crater on 30 January, and incandescent ejecta reached up to 1,700 m from the Minamidake crater on 22 and 29 January (figure 95). Slight inflation of the volcano since September 2019 continued to be measured with inclinometers and extensometers on Sakurajima Island. Field surveys conducted on 15, 20, and 31 January measured the amount of sulfur dioxide gas released as very high at 3,400-4,700 tons per day, as compared with 1,000-3,000 tons in December 2019.

Figure (see Caption) Figure 95. An explosion at the Minamidake summit crater of Aira’s Sakurajima volcano on 29 January 2020 produced an ash plume that rose 2.5 km above the crater rim and drifted SE (left). On 22 January incandescent ejecta reached 1,700 m from the summit during explosive events. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, January 2020).

About the same number of explosions produced ash plumes during February 2020 (67) as in January (65) (figure 96). On 10 February a large block was ejected 1,800 m from the crater, the first to reach that far since 5 February 2016. The tallest plume, on 26 February rose 2.6 km above the crater. Sentinel-2 satellite imagery indicated two distinct thermal anomalies within the Minamidake crater on both 1 and 6 February (figure 97). Activity diminished during March 2020 with only 10 explosions out of 26 eruptive events. On 21 March a large bomb reached 1,700 m from the crater. The tallest ash plume rose 3 km above the crater on 17 March. Scientists noted during an overflight on 16 March that a small steam plume was rising from the inner wall on the south side of the Showa crater; a larger steam plume rose to 300 m above the Minamidake crater and drifted S (figure 98). Sulfur dioxide emissions were similar in February (1,900 to 3,100 tons) and March (1,300 to 3,400 tons per day).

Figure (see Caption) Figure 96. An ash plume rose from the Minamidake crater at the summit of Aira’s Sakurajima volcano on 6 February 2020 at 1752 local time, as seen looking S from the Kitadake crater. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, February 2020).
Figure (see Caption) Figure 97. Sentinel-2 satellite imagery revealed two distinct thermal anomalies within the Minamidake crater at Aira’s Sakurajima volcano on 1 and 6 February 2020. Images use Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub playground.
Figure (see Caption) Figure 98. During an overflight of Aira’s Sakurajima volcano on 16 March 2020, JMA captured this view to the SW of the Kitadake crater on the right, the steam-covered Minamidake crater in the center, and the smaller Showa crater on the left adjacent to Minamidake. Courtesy of JMA and the Maritime Self-Defense Force 1st Air Group P-1 (Sakurajima Volcanic Activity Commentary, March 2020).

During April 2020, ejecta again reached as far as 1,700 m from the crater; 14 explosions were identified from the 51 reported eruptive events, an increase from March. The tallest plume, on 4 April, rose 3.8 km above the crater (figure 99). The same number of eruptive events occurred during May 2020, but 24 were explosive in nature. A large plume on 9 May rose to 4.2 km above the rim of Minamidake crater, the tallest of the period (figure 100). On 20 May, incandescent ejecta reached 1,300 m from the summit. Sulfur dioxide emissions during April (1,700-2,100 tons per day) and May (1,200-2,700 tons per day) were slightly lower than previous months.

Figure (see Caption) Figure 99. A large ash plume at Aira’s Sakurajima volcano rose from Minamidake crater at 1621 on 4 April 2020. The plume rose to 3.8 km above the crater and drifted SE. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, April 2020).
Figure (see Caption) Figure 100. Activity continued at Aira’s Sakurajima volcano during May 2020. A large plume rose to 4.2 km above the summit and drifted N in the early morning of 9 May (left). The Kaigata webcam located at the Osumi River National Highway Office captured abundant incandescent ejecta reaching 1,300 m from the crater during the evening of 20 May. Courtesy of JMA (Sakurajima Volcanic Activity Commentary, May 2020).

A major explosion on 4 June 2020 produced 137 Pa of air vibration at the Seto 2 observation point on Sakurajima Island. It was the first time that air vibrations exceeding 100 Pa have been observed at the Seto 2 station since the 21 May 2015 explosion at the Showa crater. The ash plume associated with the explosion rose 1.5 km above the crater rim. During an 8 June field survey conducted in Higashisakurajima-cho, Kagoshima City, a large impact crater believed to be associated with this explosion was located near the coast 3 km SSW from Minamidake. The crater formed by the ejected block was about 6 m in diameter and 2 m deep (figure 101); fragments found nearby were 10-20 cm in diameter (figure 102). A nearby roof was also damaged by the blocks. Smaller bombs were found in Kurokami-cho, Kagoshima City, around 4- 5 km E of Minamidake on 5 June; the largest fragment was 5 cm in diameter. Multiple ash plumes rose to 3 km or more above the summit during the first ten days of June; explosions on 4 and 5 June reached 3.7 km above the crater (figure 103). Larger than normal inflation and deflation before and after the explosions was recorded during early June in the inclinometers and extensometers located on the island. Incandescence at the summit was observed at night through the first half of June. The Tokyo VAAC issued multiple daily ash advisories during 1-10 June after which activity declined abruptly. Two brief explosions on 23 June and one on 28 June were the only two additional ash explosions reported in June.

Figure (see Caption) Figure 101. A large crater measuring 6 m wide and 2 m deep was discovered 3 km from the Minamidake crater in Higashisakurajima, part of Kagoshima City, on 8 June 2020. It was believed to be from the impact of a large block ejected during the 4 June explosion at Aira’s Sakurajima volcano. Photo courtesy of Kagoshima City and JMA (Sakurajima Volcanic Activity Commentary, June 2020).
Figure (see Caption) Figure 102. Fragments 10-30 cm in diameter from a large bomb that traveled 3 km from Minamidake crater on Sakurajima were found a few days after the 4 June 2020 explosion at Aira. Courtesy of JMA, photo courtesy of Kagoshima City (Sakurajima Volcanic Activity Commentary, June 2020).
Figure (see Caption) Figure 103. An ash plume rose 3.7 km above the Minamidake crater at Aira’s Sakurajima volcano on 5 June 2020 and was recorded in Sentinel-2 satellite imagery. Image uses Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub playground.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nevados de Chillan (Chile) — July 2020 Citation iconCite this Report

Nevados de Chillan

Chile

36.868°S, 71.378°W; summit elev. 3180 m

All times are local (unless otherwise noted)


Explosions and pyroclastic flows continue; new dome emerges from Nicanor crater in June 2020

Nevados de Chillán is a complex of late-Pleistocene to Holocene stratovolcanoes in the Chilean Central Andes. An eruption started with a phreatic explosion and ash emission on 8 January 2016 from a new crater (Nicanor) on the E flank of the Nuevo crater, itself on the NW flank of the large Volcán Viejo stratovolcano. Strombolian explosions and ash emissions continued throughout 2016 and 2017; a lava dome within the Nicanor crater was confirmed in early January 2018. Explosions and pyroclastic flows continued during 2018 and 2019, with several lava flows appearing in late 2019. This report covers continuing activity from January-June 2020 when ongoing explosive events produced ash plumes, pyroclastic flows, and the growth of new dome inside the crater. Information for this report is provided primarily by Chile's Servicio Nacional de Geología y Minería (SERNAGEOMIN)-Observatorio Volcanológico de Los Andes del Sur (OVDAS), and by the Buenos Aires Volcanic Ash Advisory Center (VAAC).

Explosions with ash plumes rising up to three kilometers above the summit area were intermittent from late January through early June 2020. Some of the larger explosions produced pyroclastic flows that traveled down multiple flanks. Thermal anomalies within the Nicanor crater were recorded in satellite data several times each month from February through June. A reduction in overall activity led SERNAGEOMIN to lower the Alert Level from Orange to Yellow (on a 4-level, Green-Yellow-Orange-Red scale) during the first week of March, although tens of explosions with ash plumes were still recorded during March and April. Explosive activity diminished in early June and SERNAGEOMIN reported the growth of a new dome inside the Nicanor crater. By the end of June, a new flow had extended about 100 m down the N flank. Thermal activity recorded by the MIROVA project showed a drop in thermal energy in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in thermal and explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June (figure 52).

Figure (see Caption) Figure 52. MIROVA thermal anomaly data for Nevados de Chillan from 8 September 2019 through June 2020 showed a drop in thermal activity in mid-December 2019 after the lava flows of September-November stopped advancing. A decrease in activity in January and February 2020 was followed by an increase in explosive activity in March and April. Renewed thermal activity from the growth of a new dome inside the Nicanor crater was recorded beginning in mid-June. Courtesy of MIROVA.

Weak gas emissions were reported daily during January 2020 until a series of explosions began on the 21st. The first explosion rose 100 m above the active crater; the following day, the highest explosion rose 1.6 km above the crater. The Buenos Aires VAAC reported pulse emissions visible in satellite imagery on 21 and 24 January that rose to 3.9-4.3 km altitude and drifted SE and NE, respectively. Intermittent explosions continued through 26 January. Incandescent ejecta was observed during the night of 28-29 January. The VAAC reported an isolated emission on 29 January that rose to 5.2 km altitude and drifted E. A larger explosion on 30 January produced an ash plume that SERNAGEOMIN reported at 3.4 km above the crater (figure 53). It produced pyroclastic flows that traveled down ravines on the NNE and SE flanks. The Washington VAAC reported on behalf of the Buenos Aires VAAC that an emission was observed in satellite imagery on 30 January that rose to 4.9 km altitude and was moving rapidly E, reaching 15 km from the summit at midday. The altitude of the ash plume was revised two hours later to 7.3 km, drifting NNE and rapidly dissipating. Satellite images identified two areas of thermal anomalies within the Nicanor crater that day. One was the same emission center (CE4) identified in November 2019, and the second was a new emission center (CE5) located 60 m NW.

Figure (see Caption) Figure 53. A significant explosion and ash plume from the Nicanor crater at Nevados de Chillan on 30 January 2020 produced an ash plume reported at 7.3 km altitude. The left image was taken within one minute of the initial explosion. Images posted by Twitter accounts #EmergenciasÑuble (left) and T13 (right); original photographers unknown.

When the weather permitted, low-altitude mostly white degassing was seen during February 2020, often with traces of fine-grained particulate material. Incandescence at the crater was observed overnight during 4-5 February. The Buenos Aires VAAC reported an emission on 14 February visible in the webcam. The next day, an emission was visible in satellite imagery at 3.9 km altitude that drifted E. Episodes of pulsating white and gray plumes were first observed by SERNAGEOMIN beginning on 18 February and continued through 25 February (figure 54). The Buenos Aires VAAC reported pulses of ash emissions moving SE on 18 February at 4.3 km altitude. Ash drifted E the next day at 3.9 km altitude and a faint plume was briefly observed on 20 February drifting N at 3.7 km altitude before dissipating. Sporadic pulses of ash moved SE from the volcano on 22 February at 4.3 km altitude, briefly observed in satellite imagery before dissipating. Thermal anomalies were visible from the Nicanor crater in Sentinel-2 satellite imagery on 23 and 28 February.

Figure (see Caption) Figure 54. An ash emission at Nevados de Chillan on 18 February 2020 was captured in Sentinel-2 satellite imagery drifting SE (left). Thermal anomalies within the Nicanor crater were measured on 23 (right) and 28 February. Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

Only low-altitude degassing of mostly steam was reported for the first half of March 2020. When SERNAGEOMIN lowered the Alert Level from Orange to Yellow on 5 March, they reduced the affected area from 5 km NE and 3 km SW of the crater to a radius of 2 km around the active crater. Thermal anomalies were recorded at the Nicanor crater in Sentinel-2 imagery on 4, 9, 11, 16, and 19 March (figure 55). A new series of explosions began on 19 March; 44 events were recorded during the second half of the month (figure 56). Webcams captured multiple explosions with dense ash plumes; on 25 and 30 March the plumes rose more than 2 km above the crater. Fine-grained ashfall occurred in Las Trancas (10 km SW) on 25 March. Pyroclastic flows on 25 and 30 March traveled 300 m NE, SE, and SW from the crater. Incandescence was observed at night multiple times after 20 March. The Buenos Aires VAAC reported several discrete pulses of ash that rose to 4.3 km altitude and drifted SE on 20 and 21 March, SW on 25 March, and SE on 29 and 30 March. Another ash emission rose to 5.5 km altitude later on 30 March and drifted SE.

Figure (see Caption) Figure 55. Sentinel-2 Satellite imagery of Nevados de Chillan during March 2020 showed thermal anomalies on five different dates at the Nicanor crater, including on 9, 11, and 16 March. A second thermal anomaly of unknown origin was also visible on 11 March about 2 km SW of the crater (center). Images use Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Forty-four explosive events were recorded at Nevados de Chillan during the second half of March 2020 including on 19 March. Courtesy of SERNAGEOMIN webcams and chillanonlinenoticia.

In their semi-monthly reports for April 2020, SERNAGEOMIN reported 94 explosive events during the first half of the month and 49 during the second half; many produced dense ash plumes. The Buenos Aires VAAC reported frequent intermittent ash emissions during 1-13 April reaching altitudes of 3.7-4.3 km (figure 57). They reported the plume on 8 April visible in satellite imagery at 7.3 km altitude drifting SE. An emission on 13 April was also visible in satellite imagery at 6.1 km altitude drifting NE.

Figure (see Caption) Figure 57. Sentinel-2 satellite imagery captured a strong thermal anomaly and an ash plume drifting SE from Nevados de Chillan on 10 April 2020. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

During the second half of April 2020, SERNAGEOMIN reported that only one plume exceeded 2 km in height; on 21 April, it rose to 2.4 km above the crater (figure 58). The Buenos Aires VAAC reported isolated pulses of ash on 18, 26, 28, and 30 April. During the second half of April SERNAGEOMIN also reported that a pyroclastic flow traveled about 1,200 m from the crater rim down the SE flank. The ash from the pyroclastic flow drifted SE and S as far as 3.5 km. Satellite images showed continued activity from multiple emission centers around the crater. Pronounced scarps were noted on the internal walls of the crater, attributed to the deepening of the crater from explosive activity.

Figure (see Caption) Figure 58. Tens of explosions were reported at Nevados de Chillan during the second half of April 2020 that produced dense ash plumes. The plume on 21 April rose 2.4 km above the Nicanor crater. Photo by Josefa Carrasco Acuña from San Fabián de Alico; posted by Noticias Valpo Express.

Intermittent explosive activity continued during May 2020. The plumes contained abundant particulate material and were accompanied by periodic pyroclastic flows and incandescent ejecta around the active crater, especially visible at night. The Buenos Aires VAAC reported several sporadic weak ash emissions during the first week of May that rose to 3.7-5.2 km altitude and drifted NE. SERNAGEOMIN reported that only one explosion produced an ash emission that rose more than two km above the crater during the first two weeks of the month; on 6 May it rose to 2.5 km above the crater and drifted NE. They also observed pyroclastic flows on the E and SE flanks that day. Additional pyroclastic flows traveled 450 m down the S flank during the first half of the month, and similar deposits were observed to the N and NE. Satellite observations showed various emission points along the NW-trending lineament at the summit and multiple erosion scarps. Major erosion was noted at the NE rim of the crater along with an increase in degassing around the rim.

During the second half of May 2020 most of the ash plumes rose less than 2 km above the crater; a plume from one explosion on 22 May rose 2.2 km above the crater; the Buenos Aires VAAC reported the plume at 5.5 km altitude drifting NW (figure 59). Continuing pyroclastic emissions deposited material as far as 1.5 km from the crater rim on the NNW flank. There were also multiple pyroclastic deposits up to 500 m from the crater directed N and NE during the period. SERNAGEOMIN reported an increase in steam degassing between Nuevo-Nicanor and Nicanor-Arrau craters.

Figure (see Caption) Figure 59. Explosions produced dense ash plumes and pyroclastic flows at Nevados de Chillan multiple times during May 2020 including on 22 May. Courtesy of SERNAGEOMIN.

Webcam images during the first two weeks of June 2020 indicated multiple incandescent explosions. On 3 and 4 June plumes from explosions reached heights of over 1.25 km above the crater; the Buenos Aires VAAC reported them drifting NW at 3.9 km altitude. Incandescent ejecta on 6 June rose 760 m above the vent and drifted NE. In addition, pyroclastic flows were distributed on the N, NW, E and SE flanks. Significant daytime and nighttime incandescence was reported on 6, 9, and 10 June (figure 60). The VAAC reported emission pulses on 6 and 9 June drifting E and SE at 4.3 km altitude.

Figure (see Caption) Figure 60. Multiple ash plumes with incandescence were reported at Nevados de Chillan during the first ten days of June 2020 including on 6 June, after which explosive activity decreased significantly. Courtesy of SERNAGEOMIIN and Sismo Alerta Mexicana.

SERNAGEOMIN reported that beginning on the afternoon of 9 June 2020 a tremor-type seismic signal was first recorded, associated with continuous emission of gas and dark gray ash that drifted SE (figure 61). A little over an hour later another tremor signal began that lasted for about four hours, followed by smaller discrete explosions. A hybrid-type earthquake in the early morning of 10 June was followed by a series of explosions that ejected gas and particulate matter from the active crater. The vent where the emissions occurred was located within the Nicanor crater close to the Arrau crater; it had been degassing since 30 May.

Figure (see Caption) Figure 61. A tremor-type seismic signal was first recorded on the afternoon of 9 June 2020 at Nevados de Chillan. It was associated with the continuous emission of gas and dark gray ash that drifted SE, and incandescent ejecta visible after dark. View is to the S, courtesy of SERNAGEOMIN webcam, posted by Volcanology Chile.

After the explosions on the afternoon of 9 June, a number of other nearby vents became active. In particular, the vent located between the Nuevo and Nicanor craters began emitting material for the first time during this eruptive cycle. The explosion also generated pyroclastic flows that traveled less than 50 m in multiple directions away from the vent. Abundant incandescent material was reported during the explosion early on 10 June. Deformation measurements showed inflation over the previous 12 days.

SERNAGEOMIN identified a surface feature in satellite imagery on 11 June 2020 that they interpreted as a new effusive lava dome. It was elliptical with dimensions of about 85 x 120 m. In addition to a thermal anomaly attributed to the dome, they noted three other thermal anomalies between the Nuevo, Arrau, and Nicanor craters. They reported that within four days the base of the active crater was filled with effusive material. Seismometers recorded tremor activity after 11 June that was interpreted as associated with lava effusion. Incandescent emissions were visible at night around the active crater. Sentinel-2 satellite imagery recorded a bright thermal anomaly inside the Nicanor crater on 14 June (figure 62).

Figure (see Caption) Figure 62. A bright thermal anomaly was recorded inside the Nicanor crater at Nevados de Chillan on 14 June 2020. SERNAGEOMIN scientists attributed it to the growth of a new lava dome within the crater. Image uses Atmospheric penetration rendering (bands 12, 11, 8a); courtesy of Sentinel Hub Playground.

A special report from SERNAGEOMIN on 24 June 2020 noted that vertical inflation had increased during the previous few weeks. After 20 June the inflation rate reached 2.49 cm/month, which was considered high. The accumulated inflation measured since July 2019 was 22.5 cm. Satellite imagery continued to show the growth of the dome, and SERNAGEOMIN scientists estimated that it reached the E edge of the Nicanor crater on 23 June. Based on these images, they estimated an eruptive rate of 0.1-0.3 m3/s, about two orders of magnitude faster than the Gil-Cruz dome that emerged between December 2018 and early 2019.

Webcams revealed continued low-level explosive activity and incandescence visible both during the day and at night. By the end of June, webcams recorded a lava flow that extended 94 m down the N flank from the Nicanor crater and continued to advance. Small explosions with abundant pyroclastic debris produced recurring incandescence at night. Satellite infrared imagery indicated thermal radiance from effusive material that covered an area of 37,000 m2, largely filling the crater. DEM analysis suggested that the size of the crater had tripled in volume since December 2019 due largely to erosion from explosive activity since May 2020. Sentinel-2 satellite imagery showed a bright thermal anomaly inside the crater on 27 June.

Geologic Background. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/, https://twitter.com/Sernageomin); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); #EmergenciasÑuble (URL: https://twitter.com/urgenciasnuble/status/1222943399185207296); T13, Channel 13 Press Department (URL: https://twitter.com/T13/status/1222951071443771394); Chillanonlinenoticia (URL: https://twitter.com/ChillanOnline/status/1240754211932995595); Noticias Valpo Express (URL: https://twitter.com/NoticiasValpoEx/status/1252715033131388928); Sismo Alerta Mexicana (URL: https://twitter.com/Sismoalertamex/status/1269351579095691265); Volcanology Chile (URL: https://twitter.com/volcanologiachl/status/1270548008191643651).


Kerinci (Indonesia) — July 2020 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent ash emissions during January-early May 2020

Kerinci is a stratovolcano located in Sumatra, Indonesia that has been characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 which has included intermittent explosions and ash plumes. The previous report (BGVN 44:12) described more recent activity consisting of intermittent gas-and-steam and ash plumes which occurred during June through early November 2019. This volcanism continued through May 2020, though little to no activity was reported during December 2019. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity during December 2019 consisted of white gas-and-steam emissions rising 100-500 m above the summit. White and brown emissions continued intermittently through May 2020, rising to a maximum altitude of 1 km above the summit on 14 April. During 3-6 and 8-9 January 2020, the Darwin VAAC and PVMBG issued notices reporting brown volcanic ash rising 150-600 m above the summit drifting S and ESE (figure 19). PVMBG published a VONA notice on 24 January at 0828 reporting ash rising 400 m above the summit. Brown emissions continued intermittently throughout the reporting period. On 1 February, volcanic ash was observed rising 300-960 m above the summit and drifting NE; PVMBG reported continuing brown emissions during 1-3 February. During 16-17 February, two VONA notices reported that brown ash plumes rose 150-400 m above the summit and drifted SW accompanied by consistent white gas-and-steam emissions (figure 20).

Figure (see Caption) Figure 19. Brown ash plume rose 500-600 m above Kerinci on 4 January 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.
Figure (see Caption) Figure 20. White gas-and-steam emissions rose 400 m above Kerinci on 19 February 2020. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

During 1-16 and 25-26 March 2020 brown ash emissions were frequently observed rising 100-500 m above the summit drifting in multiple directions. During 6-8 and 10-15, April brown ash emissions were reported 50-1,000 m above the summit. The most recent Darwin VAAC and VONA notices were published on 14 April, reporting volcanic ash rising 400 and 600 m above the summit, respectively; however, PVMBG reported brown emissions rising up to 1,000 m. By 25-27 April brown ash emissions rose 50-300 m above the summit. Intermittent white gas-and-steam emissions continued through May. The last brown emissions seen in May were reported on the 7th rising 50-100 m above the summit.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com, images at https://twitter.com/OysteinLAnderse/status/1213658331564269569/photo/1 and https://twitter.com/OysteinLAnderse/status/1230419965209018369/photo/1).


Tinakula (Solomon Islands) — July 2020 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Intermittent small thermal anomalies and gas-and-steam plumes during January-June 2020

Tinakula is a remote stratovolcano located 100 km NE of the Solomon Trench at the N end of the Santa Cruz. In 1971, an eruption with lava flows and ash explosions caused the small population to evacuate the island. Volcanism has previously been characterized by an ash explosion in October 2017 and the most recent eruptive period that began in December 2018 with renewed thermal activity. Activity since then has consisted of intermittent thermal activity and dense gas-and-steam plumes (BGVN 45:01), which continues into the current reporting period. This report updates information from January-June 2020 using primary source information from various satellite data, as ground observations are rarely available.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed weak, intermittent, but ongoing thermal activity during January-June 2020 (figure 41). A small cluster of slightly stronger thermal signatures was detected in late February to early March, which is correlated to MODVOLC thermal alert data; four thermal hotspots were recorded on 20, 27, and 29 February and 1 March. However, observations using Sentinel-2 satellite imagery were often obscured by clouds. In addition to the weak thermal signatures, dense gas-and-steam plumes were observed in Sentinel-2 satellite imagery rising from the summit during this reporting period (figure 42).

Figure (see Caption) Figure 41. Weak thermal anomalies at Tinakula from 26 June 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were intermittent and clustered more strongly in late February to early March.
Figure (see Caption) Figure 42. Sentinel-2 satellite imagery shows ongoing gas-and-steam plumes rising from Tinakula during January through May 2020. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Three distinct thermal anomalies were observed in Sentinel-2 thermal satellite imagery on 22 January, 11 April, and 6 May 2020, accompanied by some gas-and-steam emissions (figure 43). The hotspot on 22 January was slightly weaker than the other two days, and was seen on the W flank, compared to the other two that were observed in the summit crater. According to MODVOLC thermal alerts, a hotspot was recorded on 6 May, which corresponded to a Sentinel-2 thermal satellite image with a notable anomaly in the summit crater (figure 43). On 10 June no thermal anomaly was seen in Sentinel-2 satellite imagery due to the presence of clouds; however, what appeared to be a dense gas-and-steam plume was extending W from the summit.

Figure (see Caption) Figure 43. Sentinel-2 thermal satellite images showing a weak thermal activity (bright yellow-orange) on 22 January 2020 on the W flank of Tinakula (top) and slightly stronger thermal hotspots on 11 April (middle) and 6 May (bottom) in at the summit, which are accompanied by gas-and-steam emissions. Images with atmospheric penetration (bands 12, 11, 8a) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. Similar to Stromboli, it has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The satellitic cone of Mendana is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Frequent historical eruptions have originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Ibu (Indonesia) — July 2020 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash emissions and summit incandescence; Strombolian explosions in March 2020

Ibu is an active stratovolcano located along the NW coast of Halmahera Island in Indonesia. Volcanism has recently been characterized by frequent ash explosions, ash plumes, and small lava flows within the crater throughout 2019 (BGVN 45:01). Activity continues, consisting of frequent white-and-gray emissions, ash explosions, ash plumes, and lava flows. This report updates activity through June 2020, using data from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Darwin Volcanic Ash Advisory Centre (VAAC), and various satellites.

Volcanism during the entire reporting period dominantly consisted of white-and-gray emissions that rose 200-800 m above the summit drifting in multiple directions. The ash plume with the maximum altitude of 13.7 km altitude occurred on 16 May 2020. Sentinel-2 thermal satellite imagery detected multiple smaller hotspots within the crater throughout the reporting period.

Continuous ash emissions were reported on 6 February rising to 2.1 km altitude drifting E, accompanied by a hotspot visible in infrared satellite imagery. On 16 February, a ground observer reported an eruption that produced an ash plume rising 800 m above the summit drifting W, according to a Darwin VAAC notice. Ash plumes continued through the month, drifting in multiple directions and rising up to 2.1 km altitude. During 8-10 March, video footage captured multiple Strombolian explosions that ejected incandescent material and produced ash plumes from the summit (figures 21 and 22). Occasionally volcanic lightning was observed within the ash column, as recorded in video footage by Martin Rietze. This event was also documented by a Darwin VAAC notice, which stated that multiple ash emissions rose 2.1 km altitude drifting SE. PVMBG published a VONA notice on 10 March at 1044 reporting ash plumes rising 400 m above the summit. PVMBG and Darwin VAAC notices described intermittent eruptions on 26, 28, and 29 March, all of which produced ash plumes rising 300-800 m above the summit.

Figure (see Caption) Figure 21. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and a dense ash plume. Video footage copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 22. Strombolian explosions recorded at the crater summit of Ibu during 8-10 March 2020 ejected incandescent ejecta and ash. Frequent volcanic lightning was also observed. Video footage copyright by Martin Rietze, used with permission.

A majority of days in April included white-and-gray emissions rising up to 800 m above the summit. A ground observer reported an eruption on 9 April, according to a Darwin VAAC report, and a hotspot was observed in HIMAWARI-8 satellite imagery. Minor eruptions were reported intermittently during mid-April and early to mid-May. On 12 May at 1052 a VONA from PVMBG reported an ash plume 800-1,100 m above the summit. A large short-lived eruption on 16 May produced an ash plume that rose to a maximum of 13.7 km altitude and drifted S, according to the Darwin VAAC report. By June, volcanism consisted predominantly of white-and-gray emissions rising 800 m above the summit, with an ash eruption on 15 June. This eruptive event resulted in an ash plume that rose 1.8 km altitude drifting WNW and was accompanied by a hotspot detected in HIMAWARI-8 satellite imagery, according to a Darwin VAAC notice.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected frequent hotspots during July 2019 through June 2020 (figure 23). In comparison, the MODVOLC thermal alerts recorded a total of 24 thermal signatures over the course of 19 different days between January and June. Many thermal signatures were captured as small thermal hotspots in Sentinel-2 thermal satellite imagery within the crater (figure 24).

Figure (see Caption) Figure 23. Thermal anomalies recorded at Ibu from 2 July 2019 through June 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and consistent in power. Courtesy of MIROVA.
Figure (see Caption) Figure 24. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed occasional thermal hotspots (bright orange) in the Ibu summit crater during January through June 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Martin Rietze, Taubenstr. 1, D-82223 Eichenau, Germany (URL: https://mrietze.com/, https://www.youtube.com/channel/UC5LzAA_nyNWEUfpcUFOCpJw/videos, video at https://www.youtube.com/watch?v=qMkfT1e4HQQ).


Suwanosejima (Japan) — July 2020 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Frequent explosions, ash plumes, and summit incandescence in January-June 2020

Suwanosejima is an active stratovolcano located in the northern Ryukyu Islands. Volcanism has previously been characterized by Strombolian explosions, ash plumes, and summit incandescence (BGVN 45:01), which continues to occur intermittently. A majority of this activity originates from vents within the large Otake summit crater. This report updates information during January through June 2020 using monthly reports from the Japan Meteorological Agency (JMA), the Tokyo Volcanic Ash Advisory Center (VAAC), and various satellite data.

During 3-10 January 2020, 13 explosions were detected from the Otake crater rising to 1.4 km altitude; material was ejected as far as 600 m away and ashfall was reported in areas 4 km SSW, according to JMA. Occasional small eruptive events continued during 12-17 January, which resulted in ash plumes that rose 1 km above the crater rim and ashfall was again reported 4 km SSW. Crater incandescence was visible nightly during 17-24 January, while white plumes rose as high as 700 m above the crater rim.

Nightly incandescence during 7-29 February, and 1-6 March, was accompanied by intermittent explosions that produced ash plumes rising up to 1.2 km above the crater rim (figure 44); activity during early February resulted in ashfall 4 km SSW. On 19 February an eruption produced a gray-white ash plume that rose 1.6 km above the crater (figure 45), resulting in ashfall in Toshima village (4 km SSW), according to JMA. Explosive events during 23-24 February ejected blocks onto the flanks. Two explosions were recorded during 1-6 March, which sent ash plumes as high as 900-1,000 m above the crater rim and ejected large blocks 300 m from the crater.

Figure (see Caption) Figure 44. Surveillance camera images of summit incandescence at Suwanosejima on 29 January (top left), 21 (middle left) and 23 (top right) February, and 25 March (bottom left and right) 2020. Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).
Figure (see Caption) Figure 45. Surveillance camera images of which and white-and-gray gas-and-steam emissions rising from Suwanosejima on 5 January (top), 19 February (middle), and 24 March 2020 (bottom). Courtesy of JMA (Monthly bulletin reports 511, January, February, and March 2020).

Nightly incandescence continued to be visible during 13-31 March, 1-10 and 17-24 April, 1-8, 15-31 May, 1-5 and 12-30 June 2020; activity during the latter part of March was relatively low and consisted of few explosive events. In contrast, incandescence was frequently accompanied by explosions in April and May. On 28 April at 0432 an eruption produced an ash plume that rose 1.6 km above the crater rim and drifted SE and E, and ejected blocks as far as 800 m from the crater. The MODVOLC thermal alerts algorithm also detected four thermal signatures during this eruption within the summit crater. An explosion at 1214 on 29 April caused glass in windows to vibrate up to 4 km SSW away while ash emissions continued to be observed following the explosion the previous day, according to the Tokyo VAAC.

During 1-8 May explosions occurred twice a day, producing ash plumes that rose as high as 1 km above the crater rim and ejecting material 400 m from the crater. An explosion on 29 May at 0210 produced an off-white plume that rose as high as 500 m above the crater rim and ejected large blocks up to 200 m above the rim. On 5 June an explosion produced gray-white plumes rising 1 km above the crater. Small eruptive events continued in late June, producing ash plumes that rose as high as 900 m above the crater rim.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed relatively stronger thermal anomalies in late February and late April 2020 with an additional six weaker thermal anomalies detected in early January (2), early February (1), mid-April (2), and mid-May (1) (figure 46). Sentinel-2 thermal satellite imagery in late January through mid-April showed two distinct thermal hotspots within the summit crater (figure 47).

Figure (see Caption) Figure 46. Prominent thermal anomalies at Suwanosejima during July-June 2020 as recorded by the MIROVA system (Log Radiative Power) occurred in late February and late April. Courtesy of MIROVA.
Figure (see Caption) Figure 47. Sentinel-2 thermal satellite images showing small thermal anomalies (bright yellow-orange) from two locations within the Otake summit crater at Suwanosejima. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Bagana (Papua New Guinea) — July 2020 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Ash plumes during 29 February-2 March and 1 May 2020

Bagana lies in a nearly inaccessible mountainous tropical rainforest area of Bougainville Island in Papua New Guinea and is primarily monitored by satellite imagery of ash plumes and thermal anomalies. After a state of elevated activity that lasted through December 2018 (BGVN 43:05, 44:06, 44:12), the volcano entered a quieter period that persisted through at least May 2020. This report focuses on activity between December 2019 and May 2020.

Atmospheric clouds often obscured satellite views of the volcano during the reporting period. When the volcano could be observed, light-colored gas plumes were often observed (figure 43). Based on satellite and wind model data, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that during 29 February-2 March ash plumes rose to an altitude of 1.8-2.1 km and drifted SW and N. On 1 May an ash plume rose to an altitude of 3 km and drifted NW and W. According to both Darwin VAAC volcanic ash advisories, the Aviation Color Code was Orange (second highest of four hazard levels).

Figure (see Caption) Figure 43. Sentinel-2 image of Bagana, showing a gas plume drifting SE on 13 March 2020, during a period when the Darwin VAAC had not reported any ash explosions (Natural Color rendering, bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded only intermittent thermal anomalies, all of which were of low radiative power. Sulfur dioxide emissions detected by satellite-based instruments over this reporting period were at low levels.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 36, Number 01 (February 2011)

Managing Editor: Richard Wunderman

Bagana (Papua New Guinea)

Occasional ash plumes during 11 February-1 October 2010

Karangetang (Indonesia)

Eruption in August 2010 isolated 20,000 residents and caused four deaths

Kizimen (Russia)

Powerful fissure eruption in November 2010 ends ~82-year repose

Manam (Papua New Guinea)

Ashfall, pyroclastic flows, and seismicity in late December 2010

Merapi (Indonesia)

Eruption started 26 October 2010; 386 deaths, more than 300,000 evacuated

Rumble III (New Zealand)

Eruption in 2009 linked to over 100 m of sea floor collapse

Sangay (Ecuador)

Many plumes seen by pilots during past year ending February 2011

Taal (Philippines)

Intermittent non-eruptive unrest during 2008-2010



Bagana (Papua New Guinea) — February 2011 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Occasional ash plumes during 11 February-1 October 2010

This report discusses thermal anomalies and occasional ash plumes at Bagana during February into October 2010, with some satellite thermal data (MODVOLC) as late as early 2011. Our previous report (BGVN 35:02) also noted small lava flows, occasional ash plumes, and thermal anomalies from October 2009 through February 2010.

Historical records describe frequent eruptions since 1842. Bagana lacks instrumental monitoring and sits far from population centers. Many recent observations are remote-sensing based, although the Rabaul Volcano Observatory (RVO) produces reports with direct air- and ground-based observations. Bagana's flanks are covered with andesitic lava flows up to 50 m thick (Blake, 1968). The flows typically descend the mid-slope within the confines of tall lava levees, but emerge from the levees on the outer flanks to form sub-circular flow fields. Bagana's thick lava flows are visible in two photos below (figures 18 and 19).

Figure (see Caption) Figure 18. An International Space Station photo taken on 2 April 2007 showing a diffuse white vapor plume extending SSW from Bagana's summit. The volcano is known for ongoing activity and lava flows of noteworthy thickness (~ 50 m thick). The brown-to-olive colors of the volcano stand out amidst the green of tropical rain forest. Astronaut Photo ISS014-E-18844. Courtesy NASA.

Activity. Between 10 February 2010 and 1 October 2010, the Darwin Volcanic Ash Advisory Center (VAAC) reported one or a few ash plumes per month from Bagana. Many rose to ~3 km and drifted from 20-205 km (table 5). According to RVO, ash plumes were seen on 5 February and night-time incandescence was seen on 2, 12, 13, and 19 February. White vapor was emitted during 1-21 February. Sulfur dioxide plumes drifted ENE during 11-20 February and NNW on 20 and 21 February. Consistent with the thick lava flows, MODVOLC detected well over 100 thermal anomalies at Bagana in the year ending 10 February 2011.

Table 5. Summary of ash plumes from Bagana reported during 1 February-October 2010. Courtesy of the Darwin Volcanic Ash Advisory Centre (VAAC).

Date Altitude (km) Drift (distance and direction)
11-15 Feb 2010 2.4 18-150 km E, NE
19-20, 23, 25 and 27 Apr 2010 1.5-3 35-85 km S, SW, W, NW
06, 10-12 May 2010 2.4-3 55-75 km W, SW, WSW
25-28 May 2010 3 30-185 km NW, W, SW
13-14 Jun 2010 3 75-205 km SW, W
04 Jul 2010 2.4 75 km W
10-11 Jul 2010 2.4 75-150 km SW
13-15 Aug 2010 2.4 75 km SW, W
01 Oct 2010 2.4 75 km NW

Reference. Blake D H, 1968. Post Miocene volcanoes on Bougainville Island, Territory of Papua and New Guinea. Bull Volc, 32: 121-140

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Rabaul Volcano Observatory (RVO), PO Box 386, Rabaul, Papua New Guinea; NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Image Science and Analysis Laboratory, NASA-Marshall Space Flight Center (URL: http://eol.jsc.nasa.gov, http://www.flickriver.com/photos/); VolcanoWallpapers (URL: http://www.volcanowallpapers.com/Volcano-Smoke/mount-bagana-volcano/).


Karangetang (Indonesia) — February 2011 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Eruption in August 2010 isolated 20,000 residents and caused four deaths

A sudden eruption at Karangetang on 6 August 2010 occurred without warning and caused considerable damage. This report covers the interval from 6 August 2010 to mid-March 2011. Previously, the Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM) had reported that, after explosions and lava flows during May and June 2009 and a pyroclastic flow and lahar in November 2009, seismicity had declined through early February 2010 (BGVN 35:01). On 12 February 2010, CVGHM had lowered the Alert Level to 2 (on a scale of 1-4).

According to news articles, an explosion on 6 August 2010 ejected hot clouds of gas and sent pyroclastic flows down the W flank. At least one house was buried and several other buildings, including a church, were damaged. A damaged bridge isolated about six villages and their ~20,000 residents, and communication links were lost. According to news reports (CNN and Associated Press), four people were confirmed dead and five were injured, and about 65 were evacuated. The Darwin Volcanic Ash Advisory Centre (VAAC) reported that an ash plume rose to an altitude of 9.1 km and drifted W on that same day.

The news reports cited CVGHM official Priyadi Kardono as noting that the volcano erupted just after midnight when water from heavy rains had penetrated the volcano's hot lava dome, causing the explosion. According to these reports, Kardono said volcanologists did not issue a warning about the eruption because there were no indications of increased volcanic activity. Kardono also noted that the explosion was not large, and the flow of volcanic debris had since decreased.

CVGHM reported that during 1-21 September 2010, lava traveled 75-500 m down Karangetang's flanks and avalanches traveled as far as 2 km down multiple drainages, to the S, E, and W. Incandescent material was ejected up to 500 m above the crater. Ashfall was reported in areas to the NW.

On 21 and 22 September incandescent material traveled down multiple drainages. Strombolian activity was observed on 22 September; material ejected 50 m high fell back down around the crater. That same day, the Alert level was raised to 3.

During November and early December 2010, CVGHM noted a drastic decrease in the occurrence of pyroclastic flows on Karangetang's flanks. Seismicity also decreased. The only reports were of white plumes that rose up to 300 m above the craters. The Alert Level was thus lowered to 2 on 13 December 2010.

According to CVGHM, the Alert Level was again raised from 2 to 3 on 11 March 2011 due to increased seismicity. According to news reports, lava flows were visible and blocks originating from the lava dome traveled as far as 2 km down the flanks, along with hot gas clouds. A Reuters News photo published in Okezone News showed a moderate Strombolian eruption venting from the summit on 11 March, with an apron of incandescent spatter dotting the upper slopes, and a swath of red spatter and bombs bouncing down one flank. Darwin VAAC reported that on that same day, an ash plume rose to an altitude of 2.4 km and drifted 55 km SW; on 13 March, another ash plume rose to an altitude of 3.7 km and drifted 37 km.

During 12-16 March, CVGHM stated that bluish gas plumes rose 50-150 m above the main crater. On 17 March lava flows traveled as far as 2 km from the main crater, accompanied by roaring and booming noises.

On 18 and 20 March lava flows traveled 1.5-1.8 km and collapses from the lava flow fronts generated avalanches that moved another 500 m. Avalanches from the crater traveled 3.8 km down the flanks. Multiple pyroclastic flows about 1.5-2.3 km long destroyed a bridge, damaged a house, and trapped 31 people (later rescued) between the flow paths. Later that day, pyroclastic flows traveled 4 km, reaching the shore. The Alert Level was raised to 4. According to news articles, 600-1,200 people were evacuated from villages on the W flank.

During the week after 20 March, seismicity and deformation declined. The number of new lava flows also declined.

MODVOLC Thermal Alerts. Thermal alerts derived from the Hawai'i Institute of Geophysics and Planetology Thermal Alerts System (MODVOLC) were reported through 19 February 2010 in BGVN 35:01. A significant number of alerts were measured on 19 March 2010 (14 pixels at 0215 UCT on Terra) and 23 March (1 pixel on Aqua), followed by ~5 months without measured alerts. Alerts reappeared during 16 August-19 October 2010. Alerts were absent between 20 October 2010 and 10 March 2011, followed by renewed alerts during 11-12 March 2011.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Okezone News (URL: http://news.okezone.com/read/2011/03/12/340/434280/gunung-muntahkan-lava-pijar); Associated Press (URL: http://www.ap.org/); Reuters (URL: http://www.reuters.com/); CNN (URL: http://www.cnn.com/); Straits Times (URL: http://www.straitstimes.com/); Novinite (URL: http://www.novinite.com/).


Kizimen (Russia) — February 2011 Citation iconCite this Report

Kizimen

Russia

55.131°N, 160.32°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Powerful fissure eruption in November 2010 ends ~82-year repose

Eruption began here during mid-November 2010, the first since 1927-1928 (Brown and other, 2010). Ash plumes rose to ~10 km and were visible in satellite imagery as they traveled hundreds of kilometers during November 2010 through at least late February 2011. Our previous Bulletin (BGVN 35:02) reported that the number of earthquakes at Kizimen had increased substantially beginning in July 2009 (up to 120 earthquakes per day) through early April 2010 and that fumarolic temperatures increased in August. This report discusses activity since early April 2010.

After early April 2010, seismicity at Kizimen entered a quiescent phase until the Kamchatkan Volcanic Eruption Response Team (KVERT) reported increased seismic activity on 20 August and particularly during early November 2010. Based on information from a tourist center 10 km from Kizimen, KVERT noted that on 11 November 2010, strong gas-and-steam emissions resulted in a plume, possibly containing some ash, that rose to an altitude of 4 km.

According to the Kamchatkan Branch of Geophysical Survey (KG GS RAS), seismicity of the volcano was above background levels all week, and an M 4 earthquake occurred on 16 November 2010. Accroding to information from the Yelizovo Airport (UHPP), the Tokyo VAAC reported that on 17 November an ash plume from Kizimen rose to an altitude of 3 km and drifted NE. KVERT noted the lack of satellite data about ash near Kizimen. The Level of Aviation Color Code remained at Green (on a scale that goes from low to high using these terms: Green, Yellow, Orange, and Red).

On 17 November 2010 (UTC), based on information from KB GS RAS and analysis of satellite imagery, the Tokyo VAAC reported that an ash plume rose to an altitude of 3 km and drifted NE. KVERT noted lightning in the ash plumes. The Aviation Color Code was raised to Red.

Seismic activity was above background levels during 19 November to 24 December 2010. On 20 November, volcanologists flying around Kizimen by helicopter observed several new fumaroles at the summit and SW flank. A small amount of "dust" covered the SW flank, possibly ash from the new fumaroles. Activity at the established old fumarole "Revuschaya" on the volcano's NE flank decreased. No thermal anomaly was noted from satellite images. The Level of Aviation Color Code was raised to Yellow.

On 9 December 2010, seismicity increased significantly and the Aviation Color Code level was raised to Orange. That same day, the Tokyo VAAC reported that, according to KB GS RAS, an explosion produced a plume that rose to an altitude of 2.7 km and drifted N. Ash was not identified in satellite images. A bright thermal anomaly was observed in satellite imagery the next day.

The beginning of the eruption Kizimen was captured in in a photo made by Don Page on 10 December from a commercial flight. The eruption start from long fissure on the SE slope (figure 5).

Figure (see Caption) Figure 5. Photo taken on 10 December 2010 at 0314 UTC (1414 local Kamchatka time; from Seat 36K of Air Canada Flight 063 from Vancouver, Canada, to Incheon-Seoul, Korea). A dark, angled (non-vertical) plume rises from the along the length of an elongate fissure network on the SE slope. [Photo: 981x656 pixels, with a Nikon D80 digital camera and an AF-S Nikkor 18-200 mm zoom lens (probably set at 200 mm).] Photo by Don Nelson Page (University of Alberta).

Evgeny Gordeev wrote a reply to Don Page thanking him for sharing the rare photos (figure 5) of the eruption's start and providing interpretation of the unusual genesis of the ash cloud. Gordeev told Page that he had documented the beginning of the Kizimen 10 December eruption, noting that the closest village to Kizimen is almost 100 km distant. Gordeev commented that the only practical way to monitor the volcano involves satellite images, which are discontinuous and not always of high resolution. "Your pictures help us enormously, mainly to recognize the vent of eruption. It is very unusual for volcanoes to erupt through [such a] long fissure on the slope. You are right, this fissure [is] very narrow and very long. After [this,] your pictures you will be very [well] known [by] volcanologists."

On 12 December 2010 an explosive eruption generated ash plumes that rose to an altitude of 3-3.5 km and drifted NW. Ash deposits in Kozyrevsk and Tigil, 110 and 308 km NW, respectively, were 5 mm thick. Later that day seismic activity decreased and the Aviation Color Code was lowered to Orange. Kronotsky National Park staff, residing at Ipuin (~16 km WSW), noted that the water level in Levaya Schapina river rose 60 cm after the explosions and remained elevated for the next two days. The water was also very muddy. During 14-24 December seismicity remained above background and a thermal anomaly over the lava dome was detected in satellite imagery.

KVERT noted that during 17-24 December 2010 the number of shallow seismic earthquakes increased from 110 events on 17 December to 304 events on 22 December. Volcanic tremor was detected on 23 December. During 26-28 December, seismicity also increased and there were possible small ash explosions and hot avalanches. A thermal anomaly over the lava dome was again seen in satellite imagery. On 27 December seismic analysis indicated that ash plumes that day possibly rose to altitudes of 3.5-4.5 km. Satellite imagery showed ash plumes drifting 140 km W at an altitude of 4 km. On 28 December, based on a Yelizovo Airport (UHPP) notice, the Tokyo VAAC reported an ash plume drifting W at an altitude of 3.7 km. The Aviation Color Code was raised to Red.

A thermal anomaly over Kizimen's lava dome was again observed in satellite imagery during 29 December 2010-1 January 2011 and an explosive eruption that began on 13 December continued. On 31 December seismicity increased and volcanic tremor was detected. Explosions occurred sporadically for a period of about 20 minutes. Ash plumes detected in satellite imagery rose to an altitude of 8 km and drifted SW. Ashfall at least 1 mm thick occurred in multiple areas 225-275 km SSW, including Petropavlovsk-Kamchatsky, Yelizovo, Paratunka, and Nalychevo. Ash plumes at an altitude of 4 km drifted 480-500 km SW; ash continued to accumulate in some areas.

Seismic data indicated increased activity on 3 January. Based on analysis of satellite imagery, the Tokyo VAAC reported that possible eruptions during 2-4 January produced plumes that rose to an altitude of 3-4.6 km and drifted S, E, and NE. Subsequent images on those same days showed ash emissions continuing, then dissipating. During 4-7 January seismicity remained high and variable and volcanic tremor continued. A thermal anomaly over the volcano was observed in satellite imagery. Explosions continued through 7 January 2011 producing ash plumes mostly below altitudes of 6-8 km as reported by pilots or observed in satellite imagery. These drifted more than 200 km SE. A large and bright thermal anomaly was observed in satellite imagery.

A pattern of high seismicity and ash emissions was noted during early January 2011. On 5 January ash plumes drifted more than 500 km ENE. Ashfall was reported on the Komandorsky Islands, 350-500 km E (figure 6).

Figure (see Caption) Figure 6. An ash plume rising from Kizimen and blowing to the ENE on 5 January 2011. Courtesy of A. Lobashevsky.

The Tokyo VAAC reported that ash continued to be observed in satellite imagery on 5 January. According to information from KVERT and analyses of satellite imagery, a possible eruption on 6 January produced a plume that rose to an altitude of 3.7 km and drifted E. Subsequent satellite images that same day showed continuing ash emissions. Ash plumes drifted NW on 9 January, and drifted NW again on 11 January 2011, at an altitude of 2.7 km.

KVERT reported that during 7-13 January 2011 they saw both a thermal anomaly over Kizimen in satellite imagery and pyroclastic flow deposits on the E flank. Seismicity recorded during 6-7 and 12 January was high but variable, and many shallow volcanic earthquakes as well as volcanic tremor continued to be detected. Ash plumes that rose to altitudes of 6-8 km during 5-13 January were seen drifting multiple directions, and appeared in satellite imagery to be drifting more than 275 km W and NW. On 12 January ashfall was reported in the villages of Anavgai and Esso, 140 km NW. Seismic data during 14-15 January suggested that ash plumes rose to altitudes of 4-5 km. Satellite images showed a bright thermal anomaly over the volcano and ash plumes drifting more than 180 km W on 15 January 2011. The Aviation Color Code level was lowered to Orange.

From 14 January through 1 February, KVERT reported that seismicity from Kizimen was high but variable, and many shallow volcanic earthquakes as well as volcanic tremor continued to be detected. Seismic data analyses suggested that ash plumes possibly rose to an altitude no higher than 6 km. Satellite images showed a daily bright thermal anomaly over the volcano, and ash plumes that drifted more than 200 km W during 15-16 and 20 January. Based on satellite data, the Tokyo VAAC also reported that during 23-25 January eruptions produced plumes that rose to altitudes of 4.9-10.1 km. Based on analyses of satellite imagery, the Tokyo VAAC reported that a possible eruption on 29 January produced a plume that rose to an altitude of 3.7 km and drifted SW. Photo and satellite images taken during late January through late February showed continuing ash emissions (figures 7 and 8).

Figure (see Caption) Figure 7. Two images of Kizimen taken on 26 January 2011. On the left photo (a), a dark pyroclastic flow rushes down the slopes of the volcano. Photo by Igor Shpilenok. On the right (b), a thermal infra-red (IR) image taken of a pyroclastic flow during an explosion (IR scale temperature appears at right). The pyroclastic flow originated from the summit of the lava dome and swept downward. (The infrared image shows radiated energy as areas of bright glow.) During this eruptive stage a pyroclastic surge spread out over the slopes. IR image by V. Droznin, S. Chirkov, and I. Dubrovskaya (IVS RAS).
Figure (see Caption) Figure 8. This satellite image taken on 25 February 2011 shows a vigorous ash-laden plume extending from Kizimen at an altitude of ~3 km, drifting towards the NE, and visible for more than 170 km. The white portion of the plume is likely rich in steam, while the tan plume is primarily ash. The ground E of Kizimen is coated in newly fallen ash not yet covered by fresh snow. To the S of the summit are several dark streaks. These are probably traces of pyroclastic flows. Thermal anomalies (red in colored versions of this Bulletin) show the presence of recent hot block-and-ash flows from summit dome collapses. The image was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. Courtesy of NASA/GSFC/METI/ERSDAC/JAROS.

Reference: Browne B., Izbekov, P., Eichelberger, J., and Churikova, T., 2010, Pre-eruptive storage conditions of the Holocene dacite erupted from Kizimen Volcano, Kamchatka: International Geology Review, v. 52, Issue 1 January 2010, p. 95-110.

Geologic Background. Kizimen is an isolated, conical stratovolcano that is morphologically similar to St. Helens prior to its 1980 eruption. The summit consists of overlapping lava domes, and blocky lava flows descend the flanks of the volcano, which is the westernmost of a volcanic chain north of Kronotsky volcano. The 2334-m-high edifice was formed during four eruptive cycles beginning about 12,000 years ago and lasting 2000-3500 years. The largest eruptions took place about 10,000 and 8300-8400 years ago, and three periods of long-term lava dome growth have occurred. The latest eruptive cycle began about 3000 years ago with a large explosion and was followed by intermittent lava dome growth lasting about 1000 years. An explosive eruption about 1100 years ago produced a lateral blast and created a 1.0 x 0.7 km wide crater breached to the NE, inside which a small lava dome (the fourth at Kizimen) has grown. Prior to 2010, only a single explosive eruption, during 1927-28, had been recorded in historical time.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanology and Seismology Russian Academy of Sciences, Far East Division, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Kamchatka Branch of the Geophysical Service of the Russian Academy of Sciences (KB GS RAS), Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Sergey Senukov, Russia (URL: http://www.emsd.ru/) Valery Droznin and Sergey Chirkov, Institute of Volcanology and Seismology Russian Academy of Sciences, Far Eastern Branch, 9 Piip Boulevard, Petropavlovsk-Kamchatsky, 683006, Russia; A. Lobashevsky (URL: http://www.photokamchatka.ru/); I. Shpilenok (URL: http://shpilenok.livejournal.com/44922.html); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/); Don Nelson Page, Theoretical Physics Institute, 412 Physics Lab., University of Alberta, Edmonton, Alberta T6G 2J1, Canada.


Manam (Papua New Guinea) — February 2011 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Ashfall, pyroclastic flows, and seismicity in late December 2010

This report discusses Manam behavior during November 2010 to early 2011. As previously reported, during August-October 2010, lava fragments and ash plumes rose from Manam (BGVN 35:09). Similar activity continued through at least 4 January 2011. Over 10,000 former island residents remain in care centers on the mainland (see below).

During the reporting period, the Rabaul Volcano Observatory (RVO) reported that the Main Crater produced mostly white plumes that were occasionally laden with ash. Incandescent material was ejected at times and mainly fell back in and around the crater, but occasionally spilled into the SE and SW valleys.

Based on analysis of satellite imagery, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that ash plumes during 14-16 November 2010 rose to an altitude of 2.7 km and drifted ~95 km NW.

RVO reported that light brown to dark gray ash plumes rose 400-500 m above the South Crater during late November. People living on the island reported occasional roaring and rumbling noises. A new episode of eruptive activity began at South Crater on 25 December and was characterized during 25-29 December by rising ash plumes and ejections of incandescent lava fragments. Electronic tilt measurements showed a strong inflationary trend during 24-26 December but this slowed down on 26 December.

On 30 December 2010, activity from South Crater increased and was reported by observers in Bogia (on the mainland 20 km SSW). A dense ash plume rose 3 km above the summit crater and drifted NW, causing light ashfall in Tabele (4 km SW of Manam). An observer at Tabele confirmed the eruption and also reported that three pyroclastic flows descended the SE valley, stopping within a few to several hundred meters from the coastline. The first and largest pyroclastic flow devastated a broad unpopulated area between Warisi (E of Manam) and Dugulava (S of Manam) villages. RVO increased the Alert Level to Stage 3. Later that day, both ash emissions and the ejection of incandescent fragments diminished.

During early January 2011, plumes, sometimes containing ash, continued to rise above the South and Main Craters. RVO reported low roaring from the South Crater and incandescence was reported at times. On 8 January, the Alert Level was lowered from Stage 3 to Stage 2.

Seismicity and MODVOLC thermal alerts. Seismic data were not available during late November because of technical problems. Seismicity was low on 24 December, increased slightly after 25 December, then reached a point after 27 December where it fluctuated at and above moderate level. RVO reported seismicity during early January 2011 to be at a moderately low to moderate level.

Between 16 October 2010 and 10 January 2011, MODVOLC detected thermal anomalies on 25 days, mostly during late November and December. After 10 January, no thermal anomalies were detected through at least 16 February.

Multi-year evacuation. The UN's IRIN (Integrated Regional Information Networks) discussed Manam evacuees in reports issued 5 May and 20 December 2010. The 5 May 2010 report stated that "Around 14,000 islanders have been living in three care centres in the mainland province of Madang since November 2004. In March 2010 there was discussion that the displaced persons might be allowed to voluntarily return home to Manam Island."

According to the report, "A July 2009 assessment by the National Disaster Centre, the UN, and Oxfam concluded that living on the island was not a viable option because of a lack of access to arable land and public services, and the risk of further volcanic activity."

"The decision to begin returning residents was taken following heightened tensions between islanders and local residents (they speak the same language), largely over land issues. With little to no assistance, many of the IDPs rely on local gardening as their only source of food and livelihood, meaning they often encroach on nearby land.

"In March 2010, the National Executive Council (NEC) approved the establishment of the Manam Task Force Committee to manage the needs of the displaced islanders, with the primary goal of finding a suitable location for their permanent relocation."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), PO Box 386, Rabaul, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Merapi (Indonesia) — February 2011 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Eruption started 26 October 2010; 386 deaths, more than 300,000 evacuated

This report represents a preliminary discussion of the deadly eruption at Merapi that started on 26 October 2010. That eruption included weeks of instability that generated pyroclastic (block-and-ash) flows, which became particularly vigorous and numerous in early November, with at least one surge reportedly traveling along the Gendol drainage to 15-16 km from the summit dome. Of particular note from a hazards perspective, the path of some of these deposits differed at times from those of the recent past (but we have yet to find maps showing the flow directions and associated dates). An abstract by Lavigne and others (2011) reported the volume of tephra erupted in the 2010 eruption at over 100 x 106 m3, ~10-fold higher than similar deposits after typical eruptions in the past few decades, and among the factors why ongoing lahars are likely to be a hazard.

Our summary covers events into late 2010, with recognition of ongoing seismicity, weaker emissions, and repeated lahars in early 2011. The bulk of this report is based on those from the Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM) and their observatory dedicated to Merapi (MVO). According to CVGHM, the 2010 eruption was the biggest since the 1872 eruption. Eruptions in 1930 killed around 1,300 people. The last eruption of Merapi occurred during March 2006-August 2007 (BGVN 31:05, 31:06, 32:02, and 33:10). A table appears near the end of this report summarizing some key events and observations. Fatalities and scale of evacuations are discussed in a separate subsection below. Another subsection notes that at least one commercial airliner sustained serious in-flight engine damage.

Regional background and prior eruptive patterns. Merapi (figures 38, 39, and 40) is located in the central part of Java, and this region and the island as a whole have extremely high population density (roughly double that of Japan or Thailand). Substantial numbers of people live or vacation on the mountain. The most densely settled part of the mountain is the dangerous S side (figure 39).

Figure (see Caption) Figure 38. (Bottom) Two maps showing Merapi's location and (on the larger map) the distribution of block-and-ash flows that took place during 1954-1998. During that interval, these deposits went to the NW, W, and SW. From Hort and others (2006).
Figure (see Caption) Figure 39. A map of the S portion of Merapi showing population data in shaded patterns with key at left. The segments of circles depict distances from the summit. The 2010 eruptions sent pyroclastic flows through Merapi's SE quadrant, thus passing areas of elevated population. Taken from OCHA (8 November 2010).
Figure (see Caption) Figure 40. A set of simple diagrams illustrating Merapi in cross section (looking W; S is to the left) summarizing behavior that occurred during 1986-1994 (such a diagram has yet to be published for the 2010 eruption). The 1989 case shows VT earthquakes in the edifice (circles containing crosses). Taken from Ratdomopurbo and Poupinet (2000).

Figure 38 provides a summary of block-and ash-flow deposits from 1954-1998 (Hort and others, 2006; Schwarzkopf, 2001). The eruptions starting in October 2010 sent pyroclastic flows and possible surges at least 15 km in the volcano's W to S quadrant. Block-and-ash flows are pyroclastic flows formed by dome collapse and containing a substantial amount of broken dome fragments.

The inset map at the lower left shows Merapi with respect to the city of Yogyakarta (30 km SSW). Although the metro area of that city has a population of 1.6 million residents, the Indonesian statistical bureau estimated the 2010 populations of the ~30 km2 city of Yogyakarta at ~396,000 residents, and the broader region at ~3.5 million residents.

Figure 39 shows the summit and S part of Merapi, plotting population data by village at distances up to 20-25 km from the summit. This side of the volcano is by far the most densely populated, and was also crossed by numerous pyroclastic flows both historically and in the 2010 eruptions.

Figure 40 illustrates critical processes in Merapi's mode of eruption in the recent past. A significant portion of the dome is unconfined by the summit crater and the S side is free to descend the volcano's upper slopes endangering residents below. In the recent episode, CVGHM benefitted from daily access to satellite radar imagery that reliably depicted dome morphology despite weather and steam clouds. Vöge and Hort (2008) and Hort and others (2006) discuss monitoring dome instability using Doppler radar.

Monitoring and lead-up to the 26 October 2010 eruption. Since 2007, short swarms of volcanic earthquakes occurred (eg., on 31 October 2009, 6 December 2009, and 10 June 2010). Monitored parameters, including earthquakes, deformation, and gas emmisions increased significantly during September 2010. Steeper increases in seismicity appeared during 15-26 October with the main ramp-up during 20-26 October.

Figure 41 shows several histograms that depict Merapi seismic data and summarize the variations in hazard status. The CVGHM scale, which stretches from 1 (low) to 4 (high), makes a complete ascent and partial descent through the full range of those levels during the date range shown. The heavy vertical line between Alert Levels 3 and 4 took place on 25 October, slightly before the onset of the major eruption on 26 October.

Figure (see Caption) Figure 41. Three histograms describing Merapi seismicity during 1 September 2010 to 6 March 2011. Horizontal scale marked in weeks and extends from 1 September 2010 to 5 March 2011. Words along the top line show hazard status (on an increasing scale starting from 1 [Normal] and extending to 2 [Waspada]), to 3 [Siaga]), and finally to 4 [Awas] and then declining). The top panel contains seismically inferred rockfalls and avalanches (guguran in Indonesian). The middle panel shows multiphase (MP) earthquakes (shallow source, dominant frequency ~1.5 Hz). The bottom panel shows volcanic earthquakes of both A- and B-type (where VTA represents deep volcano-tectonic earthquakes, 2.5-5 km below the summit; VTB represents shallow volcano-tectonic earthquakes, less than ~1.5 km below the summit). Taken from CVGHM report of 7 March, with minor revisions by Bulletin editors.

Figure 42 presents typical waveforms for various types of earthquakes and tremor signals previously recorded at Merapi (Ratdomopurbo and Poupinet, 2000). Both multiphase (MP) and volcanic type-A (VTA) showed strong peaks in seismicity prior to the 26 October eruption's onset. Rockfalls on upper panel (labeled guguran) and type-b events on bottom panel both peaked on or near 26 October.

Figure (see Caption) Figure 42. Typical waveforms, tremor signals, and descriptive seismic terminology in use at Merapi. These include tremor, LF-low frequency (earthquakes nominally from shallow sources, dominant frequency between 3 and 4 Hz), VTA and VTB (volcano-tectonic A and B, where VTA represents deeper volcano-tectonic earthquakes, 2.5-5 km below the summit; and VTB represents shallower volcano-tectonic earthquake, less than ~1.5 km below the summit), and MP-multiphase earthquakes. Records are from Station PUS (~0.5 km E of summit), shown in the upper part of the figure, and from Station DEL (~3 km SE of the summit), in the lower part. From Ratdomopurbo and Poupinet (2000).

The onset of the 26 October explosion occurred ~19 hours after an M 7.7 tectonic earthquake along the trench near the Mentawai islands adjacent to Central Sumatra, 1,200 km NW of Merapi. This earthquake was followed by several aftershocks, including two prior to the eruption (M 6.1 and 6.2) and one after the eruption (M 5.8). One or more of these earthquakes triggered tsunamis that hit the remote Mentawai islands, sweeping entire villages to sea and killing at least 428 people. There, too, thousands of people were displaced. The two near-simultaneous crises taxed authorities, NGOs, and the natural hazards community (figure 43).

Figure (see Caption) Figure 43. A map emphasizing the locations of the M 7.7 tsunamigenic (tsunami-generating) earthquake and the eruption onset at Merapi, events of 25 and 26 October, respectively. (The earthquake time stated is incorrect—according to USGS cataloging, it registered at 1442 UTC on the 25th, which corresponds to 2142 local time that day. The eruption began at 1002 UTC on the 26th). Jakara is Indonesia's capital. Courtesy of Relief Web.

Except for the close timing and regional proximity, the linkage between the M 7.7 earthquake and the eruption remains ambiguous. However, many researchers have noted that tectonic earthquakes can seemingly trigger volcanic responses (eg., Delle Donne and others, 2010; Lowenstern, JB, Smith, RB, and Hill, DP, 2006; Manga and Brodsky, 2006).

In early September 2010, the pattern of increased volcanic seismicity began to appear with MP earthquakes averaging 10/day and VTA and VTB averaging 3/day, with a total daily seismic energy of 603 x 1012 erg.

Gas analyses in August 2010 showed concentrations of HCl of 0.8 % mol and H2O of 80 % mol. Declining levels of H2O (less than 90 %) and increased levels of HCl (>0.5 %) were interpreted to indicate increased activity.

In September, summit inflation increased markedly. Seismicity also increased beginning on 12 September, when an M 2.5 VTA earthquake and pyroclastic flows/avalanches occurred. On 13 September, VTA earthquakes occurred twice, and white plumes rose 800 m above the crater.

During 23-26 October, there were small steam-and-ash emissions. Inflation increased sharply on 24 October to a rate of 420 mm/day. The next day, CVGHM raised the Alert Level to 4, and recommended immediate evacuation for several communities within a 10-km radius. A Reuters photo by Dwi Oblo taken at sunrise on 26 October looking up at the dome and the prominent S-trending avalanche channel revealed comparatively calm conditions, with emissions consisting of a thick white steam plume blowing W from the dome.

Initial October eruptions. The first eruption occurred at 1702 on 26 October 2010, an event characterized by explosions and multiple pyroclastic flows that traveled S ~8 km down the Gendol and Kuning drainages, and to some extent WSW down the Bedog drainage. Most of the pyroclastic flows lasted 2-9 minutes, but the eruptions associated with the final two each lasted 35 minutes. The event killed 35 people including the renowned mystical guardian of Merapi, Mbah Mbahmarijan, at 7 km distance.

Figure 44 shows an exposed ridge affected by pyroclastic flows in a photo taken on 27 October.

Figure (see Caption) Figure 44. An exposed ridge at Merapi as it appeared the day after the 26 October eruption. Pyroclastic flows had reduced forest to stumps, leaving stripped and fallen trees. Courtesy of The Boston Globe website of Merapi photos (Ulet Ifansasti/Getty Images).

According to the Darwin Volcanic Ash Advisory Center (VAAC), an ash plume rose to an altitude of 18 km, followed by extrusion of lava in the summit crater.

By 27 October the lava dome had sustained damage and a new 200-m-diameter crater had formed at the summit. After that, lava extrusions built a small dome in the crater. A space-based estimate made from the ozone monitoring instrument (OMI) indicated the eruption on the 26th vented at least 3,000 metric tons of SO2 gas. According to the Darwin VAAC, ground-based reports indicated that another explosion occurred on 28 October 2010. Cloud cover prevented satellite observations.

Following the eruption and continuing through 4 November, intense tremor took place. It was felt by people up to 20 km from the volcano.

CVGHM reported that two pyroclastic flows occurred on 30 October following an early morning explosion, the third since 26 October. According to a news article, ash fell in Yogyakarta, 30 km SSW, causing low visibility. CVGHM noted four pyroclastic flows on 31 October.

Stronger eruptions in November. According to CVGHM, during 31 October-4 November, a lava dome grew rapidly within Merapi's summit crater. Collapses from the S side of the dome fed minor pyroclastic flows that extended several hundred meters into the upper part of the Gendol valley.

On 1 November, an explosion began mid-morning with a low-frequency earthquake, and avalanches occurred. About seven pyroclastic flows occurred during the next few hours (figure 45), traveling SSE a maximum runout distance of 4 km, and in another (possibly later) case that day, 9 km. The Darwin VAAC reported that the explosion produced an ash plume that rose to an altitude of 6.1 km. News reports noted flight diversions and cancellations in and out of the airports serving Solo (40 km E) and Yogyakarta.

Figure (see Caption) Figure 45. On 1 November 2010, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this thermal signature of Merapi's lava dome and hot pyroclastic flows. The thermal information is overlaid on a three-dimensional map of the volcano to show the approximate location of the pyroclastic flow. The three-dimensional data is from a global topographic model created using ASTER stereo observations. Courtesy of NASA Earth Observatory website (credit to Robert Simmon and Jesse Allen and NASA/GSFC/METI/ERSDAC/JAROS, and the U.S./Japan ASTER Science Team). Original caption by Holli Riebeek.

On 2 November, an ash plume was seen in satellite imagery drifting 75 km N at an altitude of 6.1 km. On the same day, CVGHM reported 26 pyroclastic flows. On 3 November, observers stationed at multiple posts reported ash plumes from pyroclastic flows. One pyroclastic flow traveled 10 km, prompting CVGHM to extend the hazard zone from a radius of 10 km to 15 km, and they recommended evacuations from several more communities. Another pyroclastic flow traveled 9 km SE later that day. Figure 46 shows a 2 November view of Merapi.

Figure (see Caption) Figure 46. Incandescent material spilled from Merapi's dome glows orange-red in colored versions of this long-exposure photograph taken on 2 November 2010 from ~25 km SSE of the summit (Klaten district). Condensate droplets in the thin (lenticular) clouds over the summit also reflect considerable light. Courtesy of The Boston Globe (Boston.com website); photo credit to Sonny Timbelaka (AFP/Getty Images).

CVGHM reported that, during 3-8 November, the eruption from Merapi continued at a vigorous pace, characterized by incandescent avalanches from the lava dome, pyroclastic flows, ash plumes, and occasional explosions.

Visual observations were often difficult due to inclement weather and eruption plumes. To overcome these challenges, people working on the crisis gained regular access to satellite radar data of high resolution (RADARSAT2). That data was made available 25 October through an agreement called the International Charter Space and Major Disasters.

According to the NASA Earth Observatory website, the strongest explosion during the 2010 eruption took place on 4-5 November, lasting more than 24 hours, when plumes rose to ~18 km altitude and drifted 110 km W. They claimed that some surges of pyroclastic material reached an 18 km runout distance (direction and damage unstated and several kilometers longer than some other observations). They also said that, according to local geologists, this explosion was the most violent one at Merapi since the 1870's. They noted that, by some estimates, the 4-5 November eruption was five times more intense than the one on 26 October.

A CVGHM report on the 4-5 November eruption stated that 38 pyroclastic flows had occurred before it ended. Although dense fog hampered visual observations, a CVGHM observer from Kaliurang post (~7 km S of the summit) saw 19 of those 38 flows travel ~4 km S. Another traveled 9 km SE. Ashfall was noted in some nearby areas. Satellite data indicated this explosion released much more SO2 than previous recent Merapi eruptions, ~300,000 metric tons.

Residents in towns up to 240 km away reported that 'heavy gray ash' blanketed trees, cars, and roads. On 5 November, rumbling sounds were heard in areas 30 km away, and pyroclastic flows continued to descend the flanks. Ash fell in Yogyakarta and "sand"-sized tephra fell within 15 km. CVGHM recommended evacuations from several more towns within a 20-km radius. Observations shortly after the 5 November eruption showed that the large lava dome of the previous week had been destroyed, and the summit crater had enlarged to a diameter of 300-400 m. However, by 6 November, another lava dome had grown, amassing, according to RADARSAT images 11 hours apart, at a rate of ~35 m3 per second.

Activity remained very intense on 6 November. Pyroclastic flows continued to descend the flanks; one flow traveled 4 km down the Senowo drainage to the W. Incandescent flashes from the lava dome were reported from observations posts, and incandescent material was ejected above the crater. Incandescent avalanches traveled 2 km down multiple drainages to the SSE, S, and SSW. The Darwin VAAC reported that ash plumes seen in satellite imagery rose to an altitude of 16.8 km on 5 and 6 November.

During this period, ashfall was heavy on Merapi's flanks, and was observed in multiple surrounding areas, including the villages of Selo (~5 km NNE) and Magelang (26 km WNW). In Muntilan village (18 km WSW), tephra and ash accumulated up to 4 cm. At the volcano, a new dome formed during 6-7 November 2010; it stood ~240 m in a NW-SE orientation, 140 m wide, and 40-50 m high.

On 7 November, the number of pyroclastic flows increased from the previous day. An explosion was heard, and ash plumes rose 6 km and drifted W. Lightning was seen from Yogyakarta. Pyroclastic flows traveled 5 km, and lava avalanches moved 600 m S and SW. The next day, ash plumes rose to altitudes of 6-7 km and were accompanied by rumbling sounds. According to the Darwin VAAC, satellite imagery during 7-8 November showed ash plumes at an altitude of 7.6 km drifting 165-220 km W and SW.

Figure 47 shows Merapi's erupted SO2 in the atmosphere during 4-8 November 2010. On 9 November, an SO2 cloud was seen over the Indian Ocean at altitudes of 12-15 km.

Figure (see Caption) Figure 47. SO2 concentration-pathlength (in Dobson units, with 100 DU as darkest colors) during 4-8 November 2010, as observed by the OMI on NASA's Aura spacecraft. OMI data provided courtesy of Simon Carn (Michigan Technical University). Courtesy of Natural Hazards NASA Earth Observatory website (image by Jesse Allen, and original caption by Michon Scott).

The European Space Agency (ESA) has created updates on SO2 gas retrieval from their Envisat, Eumetsat's MetOp, and NASA's Aura satellites. For the interval 4-13 November 2010, the peak atmospheric loading of SO2 appeared on 8 November at 227 kT SO2. The estimates can be seen presented as animations that depict complex rotating dispersal patterns. As seen in figure 47, significant portions of the gas blew over Western Australia. In Norwegian Institute for Air Research models shown in the article, many of the Merapi plumes centered around 15 km altitude, with tops and bottoms ~5 km above and below that height.

ESA (2010) quoted Andrew Tupper as saying, "The updates from ESA have been very useful to Darwin VAAC [Volcanic Ash Advisory Center] when received in real time, and we expect that in the post-event analysis we'll be able to show lots more potential value." The SO2 maps can help the aviation community avoid dangerous emissions from volcanoes.

ESA (2010) noted that they send SO2 email alerts in near-real time. The alerts link to a web page with a map showing the location of the sulphur dioxide peak.

Reduced eruptive vigor; lahars. Eruptions and seismicity generally dropped during mid-November 2010 into March 2011, but lahars became a problem. On 9 November, CVGHM noted a reduction in the intensity of activity; a single pyroclastic flow occurred in a 6-hour period. Rumbling sounds were accompanied by an ash plume that rose to an altitude of 4.5 km, and ashfall was reported in Selo (~5 km NNE). Lava-dome incandescence was again observed, and lava avalanches moved 800 m SSE.

During 10-11 November, seismicity continued to decrease. Lahar deposits were seen in multiple drainages, at a maximum distance of 16.5 km from the summit. On 10 November, plumes generally rose 0.8-1.5 km above the crater. Heavy ashfall was reported in areas to the WSW and WNW. A 3.5-km-long pyroclastic flow and a 200-m-long avalanche both traveled S in the Gendol drainage. Incandescence from the crater was observed through a closed-circuit television system at the Merapi museum (in the village of Kaliurang, ~7 km S of the summit). On 11 November, roaring was followed by light ashfall at the Ketep Merapi observation post, ~9 km NW of the summit. Plumes, brownish-black at times, rose 800 m above the crater and drifted W and NW, and one plume rose 1.5 km. Avalanches again proceeded S in the Gendol drainage.

According to the Darwin VAAC, during 12-21 November, ash plumes rose as high as 7.6 km and drifted in multiple directions. The SO2 concentration at high altitudes decreased. About 300,000 residents also began to return home after the "danger zone" was reduced in some areas due to decreased activity.

Between 10 November and 1 December, lahar deposits were seen in multiple drainages and in all rivers flowing from Merapi. CVGHM noted that several bridges had been damaged. On 29 November, a narrow tongue of lava was observed, and light-colored flow deposits extended S down several narrow channels (Gendol and Kuning drainages) at least 5 km from the summit.

According to CVGHM, seismicity declined further during 1-3 December, in number of volcanic earthquakes and their associated energy. Deformation measurements were either stable or did not show significant changes. Although fog often prevented visual observations, gas plumes were seen rising 500 m above the crater and drifting W. SO2 plumes were no longer detected in satellite imagery. On 4 December, the Alert Level was lowered to 3.

On 9 January, as seismicity continued to decrease, CVGHM lowered the Alert Level to 2. Plumes continued to rise above the crater and, on 12 January, avalanches descended the Krasak drainage, traveling 1.5 km SW. Lahars and high water during 15-23 January damaged infrastructure and caused temporary road closures. On 22 January, plumes rose 175 m above the crater and drifted E.

According to a news account (vivanews.com), Merapi spewed thick white plumes as of the first week of February 2011. CVGHM reported that gas plumes rose from Merapi during 28 February-6 March. The highest plume, on 5 March, rose 100 m and drifted E. The number of MP earthquakes was slightly lower compared to the previous week.

Analysis of the lahar problem emerged as this issue went to press. According to Lavigne and others (2011) the volume of pyroclastic debris from the 2010 eruptive episode was in excess of 100 x 106 m3, ~10-fold higher than similar deposits after more conventional eruptions. These deposits and subsequent lahars filled most of the protective Sabo-dam structures. The eruption coincided with the onset of the rainy season, an interval that usually brings 4 m of rain but due to La Niña conditions, is predicted to bring more rain than usual. The 50-year absence of lahars in Kuning and Woro drainages altered the perception of risk in residents there. Thousands of sand miners work in the riverbed of all lahar-prone channels.

Fatalities and scale of evacuations. As previously noted, on 26 October, pyroclastic flows killed ~35 people who 7 km from the summit. They had refused to evacuate the village of Kinahejo (Kinahrejo).

According to the U.S. Agency for International Development (USAID) (quoting the Government of Indonesia's National Disaster Management Agency-Badan Nasional Penanggulangan Bencana or BNPB), the 2010 eruptions killed 386 people, injured 131 people, and displaced initially more than 300,000 residents (USAID, 2011). According to Relief Web, the 11,000 displaced remained unable to return to their homes at least as late as January 2011.

Lahars followed the eruptive processes and caused at least one additional death and one injury. An 11 January IRIN News article stated that " . . . more than 300,000 people have been able to return home, another 11,000 remain displaced, living with family or in camps, according to the government's National Disaster Management Agency."

According to the UN's Integrated Regional Information Networks (IRIN News), a source of humanitarian news and analysis, rainfall triggered lahars on Merapi's flanks on 3 and 9 January 2011. This caused damage to houses, farms, and infrastructure in multiple villages in the Magelang district, 26 km WNW of Merapi. One death and an injury were reported. The flooded area reportedly affected an estimated 3,000 residents but the number evacuated was unstated. The flooding on 9 January was more intense and, according to IRIN News, the Red Cross evacuated dozens of people trapped in their homes.

Referring to the larger 2010 eruption and evacuees, the same 11 January IRIN article stated that " . . . more than 300,000 people have been able to return home, another 11,000 remain displaced, living with family or in camps, according to the government's National Disaster Management Agency." This article also quoted the same agency with regard to the 386 reported deaths and the 131 injuries from the 2010 eruption.

Airlines affected. According the Jakarta Post, a total of 13 international carriers stopped their flights to Jakarta on 6 November, citing concerns about volcanic ash in the air that could cause damage to their aircraft and engines, and thus jeopardize safety. They included Malaysia Airlines, Air Asia, Singapore Airlines, Emirate, Ethihad, Turkish Air, Japan Airlines, Lufthansa, and KLM.

Andrew Tupper at the Australian Bureau of Meteorology notified us that Indonesian media reported that a plane encountered a volcanic cloud N of Java ascribed to Merapi on 28 October 2010. The suspected ash-plume encounter occurred at altitudes in the range 9.1-11.6 km. An engine stall message alerted the crew, who also noted a strong burning odor that disappeared as the plane descended from 9.1 to 6.1 km altitude.

According to another news account (Kompas.com), possibly reporting the same incident, on 28 October, a Garuda Indonesia airplane with 383 passengers from Solo, Central Java, landed safely at Hang Nadim Airport, Batam, a scheduled refueling stop. Enroute, volcanic ash from Merapi had been sucked into the left engine of the Airbus 330 aircraft, disrupting the engine. Richard Wijaya, Operational Duty Manager of Garuda Indonesia in Batam, explained that the pilot had notified ground staff of the disruption before landing, and as soon as they landed in Batam, the engine was checked. The crew cancelled the next leg of the scheduled flight to Jeddah, Saudi Arabia.

On 2 November, an unspecified number of international airlines had to cancel flights to airports at Solo and Yogyakarta, as plumes blackened the sky. Poor visibility and heavy ash on the runway caused the cancellations. According to an ABC news report, Yogyakarta airport reopened on 20 November after being closed for ~2 weeks.

Data table. Table 20 summarizes currently available CVGHM reports on Merapi's behavior during September to 1 December 2010. In the first row, it presents some background values commonly seen at Merapi during non-eruption conditions. Seismic terminology in the table is equivalent to that seen in figure 42 (Ratdomopurbo and Poupinet, 2000). Note the rise in seismic energy on 19 September, various changes in Alert Level, and major events in bolded type. Comparative calm prevailed after early November, but lahars became a problem (see text). The table is intended to give readers an overview of the eruption rather than capture all the details.

Table 20. Preliminary summary of pyroclastic flows as well as some collateral observations, and hazard status changes relating to Merapi during early September through 22 November 2010. Pyroclastic flows (locally termed AP for awan panas, hot clouds) here are tallied both from seismic detection and visual observations, along with direction of travel. The table omits seismic data shown in figure 41. The "ber" (beruntun) refers to episodes of densely spaced signals indistinguishable from each other. Those signals were common beginning 4 November and complicated assessments of tremor (not shown). The pre-eruption seismic energy was less than 342 x 1012 erg (normal, non-eruptive conditions). Courtesy of CVGHM and A. Ratdomopurbo (personal communication).

Date Pyroclastic flows Related comments
Early Sep 2010 -- Seismic energy, 603 x 1012 ergs
19 Sep 2010 -- Seismic energy, ~6,000 x 1012 erg
20 Sep 2010 -- Alert Level raised to 2
21 Oct 2010 -- Alert Level raised to 3
25 Oct 2010 -- Regional M 7.7 earthquake; Alert Level raised to 4
26 Oct 2010 8 [Multiple (WSW, SE)] Initial eruption at 1702 LT
30 Oct 2010 2 Second explosive eruption; ashfall in city of Yogyakarta
31 Oct 2010 4 Eruption
01 Nov 2010 7 during several hr --
02 Nov 2010 26 Eruption; 9 and 10 km runout distances
03 Nov 2010 38 [At least 19 (S)] Eruption
04 Nov 2010 ber [Multiple] Eruption (over 24 hours)
05 Nov 2010 ber [Multiple] 4-5 Nov. eruption was largest 2010 eruption (ash plume to 16.8 km asl); runout distances of ~18 km(?); widespread ash fall; dome destruction
06 Nov 2010 5 [Multiple] Eruption, rapid dome extrusion
07 Nov 2010 ber [Multiple] Eruption
08 Nov 2010 7 Eruption
09 Nov 2010 2 [1 in 6 hr period] Weaker eruption
10 Nov 2010 1 [At least 1 (S)] Weaker eruption
11 Nov 2010 1 [At least 1 (S)] Weaker eruption
14 Nov 2010 2 [0 (none)] Weaker eruption
15 Nov 2010 [1] Weaker eruption
16 Nov 2010 [1] Weaker eruption
22 Nov 2010 [5] Eruption

References. Delle Donne, D., Harris, AJL, Ripepe, M, and Wright, R., 2010, Earthquake-induced thermal anomalies at active volcanoes, Geology, Sept. 2010; v. 38; pp. 771-774 [DOI: 10.1130/G30984.1].

European Space Agency (ESA), 2010, Satellites tracking Mt Merapi volcanic ash clouds, ESA News (online; 15 November 2010) (URL: http://www.esa.int/esaCP/SEMY0Y46JGG_index_0.html).

Hort, M, Vöge, FM., Seyfried, R, and Ratdomopurbo, A, 2006, In situ observation of dome instabilities at Merapi volcano, Indonesia: A new tool for volcanic hazard mitigation, Journal of Volcanology and Geothermal Research, v. 154, no. 3-4, p. 301-312.

Lavigne,F, de Bélizal, E, Cholik, N, Aisyah, N, Picquout, A, and Wulan Mei, ET, 2011, Lahar hazards and risks following the 2010 eruption of Merapi volcano, Indonesia, Geophysical Research Abstracts, v. 13, EGU2011-4400, 2011, EGU General Assembly 2011.

Lowenstern, JB, Smith, RB, and Hill, DP, 2006, Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems, Phil. Trans. R. Soc. A, 15 August 2006, v. 364, no. 1845, p. 2055-2072.

Manga, M. and Brodsky, E, 2006, Seismic triggering of eruptions in the far field: volcanoes and geysers, Annual Review of Earth and Planetary Sciences, v. 34, p. 263-291 [DOI: 10.1146/annurev.earth.34.031405.125125].

Ratdomopurbo, A, and Poupinet, G, 2000, An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983-1994, Journal of Volcanology and Geothermal Research, v. 100, no. 1-4, p.193-214 (DOI: 10.1016/S0377-0273(00)00137-2).

Schwarzkopf, L, 2001, The 1995 and 1998 block and ash flow deposits at Merapi volcano, Central Java, Indonesia: implications for emplacement mechanisms and hazard mitigation. Ph.D. Thesis, University at Kiel, Kiel, Germany.

USAID (U.S. Agency for International Development), 2011 (February 4), Indonesia - Tsunami and Volcano, Fact Sheet 2, Fiscal Year 2011.

Vöge, FM, and Hort, M, 2008, Automatic classification of dome instabilities based on Doppler radar measurements at Merapi volcano, Indonesia: Part I. Geophysical Journal International, v. 172, no. 3, p. 1188-1206 (DOI: 10.1111/j.1365-246X.2007.03605.x).

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://vsi.esdm.go.id/); Merapi Volcano Observatory (MVO); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/); U.S. Agency for International Development (USAID) (URL: https://www.usaid.gov/); Antonius Ratdomopurbo, Nanyang Technological University, Earth Observatory of Singapore, Nanyang Avenue, Singapore (URL: http://www.earthobservatory.sg/); Andrew Tupper, Australian Bureau of Meteorology (URL: http://www.bom.gov.au/); European Geosciences Union (URL: http://www.egu.eu/); Badan Nasional Penanggulangan Bencana (BNPB - Indonesian National Disaster Management Agency) (URL: http://dibi.bnpb.go.id/); Relief Web (URL: https://reliefweb.int/); Kompas News, Jakarta, Indonesia (URL: http://www.Kompas.com); The Jakarta Post (URL: http://www.thejakartapost.com/); Reuters (URL: http://www.reuters.com/); Vivanews.com (URL: http://vivanews.com/); ABC News (Australia) (URL: http://www.abc.net.au/); The Boston Globe (URL: http://www.boston.com/bigpicture/2010/11/mount_merapis_eruptions.html); IRIN News (URL: http://www.IRINnews.org/).


Rumble III (New Zealand) — February 2011 Citation iconCite this Report

Rumble III

New Zealand

35.745°S, 178.478°E; summit elev. -220 m

All times are local (unless otherwise noted)


Eruption in 2009 linked to over 100 m of sea floor collapse

We reported in BGVN 34:07 that New Zealand scientists found evidence during a research cruise in 2009 of a recent large eruption at Rumble III, one of more than 30 big submarine volcanoes on the Kermadec Arc, NE of the Bay of Plenty on the N coast of New Zealand's North Island (figures 3 and 4). A newly available report of the 2009 cruise (Dodge, 2010) noted some new details, including the following: (1) since the last study of Rumble III volcano in 2007, significant volcanic activity had occurred; (2) the bathymetric profile of the seamount had changed since it was last mapped in 2007—the summit of Rumble III had collapsed and was ~100 m deeper, at 310 m, much of the 800-m-wide crater was filled by ash, and much of the W side of the volcano had slid down-slope; (3) volcanic flow deposits were documented in camera tows—lava boulders, hackley flow, truncated lobate or pillows, and talus were common; and (4) there was a massive abundance of ash, in particular draped across substrates in many areas, provided compelling evidence for a large eruption since 2007.

Figure (see Caption) Figure 3. Southwest Pacific from Samoa (NE) to New Zealand (SW), showing the location of Rumble III and other submarine volcanoes along the southern Kermadec Arc. Rumble III volcano is located ~ 350 km NE of the Bay of Plenty, New Zealand, 200 km NE of Auckland, and is one of a number of submarine volcanoes that delineate the active arc front in this region. Bathymetry data were satellite-derived (for deep water) and acquired using an EM 300 multibeam echo sounder (along the arc and Lau Basin). Satellite-derived bathymetry from Sandwell and Smith (1997); EM300 bathymetry data courtesy of New Zealand National Institute of Water and Atmospheric Research (NIWA). Map courtesy of National Oceanic and Atmospheric Agency (NOAA) Ocean Explorer web site; from New Zealand American Submarine Ring of Fire 2005 expedition plan.
Figure (see Caption) Figure 4. Bathymetric map of all available multibeam data as of 2009 for the Southern Havre Trough, between the Colville and Kermadec Ridges and N of the New Zealand's North Island. In the colored version of this figure, the bathymetry key (in meters) ranges from red at the surface to purple at depths of 5 to 6 km. The location of Rumble III submarine volcano is highlighted. The inset indicates the tracks and areas of individual surveys whose data comprise the map. Areas that are not covered use satellite data configured to fit the edges of multibeam data set. Courtesy of Wysoczanski and others (2010).

A press release dated 17 August 2010 by the New Zealand National Institute of Water and Atmospheric Research (NIWA) noted that, during an oceanographic cruise aboard NIWA's research vessel R/V Tangaroa in May-June 2010, scientists confirmed that (a) the W flank of the volcano had collapsed ~100 m or more, (b) collapse of 90 m was observed at its highest (shallowest) point, and (c) as much as 120 m collapse occurred in some places. The release noted that the collapse was caused by an eruption some time in the last 2 years.

Glassy, black basaltic rock filled with vesicles was dredged from the volcano. Richard Wysoczanski (NIWA) noted that the samples are the youngest-known rocks from the Kermadec Arc region, created some time between the years 2007 and 2009. It is notable that andesite samples were previously collected from the flank of the submarine volcano by Brothers (1967). Rumble III was last mapped using multibeam technology in 2002.

NIWA principal scientist Geoffrey Lamarche said that the observation of significant pieces of sea floor moving hundreds of meters in height over a short timespan of 8 years give insight into short-time movements of the seabed. Research of the Kermadec Arc is directed in part by NIWA's survey of the area for massive sulphide deposits that sometimes develop over hydrothermal vents.

On 28 February 2011, NIWA and GNS Science announced an upcoming research cruise of about 3 weeks in 2011 to investigate mineral deposits and hydrothermal activity at five major submarine volcanoes in the Kermadec Arc (Clark, Healy, Brothers, Rumble II West, and Rumble III; see figure 4).

References. Brothers, R.N., 1967, Andesite from Rumble III Volcano, Kermadec Ridge, southwest Pacific, Bulletin of Volcanology, v. 31, no. 1, pp. 17-19.

Dodge, E., 2010, Catastrophic volcanic activity at Rumble III volcano based on EM300 bathymetry and direct sea floor imaging, Senior Thesis for Oceanography 444, University of Washington, School of Oceanography, Seattle, WA.

Smith, W. H. F., and Sandwell, D.T., 1997, Global seafloor topography from satellite altimetry and ship depth soundings, Science, v. 277, p. 1957-1962+.

Todd, E., Gill, J.B., Wysoczanski, R.J., Handler, M.R., Wright, I.C., Gamble, J.A., 2010, Sources of constructional cross-chain volcanism in the southern Havre Trough: New insights from HFSE and REE concentration and isotope systematics, Geochemistrry Geophysics Geosystems. v. 11, Q04009, 31 pp, DOI: 10.1029/2009GC002888.

Wysoczanski, R.J., Todd, E., Wright, I.C., Leybourne, M.I., Hergt, J.M., Adam, C., and Mackay, K., 2010, Backarc rifting, constructional volcanism and nascent disorganised spreading in the southern Havre Trough backarc rifts (SW Pacific), Journal of Volcanology and Geothermal Research, v. 190, issues 1-2, p. 39-57.

Geologic Background. The Rumble III seamount, the largest of the Rumbles group of submarine volcanoes along the South Kermadec Ridge, rises 2300 m from the sea floor to within about 200 m of the sea surface. Collapse of the edifice produced a horseshoe-shaped caldera breached to the west and a large debris-avalanche deposit. Fresh-looking andesitic rocks have been dredged from the summit and basaltic lava from its flanks. Rumble III has been the source of several submarine eruptions detected by hydrophone signals.

Information Contacts: Roger Matthews, North Shore City Council, 1 The Strand, Takapuna Private Bag 93500, Takapuna, North Shore City, New Zealand; Richard Wysoczanski, New Zealand National Institute of Water and Atmospheric Research (NIWA) (URL: https://www.niwa.co.nz/); Geoffrey Lamarche, NIWA (URL: https://www.niwa.co.nz/); GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.gns.cri.nz/); National Oceanic and Atmospheric Agency (NOAA) Ocean Explorer (URL: http://oceanexplorer.noaa.gov/gallery/gallery.html).


Sangay (Ecuador) — February 2011 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Many plumes seen by pilots during past year ending February 2011

The last report discussed observations of ash plumes and MODVOLC thermal alerts at Sangay through February 2010 (BGVN 35:01). Intermittent reporting indicated that similar activity continued through at least February 2011, with plumes reaching up to 7.6 km altitude (table 7). Clouds obscured the view at times, and plumes were reported primarily by pilots and were sometimes visible on satellite imagery.

Table 7. Plumes reported at Sangay during April 2010-February 2011. No plumes were noted during March 2011. Courtesy of the Washington VAAC.

Date Type of plume Altitude Distance and direction Source
21 Apr 2010 Ash 6.7 km -- Pilot observation
06 May 2010 Ash -- -- Pilot observation
06 May 2010 Ash -- W Pilot observation and satellite imagery
22-23 Jul 2010 Diffuse plumes -- 65-115 km W Pilot observation and satellite imagery
21 and 23 Jul 2010 Occasional thermal anomalies -- -- Satellite imagery
19 Aug 2010 Ash-and-gas plumes, intermittent thermal anomalies -- 25 km W Satellite imagery
20 Aug 2010 Emission -- -- Pilot observation
30 Aug 2010 Ash -- -- Pilot observation (near Sangay)
05 Sep 2010 Ash 5.5 km -- Pilot observation
10 Sep 2010 Small plume and thermal anomaly -- -- Satellite imagery
13 Sep 2010 Gas with possible ash and a thermal anomaly -- W Tegucigalpa Meteorological Watch Office (MWO) (Honduras), pilot observation, and satellite imagery
21 Sep 2010 Ash 7.6 km -- Pilot observation
06 Oct 2010 Small ash clouds -- WNW Pilot observation and satellite imagery
14 Oct 2010 Pilot reported ash, only gas plumes drifting NW observed in satellite imagery -- NW Pilot observation and satellite imagery
29 Oct 2010 Steam and gas plume possibly with ash and a thermal anomaly -- -- Satellite imagery
05 Dec 2010 Ash -- -- Guayaquil MWO (Ecuador)
12 Jan 2011 Ash and thermal anomaly 6.7 km >45 km SW Pilot observation and satellite imagery
20 Jan 2011 Ash 7.6 km -- Pilot observation
27 Jan 2011 Small ash clouds -- N Satellite imagery
23 Feb 2011 Pilot reported ash, small cloud drifting NW in satellite imagery with no ash confirmed -- SSE Pilot observation and satellite imagery

On 5 December 2010, the Washington Volcanic Ash Advisory Center (VAAC) stated that Instituto Geofisico reported elevated seismicity.

The MODVOLC alert system issued thermal alerts for Sangay monthly during March 2010 through early October 2010. Then, alerts were absent until 11 January 2011 (table 8).

Table 8. Thermal alerts issued for Sangay by the MODVOLC system during March 2010-20 March 2011 (continued from the list in BGVN 35:01). The system uses the MODIS instrument on the Terra and Aqua satellites. Courtesy MODVOLC Thermal Alerts System.

Date (UTC) Time (UTC) Pixels Satellite
15 Mar 2010 0330 1 Terra
30 Apr 2010 0345 1 Terra
16 May 2010 0345 1 Terra
03 Jun 2010 0330 1 Terra
12 Jul 2010 0340 1 Terra
18 Aug 2010 0655 1 Aqua
28 Sep 2010 0650 2 Aqua
30 Sep 2010 0335 1 Terra
02 Oct 2010 0325 1 Terra
07 Oct 2010 0345 1 Terra
11 Jan 2011 0345 1 Terra
02 Mar 2011 0330 1 Terra

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Taal (Philippines) — February 2011 Citation iconCite this Report

Taal

Philippines

14.002°N, 120.993°E; summit elev. 311 m

All times are local (unless otherwise noted)


Intermittent non-eruptive unrest during 2008-2010

As previously reported (BGVN 32:01), during the last four months of 2006 Taal displayed restlessness. This report discusses Taal seismicity, deformation, and hydrothermal behavior (steaming, and temperature changes in lake water at Main Crater) that occurred intermittently during 2008, 2010, and 2011.

Taal (also known as Talisay) is a lake-filled, 15 x 20 km caldera located on SW Luzon Island 65 km S of Manila (figure 9). The lake engulfs a large island with several thousand residents, Volcano Island, the place where all historical eruptions have vented (figures 10 and 11). Restlessness described herein was not confined to the area beneath the island.

Figure (see Caption) Figure 9. Index map of the Philippines showing Manila (the Capital) and several major volcanoes including Taal. Courtesy of Lyn Topinka (US Geological Survey).
Figure (see Caption) Figure 10. A map showing Taal caldera and surroundings. Notice that the caldera lies at the intersection of major faults and the topographic margin extends well beyond the caldera lake's margin. Courtesy of NASA Earth Observing System (EOS) Volcanology and their slide set compiled by Peter Mouginis-Mark (University of Hawaii).
Figure (see Caption) Figure 11. Photo of the Taal caldera lake and Volcano Island taken from the N in November 1999. Courtesy of NASA Earth Observing System (EOS) Volcanology and their slide set compiled by Peter Mouginis-Mark (University of Hawaii).

The Philippine Institute of Volcanology and Seismology (PHIVOLCS) announced in August 2008 that seismic unrest continued. On 28 August 2008, ten volcanic earthquakes occurred, two of which were felt and heard as rumbling sounds by residents in the Pira-Piraso village on Volcano Island. The earthquakes were located NE of the island near the Daang Kastila area (below Taal caldera's N rim) at estimated depths of 0.6-0.8 km. Surface observations indicated no change in the main crater lake area. The Alert Level remained at 1 (scale is 0-5, with 0 referring to No Alert).

On 8 June 2010, PHIVOLCS raised the Alert Level for Taal to 2 because of changes in several monitored parameters that began in late April. Since 26 April, the number and magnitude of volcanic earthquakes had increased. Most signals were high-frequency earthquakes, but at least one, on 2 June, was low-frequency. Steam emissions from the N and NE sides of Main Crater occasionally intensified. Deformation data showed slight inflation since 2004; measurements taken at the SE side of Taal on 7 June showed further inflation by 3 mm.

In addition to increased seismicity, the temperature of the Main Crater Lake increased from 32°C on 11 May to 34°C on 24 May. According to PHIVOLCS, the ratios of Mg:Cl and SO4:Cl, as well as total dissolved solids in the lake, all increased. Temperature measurements of the main crater lake did not increase further, remaining between 33-34°C.

PHIVOLCS proposed that the high frequency earthquakes could be the result of active rock fracturing associated with magma intrusion beneath the volcano, and that the fractures could serve as passageways through which hot gases from the intruding magma could escape into the lake.

According to news reports (Xinhua, Philippine Daily Inquirer), the more than 5,000 residents living near Taal were advised to evacuate their homes voluntarily. On 10 June, the Philippine Coast Guard sent five teams of divers and rescue swimmers with rubber boats and medical teams to its forward command post to help evacuate, if necessary, these residents. A news report (Philippine Daily Inquirer), however, indicated that most residents refused to leave without an official order.

The number of earthquakes recorded daily gradually declined to background levels beginning the second week of July 2010. Hydrothermal activity in the N and NE sides of the main crater and Daang Kastila also decreased. Precise leveling measurements conducted during 13-21 July along the NE, SE, and SW flanks detected minimal inflation. On 2 August, PHIVOLCS lowered the Alert Level to 1.

According to PHIVOLCS, seismic activity increased during the first week of September 2010. From 1-27 September 2010, a total of 274 volcanic earthquakes, or an average of 10 events/day, was recorded. However, given that field surveys conducted at the Main Crater and at the 1965-1977 "New Eruption" site (SW edge of Main Crater) indicated no anomalous thermal or surface activity.

PHIVOLCS reported that a December 2010 deformation survey showed slight inflation compared to a September 2010 survey. Field observations on 10 and 18 January revealed no significant changes. Weak steaming from a thermal area inside the main crater was noted and the lake temperature, acidity, and color were normal. During 15-16 January 2011, ten volcanic earthquakes were detected, two of which were felt by residents of Pira-Piraso, on the N side of the island. On 17 January three volcanic earthquakes were detected and on 18 January only one was reported. Between 18-30 January, up to seven daily volcanic earthquakes were detected by the seismic network.

Field observations during 23-25 January 2011 revealed an increase in the number of steaming vents inside the main crater and a drop in the lake level there. The lake water temperature and pH values remained normal. Visual observations on 27 January showed weak steaming at a thermal area in the crater.

Geologic Background. Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph).Pete Mouginis-Mark, Hawai'i Institute of Geophysics and Planetology (HIGP) Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://eos.higp.hawaii.edu/ppages/pinatubo/8.taal/?); Xinhua (URL: http://www.xinhuanet.com/english2010); Philippine Daily Inquirer (URL: http://www.inquirer.net/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports