Recently Published Bulletin Reports
Sangay (Ecuador) Ash plumes, lava flows, pyroclastic flows, and lahars during July-December 2020; larger explosions in September
Ebeko (Russia) Continued explosions, ash plumes, and ashfall; June-November 2020
Kuchinoerabujima (Japan) Intermittent thermal anomalies and small eruptions in May and August 2020
Raung (Indonesia) Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020
Nyamuragira (DR Congo) Numerous thermal anomalies and gas emissions from the lava lake through November 2020
Sinabung (Indonesia) Explosions begin again on 8 August 2020; dome growth confirmed in late September
Heard (Australia) Persistent thermal anomalies in the summit crater from June through October 2020
Sabancaya (Peru) Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020
Rincon de la Vieja (Costa Rica) Frequent small phreatic explosions with intermittent ash plumes during April-September 2020
Fuego (Guatemala) Daily explosions, ash emissions, and block avalanches during August-November 2020
Kikai (Japan) Explosion on 6 October 2020 and thermal anomalies in the crater
Manam (Papua New Guinea) Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020
Sangay
Ecuador
2.005°S, 78.341°W; summit elev. 5286 m
All times are local (unless otherwise noted)
Ash plumes, lava flows, pyroclastic flows, and lahars during July-December 2020; larger explosions in September
Sangay is one of the most active volcanoes in Ecuador with the current eruptive period continuing since 26 March 2019. Activity at the summit crater has been frequent since August 1934, with short quiet periods between events. Recent activity has included frequent ash plumes, lava flows, pyroclastic flows, and lahars. This report summarizes activity during July through December 2020, based on reports by Ecuador's Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), ash advisories issued by the Washington Volcanic Ash Advisory Center (VAAC), webcam images taken by Servicio Integrado de Seguridad ECU911, and various satellite data.
Overall activity remained elevated during the report period. Recorded explosions were variable during July through December, ranging from no explosions to 294 reported on 4 December (figure 80), and dispersing mostly to the W and SW. SO2 was frequently detected using satellite data (figure 81) and was reported several times to be emitting between about 770 and 2,850 tons/day. Elevated temperatures at the crater and down the SE flank were frequently observed in satellite data (figure 82), and less frequently by visual observation of incandescence. Seismic monitoring detected lahars associated with rainfall events remobilizing deposits emplaced on the flanks throughout this period.
Activity during July-August 2020. During July activity continued with frequent ash and gas emission recorded through observations when clouds weren’t obstructing the view of the summit, and Washington VAAC alerts. There were between one and five VAAC alerts issued most days, with ash plumes reaching 570 to 1,770 m above the crater and dispersing mostly W and SE, and NW on two days (figure 83). Lahar seismic signals were recorded on the 1st, 7th, three on the 13th, and one on the 19th.
During August there were between one and five VAAC alerts issued most days, with ash plumes reaching 600 to 2,070 m above the crater and predominantly dispersing W, SW, and occasionally to the NE, S, and SE (figure 84). There were reports of ashfall in the Alausí sector on the 24th. Using seismic data analysis, lahar signals were identified after rainfall on 1, 7, 11-14, and 21 August. A lava flow was seen moving down the eastern flank on the night of the 15th, resulting in a high number of thermal alerts. A pyroclastic flow was reported descending the SE flank at 0631 on the 27th (figure 85).
Activity during September-October 2020. Elevated activity continued through September with two significant increases on the 20th and 22nd (more information on these events below). Other than these two events, VAAC reports of ash plumes varied between 1 and 5 issued most days, with plume heights reaching between 600 and 1,500 m above the crater. Dominant ash dispersal directions were W, with some plumes traveling SE, S, SE, NE, and NW. Lahar seismic signals were recorded after rainfall on 1, 2, 5, 8-10, 21, 24, 25, 27, and 30 September. Pyroclastic flows were reported on the 19th (figure 86), and incandescent material was seen descending the SE ravine on the 29th. There was a significant increase in thermal alerts reported throughout the month compared to the July-August period, and Sentinel-2 thermal satellite images showed a lava flow down the SE flank (figure 87).
Starting at 0420 on the morning of 20 September there was an increase in explosions and emissions recorded through seismicity, much more energetic than the activity of previous months. At 0440 satellite images show an ash plume with an estimated height of around 7 km above the crater. The top part of the plume dispersed to the E and the rest of the plume went W. Pyroclastic flows were observed descending the SE flank around 1822 (figure 88). Ash from remobilization of deposits was reported on the 21st in the Bolívar, Chimborazo, Los Ríos, Guayas and Santa Elena provinces. Ash and gas emission continued, with plumes reaching up to 1 km above the crater. There were seven VAAC reports as well as thermal alerts issued during the day.
Ash plumes observed on 22 September reached around 1 km above the crater and dispersed W to NW. Pyroclastic flows were seen descending the SE flank (figure 89) also producing an ash plume. A BBC article reported the government saying 800 km2 of farmland had experienced ashfall, with Chimborazo and Bolívar being the worst affected areas (figure 90). Locals described the sky going dark, and the Guayaquil was temporarily closed. Ash plume heights during the 20-22 were the highest for the year so far (figure 91). Ash emission continued throughout the rest of the month with another increase in explosions on the 27th, producing observed ash plume heights reaching 1.5 km above the crater. Ashfall was reported in San Nicolas in the Chimborazo Province in the afternoon of the 30th.
Thermal alerts increased again through October, with a lava flow and/or incandescent material descending the SE flank sighted throughout the month (figure 92). Pyroclastic flows were seen traveling down the SE flank during an observation flight on the 6th (figure 93). Seismicity indicative of lahars was reported on 1, 12, 17, 19, 21, 23, 24, and 28 October associated with rainfall remobilizing deposits. The Washington VAAC released one to five ash advisories most days, noting plume heights of 570-3,000 m above the crater; prevailing winds dispersed most plumes to the W, with some plumes drifting NW, N, E to SE, and SW. Ashfall was reported in Alausí (Chimborazo Province) on the 1st and in Chunchi canton on the 10th. SO2 was recorded towards the end of the month using satellite data, varying between about 770 and 2,850 tons on the 24th, 27th, and 29th.
Activity during November-December 2020. Frequent ash emission continued through November with between one and five Washington VAAC advisories issued most days (figure 94). Reported ash and gas plume heights varied between 570 and 2,700 m above the crater, with winds dispersing plumes in all directions. Thermal anomalies were detected most days, and incandescent material from explosions was seen on the 26th. Seismicity indicating lahars was registered on nine days between 15 and 30 November, associated with rainfall events.
Lahar signals associated with rain events continued to be detected on ten out of the first 18 days of November. Ash emissions continued through December with one to five VAAC alerts issued most days. Ash plume heights varied from 600 to 1,400 m above the crater, with the prevailing wind direction dispersing most plumes W and SW (figure 95). Thermal anomalies were frequently detected and incandescent material was observed down the SE flank on the 3rd, 14th, and 30th, interpreted as a lava flow and hot material rolling down the flank. A webcam image showed a pyroclastic flow traveling down the SE flank on the 2nd (figure 96). Ashfall was reported on the 10th in Capzol, Palmira, and Cebadas parishes, and in the Chunchi and Guamote cantons.
Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.
Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); ECU911, Servicio Integrado de Seguridad ECU911, Calle Julio Endara s / n. Itchimbía Park Sector Quito – Ecuador. (URL: https://www.ecu911.gob.ec/; Twitter URL: https://twitter.com/Ecu911Macas/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Planet Labs, Inc. (URL: https://www.planet.com/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); BBC News “In pictures: Ash covers Ecuador farming land” Published 22 September 2020 (URL: https://www.bbc.com/news/world-latin-america-54247797).
Ebeko
Russia
50.686°N, 156.014°E; summit elev. 1103 m
All times are local (unless otherwise noted)
Continued explosions, ash plumes, and ashfall; June-November 2020
Volcanism at Ebeko, located on the N end of the Paramushir Island in the Kuril Islands, has been ongoing since October 2016, characterized by frequent moderate explosions, ash plumes, and ashfall in Severo-Kurilsk (7 km ESE) (BGVN 45:05). Similar activity during this reporting period of June through November 2020 continues, consisting of frequent explosions, dense ash plumes, and occasional ashfall. Information for this report primarily comes from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.
Activity during June was characterized by frequent, almost daily explosions and ash plumes that rose to 1.6-4.6 km altitude and drifted in various directions, according to KVERT reports and information from the Tokyo VAAC advisories using HIMAWARI-8 satellite imagery and KBGS (Kamchatka Branch of the Geophysical Service) seismic data. Satellite imagery showed persistent thermal anomalies over the summit crater. On 1 June explosions generated an ash plume up to 4.5 km altitude drifting E and S, in addition to several smaller ash plumes that rose to 2.3-3 km altitude drifting E, NW, and NE, according to KVERT VONA notices. Explosions on 11 June generated an ash plume that rose 2.6 km altitude and drifted as far as 85 km N and NW. Explosions continued during 21-30 June, producing ash plumes that rose 2-4 km altitude, drifting up to 5 km in different directions (figure 26); many of these eruptive events were accompanied by thermal anomalies that were observed in satellite imagery.
Explosions continued in July, producing ash plumes rising 2-5.2 km altitude and drifting for 3-30 km in different directions. On 3, 6, 15 July explosions generated an ash plume that rose 3-4 km altitude that drifted N, NE, and SE, resulting in ashfall in Severo-Kurilsk. According to a Tokyo VAAC advisory, an eruption on 4 July produced an ash plume that rose up to 5.2 km altitude drifting S. On 22 July explosions produced an ash cloud measuring 11 x 13 km in size and that rose to 3 km altitude drifting 30 km SE. Frequent thermal anomalies were identified in satellite imagery accompanying these explosions.
In August, explosions persisted with ash plumes rising 1.7-4 km altitude drifting for 3-10 km in multiple directions. Intermittent thermal anomalies were detected in satellite imagery, according to KVERT. On 9 and 22 August explosions sent ash up to 2.5-3 km altitude drifting W, S, E, and SE, resulting in ashfall in Severo-Kurilsk. Moderate gas-and-steam activity was reported occasionally during the month.
Almost daily explosions in September generated dense ash plumes that rose 1.5-4.3 km altitude and drifted 3-5 km in different directions. Moderate gas-and-steam emissions were often accompanied by thermal anomalies visible in satellite imagery. During 14-15 September explosions sent ash plumes up to 2.5-3 km altitude drifting SE and NE, resulting in ashfall in Severo-Kurilsk. On 22 September a dense gray ash plume rose to 3 km altitude and drifted S. The ash plume on 26 September was at 3.5 km altitude and drifted SE (figure 27).
During October, near-daily ash explosions continued, rising 1.7-4 km altitude drifting in many directions. Intermittent thermal anomalies were identified in satellite imagery. During 7-8, 9-10, and 20-22 October ashfall was reported in Severo-Kurilsk.
Explosions in November produced dense gray ash plumes that rose to 1.5-5.2 km altitude and drifted as far as 5-10 km, mainly NE, SE, E, SW, and ENE. According to KVERT, thermal anomalies were visible in satellite imagery throughout the month. On clear weather days on 8 and 11 November Sentinel-2 satellite imagery showed ashfall deposits SE of the summit crater from recent activity (figure 28). During 15-17 November explosions sent ash up to 3.5 km altitude drifting NE, E, and SE which resulted in ashfall in Severo-Kurilsk on 17 November. Similar ashfall was observed on 22-24 and 28 November due to ash rising to 1.8-3 km altitude (figure 29). Explosions on 29 November sent an ash plume up to 4.5 km altitude drifting E (figure 29). A Tokyo VAAC advisory reported that an ash plume drifting SSE on 30 November reached an altitude of 3-5.2 km.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows a pulse in low-power thermal activity beginning in early June through early August (figure 30). On clear weather days, the thermal anomalies in the summit crater are observed in Sentinel-2 thermal satellite imagery, accompanied by occasional white-gray ash plumes (figure 31). Additionally, the MODVOLC algorithm detected a single thermal anomaly on 26 June.
Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS) (URL: http://www.emsd.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Kuchinoerabujima (Japan) — November 2020
Cite this Report
Kuchinoerabujima
Japan
30.443°N, 130.217°E; summit elev. 657 m
All times are local (unless otherwise noted)
Intermittent thermal anomalies and small eruptions in May and August 2020
Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The current eruptive period began in January 2020 and has been characterized by small explosions, ash plumes, ashfall, a pyroclastic flow, and gas-and-steam emissions. This report covers activity from May to October 2020, which includes small explosions, ash plumes, crater incandescence, and gas-and-steam emissions. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC).
Volcanism at Kuchinoerabujima remained relatively low during May through October 2020, according to JMA. During this time, SO2 emissions ranged from 40 to 3,400 tons/day; occasional gas-and-steam emissions were reported, rising to a maximum of 900 m above the crater. Sentinel-2 satellite images showed a particularly strong thermal anomaly in the Shindake crater on 1 May (figure 10). The thermal anomaly decreased in power after 1 May and was only visible on clear weather days, which included 19 August and 3 and 13 October. Global Navigation Satellite System (GNSS) observations identified continued slight inflation at the base of the volcano during the entire reporting period.
Three small eruptions were detected by JMA on 5, 6, and 13 May, which produced an ash plume rising 500 m above the crater on each day, resulting in ashfall on the downwind flanks. Incandescence was observed at night using a high-sensitivity surveillance camera (figure 11). On 5 and 13 May the Tokyo VAAC released a notice that reported ash plumes rising 0.9-1.2 km altitude, drifting NE and S, respectively. On 20 May weak fumaroles were observed on the W side of the Shindake crater. The SO2 emissions ranged from 700-3,400 tons/day.
Activity during June and July decreased compared to May, with gas-and-steam emissions occurring more prominently. On 22 June weak incandescence was observed, accompanied by white gas-and-steam emissions rising 700 m above the crater. Weak crater incandescence was also seen on 25 June. The SO2 emissions measured 400-1,400 tons/day. White gas-and-steam emissions were again observed on 31 July rising to 800 m above the crater. The SO2 emissions had decreased during this time to 300-700 tons/day.
According to JMA, the most recent eruptive event occurred on 29 August at 1746, which ejected bombs and was accompanied by some crater incandescence, though the eruptive column was not visible due to the cloud cover. However, white gas-and-steam emissions could be seen rising 1.3 km above the Shindake crater drifting SW. The SO2 emissions measured 200-500 tons/day. During August, the number of volcanic earthquakes increased significantly to 1,032, compared to the number in July (36).
The monthly bulletin for September reported white gas-and-steam emissions rising 900 m above the crater on 9 September and on 11 October the gas-and-steam emissions rose 600 m above the crater. Seismicity decreased between September and October from 1,920 to 866. The SO2 emissions continued to decrease compared to previous months, totaling 80-400 tons/day in September and 40-300 tons/day in October.
Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.
Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Raung (Indonesia) — December 2020
Cite this Report
Raung
Indonesia
8.119°S, 114.056°E; summit elev. 3260 m
All times are local (unless otherwise noted)
Explosions with ash plumes and a thermal anomaly at the summit crater, July-October 2020
A massive stratovolcano in easternmost Java, Raung has over sixty recorded eruptions dating back to the late 16th Century. Explosions with ash plumes, Strombolian activity, and lava flows from a cinder cone within the 2-km-wide summit crater have been the most common activity. Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) has installed webcams to monitor activity in recent years. An eruption from late 2014 through August 2015 produced a large volume of lava within the summit crater and formed a new pyroclastic cone in the same location as the previous one. The eruption that began in July 2020 is covered in this report with information provided by PVMBG, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.
The 2015 eruption was the largest in several decades; Strombolian activity was reported for many months and fresh lava flows covered the crater floor (BGVN 45:09). Raung was quiet after the eruption ended in August of that year until July of 2020 when seismicity increased on 13 July and brown emissions were first reported on 16 July. Tens of explosions with ash emissions were reported daily during the remainder of July 2020. Explosive activity decreased during August, but thermal activity didn’t decrease until mid-September. The last ash emissions were reported on 3 October and the last thermal anomaly in satellite data was recorded on 7 October 2020.
Eruption during July-October 2020. No further reports of activity were issued after August 2015 until July 2020. Clear Google Earth imagery from October 2017 and April 2018 indicated the extent of the lava from the 2015 eruption, but no sign of further activity (figure 31). By August 2019, many features from the 2015 eruption were still clearly visible from the crater rim (figure 32).
PVMBG reported that the number and type of seismic events around the summit of Raung increased beginning on 13 July 2020, and on 16 July the height of the emissions from the crater rose to 100 m and the emission color changed from white to brown. About three hours later the emissions changed to gray and white. The webcams captured emissions rising 50-200 m above the summit that included 60 explosions of gray and reddish ash plumes (figure 33). The Raung Volcano Observatory released a VONA reporting an explosion with an ash plume that drifted N at 1353 local time (0653 UTC). The best estimate of the ash cloud height was 3,432 m based on ground observation. They raised the Aviation Color Code from unassigned to Orange. About 90 minutes later they reported a second seismic event and ash cloud that rose to 3,532 m, again based on ground observation. The Darwin VAAC reported that neither ash plume was visible in satellite imagery. The following day, on 17 July, PVMBG reported 26 explosions between midnight and 0600 that produced brown ash plumes which rose 200 m above the crater. Based on these events, PVMBG raised the Alert Level of Raung from I (Normal) to II (Alert) on a I-II-III-IV scale. By the following day they reported 95 explosive seismic events had occurred. They continued to observe gray ash plumes rising 100-200 m above the summit on clear days and 10-30 daily explosive seismic events through the end of July; plume heights dropped to 50-100 m and the number of explosive events dropped below ten per day during the last few days of the month.
After a long period of no activity, MIROVA data showed an abrupt return to thermal activity on 16 July 2020; a strong pulse of heat lasted into early August before diminishing (figure 34). MODVOLC thermal alert data recorded two alerts each on 18 and 20 July, and one each on 21 and 30 July. Satellite images showed no evidence of thermal activity inside the summit crater from September 2015 through early July 2020. Sentinel-2 satellite imagery first indicated a strong thermal anomaly inside the pyroclastic cone within the crater on 19 July 2020; it remained on 24 and 29 July (figure 35). A small SO2 signature was measured by the TROPOMI instrument on the Sentinel-5P satellite on 25 July.
After an explosion on 1 August 2020 emissions from the crater were not observed again until steam plumes were seen rising 100 m on 7 August. They were reported rising 100-200 m above the summit intermittently until a dense gray ash plume was reported by PVMBG on 11 August rising 200 m. After that, diffuse steam plumes no more than 100 m high were reported for the rest of the month except for white to brown emissions to 100 m on 21 August. Thermal anomalies of a similar brightness to July from the same point within the summit crater were recorded in satellite imagery on 3, 8, 13, 18, and 23 August. Single MODVOLC thermal alerts were reported on 1, 8, 12, and 19 August.
In early September dense steam plumes rose 200 m above the crater a few times but were mostly 50 m high or less. White and gray emissions rose 50-300 m above the summit on 15, 20, 27, and 30 September. Thermal anomalies were still present in the same spot in Sentinel-2 satellite imagery on 2, 7, 12, 17, and 27 September, although the signal was weaker than during July and August (figure 36). PVMBG reported gray emissions rising 100-300 m above the summit on 1 October 2020 and two seismic explosion events. Gray emissions rose 50-200 m the next day and nine explosions were recorded. On 3 October, emissions were still gray but only rose 50 m above the crater and no explosions were reported. No emissions were observed from the summit crater for the remainder of the month. Sentinel-2 satellite imagery showed a hot spot within the summit crater on 2 and 7 October, but clear views of the crater on 12, 17, and 22 October showed no heat source within the crater (figure 37).
Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Google Earth (URL: https://www.google.com/earth/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); MJ (URL: https://twitter.com/MieJamaludin/status/1167613617191043072).
Nyamuragira (DR Congo) — December 2020
Cite this Report
Nyamuragira
DR Congo
1.408°S, 29.2°E; summit elev. 3058 m
All times are local (unless otherwise noted)
Numerous thermal anomalies and gas emissions from the lava lake through November 2020
Nyamuragira (also known as Nyamulagira) is a shield volcano in the Democratic Republic of the Congo with a 2 x 2.3 km caldera at the summit. A summit crater lies in the NE part of the caldera. In the recent past, the volcano has been characterized by intra-caldera lava flows, lava emissions from its lava lake, thermal anomalies, gas-and-steam emissions, and moderate seismicity (BGVN 44:12, 45:06). This report reviews activity during June-November 2020, based on satellite data.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed numerous thermal anomalies associated with the volcano during June-November 2020, although some decrease was noted during the last half of August and between mid-October to mid-November (figure 91). Between six and seven thermal hotspots per month were identified by MODVOLC during June-November 2020, with as many as 4 pixels on 11 August. In the MODVOLC system, two main hotspot groupings are visible, the largest being at the summit crater, on the E side of the caldera.
Sentinel-2 satellite images showed several hotspots in the summit crater throughout the reporting period (figure 92). By 26 July and thereafter, hotspots were also visible in the SW portion of the caldera, and perhaps just outside the SW caldera rim. Gas-and-steam emissions from the lava lake were also visible throughout the period.
Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.
Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp).
Sinabung (Indonesia) — November 2020
Cite this Report
Sinabung
Indonesia
3.17°N, 98.392°E; summit elev. 2460 m
All times are local (unless otherwise noted)
Explosions begin again on 8 August 2020; dome growth confirmed in late September
Indonesia’s Sinabung volcano in north Sumatra has been highly active since its first confirmed Holocene eruption during August and September 2010. It remained quiet after the initial eruption until September 2013, when a new eruptive phase began that continued through June 2018. A summit dome emerged in late 2013 and produced a large lava “tongue” during 2014. Multiple explosions produced ash plumes, block avalanches, and deadly pyroclastic flows during the eruptive period. A major explosion in February 2018 destroyed most of the summit dome. After a pause in eruptive activity from September 2018 through April 2019, explosions resumed during May and June 2019. The volcano was quiet again until an explosion on 8 August 2020 began another eruption that included a new dome. This report covers activity from July 2019 through October 2020 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM or the Indonesian Center of Volcanology and Geological Hazard Mitigation, the Darwin Volcanic Ash Advisory Centre (VAAC), and the Badan Nacional Penanggulangan Bencana (National Disaster Management Authority, BNPB). Additional information comes from satellite instruments and local news reports.
Only steam plumes and infrequent lahars were reported at Sinabung during July 2019-July 2020. A new eruption began on 8 August 2020 with a phreatic explosion and dense ash plumes. Repeated explosions were reported throughout August; ashfall was reported in many nearby communities several times. Explosions decreased significantly during September, but SO2 emissions persisted. Block avalanches from a new growing dome were first reported in early October; pyroclastic flows accompanied repeated ash emissions during the last week of the month. Thermal data suggested that the summit dome continued growing slowly during October.
Activity during July 2019-October 2020. After a large explosion on 9 June 2019, activity declined significantly, and no further emissions or incandescence was reported after 25 June (BGVN 44:08). For the remainder of 2019 steam plumes rose 50-400 m above the summit on most days, occasionally rising to 500-700 m above the crater. Lahars were recorded by seismic instruments in July, August, September, and December. During January-July 2020 steam plumes were reported usually 50-300 m above the summit, sometimes rising to 500 m. On 21 March 2020 steam plumes rose to 700 m, and a lahar was recorded by seismic instruments. Lahars were reported on 26 and 28 April, 3 and 5 June, and 11 July.
A swarm of deep volcanic earthquakes was reported by PVMBG on 7 August 2020. This was followed by a phreatic explosion with a dense gray to black ash plume on 8 August that rose 2,000 m above the summit and drifted E; a second explosion that day produced a plume that rose 1,000 m above the summit. According to the Jakarta Post, ash reached the community of Berastagi (15 km E) along with the districts of Naman Teran (5-10 km NE), Merdeka (15 km NE), and Dolat Rayat (20 km E). Continuous tremor events were first recorded on 8 August and continued daily until 26 August. Two explosions were recorded on 10 August; the largest produced a dense gray ash plume that rose 5,000 m above the summit and drifted NE and SE (figure 77). The Darwin VAAC reported the eruption clearly visible in satellite imagery at 9.7 km altitude and drifting W. Later they reported a second plume drifting ESE at 4.3 km altitude. After this large explosion the local National Disaster Management Authority (BNPB) reported significant ashfall in three districts: Naman Teran, Berastagi and Merdeka. Emissions on 11 and 12 August were white and gray and rose 100-200 m. Multiple explosions on 13 August produced white and gray ash plumes that rose 1,000-2,000 m above the summit. Explosions on 14 August produced gray and brown ash plumes that rose 1,000-4,200 m above the summit and drifted S and SW (figure 77). The Darwin VAAC reported that the ash plume was partly visible in satellite imagery at 7.6 km altitude moving W; additional plumes were moving SE at 3.7 km altitude and NE at 5.5 km altitude.
White, gray, and brown emissions rose 800-1,000 m above the summit on 15 and 17 August. The next day white and gray emissions rose 2,000 m above the summit. The Darwin VAAC reported an ash plume visible at 5.2 km altitude drifting SW. A large explosion on 19 August produced a dense gray ash plume that rose 4,000 above the summit and drifted S and SW. Gray and white emissions rose 500 m on 20 August. Two explosions were recorded seismically on 21 August, but rainy and cloudy weather prevented observations. White steam plumes rose 300 m on 22 August, and a lahar was recorded seismically. On 23 August, an explosion produced a gray ash plume that rose 1,500 m above the summit and pyroclastic flows that traveled 1,000 m down the E and SE flanks (figure 78). Continuous tremors were accompanied by ash emissions. White, gray, and brown emissions rose 600 m on 24 August. An explosion on 25 August produced an ash plume that rose 800 m above the peak and drifted W and NW (figure 79). During 26-30 August steam emissions rose 100-400 m above the summit and no explosions were recorded. Dense gray ash emissions rose 1,000 m and drifted E and NE after an explosion on 31 August. Significant SO2 emissions were associated with many of the explosions during August (figure 80).
Explosive activity decreased substantially during September 2020. A single explosion reported on 5 September produced a white and brown ash plume that rose 800 m above the summit and drifted NNE. During the rest of the month steam emissions rose 50-500 m above the summit before dissipating. Two lahars were reported on 7 September, and one each on 11 and 30 September. Although only a single explosion was reported, anomalous SO2 emissions were present in satellite data on several days.
The character of the activity changed during October 2020. Steam plumes rising 50-300 m above the summit were reported during the first week and a lahar was recorded by seismometers on 4 October. The first block avalanches from a new dome growing at the summit were reported on 8 October with material traveling 300 m ESE from the summit (figure 81). During 11-13 October block avalanches traveled 300-700 m E and SE from the summit. They traveled 100-150 m on 14 October. Steam plumes rising 50-500 m above the summit were reported during 15-22 October with two lahars recorded on 21 October. White and gray emissions rose 50-1,000 m on 23 October. The first of a series of pyroclastic flows was reported on 25 October; they were reported daily through the end of the month when the weather permitted, traveling 1,000-2,500 m from the summit (figure 82). In addition, block avalanches from the growing dome were observed moving down the E and SE flanks 500-1,500 m on 25 October and 200-1,000 m each day during 28-31 October (figure 83). Sentinel-2 satellite data indicated a very weak thermal anomaly at the summit in late September; it was slightly larger in late October, corroborating with images of the slow-growing dome (figure 84).
Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Jakarta Post, 3rd Floor, Gedung, Jl. Palmerah Barat 142-143 Jakarta 10270 (URL: https://www.thejakartapost.com/amp/news/2020/08/08/mount-sinabung-erupts-again-after-year-of-inactivity.html);Rizal (URL: https://twitter.com/Rizal06691023/status/1319452375887740930); CultureVolcan (URL: https://twitter.com/CultureVolcan/status/1321156861173923840).
Heard (Australia) — November 2020
Cite this Report
Heard
Australia
53.106°S, 73.513°E; summit elev. 2745 m
All times are local (unless otherwise noted)
Persistent thermal anomalies in the summit crater from June through October 2020
The remote Heard Island is located in the southern Indian Ocean and contains the Big Ben stratovolcano, which has had intermittent activity since 1910. The island’s activity, characterized by thermal anomalies and occasional lava flows (BGVN 45:05), is primarily monitored by satellite instruments. This report updates activity from May through October 2020 using information from satellite-based instruments.
MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent thermal activity in early June that continued through July (figure 43). Intermittent, slightly higher-power thermal anomalies were detected in late August through mid-October, the strongest of which occurred in October. Two of these anomalies were also detected in the MODVOLC algorithm on 12 October.
Sentinel-2 thermal satellite imagery showed a single thermal anomaly on 3 May. In comparison to the MIROVA graph, satellite imagery showed a small pulse of strong thermal activity at the summit of Big Ben in June (figure 44). Some of these thermal anomalies were accompanied by gas-and-steam emissions. Persistent strong thermal activity continued through July. Starting on 2 July through at least 17 July two hotspots were visible in satellite imagery: one in the summit crater and one slightly to the NW of the summit (figure 45). Some gas-and-steam emissions were seen rising from the S hotspot in the summit crater. In August the thermal anomalies had decreased in strength and frequency but persisted at the summit through October (figure 45).
Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.
Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Sabancaya
Peru
15.787°S, 71.857°W; summit elev. 5960 m
All times are local (unless otherwise noted)
Daily explosions produced ash plumes, SO2 plumes, and thermal anomalies during June-September 2020
Sabancaya, located in Peru, is a stratovolcano that has been very active since 1986. The current eruptive period began in November 2016 and has recently been characterized by lava dome growth, daily explosions, ash plumes, ashfall, SO2 plumes, and ongoing thermal anomalies (BGVN 45:06). Similar activity continues into this reporting period of June through September 2020 using information from weekly reports from the Observatorio Vulcanologico INGEMMET (OVI), the Instituto Geofisico del Peru (IGP), and various satellite data. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued a total of 520 reports of ongoing ash emissions during this time.
Volcanism during this reporting period consisted of daily explosions, nearly constant gas-and-ash plumes, SO2 plumes, and persistent thermal anomalies in the summit crater. Gas-and-ash plumes rose to 1.5-4 km above the summit crater, drifting up to 35 km from the crater in multiple directions; several communities reported ashfall every month except for August (table 7). Sulfur dioxide emissions were notably high and recorded almost daily with the TROPOMI satellite instrument (figure 83). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month of the reporting period. These SO2 plumes sometimes persisted over multiple days and ranged between 1,900-10,700 tons/day. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows frequent thermal activity through September within 5 km of the summit crater, though the power varied; by late August, the thermal anomalies were stronger compared to the previous months (figure 84). This increase in power is also reflected by the MODVOLC algorithm that detected 11 thermal anomalies over the days of 31 August and 4, 6, 13, 17, 18, 20, and 22 September 2020. Many of these thermal hotspots were visible in Sentinel-2 thermal satellite imagery, occasionally accompanied by gas-and-steam and ash plumes (figure 85).
Table 7. Persistent activity at Sabancaya during June through September included multiple daily explosions that produced ash plumes rising several kilometers above the summit and drifting in multiple directions; this resulted in ashfall in communities within 35 km of the volcano. Satellite instruments recorded daily SO2 emissions. Data courtesy of OVI-INGEMMET, IGP, and the NASA Global Sulfur Dioxide Monitoring Page.
Month |
Avg. daily explosions by week |
Max plume heights (km above the crater) |
Plume drift (km) and direction |
Communities reporting ashfall |
Minimum days with SO2 over 2 DU |
SO2 emissions per day (tons) by week |
Jun 2020 |
20, 10, 9, 13 |
1.5-4 |
30 km, SE, S, SW, NE, W, E |
Chivay, Achoma, Ichupampa, Yanque, and Coporaque, Sallali, Madrigal, Lari, and Ichupampa |
28 |
8,400, 2,200, 3,100, 7,600 |
Jul 2020 |
20, 15, 11, 12, 19 |
2-2.6 |
15-30 km E, NE, NW, SE, SW, S, W |
Achoma and Chivay |
23 |
4,400, 6,000, 1,900, 2,100, 5,900 |
Aug 2020 |
18, 12, 9, 29 |
1.7-3.6 |
20-30 km W, SW, SE, S, E, NW |
- |
20 |
2,300, 3,800, 5,300, 10,700 |
Sep 2020 |
39, 35, 33, 38, 40 |
1.8-3.5 |
25-35 km SE, S, SW, W, E, NE, N, NW, W |
Lari, Achoma, Maca, Chivay, Taya, Huambo, Huanca, and Lluta |
28 |
9,700, 2,600, 8,800, 7,800, 4,100 |
OVI detected slight inflation on the N part of the volcano, which continued to be observed throughout the reporting period. Persistent thermal anomalies caused by the summit crater lava dome were observed in satellite data. The average number of daily explosions during June ranged from 18 during 1-7 June to 9 during 15-21 June, which generated gas-and-ash plumes that rose 1.5-4 km above the crater and drifted 30 km SE, S, SW, NE, W, and E (figure 86). The strongest sulfur dioxide emissions were recorded during 1-7 June measuring 8,400 tons/day. On 20 June drone video showed that the lava dome had been destroyed, leaving blocks on the crater floor, though the crater remained hot, as seen in thermal satellite imagery (figure 85). During 22-28 June there were an average of 13 daily explosions, which produced ash plumes rising to a maximum height of 4 km, drifting NE, E, and SE. As a result, ashfall was reported in the districts of Chivay, Achoma, Ichupampa, Yanque, and Coporaque, and in the area of Sallali. Then, on 27 June ashfall was reported in several areas NE of the volcano, which included the districts of Madrigal, Lari, Achoma, Ichupampa, Yanque, Chivay, and Coporaque.
Slight inflation continued to be monitored in July, occurring about 4-6 km N of the crater, as well as on the SE flank. Daily explosions continued, producing gas-and-ash plumes that rose 2-2.6 km above the crater and drifting 15-30 km E, NE, NW, SE, SW, S, and W (figure 87). The number of daily explosions increased slightly compared to the previous month, ranging from 20 during 1-5 July to 11 during 13-19 July. SO2 emissions that were measured each week ranged from 1,900 to 6,000 tons/day, the latter of which occurred during 6-12 July. Thermal anomalies continued to be observed in thermal satellite data over the summit crater throughout the month. During 6-12 July gas-and-ash plumes rose 2.3-2.5 km above the crater, drifting 30 km SE, E, and NE, resulting in ashfall in Achoma and Chivay.
OVI reported continued slight inflation on the N and SE flanks during August. Daily explosive activity had slightly declined in the first part of the month, ranging from 18 during the 3-9 August to 9 during 17-23 August. Dense gray gas-and-ash plumes rose 1.7-3.6 km above the crater, drifting 20-30 km in various directions (figure 88), though no ashfall was reported. Thermal anomalies were observed using satellite data throughout the month. During 24-30 August a pulse in activity increased the daily average of explosions to 29, as well as the amount of SO2 emissions (10,700 tons/day); nighttime incandescence accompanied this activity. During 28-29 August higher levels of seismicity and inflation were reported compared to the previous weeks. The daily average of explosions increased again during 31 August-6 September to 39; nighttime incandescence remained.
Increased volcanism was reported during September with the daily average of explosions ranging from 33 during 14-20 September to 40 during 28 September-4 October. The resulting gas-and-ash plumes rose 1.8-3.5 km above the crater drifting 25-35 km in various directions (figure 89). SO2 flux was measured by OVI ranging from 2,600 to 9,700 tons/day, the latter of which was recorded during 31 August to 6 September. During 7-13 September an average of 35 explosions were reported, accompanied by gas-and-ash plumes that rose 2.6-3.5 km above the crater and drifting 30 km SE, SW, W, E, and S. These events resulted in ashfall in Lari, Achoma, and Maca. The following week (14-20 September) ashfall was reported in Achoma and Chivay. During 21-27 September the daily average of explosions was 38, producing ash plumes that resulted in ashfall in Taya, Huambo, Huanca, and Lluta. Slight inflation on the N and SE flanks continued to be monitored by OVI. Strong activity, including SO2 emissions and thermal anomalies over the summit crater persisted into at least early October.
Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.
Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Rincon de la Vieja (Costa Rica) — October 2020
Cite this Report
Rincon de la Vieja
Costa Rica
10.83°N, 85.324°W; summit elev. 1916 m
All times are local (unless otherwise noted)
Frequent small phreatic explosions with intermittent ash plumes during April-September 2020
Rincón de la Vieja is a remote volcanic complex in Costa Rica that contains an acid lake. Frequent weak phreatic explosions have occurred since 2011 (BGVN 44:08). The most recent eruption period began in January 2020, which consisted of small phreatic explosions, gas-and-steam plumes, pyroclastic flows, and lahars (BGVN 45:04). This reporting period covers April through September 2020, with activity characterized by continued small phreatic explosions, three lahars, frequent gas-and-steam plumes, and ash plumes. The primary source of information for this report is the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA) using weekly bulletins and the Washington Volcanic Ash Advisory Center (VAAC).
Small, frequent, phreatic explosions were common at Rincón de la Vieja during this reporting period. One to several eruptions were reported on at least 16 days in April, 15 days in May, 8 days in June, 10 days in July, 18 days in August, and 13 days in September (table 5). Intermittent ash plumes accompanied these eruptions, rising 100-3,000 m above the crater and drifting W, NW, and SW during May and N during June. Occasional gas-and-steam plumes were also observed rising 50-2,000 m above the crater rim.
Table 5. Monthly summary of activity at Rincón de la Vieja during April through September 2020. Courtesy of OVSICORI-UNA.
Month |
Minimum total days of eruptions |
Ash plume height (m above the crater) |
Notable plume drift |
Gas-and-steam plume height (m above the crater) |
Apr 2020 |
16 |
200-1,000 |
- |
50-1,500 |
May 2020 |
15 |
200-3,000 |
W, NW, SW |
200-2,000 |
Jun 2020 |
8 |
100-2,000 |
N |
- |
Jul 2020 |
10 |
1,000 |
- |
- |
Aug 2020 |
18 |
500-1,000 |
- |
500 |
Sep 2020 |
13 |
700 |
- |
50 |
During April small explosions were detected almost daily, some of which generated ash plumes that rose 200-1,000 m above the crater and gas-and-steam emissions that rose 50-1,500 m above the crater. On 4 April an eruption at 0824 produced an ash plume that rose 1 km above the crater rim. A small hydrothermal explosion at 0033 on 11 April, recorded by the webcam in Sensoria (4 km N), ejected water and sediment onto the upper flanks. On 15 April a phreatic eruption at 0306 resulted in lahars in the Pénjamo, Azufrada, and Azul rivers, according to local residents. Several small explosions were detected during the morning of 19 April; the largest phreatic eruption ejected water and sediment 300 m above the crater rim and onto the flanks at 1014, generated a lahar, and sent a gas-and-steam plume 1.5 km above the crater (figure 30). On 24 April five events were recorded by the seismic network during the morning, most of which produced gas-and-steam plumes that rose 300-500 m above the crater. The largest event on this day occurred at 1020, ejecting water and solid material 300 m above the crater accompanied by a gas-and-steam plume rising up to 1 km.
Similar frequent phreatic activity continued in May, with ash plumes rising 200-1,500 m above the crater, drifting W, NW, and SW, and gas-and-steam plumes rising up to 2 km. On 5 May an eruption at 1317 produced a gas-and-steam plume 200 m above the crater and a Washington VAAC advisory reported that an ash plume rose to 2.1 km altitude, drifting W. An event at 1925 on 9 May generated a gas-and-steam plume that rose almost 2 km. An explosion at 1128 on 15 May resulted in a gas-and-steam plume that rose 1 km above the crater rim, accompanied by a gray, sediment-laden plume that rose 400 m. On 21 May a small ash eruption at 0537 sent a plume 1 km above the crater (figure 31). According to a Washington VAAC advisory, an ash plume rose 3 km altitude, drifting NW on 22 May. During the early evening on 25 May an hour-long sequence of more than 70 eruptions and emissions, according to OVSICORI-UNA, produced low gas-and-steam plumes and tephra; at 1738, some ejecta was observed above the crater rim. The next day, on 26 May, up to 52 eruptive events were observed. An eruption at 2005 was not visible due to weather conditions; however, it resulted in a minor amount of ashfall up to 17 km W and NW, which included Los Angeles of Quebrada Grande and Liberia. A phreatic explosion at 1521 produced a gray plume that rose 1.5 km above the crater (figure 31). An eruption at 1524 on 28 May sent an ash plume 3 km above the crater that drifted W, followed by at least three smaller eruptions at 1823, 1841, and 1843. OVSICORI-UNA reported that volcanism began to decrease in frequency on 28-29 May. Sulfur dioxide emissions ranged between 100 and 400 tons per day during 28 May to 15 June.
There were eight days with eruptions in June, though some days had multiple small events; phreatic eruptions reported on 1-2, 13, 16-17, 19-20, and 23 June generated plumes 1-2 km above the crater (figure 32). During 2-8 June SO2 emissions were 150-350 tons per day; more than 120 eruptions were recorded during the preceding weekend. Ashfall was observed N of the crater on 4 June. During 9-15 June the SO2 emissions increased slightly to 100-400 tons per day. During 16-17 June several small eruptive events were detected, the largest of which occurred at 1635 on 17 June, producing an ash plume that rose 1 km above the crater.
Explosive hydrothermal activity was lower in June-September compared to January-May 2020, according to OVSICORI-UNA. Sporadic small phreatic explosions and earthquakes were registered during 22-25 and 29 July-3 August, though no lahars were reported. On 25 July an eruptive event at 0153 produced an ash plume that rose 1 km above the crater. Similar activity continued into August. On 5 and 6 August phreatic explosions were recorded at 0546 and 0035, respectively, the latter of which generated a plume that rose 500 m above the crater. These events continued to occur on 10, 16, 19-20, 22-25, 27-28, and 30-31 August, generating plumes that rose 500 m to 1 km above the crater.
On 3 September geologists observed that the acid lake in the main crater had a low water level and exhibited strong gas emissions; vigorous fumaroles were observed on the inner W wall of the crater, measuring 120°C. Gas-and-steam emissions continued to be detected during September, occasionally accompanied by phreatic eruptions. On 7 September an eruption at 0750 produced an ash plume that rose 50 m above the crater while the accompanying gas-and-steam plume rose 500 m. Several low-energy phreatic explosions occurred during 8-17, 20, and 22-28 September, characterized primarily by gas-and-steam emissions. An eruption on 16 September ejected material from the crater and generated a small lahar. Sulfur dioxide emissions were 100 tons per day during 16-21 September. On 17 September an eruption at 0632 produced an ash plume that rose 700 m above the crater (figure 33). A relatively large eruptive event at 1053 on 22 September ejected material out of the crater and into N-flank drainages.
Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.
Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).
Fuego (Guatemala) — December 2020
Cite this Report
Fuego
Guatemala
14.473°N, 90.88°W; summit elev. 3763 m
All times are local (unless otherwise noted)
Daily explosions, ash emissions, and block avalanches during August-November 2020
Guatemala's Volcán de Fuego has been erupting vigorously since 2002 with reported eruptions dating back to 1531. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars, including a series of explosions and pyroclastic flows in early June 2018 that caused several hundred fatalities. Eruptive activity consisting of explosions with ash emissions, block avalanches, and lava flows began again after a short break and has continued; activity during August-November 2020 is covered in this report. Daily reports are provided by the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH); aviation alerts of ash plumes are issued by the Washington Volcanic Ash Advisory Center (VAAC). Satellite data provide valuable information about heat flow and emissions.
Summary of activity during August-November 2020. Eruptive activity continued at Fuego during August-November 2020, very similar to that during the first part of the year (table 22). Ash emissions were reported daily by INSIVUMEH with explosions often in the 6-12 per hour range. Most of the ash plumes rose to 4.5-4.7 km altitude and generally drifted SW, W, or NW, although rarely the wind direction changed and sent ash to the S and SE. Multiple daily advisories were issued throughout the period by the Washington VAAC warning aviators about ash plumes, which were often visible on the observatory webcam (figure 136). Some of the communities located SW of the volcano received ashfall virtually every day during the period. Block avalanches descended the major drainages daily as well. Sounds were heard and vibrations felt from the explosions most days, usually 7-12 km away. The stronger explosions could be felt and heard 20 km or more from the volcano. During late August and early September a lava flow was active on the SW flank, reaching 700 m in length during the second week of September.
Table 22. Eruptive activity was consistently high at Fuego throughout August – November 2020 with multiple explosions every hour, ash plumes, block avalanches, and near-daily ashfall in the communities in certain directions within 10-20 km of the volcano. Courtesy of INSIVUMEH daily reports.
Month |
Explosions per hour |
Ash Plume Heights (km) |
Ash plume distance (km) and direction |
Drainages affected by block avalanches |
Communities reporting ashfall |
Aug 2020 |
2-15 |
4.3-4.8 |
SW, W, NW, S, N, 8-20 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa |
Panimaché I and II, Morelia, Rochela, Finca Palo Verde, Yepocapa, Santa Sofia, El Porvenir, Palo Verde, Sangre de Cristo, Santa Lucía Cotzumalguapa |
Sep 2020 |
3-16 |
4.3-4.9 |
W, SW, NW, N, S, 8-20 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa |
Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, Sangre de Cristo, Yepocapa, Porvenir, Yucales, Ojo de Agua, Finca La Conchita |
Oct 2020 |
3-19 |
4.1-4.8 |
SW, W, S, SE, N, E, 10-20 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa |
Panimache I and II, Morelia, Sangre de Cristo, Yepocapa, La Rochela, El Porvenir, Ceilán, Santa Sofía, Yucales, Finca Palo Verde |
Nov 2020 |
4-14 |
4.0-4.8 |
S, SW, SE, W, NW, 10-35 km |
Seca, Taniluya, Ceniza, Trinidad, Las Lajas, Honda, Santa Teresa El Jute |
Panimaché I and II, Sangre de Cristo, Morelia, Ceilan, La Rochela, El Zapote, Santa Sofía, Yucales, San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas y Antigua Guatemala, Palo Verde, El Porvenir, San Pedro Yepocapa, Quisaché, Santa Emilia |
The frequent explosions, block avalanches, and lava flows produced a strong thermal signal throughout the period that was recorded in both the MIROVA project Log Radiative Power graph (figure 137) and in numerous Sentinel-2 satellite images (figure 138). MODVOLC data produced thermal alerts 4-6 days each month. At least one lahar was recorded each month; they were most frequent in September and October.
Activity during August-November 2020. The number of explosions per hour at Fuego during August 2020 was most often 7-10, with a few days that were higher at 10-15. The ash plumes usually rose to 4.5-4.8 km altitude and drifted SW or W up to 15 km. Incandescence was visible 100-300 m above the summit crater on most nights. All of the major drainages including the Seca, Santa Teresa, Ceniza, Trinidad, Taniluyá, Las Lajas, and Honda were affected by block avalanches virtually every day. In addition, the communities of Panimaché I and II, Morelia, Santa Sofía, Finca Palo Verde, El Porvenir, San Pedro Yepocapa, and Sangre de Cristo reported ashfall almost every day. Sounds and vibrations were reported multiple days every week, often up to 12 km from the volcano, but occasionally as far as 20 km away. Lahars carrying blocks of rocks and debris 1-2 m in diameter descended the SE flank in the Las Lajas and Honda ravines on 6 August. On 27 August a lava flow 150 m long appeared in the Ceniza ravine. It increased in length over the subsequent few days, reaching 550 m long on 30 August, with frequent block avalanches falling off the front of the flow.
The lava flow in the Ceniza ravine was reported at 100 m long on 5 September. It grew to 200 m on 7 September and reached 700 m long on 12 September. It remained 200-350 m long through 19 September, although instruments monitored by INSIVUMEH indicated that effusive activity was decreasing after 16 September (figure 139). A second flow was 200 m long in the Seca ravine on 19 September. By 22 September, active flows were no longer observed. The explosion rate varied from a low of 3-5 on 1 September to a high of 12-16 on 4, 13, 18, and 22-23 September. Ash plumes rose to 4.5-4.9 km altitude nearly every day and drifted W, NW, and SW occasionally as far as 20 km before dissipating. In addition to the active flow in the Ceniza ravine, block avalanches persisted in the other ravines throughout the month. Ashfall continued in the same communities as in August, but was also reported in Yucales on 4 September along with Ojo de Agua and Finca La Conchita on 17 September. The Las Lajas, Honda, and El Jute ravines were the sites of lahars carrying blocks up to 1.5 m in diameter on 8 and 18 September. On 19 and 24 September lahars again descended Las Lajas and El Jute ravines; the Ceniza ravine had a lahar on 19 September.
The same activity continued during October 2020 with regard to explosion rates, plume altitudes, distances, and directions of drift. All of the major ravines were affected by block avalanches and the same communities located W and SW of the summit reported ashfall. In addition, ashfall was reported in La Rochela on 2, 3, 7-9 and 30 October, in Ceilán on 3 and 7-9 October, and in Yucales on 5, 14, 18 and 19 October. Multiple strong explosions with abundant ash were reported in a special bulletin on 14 October; high levels of explosive activity were recorded during 16-23 October. Vibrations and sounds were often felt up to 15 km away and heard as far as 25 km from the volcano during that period. Particularly strong block avalanches were present in the Seca and Ceniza ravines on 20, 25, and 30 October. Abundant rain on 9 October resulted in lahars descending all of the major ravines. The lahar in the Las Lajas ravine overflowed and forced the closure of route RN-14 road affecting the community of San Miguel on the SE flank (figure 140). Heavy rains on 15 October produced lahars in the Ceniza, Las Lajas, and Hondas ravines with blocks up to 2 m in diameter. Multiple lahars on 27 October affected Las Lajas, El Jute, and Honda ravines.
On 8 November 2020 a lahar descended the Seca ravine, carrying rocks and debris up to 1 meter in diameter. During the second week of November 2020, the wind direction changed towards the SE and E and brought ashfall to San Juan Alotenango, Ciudad Vieja, San Miguel Dueñas, and Antigua Guatemala on 8 November. Especially strong block avalanches were noted in the Seca and Ceniza ravines on 14, 19, 24, and 29 November. During a period of stronger activity in the fourth week of November, vibrations were felt and explosions heard more than 20 km away on 22 November and more than 25 km away on 27 November. In addition to the other communities affected by ashfall during August-November, Quisaché and Santa Emilia reported ashfall on 30 November.
Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.
Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground);Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).
Kikai
Japan
30.793°N, 130.305°E; summit elev. 704 m
All times are local (unless otherwise noted)
Explosion on 6 October 2020 and thermal anomalies in the crater
Kikai is a mostly submarine caldera, 19-km-wide, just S of the Ryukyu Islands of Japan. At the NW rim of the caldera lies the island of Satsuma Iwo Jima (also known as Satsuma-Iojima and Tokara Iojima), and the island’s highest peak, Iodake, a steep stratovolcano. Recent weak ash explosions at Iodake occurred on 2 November 2019 and 29 April 2020 (BGVN 45:02, 45:05). The volcano is monitored by the Japan Meteorological Agency (JMA) and satellite sensors. This report covers the period May-October 2020. During this time, the Alert Level remained at 2 (on a 5-level scale).
Activity at Kikai has been relatively low since the previous eruption on 29 April 2020. During May through October occasional white gas-and-steam emissions rose 0.8-1.3 km above the Iodake crater, the latter of which was recorded in September. Emissions were intermittently accompanied by weak nighttime incandescence, according to JMA (figure 17).
A small eruption at 0757 on 6 October occurred in the NW part of the Iodake crater, which produced a grayish white plume rising 200 m above the crater (figure 18). Faint thermal anomalies were detected in Sentinel-2 thermal satellite imagery in the days just before this eruption (28 September and 3 October) and then after (13 and 23 October), accompanied by gas-and-steam emissions (figures 19 and 20). Nighttime crater incandescence continued to be observed. JMA reported that sulfur dioxide emissions measured 700 tons per day during October, compared to the previous eruption (400-2,000 tons per day in April 2020).
Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.
Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Manam (Papua New Guinea) — October 2020
Cite this Report
Manam
Papua New Guinea
4.08°S, 145.037°E; summit elev. 1807 m
All times are local (unless otherwise noted)
Intermittent ash plumes, thermal anomalies, and SO2 emissions in April-September 2020
Manam, located 13 km off the N coast of Papua New Guinea, is a basaltic-andesitic stratovolcano with historical eruptions dating back 400 years. Volcanism has been characterized by low-level ash plumes, occasional Strombolian activity, lava flows, pyroclastic avalanches, and large ash plumes from Main and South, the two active summit craters. The current eruption period has been ongoing since 2014, typically with minor explosive activity, thermal activity, and SO2 emissions (BGVN 45:05). This reporting period updates information from April through September 2020, consisting of intermittent ash plumes from late July to mid-September, persistent thermal anomalies, and SO2 emissions. Information comes from Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.
Explosive activity was relatively low during April through late July; SO2 emissions and low power, but persistent, thermal anomalies were detected by satellite instruments each month. The TROPOMI instrument on the Sentinel-5P satellite recorded SO2 emissions, many of which exceeded two Dobson Units, that drifted generally W (figure 76). Distinct SO2 emissions were detected for 10 days in April, 4 days in May, 10 days in June, 4 days in July, 11 days in August, and 8 days in September.
Thermal anomalies recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system were sparse from early January through June 2020, totaling 11 low-power anomalies within 5 km of the summit (figure 77). From late July through September a pulse in thermal activity produced slightly stronger and more frequent anomalies. Some of this activity could be observed in Sentinel-2 thermal satellite imagery (figure 78). Occasionally, these thermal anomalies were accompanied by gas-and-steam emissions or ash plumes, as shown on 28 July. On 17 August a particularly strong hotspot was detected in the S summit crater. According to the MODVOLC thermal alert data, a total of 10 thermal alerts were detected in the summit crater over four days: 29 July (5), 16 August (1), and 3 (1) and 8 (3) September.
Activity during mid-July slightly increased compared to the previous months. On 16 July seismicity increased, fluctuating between low and moderate RSAM values through the rest of the month. In Sentinel-2 satellite imagery a gray ash plume was visible rising from the S summit crater on 28 July (figure 78). RSAM values gradually increased from a low average of 200 to an average of 1200 on 30 July, accompanied by thermal hotspots around the summit crater; a ground observer reported incandescent material was ejected from the summit. On 31 July into 1 August ash plumes rose to 4.3 km altitude, accompanied by an incandescent lava flow visible at the summit, according to a Darwin VAAC advisory.
Intermittent ash plumes continued to be reported by the Darwin VAAC on 1, 6-7, 16, 20, and 31 August. They rose from 2.1 to 4.6 km altitude, the latter of which occurred on 31 August and drifted W. Typically, these ash plumes extended SW, W, NW, and WSW. On 11 September another ash plume was observed rising 2.4 km altitude and drifting W.
Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.
Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).
Search Bulletin Archive by Publication Date
Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.
The default month and year is the latest issue available.
Bulletin of the Global Volcanism Network - Volume 42, Number 06 (June 2017)
Managing Editor: Edward Venzke
Bezymianny (Russia)
Lava dome extrusion December 2016-April 2017; large ash explosion on 9 March 2017
Chirinkotan (Russia)
Intermittent ash plumes and thermal anomalies June 2013-April 2017, site visit by Russian scientists, August 2015
Dukono (Indonesia)
Frequent explosive eruptions and ash plumes through March 2017
Erebus (Antarctica)
Phonolitic lava lakes remain active during 2011-2016
Fuego (Guatemala)
Ten eruptive episodes with lava flows, ash plumes, and pyroclastic flows during January-June 2016
Nyamuragira (DR Congo)
Large SO2 plumes and intermittent lava lake during 2013-2017
Reventador (Ecuador)
Lava flows, pyroclastic flows, and ash plumes monthly during June 2014-December 2015
Ruiz, Nevado del (Colombia)
Intermittent ash emissions July 2012-December 2015; increased thermal activity October-December 2015
Turrialba (Costa Rica)
Persistent explosions and ash emissions during 2015 and 2016
Unnamed (Tonga)
Plumes of discolored water seen in satellite imagery during 23-28 January 2017
Bezymianny
Russia
55.972°N, 160.595°E; summit elev. 2882 m
All times are local (unless otherwise noted)
Lava dome extrusion December 2016-April 2017; large ash explosion on 9 March 2017
The Kamchatka Volcanic Eruptions Response Team (KVERT) characterized Bezymianny as having weak activity from mid-June 2014 through the end of 2015, including weak or moderate gas-and-steam emissions (figures 17 and 18) and, when not obscured by clouds, weak thermal anomalies (BGVN 41:01). Observations here through May 2017 come from KVERT reports and Tokyo Volcanic Ash Advisory Center (VAAC) advisories.
Activity during 2016. KVERT reported that weak volcanic activity continued into January 2016, with moderate gas-and-steam activity through 12 December 2016. During this time, satellite data by KVERT showed a weak thermal anomaly over the volcano on most days, although on some days KVERT described the volcano as "quiet." Often the volcano was obscured by clouds.
The Tokyo VAAC reported that on 30 July an ash plume rose to an altitude of 3 km and drifted E, an observation based on information from the Yelizovo Airport (UHPP). Weak fumarolic activity continued in late August (figure 19).
Based on KB GS RAS (Kamchatka Branch of Geophysical Services, Russian Academy of Sciences) data, KVERT noted that seismicity began to increase on 18 November. The thermal anomaly temperature detected in satellite images also increased on 5 December, and then significantly increased on 13 December, probably caused by lava-dome extrusion. This activity prompted KVERT to raise the Aviation Color Code from Yellow, where it had been since 17 July 2014, to Orange (second highest level).
According to KVERT, a gas-and-steam plume containing a small amount of ash drifted about 118 km W on 15 December. The Tokyo VAAC noted that ash plumes rose as high as 6.1 km that same day. KVERT reported strong gas-and-steam emissions during 16-31 December (figure 20); a gas-and-steam plume drifted about 60 km SW on 18 December. A daily thermal anomaly was detected over the volcano.
Activity during January-May 2017. According to KVERT, lava-dome extrusion likely continued into January 2017. Strong gas-and-steam emissions continued through 19 January 2017 and a thermal anomaly was detected over the volcano during most days. On 12 January, KVERT noted that activity had gradually decreased after an intensification during 5-24 December 2016, and thus the Aviation Color Code was lowered to Yellow. Thereafter, KVERT characterized the volcano as having moderate gas-steam activity. On 23 February, KVERT reported that the effusive eruption continued and that lava was flowing on the S flank of the lava dome.
On 9 March at about 1330, an explosive eruption occurred (figure 21). Based on webcam observations, at 1454 an ash plume rose to altitudes of 6-7 km and drifted 20 km NE. The Aviation Color Code was raised to Orange. About 30 minutes later, at 1523, an ash plume rose to altitudes of 7-8 km and drifted 60 km NW. KVERT raised the Aviation Color Code to Red, the highest level. Satellite data showed a 14-km-wide ash plume drifting 112 km NW at an altitude of 7 km. Later that day a 274-km-long ash plume identified in satellite images drifted NW at altitudes of 4-4.5 km; the majority of the leading part of the plume contained a significant amount of ash. Lava flowed down the NW part of the lava dome. The Aviation Color Code was lowered to Orange. Ash plumes drifted as far as 500 km NW.
KVERT reported that lava continued to advance down the NW flank of the lava dome during 10 March-21 April, and gas-and-steam plumes rose from the crater. A thermal anomaly was visible most days in satellite images. The Aviation Color Code was lowered to Yellow on 25 May. According to a KVERT report on 26 May, the volcano became quiet after the 9 March episode, although strong gas-and-steam emissions and daily thermal anomalies continued.
Thermal anomalies. Thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm, were almost daily events during January through 2 November 2016, except none were reported in March through 19 May 2016. On many days, multiple pixels were reported (13 pixels on 1 September). The number of events diminished in December (only six days), and except for a brief period during 9-12 March 2017, none were reported after 20 December through at least 26 May 2017.
The Mirova (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, reported several hotspots each month during May-August 2016, with a significant increase in September through early November (figure 22). Numerous hotspots were again reported in December, but only a few in January and February, except for a narrow cluster during the middle of February. In contrast to the MODIS/MODVOLC data, numerous hotspots were reported in March, April, and May 2017. The vast majority of hotspots during the past 12 months were within 5 km of the volcano and were of low power.
Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.
Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS) (URL: http://www.emsd.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).
Chirinkotan (Russia) — June 2017
Cite this Report
Chirinkotan
Russia
48.98°N, 153.48°E; summit elev. 724 m
All times are local (unless otherwise noted)
Intermittent ash plumes and thermal anomalies June 2013-April 2017, site visit by Russian scientists, August 2015
The remote island of Chirinkotan is in the Northern Kuril Islands at the southern end of the Sea of Okhotsk, about 320 km SW of the tip of Kamchatka, Russia. It is an outlier about 40 km NW of the main Kuril Islands Arc. There have been very few historical observations of activity at Chirinkotan, although there is at least one confirmed 19th century observation of lava flows. A short-lived event that resulted in a small, low-level ash plume-and-gas plume was seen in satellite imagery on 20 July 2004 (Neal et al., 2005). Volcanic activity resumed in mid-2013, with intermittent ash plumes, thermal anomalies, and block lava flows reported through April 2017. The volcano is monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) of the Institute of Marine Geology and Geophysics (Far Eastern Branch, Russian Academy of Science), and aviation alerts are issued by the Tokyo Volcanic Ash Advisory Center (VAAC).
A new eruptive phase began with a likely ash emission on 11 June 2013. Intermittent thermal anomalies and gas-and-steam emissions were reported for the next 12 months, sometimes drifting up to 100 km, usually SE. Renewed thermal anomalies and gas emissions were recorded during clear weather beginning on 21 November 2014. Two ash plumes observed in late July 2015 were the likely sources of fresh ashfall and block lava flows sampled during a visit by Russian geoscientists on 9 August 2015. A gas-and-steam plume on 17 November 2015 was the last activity observed, except for low-level thermal anomalies, until a substantial ash plume was captured in satellite data at 8.8 km altitude over a year later on 29 November 2016. Additional ash plumes were observed in satellite data once in late January, and twice each in March and April 2017.
Activity during May 2013-June 2014. After no reports of activity since July 2004, SVERT observed gas-and-steam emissions in satellite imagery beginning in late May 2013. They raised the Alert Level from Green to Yellow (on the four level Green-Yellow-Orange-Red scale) sometime between 27 May and 10 June. The first likely ash emission was reported on 11 June, followed by a thermal anomaly detected on 13 June. Thermal anomalies continued to be detected by SVERT during June and July 2013. The first MODVOLC thermal alert was reported on 22 July; they were reported monthly after that through 11 December 2013, with several days of multiple-pixel alerts. SVERT also noted thermal anomalies and gas-and-steam emissions during August through December, including plumes drifting 30-60 km SE during 17-19 October, 55-100 km SE during 5-6 November, and more than 50 km SE on 25 November.
From the beginning of January 2014 through early June, persistent thermal anomalies were observed in clear imagery nearly every week by SVERT, along with intermittent steam-and-gas emissions. Several times during March, plumes were observed drifting 80-170 km SE. MODVOLC thermal alerts were reported on 8 February, 4 days in March (four pixels on 8 March), and twice on 27 May. SVERT reported that beginning on 24 May, gas emissions containing ash were detected in satellite images. A decrease in thermal anomalies observed by SVERT led them to lower the Alert Level to Green on 5 June 2014.
Activity during November 2014-July 2015. SVERT raised the Alert Level back to Yellow in late November 2014, citing new thermal anomalies beginning on 21 November followed by intermittent steam-and-gas emissions. A plume was observed drifting 40 km SE on 27 November. A new MODVOLC thermal alert appeared on 4 December. SVERT reported thermal anomalies and diffuse gas-and-steam plumes during December 2014 and January-February 2015. Emissions were detected 3 km above Chirinkotan drifting SE on 5 January 2015. MODVOLC reported two thermal alert pixels on 7 January and one on 10 January.
SVERT briefly lowered the Alert Level to Green between 4 and 20 March when no activity was detected. Thermal anomalies were reported again beginning on 19 March; they were noted weekly along with intermittent gas-and-steam emissions through mid-May when the Alert Level was lowered back to Green again on 19 May.
MODVOLC reported a three-pixel thermal alert on 20 July 2015 (local time). The Tokyo VAAC reported an eruption on 21 July (local time) with an ash plume rising to 3.7 km altitude drifting SE. The plume was observed in satellite imagery for about 2 hours before dissipating. SVERT reported a thermal anomaly and steam-and-gas emissions on 22 July, and the Alert Level was raised to Yellow. Another ash plume was reported by the Tokyo VAAC on 26 July rising to an altitude of 4.6 km and drifting NW for several hours before dissipating.
Expedition during August 2015. Scientists from the Institute of Marine Geology and Geophysics (IMGiG) of the Far Eastern Branch of the Russian Academy of Sciences visited Chirinkotan on 9 August 2015. While there, they observed steaming from a recent blocky lava flow near the coast (figure 3), hiked to the summit, and collected data about volcanic and biological activity on the island. A group of researchers climbed to the edge of the summit crater at 600 m elevation, where clouds prevented clear views of the crater (figure 4), however the strong odor of sulfur and noise from fumarolic activity was noted. The scientists sampled the fresh pyroclastic rocks. When the visibility improved, the depth of the crater was observed to be about 150 m; an extrusive dome in the center had a vent on the top emitting gas.
The upper flank of the volcano was strewn with ash and bombs (from 2-3 cm to several meters in diameter). Scientists observed recently buried and charred living vegetation, and nesting birds freshly killed by volcanic ash and bombs, indicating a very recent event (figure 5). The botanists in the research group noted that all of the vegetation on the upper and middle flanks had been killed 2-3 years ago in a major event, likely during the start of the 2013 eruptive cycle. Ash deposits ranged in thickness from a few centimeters near the coast to 8-15 cm near the summit. During a survey of a pyroclastic flow on the SW coast, scientists noted that it was still hot on the surface (40-60°?) and consisted of block lava, bombs, and volcanic ash (figure 6).
Activity during November 2015-April 2017. As a result of the direct observations of the recent eruption on the island, SVERT raised the Alert Level to Orange on 11 August 2015. There were no further reports available from SVERT until 17 November when gas-and-steam emissions were detected, and the Aviation Color Code was reported as Yellow. SVERT reported on 7 December 2015 that the ACC had been lowered to Green. Although SVERT did not report renewed activity from Chirinkotan until it issued a VONA on 29 November 2016 and raised the Alert Level to Yellow, the MIROVA thermal anomaly detection system indicated intermittent low-level anomalies between late May and early October 2016 (figure 7), indicating a heat source on the island.
The Tokyo VAAC issued a report of a volcanic ash plume from an eruption on 29 November (local time) 2016. The plume rose to 8.8 km altitude and drifted N. It was observed in satellite imagery for about 9 hours before dissipating. SVERT briefly raised the ACC to Yellow between 29 November and 2 December. They noted that the ash plume was observed drifting 39 km N. A new report of ash emissions came from the Tokyo VAAC on 26 January 2017, with an ash plume at 3.7 km drifting SE observed in the Himawari-8 satellite imagery. SVERT raised the alert level to Yellow on 27 January (UTM) 2017 and also noted ash emissions on 29 January drifting SE to a maximum distance of 105 km. They lowered the Alert Level to Green on 1 February 2017.
A new ash plume was observed by the Tokyo VAAC on 1 March (local time) 2017 at an altitude of 5.5 km. When SVERT raised the Aviation Color Code to Yellow on 2 March, they noted that the plume had drifted 165 km E. They lowered the ACC back to Green on 6 March. The Tokyo VAAC reported a new ash plume at 6.1 km extending SE early on 21 March 2017. SVERT reported the emission at 15 km E of the volcano when they raised the ACC to Yellow a short while later. They noted on 24 March, when they lowered the ACC to Green, that the maximum extent of the ash cloud had been about 50 km SE.
On 31 March 2017, the Tokyo VAAC issued an advisory for an ash plume at 6.7 km altitude drifting E, and SVERT raised the Alert Level to Yellow the next day. They reported the ash plume drifting 165 km NE before dissipating. Another plume on 7 April was observed by the Tokyo VAAC at 3.7 km altitude drifting SE. SVERT reported the plume at 5 km altitude drifting NE. SVERT lowered the ACC to Green on 24 April 2017.
Reference: Neal C A, McGimsey R G, Dixon J, Melnikov D, 2005. 2004 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory. U S Geol Surv, Open-File Rpt, 2005-1308: 1-67.
Geologic Background. The small, mostly unvegetated 3-km-wide island of Chirinkotan occupies the far end of an E-W volcanic chain that extends nearly 50 km W of the central part of the main Kuril Islands arc. It is the emergent summit of a volcano that rises 3000 m from the floor of the Kuril Basin. A small 1-km-wide caldera about 300-400 m deep is open to the SW. Lava flows from a cone within the breached crater reached the shore of the island. Historical eruptions have been recorded since the 18th century. Lava flows were observed by the English fur trader Captain Snow in the 1880s.
Information Contacts: Sakhalin Volcanic Eruption Response Team (SVERT), Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Science, Nauki st., 1B, Yuzhno-Sakhalinsk, Russia, 693022 (URL: http://www.imgg.ru/en/, http://www.imgg.ru/ru/svert/reports); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences, (FEB RAS IMGiG), 693 022 Russia, Yuzhno-Sakhalinsk, ul. Science 1B (URL: http://imgg.ru/ru); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).
Dukono
Indonesia
1.693°N, 127.894°E; summit elev. 1229 m
All times are local (unless otherwise noted)
Frequent explosive eruptions and ash plumes through March 2017
Eruptive activity at Dukono has continued since 1933. As previously reported, ash explosions were frequently observed, and thermal anomalies were intermittent, from September 2011 through July 2014 (BGVN 39:06). Similar activity has continued through March 2017. Monitoring is conducted by the Indonesian Center for Volcanology and Geological Hazard (PVMBG, also known as CVGHM) from an observation post 11 km away. The Alert Level has remained at 2 (on a scale of 1-4), with residents and tourists advised to not approach the crater within a radius of 2 km.
PVMBG reported that in March-April 2015 seismicity remained high and consisted of explosion signals, volcanic earthquakes, and tremor, accompanied by roaring heard at the observation post. A powerful explosion on 23 May 2015 was followed by minor ashfall in areas to the E. During 1-5 July 2015 white-and-gray plumes rose as high as 600 m; minor ashfall was reported in northern areas on 1 July. Ashfall was reported in areas from the Galela District to Tobelo town (NNW) in August 2015 and at the observation post in September. Seismicity fluctuated at high levels, with elevated periods during 15-22 August, 28 August-5 September, and 15-25 October 2015.
As summarized by PVMBG, the period from 1 January to 19 December 2016 exhibited white-and-gray plumes rising as high as 1.2 km above the rim of the Malupang Warirang crater, accompanied by roaring heard at the observation post. The eruption plume height generally fluctuated though, was higher during periods in May and from late November into December; ashfall increased during the periods of higher plume heights, and was noted in villages within 11 km N, NE, and SW. Seismicity remained high.
Nearly daily aviation advisories from the Darwin VAAC (Volcanic Ash Advisory Centre) since July 2014 confirmed the PVMBG reports. As identified in satellite imagery, white and gray ash plumes were seen rising to altitudes of 1.5-4 km from the Malupang Warirang crater, and drifting in various directions for tens to hundreds of kilometers. Data compiled from VAAC reports and summarized by month for April 2016-March 2017 (table 15) reveal plume altitudes between 1.5 and 3.7 km with visible drift distances up to 300 km away.
Table 15. Monthly summary of reported ash plumes from Dukono for April 2016-March 2017. The direction of drift for the ash plume was highly variable. Data from Darwin VAAC and PVMBG.
Month |
Plume Altitude (km) |
Plume Drift (km) |
Apr 2016 |
2.1-3 |
55-250 |
May 2016 |
2.1-2.7 |
65-185 |
Jun 2016 |
1.9-2.4 |
55-130 |
Jul 2016 |
1.8-2.4 |
110-225 |
Aug 2016 |
1.5-3.3 |
130-280 |
Sep 2016 |
1.8-3 |
160-250 |
Oct 2016 |
2.1-2.4 |
215-225 |
Nov 2016 |
2.1-3.7 |
-- |
Dec 2016 |
1.7-3 |
55-305 |
Jan 2017 |
1.8-2.7 |
120-300 |
Feb 2017 |
1.8-2.4 |
120 |
Mar 2017 |
1.5-2.7 |
150 |
Intermittent thermal anomalies, typically single pixels, were recorded by MODVOLC (table 16) in the months of April and June 2014, January-March 2015, December 2015, and November 2016. MODIS thermal data recorded by the MIROVA system during the year of April 2016-March 2016 (figure 6) showed intermittent low-power anomalies in May and August 2016, and then in every month from October 2016 through March 2017. It should be noted that the MODIS satellite thermal sensors cannot penetrate cloud cover, which is frequent over Dukono much of the year.
Table 16. Thermal anomalies at Dukono based on MODIS data processed by MODVOLC, August 2014-March 2017. Courtesy of Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System.
Date (UTC) |
Time (UTC) |
Pixels |
Satellite |
28 Apr 2014 |
1410 |
1 |
Terra |
01 Jun 2014 |
1655 |
1 |
Aqua |
13 Jun 2014 |
1715 |
1 |
Aqua |
14 Jan 2015 |
1725 |
1 |
Aqua |
18 Jan 2015 |
1700 |
1 |
Aqua |
20 Jan 2015 |
1645 |
2 |
Aqua |
21 Jan 2015 |
1730 |
2 |
Aqua |
22 Jan 2015 |
1340 |
1 |
Terra |
23 Jan 2015 |
0200 |
1 |
Terra |
23 Jan 2015 |
2317 |
4 |
Aqua |
25 Jan 2015 |
1705 |
1 |
Aqua |
01 Feb 2015 |
1415 |
1 |
Terra |
01 Feb 2015 |
1710 |
1 |
Aqua |
30 Mar 2015 |
1705 |
1 |
Aqua |
31 Dec 2015 |
1345 |
1 |
Terra |
04 Nov 2016 |
1700 |
1 |
Aqua |
Vistors to the crater in March 2016 photographed ash rising form an incandescent vent (figure 7). Patrick Marcel reported that "the vents at the bottom of the crater emitted a sustained, extremely noisy jet of gas, steam and ash, and ejected incandescent bombs to up to 500 m height. Some of them landed outside the crater rim." The "You&MeTraveling2" blog posted a trip journal that described a late-August 2016 visit to Dukono, including photos and a video looking down into the crater that showed activity similar to that seen by Marcel in March 2016.
Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.
Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Volcano Discovery (URL: http://www.volcanodiscovery.com/); You&MeTraveling2 (URL: http://youandmetraveling2.com/).
Erebus
Antarctica
77.53°S, 167.17°E; summit elev. 3794 m
All times are local (unless otherwise noted)
Phonolitic lava lakes remain active during 2011-2016
The existence of an anorthoclase phonolite lava lake in the summit crater of Mount Erebus was first reported in 1972, and it has been thought to be continuously active since that time. Antarctica's best known volcano is located on Ross Island, 90 km E of the continent, offshore of the Scott Coast. McMurdo station, run by the United States Antarctic Program, is about 40 km S on the tip of Ross Island (figure 16). During the history of observations, lava lake(s) have generally persisted, although changes in size and shape over time reflect variations in volcanic activity.
This report briefly summarizes research activity at Mount Erebus, and volcanic activity observed since 1972. Photographs from expeditions between 2010 and 2016 show more recent activity at the volcano. Observations from MODVOLC data collected from 2000 through 2016 are also discussed.
Summary of research activity. For most years since the 1970's, scientists have visited Erebus during the austral summer (November-February) and gathered samples, taken SO2 and other geochemical measurements, collected GPS data, and made observations and overflights to evaluate the condition of the volcano.
Seismometers were initially installed by a joint project of United States, New Zealand, and Japanese scientists in 1980-1981. Between 1980 and 2016 as many as 10 seismic stations were recording activity at Erebus; they were monitored by the Mount Erebus Volcano Observatory (MEVO) run by the New Mexico Institute of Mining and Technology (New Mexico Tech). During the early 2000s MEVO also used infrasonic recordings to capture data on the frequency of eruptions. Researchers from New Mexico Tech, the University of Cambridge, and University College London made yearly expeditions there between 2003 and 2016.
The Mount Erebus Volcano Observatory closed in 2016. A final report was submitted to the National Science Foundation (NSF) on the past research and ideas for future research (Mattioli and LaFemina, 2016), and includes a comprehensive list of scientific publications about Erebus. One area of ongoing volcanology research relates to studying the behavior of the lava lake with a variety of on-site monitoring equipment (figure 17).
Summary of activity, 1972-2009. During the 1970's, the lava lake was observed to be about 130 m long and oval shaped, producing occasional Strombolian explosions. Bombs up to 10 m in in diameter were ejected near the vent, and ones up to 30 cm in diameter were thrown out over the main crater. Oscillations of the lake level of up to 2 m were observed.
During a period of increased activity between September 1984 and January 1985, several large explosions were recorded by the seismic network, and there were reports of mushroom-shaped clouds rising as much as 2 km above the summit. During September 1984, numerous large explosions sent ejecta as high as 600 m above the summit, and incandescence was visible from 70 km away. Ash also covered the NW flank down to 3,400 m elevation. Observations in October 1984 indicated that much of the lava lake had solidified, and that the surface was covered with ejecta from the recent explosions. Seismicity remained above average through January 1985. During this period of increased activity, bombs averaging 2 m in diameter (but some as large as 10 m in diameter) were ejected up to 1.2 km from within the inner crater. The eruptions were witnessed from 60 km away and explosions could be heard up to 2 km from the volcano (SEAN 11:03). A small lava lake about 15 m in diameter reappeared late in 1985.
Two primary lakes of phonolitic lava, and a third transient lake, were present inside the crater during the late 1980s (see figure 9, SEAN 13:02), and infrequent Strombolian eruptions with small bombs were captured by a remote video camera mounted on the crater rim. Small ash eruptions were observed from an active vent near the lava lakes in January 1991. On 19 October 1993, two moderate phreatic eruptions created a new crater ~80 m in diameter on the main crater floor and ejected debris over the northern crater rim. These were the first known phreatic eruptions at Erebus, and probably resulted from steam build-up associated with melting snow in the crater (BGVN 20:11).
Vent and lava lake eruptions were recorded by MEVO during the late 1990s and early 2000s. The largest peaks in terms of numbers of eruptions were during 1995, 1997, 1998, 2000, and a broad peak beginning in late 2005 that continued into late 2006 (BGVN 31:12).
Activity during 2010-2016. The two primary lava lakes remained active at Erebus. The one in the NE sector of the inner crater has been persistent almost continuously since first reported in 1972. The second lake is more in the center of the main crater and is intermittently active. During a visit in 2010, only the NE sector lake was active (BGVN 36:09). During clear weather, a steady steam plume is often observed (figure 18).
Visits during 2011-2016 have confirmed the ongoing Strombolian activity and convection at the lava lakes nearly every year. During 2011 the glowing lava lake emitted steam and magmatic gases from the bottom of a vent at the main crater (figure 19). An eruption on 2 January 2012 at the lava lake was captured by the remote video cameras managed by MEVO (figure 20). Several bombs were ejected on 18 December 2013 and landed close to monitoring equipment run by MEVO. Researchers were able to open a hot bomb and see the molten interior (figure 21).
When UNAVCO (a non-profit university-governed consortium) flew over Erebus in December 2015, steam and magmatic gas plumes indicated that both lava lakes were active (figure 22). The two incandescent crater vents at were observed in greater detail during January 2016 by researchers associated with the University of Cambridge (figure 23).
MODVOLC data, 2000-2016. With the remoteness of Erebus, satellite imagery serves as one of the few year-round tools currently available to assess longer-term activity. The University of Hawaii's MODVOLC thermal alert system has been processing MODIS infrared satellite data since 2000. Mount Erebus has had a strong and nearly continuous MODVOLC signature throughout 2000-2016 (table 3), confirming its ongoing eruptive activity.
Table 3. Number of MODVOLC thermal alert pixels recorded per month from 1 January 2000 to 31 December 2016 by the University of Hawaii's thermal alert system for Erebus. Table compiled by GVP from data provided by MODVOLC. Spurious data from 25 October 2014 was omitted.
Year |
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
SUM |
2000 |
0 |
6 |
16 |
3 |
10 |
7 |
8 |
12 |
7 |
4 |
1 |
0 |
74 |
2001 |
2 |
16 |
90 |
70 |
78 |
24 |
70 |
71 |
57 |
30 |
1 |
5 |
514 |
2002 |
1 |
19 |
53 |
71 |
96 |
133 |
148 |
122 |
188 |
62 |
28 |
28 |
949 |
2003 |
19 |
41 |
103 |
125 |
168 |
231 |
195 |
213 |
121 |
62 |
30 |
19 |
1327 |
2004 |
40 |
48 |
143 |
90 |
131 |
279 |
133 |
288 |
113 |
67 |
39 |
131 |
1502 |
2005 |
125 |
98 |
217 |
158 |
159 |
212 |
256 |
191 |
209 |
91 |
30 |
21 |
1767 |
2006 |
12 |
27 |
78 |
89 |
131 |
85 |
145 |
30 |
39 |
36 |
11 |
32 |
715 |
2007 |
18 |
42 |
142 |
268 |
243 |
178 |
184 |
199 |
118 |
98 |
10 |
33 |
1533 |
2008 |
91 |
116 |
199 |
267 |
286 |
180 |
269 |
458 |
149 |
148 |
95 |
141 |
2399 |
2009 |
86 |
114 |
386 |
162 |
436 |
270 |
341 |
208 |
253 |
116 |
76 |
66 |
2514 |
2010 |
53 |
58 |
207 |
132 |
185 |
154 |
89 |
100 |
142 |
62 |
10 |
2 |
1194 |
2011 |
3 |
23 |
81 |
112 |
36 |
1 |
1 |
0 |
4 |
25 |
0 |
0 |
286 |
2012 |
0 |
24 |
52 |
56 |
31 |
93 |
27 |
1 |
1 |
0 |
0 |
0 |
285 |
2013 |
0 |
1 |
11 |
11 |
11 |
20 |
56 |
85 |
28 |
19 |
0 |
1 |
243 |
2014 |
2 |
1 |
0 |
9 |
49 |
62 |
78 |
10 |
28 |
3 |
0 |
1 |
243 |
2015 |
1 |
17 |
14 |
4 |
15 |
2 |
7 |
12 |
2 |
3 |
0 |
0 |
77 |
2016 |
0 |
4 |
13 |
34 |
46 |
33 |
19 |
1 |
3 |
0 |
0 |
0 |
153 |
SUM |
453 |
655 |
1805 |
1661 |
2111 |
1964 |
2026 |
2001 |
1462 |
826 |
331 |
480 |
The MODVOLC thermal alert data show that thermal activity at Erebus has waxed and waned several times during the 2000-2016 interval (figure 24). Activity was very low during 2000, but increased steadily through mid-2005 to more than 20 times as many annual thermal alert pixels since 2000. Activity dropped off substantially from late 2005 and remained low through early 2007, when another increase began that peaked at an even higher level (2514 pixels during 2009) in mid-2009. Another drop in activity occurred during 2010, and since 2011 there have been fewer than 300 pixels per year, with numbers below 200 for 2015 and 2016.
Another trend in the MODVOLC data is also apparent when the number of pixels are plotted by month, as opposed to year, for this time period (figure 25). From November through February, during the austral summer, the number of pixels per month never exceeds 150 (see table 3, highest value is 125). From March through October, during the Austral winter, the number of pixels recorded per month can be much higher (the highest value is 458). The average number of 'summer' pixels per month (November-February, 2000-2016) is 30. The average number of 'winter' pixels per month for the same period (March-October) is 108, more than three times greater.
References: Mattioli, G.S., and LaFemina, P.C., 2016, Final Report submitted to the National Science Foundation, Community Workshop: "Scientific Drivers and Future of Mount Erebus Volcano Observatory (MEVO)" (URL: https://www.unavco.org/community/meetings-events/2016/mevo/2016-MEVO-Final-Report.pdf)
Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.
Information Contacts: Mt. Erebus Volcano Observatory (MEVO), New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA; Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); The University of Cambridge Department of Geography (URL: http://www.geog.cam.ac.uk/research/projects/lavalakes/); Erik Klemetti, Eruptions Blog, Wired (URL: https://www.wired.com/author/erikvolc/); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); UNAVCO, 6350 Nautilus Drive, Boulder, CO 80301-5394 (URL: http://www.unavco.org/); Kayla Iacovino and Tehnuka Ilanko, The Volcanofiles (URL: http://www.volcanofiles.com/).
Fuego
Guatemala
14.473°N, 90.88°W; summit elev. 3763 m
All times are local (unless otherwise noted)
Ten eruptive episodes with lava flows, ash plumes, and pyroclastic flows during January-June 2016
Volcán de Fuego has been erupting continuously since 2002. Historical observations of eruptions date back to 1531, and radiocarbon dates are confirmed back to 1580 BCE. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars. Fuego was continuously active from June 2014-December 2015. Ash plumes rose to 6 km altitude, ashfall was reported in communities as far as 90 km away, pyroclastic flows descended multiple drainages at least four times, Strombolian activity rose to 800 m above the summit, lava flows descended a few kilometers down five different drainages numerous times, and three different lahars damaged roadways (BGVN 42:05). This report continues with a summary of similar activity during January-June 2016. In addition to regular reports from INSIVUMEH, the Washington Volcanic Ash Advisory Center (VAAC) provides aviation alerts. Locations of towns and drainages are listed in table 12 (BGVN 42:05).
Daily weak and moderate explosions generating ash plumes to about 800 m above the summit (4.6 km altitude) that dissipated within about 10 km were typical activity for Fuego during January-June 2016. In addition, ten eruptive episodes were recorded during this time. Each episode lasted 24-72 hours, with all but one including incandescent material rising 200-400 m above the summit feeding lava flows down the larger drainages for several kilometers. Most also included pyroclastic flows down the larger drainages. One of the episodes consisted of only large pyroclastic eruptions (with an accompanying ash plume) that issued directly from the summit crater and down the ravines; all included ash plumes rising over 5 km in altitude. Several lahars were reported during late April-June.
Activity during 30 December 2015. INSIVUMEH reported a significant increase in activity on 30 December 2015. A series of pyroclastic flows descended the Las Lajas and El Jute drainages on the SE flank, and a dense ash plume rose to 5 km altitude and drifted 20 km W. Ashfall was reported in multiple communities on the flanks, including Panimache I and II (8 km SW), Morelia (9 km SW), and Santa Sofía (12 km SW).
Activity during January 2016. Two eruptive episodes with explosions that generated ash plumes, pyroclastic flows, Strombolian activity, lava flows, and ashfall were documented by INSIVUMEH during January 2016. The first eruption began with an increase in seismicity early in the morning of 3 January. Moderate to strong explosions were accompanied by an ash plume that rose to 4.8 km altitude (about 1 km above the summit) and drifted W and SW. Two lava flows emerged from the summit crater and traveled down the Las Lajas and Trinidad ravines. Moderate to strong explosions continued during 3 January. By the afternoon, dense plumes of ash were reported at 6 km altitude drifting SW and SE more than 40 km. Ashfall was reported in the villages of Panimaché I and II, Morelia, Santa Sofia, El Porvenir, La Rochela, Osuna, El Zapote and Rodeo. Also later in the day, incandescence was observed 400 m above the crater; it fed three lava flows in the Santa Teresa, Trinidad, and Las Lajas canyons that reached 2.5 km in length. Eruptive activity diminished after about 37 hours with weak bursts of ash rising to 4.6-4.7 km altitude on 5 January that drifted S, SW, and SE.
A smaller explosive event during 15-17 January produced block avalanches and created ash plumes that rose 450-750 m above the crater and drifted up to 12 km N and NE; four to five explosions per hour were detected. The second eruptive episode began with increased activity on 19 January; incandescent material was ejected 400-500 m above the summit, generating new lava flows to the same three canyons as the earlier eruption (Santa Teresa, Trinidad and Las Lajas) (figure 36). Ash emissions rose to 4.9 km altitude and drifted NE. Pyroclastic flows also descended the Las Lajas and El Jute canyons (figure 37).
The second episode continued throughout 20 January 2016 when the largest ash plume rose to 6.7 km altitude and drifted NE more than 90 km according to the Washington VAAC. Ashfall was reported in San Miguel, Las Dueñas, Alotenango, Acatenango, and Antigua. Ash plumes from the pyroclastic flows also generated ashfall on the S and SW flanks (figure 38). By the morning of 21 January, the lava flows had ceased advancing at about 3 km length, although a hot spot was still clearly visible in satellite imagery. Weak explosions generated ash plumes that rose only a few hundred meters above the summit and drifted NNE. During January, the Observatorio del Volcan de Fuego installed a second webcam on the SE side of Fuego at the Finca La Reunión, a resort about 8 km from the summit. The first webcam is located about 10 km SW of the summit at the Observatorio del Volcan de Fuego in the community of Panimache.
Activity during February-March 2016. Explosions increased in number and energy on 5 February 2016, classified by INSIVUMEH as the 3rd episode of the year. Six moderate to strong explosions per hour were reported, sending ash emissions to 4.5 km altitude, drifting W, NW, and N more than 12 km, and avalanche blocks down the flanks to the base. The third eruptive episode of the year began with moderate explosions on 9 February 2016; it generated ash plumes which rose to 4.7 km altitude and dispersed up to 35 km NNW. Ashfall was reported in Chimaltenango, Zaragoza, Ciudad Vieja, San Pedro las Huertas, San Miguel Las Dueñas, San Juan Alotenango, Antigua Guatemala and the Capital City as far as 35 km N and NE. The explosions were accompanied by incandescent material rising to 300 m above the summit and feeding lava flows that traveled towards the Trinidad, Las Lajas, and Santa Teresa canyons, reaching lengths of 800 to 3,000 meters (figure 39).
The following day (10 February 2016), pyroclastic flows descended the El Jute and Las Lajas ravines (figure 40) while ash plumes rose to 5.2 km altitude and incandescent material was ejected 400 m above the crater. Although activity decreased throughout the day, explosions continued to generate ash plumes to 4.9 km altitude that dispersed ash up to 45 km N and NE. Minor ash emissions were reported by the Washington VAAC on 17 February at 4.6-4.9 km altitude drifting SE about 40 km, and on 24 February at 4.6 km drifting about 25 km SW.
On 29 February 2016, moderate to strong explosions at a rate of 6-10 per hour were heard more than 14 km away. They were accompanied by an ash plume that rose to 4.8 km and drifted 12 km E, and a lava flow that traveled 500 m towards Las Lajas ravine. This 4th eruptive episode (according to INSIVUMEH) lasted more than 72 hours (figure 41). On 2 March, several ash plumes rose to different altitudes and dispersed in different directions. The largest ash plume, was observed by the Washington VAAC at 7.3 km altitude; it was visible 400 km N before it dissipated into weather clouds. Lower altitude plumes rose to 4.6 km and drifted 75 km SW before dissipating. Ash fell in the communities of Morelia, Santa Sofia, La Rochela, Panimaché I and II, Sangre de Cristo, La Soledad and Yepocapa. The incandescent activity fed two lava flows; the first in the direction of Las Lajas reached 3 km, the second flowed towards El Jute ravine and reached 2 km in length. Pyroclastic flows also travelled down these two canyons and block avalanches descended the Honda Canyon. Explosive activity diminished during 3-6 March; ash emissions rose to 550 m above the summit and drifted 8-10 km W, SE, and SE.
During 10 March 2016, moderate to strong Vulcanian explosions generated an ash plume that rose to 4.4 km altitude and drifted E. The Washington VAAC observed ash emissions in multispectral satellite imagery on 15 March at 4.3 km altitude extending about 80 km SW from the summit as well as hot spots and pyroclastic flows visible in the INSIVUMEH webcam. An increase in activity on 21 March generated weak and moderate explosions that produced ash plumes that rose to 4.3-4.7 km and drifted W. This activity was recorded as an increase in RSAM tremor amplitude and duration at the FG3 seismic station, but was not considered an eruptive episode by INSIVUMEH (figure 42).
Eruptive episode 5 began on 26 March 2016 and lasted more than 24 hours (figure 42). Strombolian eruptions rose up to 500 m above the crater (figure 43), feeding three lava flows that traveled 2 km down Las Lajas, 1.3 km down the Santa Theresa, and 1 km down the Trinidad ravines. Ash plumes rose to 6.1 km altitude and drifted up to 150 km W (figure 44); ash fell on the villages of Morelia, Santa Sofia, San Predro Yepocapa, Panimaché I and II. By the end of 27 March, eruptive activity had diminished to background conditions, which included weak and moderate explosions generating ash plumes to about 800 m above the summit (4.6 km altitude) that dissipated within about 10 km WSW. On 29 March ashfall was reported Sangre de Cristo and Panimaché I and II.
Activity during April-May 2016. The Washington VAAC reported diffuse volcanic ash emissions in satellite and webcam imagery on 2 April 2016. The ash plume drifted W at 4.3 km altitude, and extended 75 km from the summit before dissipating. Increased eruptive activity during 6-7 April 2016 resulted in moderate and strong explosions which produced ash plumes rising to 4.6-4.8 km altitude that drifted W and SW 15 km. The explosions were audible more than 20 km from the volcano; roofs and windows vibrated within 12 km. INSIVUMEH received reports of ashfall from the villages of Morelia, Sangre de Cristo, and Panimche I and II.
An explosion on 8 April created an ash plume that rose to 5.8 km and drifted SSW about 35 km. Successive bursts of ash on 9 April rose to 4.9 km altitude and drifted W. Emissions on 11 April were reported at 4.3 km altitude about 15 km SW from the summit; the next day they rose to 4.9 km and drifted SW to a distance of 45 km. INSIVUMEH reported variable activity beginning on 11 April with high levels of explosive activity on 12 April marking the beginning of the sixth eruptive episode of the year, which lasted for three days. An incandescent fountain persisted 100-300 m above the crater and fed two lava flows during the event; one traveled 2 km down the Las Lajas ravine, and the other reached 1 km in length in the Santa Teresa ravine. Avalanches were constant along the flanks during this episode. Continuous ash emissions were observed as well; plumes generally rose no higher than 5.8 km (2 km above the summit). Ashfall was reported in La Rochela, Ceylon, Morelia, Hagia Sophia, Sangre de Cristo, Panimaché I and II. On 13 April the ash plume extended 185 km SW from the summit. A brilliant hotspot was observed in satellite imagery on 14 April after which no further VAAC reports were issued until early May. On 29 April, after more than a week of rain, a lahar descended the Las Lajas drainage but no damage was reported.
Activity at Fuego increased significantly during May 2016, and included three eruptive episodes that generated ash plumes, pyroclastic and lava flows, and increased rainfall that resulted in lahars. Ash plumes rose above 5.5 km altitude (more than 2 km above the summit) and dispersed to the S, SW, and SE. Seismic activity increased on 5 May in the form of internal vibrations caused by lava which flowed more than 1.2 km down the Las Lajas ravine, and moderate to strong explosions that produced ash plumes which rose to 4.8 km altitude and drifted S for 12 km. The Washington VAAC reported diffuse ash extending 65 km SE from the summit.
The 7th eruptive episode of the year began on 6 May 2016 with incandescent material rising 300 m above the summit crater, causing two lava flows. One traveled down Las Lajas ravine more than 3 km; the second descended the Trinidad ravine for 1.5 km. Block avalanches were constant around the crater rim. The episode lasted for more than 32 hours (figure 45); the moderate to strong explosions ejected ash to altitudes above 5.5 km that drifted S and SW. Ashfall was reported in Escuintla and its surroundings. There were no pyroclastic flows during this episode. The Washington VAAC reported emissions extending 65 km SE of the summit at 5 km altitude on 6 May.
The next eruptive episode (8) did not involve seismic explosive activity (figure 45). Instead, several large pyroclastic flows overflowed the crater rim on 18 and 19 May 2016 and descended the flanks towards Las Lajas and Honda ravines (figure 46) resulting in ashfall reported to the S, SW, and W, in villages more than 30 km away. A large ash plume reached more than 5.5 km altitude and drifted 15 km SSW on 19 May (figure 47). Ashfall was reported in the villages of El Rodeo, La Rochela, Osuna, Panimaché, Morelia, Sangre de Cristo and Yepocapa. By late in the day, the Washington VAAC noted that the plume was centered about 90 km SW at 5.8 km altitude.
The ninth eruptive episode of 2016 generated incandescent fountains 200-300 m above the summit; they fed a 2-km-long lava flow down the Las Lajas ravine (figure 48). Seismic activity began to increase on 21 May and lasted through 23 May (see figure 45). Moderate and strong explosions created an ash plume that rose to 5.5 km altitude and drifted SW and W. The Observatory reported ashfall in Morelia, El Porvenir, Santa Sofia, Los Yucales, Panimaché I and II. The Washington VAAC reported an ash plume visible in satellite imagery at 5.5 km altitude, drifting 75 km S beyond the coast on 23 May 2016. A lahar descended the Las Lajas ravine on 20 May and was recorded by the seismic station FG3, but no damage was reported.
Activity during June 2016. A significant rainfall combined with the plentiful ash from recent pyroclastic flows, resulted in lahars descending Las Lajas and El Jute ravines on 5 June 2016. They transported blocks, branches, and tree trunks, and a strong sulfur smell was reported by nearby residents. Another lahar was reported on 18 June that was 15 m wide and had a 1.5-m-high front. An increase in seismic activity during the afternoon of 24 June signaled the beginning of eruptive episode 10. This was followed by about 30 hours of moderate to strong explosive activity that could be heard and felt as far as 12 km away. A dense ash plume on 25 June rose to 5.5 km altitude and drifted S, SW, and W more than 40 km. Ashfall was reported in San Pedro Yepocapa, Sangre de Cristo, Morelia, Santa Sofia, Panimaché I and II. The Washington VAAC observed the ash plume in multispectral imagery on 25 June extending 120 km WSW from the summit. NASA Goddard Space Flight Center captured a small but distinct SO2 plume from Fuego on 25 June as well (figure 49). Incandescent material rose 300 m above the summit crater during this episode and fed three lava flows; the first descended Las Lajas ravine 2.5 km, the second traveled 2.3 km down El Jute ravine, and the third flowed down Taniluyá ravine for 600 meters. Seismic activity from episode 10 decreased on 26 June.
Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.
Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).
Nyamuragira (DR Congo) — June 2017
Cite this Report
Nyamuragira
DR Congo
1.408°S, 29.2°E; summit elev. 3058 m
All times are local (unless otherwise noted)
Large SO2 plumes and intermittent lava lake during 2013-2017
The Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo (DRC) is part of the western branch of the East African Rift System (EARS). Nyamuragira (or Nyamulagira), a high-potassium basaltic shield volcano on the W edge of VVP, includes a lava field that covers over 1,100 km2 and contains more than 100 flank cones in addition to a large central crater (see figure 54, BGVN 40:01). A large lava lake that had been active for many years emptied from the central crater in 1938. Numerous flank eruptions have been observed since that time, the last during November 2011-March 2012 on the NE flank. This report covers the substantial SO2 emissions from both Nyamuragira and nearby Nyiragongo (15 km SE) between November 2011 and April 2016, and the onset of eruptive activity, including a new lava lake, at the summit crater beginning in May 2014. Activity is described through April 2017.
On-the-ground information about Nyamuragira is intermittent due to the unstable political climate in the region, but some information is available from the Observatoire Volcanologique de Goma (OVG), MONUSCO (the United Nations Organization working in the area), geoscientists who study Nyamuragira, and travelers who visit the site. The most consistent data comes from satellite – thermal data from the MODIS instrument processed by the MODVOLC and MIROVA systems, SO2 data from the AURA instrument on NASA's OMI satellite, and NASA Earth Observatory images from a variety of satellites.
A substantial flank eruption took place from November 2011 through March 2012. This was followed by a period of degassing with SO2-rich plumes, but no observed thermal activity, from April 2012 through April 2014. Increased seismicity and minor thermal activity was observed at the central crater during April 2014; lava fountains first seen in early July 2014 continued through September. A lava lake in the crater was confirmed on 6 November 2014, and it produced a consistent and strengthening thermal anomaly through the first week of April 2016, when it stopped abruptly. Thermal activity suggesting reappearance of the lava lake began again in early November 2016, and strengthened in both frequency and magnitude into early January 2017, continuing with a strong signal through April 2017.
Activity during November 2011-March 2012. Nyamuragira erupted from cones and fissures on the NE flank between early November 2011 and mid-March 2012 (BGVN 39:03). The vent area, 12 km ENE of the central crater, was an E-W fissure 500-1,000 m long. Lava fountains up to 300 m high produced flows that advanced nearly 12 km N in the first 10 days. Three scoria cones formed adjacent to the fissure during the eruption, and a small lava lake appeared in the center of the largest cone. During January 2012, lava flowed from the vent area and from numerous small breakouts within 2 km of the cones (figures 58, 59). Dario Tedesco reported that the eruptions ceased in March 2012 after a series of explosion earthquakes recorded by the OVG had ended; the last MODVOLC thermal alert in the area of the eruption was captured on 14 March 2012, and none were reported again until 2014.
Activity during April 2012-May 2014. Periodic field surveys at Nyamuragira have been carried out since 2009 by helicopter, thanks to the support of the United Nations Organization Stabilization Mission in the DR Congo (MONUSCO). Since 2013, observations of the crater have also been done once or twice a month by helicopter. The team has included researchers from the OVG, Dario Tedesco, and other international scientists. This area is a high-risk sector due to the presence of armed groups, and it is impossible, due to the lack of security, to make detailed field surveys (Coppola et al., 2016).
Dario Tedesco reported SO2-rich fumaroles in Nyamuragira's central crater beginning in early March 2012, shortly before the NE-flank fissure eruptions ended (BGVN 40:01). A progressive collapse of the 400-m-wide, 50-80 m deep pit crater located in the NE part of the caldera began as soon as the eruptions ended. They noted that during the second half of April, large SO2 plumes continuously emerged from the pit crater.
NASA's Global Sulfur Dioxide Monitoring program captured major SO2 plumes from the area for an extended period between November 2011 and February 2014. The plumes represent combined emissions from both Nyamuragira and Nyiragongo, which are too close together to distinguish the source in the satellite data. Campion (2014), however, noted that SO2 emissions from the VVG increased several fold after the end of the 2011-2012 Nyamuragira eruption; they interpreted that 60-90 % of these emissions should be attributed to Nyamuragira.
Significant areas of SO2 plumes with DU > 2 (shown as red pixels on the Aura/OMI images, figure 60) were captured by the OMI instrument at the beginning of the November 2011 eruption and continued through February 2012. Beginning in April 2012 elevated values occurred more than 20 days per month through December 2012. Values were more variable in both frequency and magnitude during 2013 with a notable surge of activity during 6-19 June 2013 that resulted in daily SO2 plumes. Details of monthly SO2 values are given in the last section of this report (see table 3).
Activity during June 2014-April 2017. Incandescence at the summit and increased seismicity was reported again in April 2014, along with increasing SO2 values. A strong MODVOLC thermal alert signal appeared on 22 June 2014, and a satellite image from 30 June showed clear hotspots at both Nyamuragira and Nyiragongo (figure 61).
An extended series of MIROVA thermal anomaly data beginning in May 2014 clearly shows the episodic periods of active heat flow at Nyamuragira from late May 2014 through April 2017 (figure 62). During the first episode, from late May to early September 2014, lava fountains were observed in early July, and reported to be active through September (BGVN 40.01). Campion (2014) and Smets and others (2014) debated whether the lava lake first appeared in April or not until November. On 6 November 2014 a small lava lake was confirmed at the base of the summit pit when sighted during an OVG helicopter survey. Both MODVOLC and MIROVA thermal anomalies appeared again in early November and persisted through the end of the year.
Thermal anomalies were persistent throughout 2015, with a noted increase in both frequency and magnitude during July (figure 62 C). A NASA Earth Observatory image from 9 February 2015 clearly shows active plumes venting from both Nyamuragira and Nyiragongo (figure 63). MONUSCO-supported summit crater visits by researchers on 2 April 2015, and photographer Oliver Grunwald on 10 July 2015, confirmed the presence of an active lava lake during both visits (figure 64, and video link in Information Contacts).
The MIROVA and MODVOLC thermal anomaly data suggest that the lava lake at Nyamuragira was active until 4 April 2016 when the signals abruptly ended (figure 62 D). This also corresponds closely in time to when the major SO2 emissions captured by NASA also ceased. Observations by Dario Tedesco at the summit on 6 April 2016, during a UNICEF and MONUSCO-sponsored helicopter overflight, showed only an incandescent vent releasing hot gases, and no active lava lake. A small lava lake was again visible in the pit crater on 27 April 2016 when observed by Sebastien Valade of the University of Florence on another MONUSCO-sponsored flight (figure 65).
Thermal anomaly data from MIROVA suggest a pulse of activity during late April through early June 2016 (figure 62 D). This was followed by a period from early June through early November 2016 with no record of activity at Nyamuragira. The MIROVA signal reappeared in early November, followed by intermittent MODVOLC thermal alerts beginning on 27 November. A new pulse of thermal activity, with values similar to those observed during July 2015-April 2016, reappeared in early January 2017 (figure 62 E) and continued through April 2017. On an OVG-sponsored visit to the summit crater on 11 March 2017, independent journalist Charly Kasereka photographed the summit crater with incandescent lava covering the crater floor (figure 66).
Sulfur dioxide and thermal anomaly data. Abundant sulfur dioxide emissions at Nyamuragira during November 2011-April 2017 show large variations in both magnitude and frequency during the period (table 3). A plot of the SO2 data (figure 67) reveals a sharp increase in both the number of days per month with DU greater than 2 and the actual maximum DU value during the active flank eruption between November 2011 and February 2012. After lower values during March 2012, they rise steadily and remain significantly elevated for all of 2013. Values drop briefly in early 2014 and then rise again during April 2014, remaining elevated through February 2016 before dropping off significantly.
A similar plot of the number of monthly MODVOLC thermal alert pixels for Nyamuragira from November 2011 through April 2017 (figure 68) shows that there were no thermal alerts for the period from April 2012-February 2014 when SO2 emissions were large and frequent. In contrast, there were frequent thermal alerts from June 2014-April 2016 when SO2 emissions were also high.
Table 3. Days per month that SO2 values over the Nyamuragira and Nyiragongo area exceeded 2 Dobson Units (DU), October 2011-April 2017, and maximum DU values for each month. Data represent minimum values due to OMI row anomaly missing data (gray stripes), and missing days. SO2 is measured over the entire earth using NASA's Ozone Monitoring Instrument (OMI) on the AURA spacecraft. The gas is measured in Dobson Units (DU), the number of molecules in a square centimeter of the atmosphere. If you were to compress all of the sulfur dioxide in a column of the atmosphere into a flat layer at standard temperature and pressure (0 C and 1013.25 hPa), one Dobson Unit would be 0.01 millimeters thick and would contain 0.0285 grams of SO2 per square meter.
MONTH |
No. days DU > 2 |
MAX DU (>2) |
Date of Max DU |
Comments |
Oct 2011 |
0 |
-- |
-- |
-- |
Nov 2011 |
23 |
80.23 |
9 |
-- |
Dec 2011 |
27 |
26.70 |
30 |
-- |
Jan 2012 |
16 |
7.71 |
8 |
Only 21 days of data |
Feb 2012 |
10 |
5.32 |
18 |
-- |
Mar 2012 |
2 |
2.22 |
31 |
-- |
April 2012 |
9 |
5.31 |
27 |
Daily >2 values begin ~ 20 April |
May 2012 |
20 |
27.06 |
8 |
Surge, 5-10 May |
Jun 2012 |
24 |
67.10 |
7 |
Large plumes all month |
Jul 2012 |
25 |
15.91 |
9 |
-- |
Aug 2012 |
17 |
14.27 |
28 |
-- |
Sep 2012 |
24 |
12.78 |
11 |
Several days DU>10 |
Oct 2012 |
24 |
16.86 |
31 |
Constant large plumes |
Nov 2012 |
27 |
21.09 |
1 |
Many high DU values |
Dec 2012 |
26 |
16.69 |
16 |
-- |
Jan 2013 |
11 |
6.80 |
10 |
-- |
Feb 2013 |
7 |
14.34 |
2 |
-- |
Mar 2013 |
14 |
6.15 |
22 |
-- |
Apr 2013 |
15 |
8.93 |
16 |
-- |
May 2013 |
16 |
11.45 |
25 |
-- |
Jun 2013 |
22 |
29.68 |
10 |
Big surge 6-14 |
Jul 2013 |
18 |
11.82 |
12 |
-- |
Aug 2013 |
14 |
6.11 |
29 |
-- |
Sep 2013 |
20 |
9.46 |
25 |
-- |
Oct 2013 |
16 |
4.45 |
28 |
-- |
Nov 2013 |
12 |
6.76 |
10 |
-- |
Dec 2013 |
18 |
17.79 |
14 |
-- |
Jan 2014 |
3 |
4.13 |
27 |
-- |
Feb 2014 |
2 |
5.18 |
10 |
-- |
Mar 2014 |
3 |
4.86 |
11 |
-- |
Apr 2014 |
10 |
6.49 |
10 |
-- |
May 2014 |
0 |
-- |
-- |
-- |
Jun 2014 |
14 |
18.24 |
29 |
Surge begins 24 June |
Jul 2014 |
23 |
27.40 |
24 |
Large plumes most of the month |
Aug 2014 |
23 |
23.65 |
25 |
-- |
Sep 2014 |
12 |
158.92 |
10 |
Big surge begins late Aug – 13 Sep, then stops abruptly. Largest plumes of interval |
Oct 2014 |
0 |
-- |
-- |
-- |
Nov 2014 |
11 |
17.86 |
29 |
6-11, 23, 27-30 |
Dec 2014 |
26 |
22.82 |
22 |
1-27 |
Jan 2015 |
8 |
6.96 |
18 |
-- |
Feb 2015 |
15 |
23.73 |
19 |
-- |
Mar 2015 |
19 |
8.56 |
28 |
-- |
Apr 2015 |
23 |
17.80 |
29 |
-- |
May 2015 |
25 |
10.78 |
10 |
-- |
un 2015 |
25 |
17.74 |
25 |
-- |
Jul 2015 |
18 |
11.95 |
18 |
-- |
Aug 2015 |
17 |
9.32 |
19 |
-- |
Sep 2015 |
18 |
9.51 |
4 |
-- |
Oct 2015 |
18 |
9.61 |
31 |
-- |
Nov 2015 |
17 |
7.06 |
16 |
-- |
Dec 2015 |
14 |
8.42 |
13 |
-- |
Jan 2016 |
6 |
5.40 |
19 |
-- |
Feb 2016 |
6 |
3.34 |
11 |
-- |
Mar 2016 |
1 |
4.15 |
9 |
-- |
Apr 2016 |
0 |
-- |
-- |
-- |
May 2016 |
2 |
3.06 |
19 |
-- |
Jun 2016 |
0 |
-- |
-- |
Only 18 days data |
Jul 2016 |
0 |
-- |
-- |
-- |
Aug 2016 |
0 |
-- |
-- |
-- |
Sep 2016 |
0 |
-- |
-- |
-- |
Oct 2016 |
0 |
-- |
-- |
-- |
Nov 2016 |
2 |
3.50 |
27 |
-- |
Dec 2016 |
0 |
-- |
-- |
-- |
Jan 2017 |
0 |
-- |
-- |
-- |
Feb 2017 |
No Data |
No Data |
-- |
-- |
Mar 2017 |
0 |
1.5 |
-- |
-- |
Apr 2017 |
0 |
1.5 |
-- |
-- |
References: Campion, R., 2014, New lava lake at Nyamuragira volcano revealed by combined ASTER and OMI SO2 measurements, 7 November 2014, Geophysical Research Letters (URL: http://onlinelibrary.wiley.com/doi/10.1002/2014GL061808/full).
Coppola, D., Campion, R., Laiolo, M., Cuoco, E., Balagizi, C., Ripepe, M., Cigolini, C., Tedesco, D., 2016, Birth of a lava lake:Nyamulagira volcano 2011-2015. Bull Volcanol (2016) 78: 20. doi:10.1007/s00445-016-1014-7.
Smets, B., d'Oreye, N., Kervyn, F., 2014, Toward Another Lava Lake in the Virunga Volcanic Field?, 21 October 2014, EOS, Transactions American Geophysical Union (URL: http://onlinelibrary.wiley.com/doi/10.1002/2014EO420001/pdf)
Smets, B., d'Oreye, N., Kervyn, F., Kervyn, M., Albino, F., Arellano, S., Bagalwa, M., Balagizi, C., Carn, S.A., Darrah, T.H., Fernández, J., Galle, B., González, P.J., Head, E., Karume, K., Kavotha, D., Lukaya, F., Mashagiro, N., Mavonga, G., Norman, P., Osodundu, E., Pallero, J.L.G., Prieto, J.F., Samsonov, S., Syauswa, M., Tedesco, D., Tiampo, K., Wauthier, C., Yalire, M.M., 2014. Detailed multidisciplinary monitoring reveals pre- and co-eruptive signals at Nyamulagira volcano (North Kivu, Democratic Republic of Congo). Bull Volcanol 76 (787): 35 pp.
Smets, B., Kervyn, M., Kervyn, F., d'Oreye, N., 2015. Spatio-temporal dynamics of eruptions in a youthful extensional setting: Insights from Nyamulagira volcano (D.R. Congo), in the western branch of the East African Rift. Earth-Science Review 150, 305-328. doi:10.1016/j.earscirev.2015.08.008
Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.
Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Erik Klemetti, Eruptions Blog, Wired (URL: https://www.wired.com/author/erikvolc/); Cultur Volcan, Journal d'un volcanophile (URL: https://laculturevolcan.blogspot.com/); MONUSCO, United Nations Organization Stabilization Mission in the DR Congo (URL: https://monusco.unmissions.org/en/); Oliver Grunewald, Video filmed on 10 July 2015 (URL: https://laculturevolcan.blogspot.fr/2015/07/le-lac-de-lave-du-volcan-nyamuragira.html).
Reventador (Ecuador) — June 2017
Cite this Report
Reventador
Ecuador
0.077°S, 77.656°W; summit elev. 3562 m
All times are local (unless otherwise noted)
Lava flows, pyroclastic flows, and ash plumes monthly during June 2014-December 2015
The andesitic Volcán El Reventador lies well east of the main volcanic axis of the Cordillera Real in Ecuador and has historical observations of eruptions of numerous lava flows and explosive events going back to the 16th century. The largest historical eruption took place in November 2002 and generated a 17-km-high eruption cloud, pyroclastic flows that traveled 8 km, and several lava flows. This report briefly summarizes activity between 2002 and June 2014, and covers details of activity from July 2014 through December 2015. The volcano is monitored by the Instituto Geofisico-Escuela Politecnicia Nacional (IG) of Ecuador, and the Washington Volcanic Ash Advisory Center (VAAC).
Summary of 2002-2014 activity. Intermittent activity including pyroclastic flows, ash plumes, lava flows and explosive events took place between 2003 and 2008. Since July 2008 there have been persistent gas-and-ash plumes, dome growth, and both pyroclastic and lava flows. Lahars are also very common in this high-rainfall area, and cause damage to infrastructure on a regular basis. A lava dome was first observed growing in September 2009 within the crater that formed during the 2002 eruption. By July 2011, it had reached the height of the highest part of the crater rim; by January 2013 it filled the crater and formed a new summit, 100 m above the E rim. This led to lava blocks travelling down the flanks, in addition to the lava flows and pyroclastic flows traveling down the flanks of the cone inside the crater during 2012-2014. A summary of thermal anomalies compiled from MIROVA data (figure 46) demonstrates the ongoing but intermittent nature of heat flow between 2002 and 2014.
Summary of June 2014-December 2015 activity. Activity was very consistent throughout the period of June 2014 through December 2015. The thermal webcam captured images of lava flows, pyroclastic flows and ejected incandescent blocks nearly every month. MODVOLC thermal alerts were reported every month except March 2015. Satellite imagery of hot spots were common as well. The Washington VAAC reported observations of ash plumes every month, although they generally rose only to altitudes below 5.6 km (2 km above the summit). IG reported seismicity as varying between moderate and high during the period.
Activity during June-December 2014. Activity during June 2014 was characterized by numerous explosions and small pyroclastic flows that descended the flanks of the cone. The Washington VAAC issued two series of reports on 11-12 and 19-20 June. A pilot reported an ash plume on 11 June rising 2.8 km above summit at 6.4 km altitude and drifting W, and the next day ash was observed 1.8 km above the summit. Weather generally obscured satellite views. On 19 June, multiple small emissions of volcanic ash were seen in the observatory webcam along with incandescent material on the flanks. MODVOLC thermal alerts were issued on 5, 21, and 30 June.
IG reported a new lava flow on 2 July 2014 descending 400 m on the SSW flank. A pyroclastic flow was also reported on 2 July (figure 45, BGVN 39:07) extending 1,500 m down the S flank. IG noted ash emissions on 2, 4, 9-12, 18, 22-24, and 27 July rising 800 m to 2 km above the summit. MODVOLC reported multi-pixel thermal alerts on 2, 16, and 27 July, and single pixel alerts on 10 and 25 July. In addition to the ash plumes reported by IG, the Washington VAAC reported on-going ash emissions and detected hotspots at the crater on 31 July.
The Washington VAAC issued a report of hot spots visible in satellite imagery on 1 August 2014 and a pilot report of an ash plume at 6.1 km altitude (2.5 km above the summit) on 25 August. The only MODVOLC thermal alerts were issued on 31 August. IG reported lower level plumes (300-800 m above the summit) with minor ash on 6 other days during the month.
Activity increased during September 2014. The Washington VAAC issued reports during 2-4, 18, and 23 September. On 2 September, ash plumes were observed extending about 45 km W of the summit at 5.5 km altitude. Another faint plume of volcanic ash was observed within 20 km of the summit the next day. An ongoing hotspot with possible small ash emissions was noted on 4 September. IG reported an explosion on the morning of 5 September that generated a plume and ejected blocks from the crater that fell ~500 m below the summit on the W flank. A thermal camera detected an explosion on the following day that also included ballistics. MODVOLC thermal alerts were issued on eight days during September. Steam plumes with minor ash rose to around 1 km above the summit and dispersed generally W several times during the month.
A single MODVOLC thermal alert was reported on 6 October 2014. The Washington VAAC reported short 2-3 minute bursts of minor volcanic ash on 19 October which was seen drifting WNW and dispersing within 16 km of the summit below 5.8 km altitude. An additional single pixel thermal alert was issued on 25 October, and a three-pixel alert appeared on 29 October.
IG reported steam-and-ash plumes rising up to 1 km above the summit a few times during the month, which were visible on the rare clear-weather days (figure 47). Only two days in November, 5 and 21, had MODVOLC thermal alerts. The Washington VAAC, however, issued reports during 11-12, 18-19, and 27 November of possible low-level ash-bearing plumes. The IG webcam LAVA on the SE flank captured images of pyroclastic flows on 20 and 25 November (figure 48).
On 5 December 2014 a webcam recorded a steam-and-gas emission associated with an incandescent lava flow on the E flank. MODVOLC thermal alert pixels appeared on four days in December 2014 (3, 7, 14, and 23), and VAAC reports of ash plumes were issued on 5, 13-14, 21-22, and 30 December. The largest plume, on 14 December, rose to 6.1 km (2.5 km above the summit) and drifted NE. IG reported moderate seismicity and low-level steam plumes with minor ash content on several occasions.
Activity during 2015. Moderate seismic activity continued during January 2015 with low-level steam-and-ash plumes from explosions rising a few hundred meters above the summit, according to IG. A larger explosion reported by IG on 16 January generated an ash plume that rose 2 km and drifted SE. The Washington VAAC reported activity from 14-18 January, and again on 26 January. Their reports were of small puffs of ash within a kilometer of the summit drifting for a few hours before dissipating. MODVOLC thermal alerts were issued on 15 and 29 January.
Steam plumes containing minor amounts of ash were recorded a few times during February 2015 during periods of moderate seismicity. The Washington VAAC issued several reports, during 7-9, 13-17, 19-21, 24, and 26-28 February, noting occasional plumes with ash rising to less than one km above the summit, and hot-spots seen in satellite imagery on 13-14, 17, 19, and 27 February. An aircraft reported volcanic ash on 19 February at 6.1 km altitude. A new lava flow first observed on the SW flank on 11 February had advanced 1 km by 19 February. This is consistent with the four-pixel MODVOLC thermal alert issued on 18 February. Single pixel alerts were issued on 7, 19, and 23 February as well.
No MODVOLC thermal alerts were issued during March 2015, but the Washington VAAC continued to note low-level small bursts of ash emissions several times a week within 15 km of the summit, as reported by IG. The webcam captured a hotspot at the summit on 11 March. A thermal camera image of a lava flow taken on 13 March showed the visible part of it to be over 500 m long (figure 49), and IG noted in their 13 March report that is was actually about 1.5 km long that day.
Activity during April 2015 included moderate seismicity and incandescence at the crater reported by IG. A lava flow on the SW flank was visible with the infrared camera during the first week; this agrees with the 5-pixel MODVOLC thermal alert recorded on 5 April and the bright hotspot observed in both satellite imagery and the webcam during 3-5 April. Hot spots were observed via satellite and webcam several additional times during the month. Additional thermal alerts also appeared on 10 and 21 April. Steam-and-ash plumes rising to 1 km above the summit were intermittent throughout the month, mostly observed from the webcam.
Multi-pixel MODVOLC thermal alerts appeared during 2-3, 20, and 30 May, indicating continued sources of heat from lava flows. In a special report issued on 19 May, IG noted a new lava flow during the previous week that descended the S flank, forming a fan with three lobes on the SE and SW flanks. The length was greater than 1,000 m from the summit on 19 May, although the flows remained on the flanks of the summit cone within the caldera (figure 50). IG noted an increase in emission tremor on 17 May which may have been related to the extrusion of the lava, but weather conditions prevented visual confirmation. During 17-30 May, intermittent low-level gas-and-ash plumes within 15 km of the summit were reported on most days.
MODVOLC thermal alerts diminished during June 2015, occurring only on 8 and 15 June. Nonetheless, thermal images showed lava flows down the SW and S flanks of the cone several times, and hot spots were observed in satellite images and on the webcam when the weather permitted. Steam-and-ash plumes were generally reported to rise to 1 km or less above the summit and drift usually NW or SW within 15 km of the volcano. A pilot reported volcanic ash on 30 June at 6.7 km, but no ash was seen in satellite imagery under cloudy conditions. IG issued a special report on 24 June noting increased seismicity in the form of increased tremor signal and explosions on 23 June. The thermal camera located in the area of El Copete, 5 km S of the crater, showed an increase in surface activity characterized by several lava flows on the SW, S, and SE flanks exceeding one km in length (figure 51).
Seismic activity was reported as high during July 2015 by IG, and included explosions, tremor, long-period earthquakes, harmonic tremor, and emission signals. During the first week, incandescent material was visible more than 1 km down the SE flank in thermal images. On 17 July, light gray deposits possibly from a pyroclastic flow were observed; on 21 July explosions again ejected incandescent material onto the flanks. Steam and ash emissions were intermittent and generally remained below 5.1 km altitude. MODVOLC thermal alerts appeared on 1, 3, 15, and 17 July.
High levels of seismic activity continued during August 2015. The Washington VAAC reported possible ash plumes on 14 days during the month, and MODVOLC thermal alerts were issued on six dates, including four-pixel alerts on 4 and 27 August suggestive of lava flows and/or incandescent material on the flanks of the cone. A discrete volcanic ash emission on 6 August was reported by the Washington VAAC at 7 km altitude (3.4 km above the summit) with a plume extending about 25 km NW of the summit. Other plumes that were reported by pilots (on 25 August at 8.8 km altitude moving NW, and on 26 August at 6.7 km moving W) were not observed in cloudy satellite imagery.
Ash-and-gas emissions were reported by the Washington VAAC during 14 days in September 2015, generally drifting N and W at altitudes less than 2 km above the crater (5.6 km altitude); high levels of seismicity also continued, according to IG. The Guayaquil MWO reported volcanic ash at 6.1 km on 19 September. Puffs of ash seen in the webcam were reported at 7.3 km altitude on 25 September and thought to have quickly dissipated. MODVOLC thermal alerts appeared on seven days during the month; five of them were two- or three-pixel alerts. An SO2 plume drifting WNW from Reventador was captured by NASA's OMI instrument on 22 September (figure 52).
A series of VAAC reports of low-level minor ash emissions were issued during 1-5 October 2015. After two weeks of no activity, multi-pixel MODVOLC thermal alerts and VAAC reports increased during 20-30 October. The peak MODVOLC activity included 4-6 daily pixels during 26-28 October, and the VAAC reports noted a bright hotspot on the satellite images beginning on 20 October and present for most of the rest of the month. Continuous emissions were observed in the webcam during 22-26 October, generally below 4.6 km, moving NW, and extending up to 40 km from the summit. Continuous emissions appeared again on 30 October at 5.1 km moving W.
During the last two weeks of November 2015, steam, gas, and ash emissions rose to less than 2 km above the summit and incandescent blocks rolled 500 m down the flanks of the cone. MODVOLC thermal alerts were reported for five days between 15 and 29 November. Similar activity was reported during December, although the Washington VAAC only issued reports on four different days, and MODVOLC thermal alerts were recorded only on 6 and 24 December. VAAC reports noted hotspots in satellite imagery on 7 December. The VAAC reports on 11 and 16 December indicated ash plumes at 5.5 km moving W and SW.
Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.
Information Contacts: Instituto Geofísico (IG), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Culture Volcan, Journal d'un volcanophile (URL: https://laculturevolcan.blogspot.fr/).
Nevado del Ruiz (Colombia) — June 2017
Cite this Report
Nevado del Ruiz
Colombia
4.892°N, 75.324°W; summit elev. 5279 m
All times are local (unless otherwise noted)
Intermittent ash emissions July 2012-December 2015; increased thermal activity October-December 2015
A February 2012 ash explosion of Colombia's Nevado del Ruiz volcano was the first confirmed ash emission in over 20 years. The broad, glacier-capped volcano has an eruption history documented back 8,600 years, and historical observations since 1570. Notably, a large explosion at night in heavy rain on 13 November 1985 generated large lahars that washed down 11 flank valleys, inundating most severely the town of Armero where over 20,000 residents were killed. It remains the second deadliest volcanic eruption of the 20th century after Mt. Pelee in 1902 killed 28,000.
This report summarizes and concludes the February 2012-April 2014 eruption (BGVN 37:08, 39:07), and then describes details of new activity beginning in November 2014, through December 2015. The volcano is monitored by the Servicio Geologico Colombiano (SGC) and aviation reports are provided by the Washington Volcanic Ash Advisory Center (VAAC).
Summary of activity, November 1985-June 2012. After the large explosions and deadly lahars of November 1985, activity at Ruiz continued with intermittent ash emissions and significant seismic activity through July 1991. Seismicity, deformation, and SO2 emissions have been closely monitored since the 1985 eruption. Between 1991 and February 2012 intermittent high-frequency seismic events (earthquake swarms) were recorded, but no ash emissions were observed. In September 2010, seismicity notably increased in frequency and diversity of event type until early 2012 when fresh ashfall was observed. INGEOMINAS (Instituto Colombiano de Geología y Minería, precursor to SGC) also noted an inflationary trend in the geodetic data from October 2010 through 2011.
A March 2012 overflight by INGEOMINAS noted minor amounts of ash-covered snow on the E flank, which they surmised came from an explosion on 22 February (BGVN 37:08). During March, long-period seismicity underwent a 20-fold increase. SO2 emissions also dramatically increased between March and June 2012. Several ash emissions from the summit were observed during April-June 2012 (BGVN 37:08). An ash plume that rose to 11 km altitude on 29 May caused ashfall in over 20 communities to the NW and closures at three nearby airports. Widespread ashfall during June covered solar panels on field equipment. An EO-1 satellite image from 6 June 2012 shows a plume and significant ashfall around the summit (figure 71).
Summary of activity, July 2012-December 2015. Explosions and seismic tremor with ash emissions continued during July and August 2012. Ashfall was reported within 30 km on numerous occasions. From September 2012 through early July 2013 minor amounts of ashfall were reported a few times each month, mostly in the immediate vicinity of the volcano. After a larger explosion on 11 July 2013, sparse and intermittent ash emissions were reported between August 2013 and April 2014. Between May and October 2014 there were no reports of ash emissions or thermal anomalies.
A significant increase in seismicity occurred during the second week of November 2014, and ash was seen at the summit during an overflight on 19 November. Ash fell in communities within 30 km several times each month through December 2015. Seismic evidence suggesting possible lava dome extrusion first appeared in August 2015, and stronger signals were recorded on 22 October. Thermal anomalies around the summit crater increased in frequency and magnitude during the last three months of 2015.
Activity during July 2012-October 2014. A large ash plume on 30 June 2012 prompted evacuation warnings to several communities within 30 km and closed three nearby airports for the second time within 30 days. On 2 July the Washington VAAC reported a 7.5-km-wide ash plume at 6.1 km altitude drifting 75 km W (BGVN 37:08). Additional VAAC reports were issued on 8, 9, and 10 July for SO2 emissions containing minor volcanic ash. SGC noted that explosions and ash emissions continued throughout the month in spite of a decrease in seismicity. Ashfall was reported near the volcano, and in municipalities in the departments of Caldas (W) and Risaralda (SW), steadily throughout the month.
Tremors associated with continuing gas and ash emissions occurred throughout August 2012; ash plumes were observed rising 200-800 m above the summit crater. During 3-6 August, gas and ash emissions were seen from Manizales (30 km NW) and Chinchiná (30 km WNW). On 12 August, a gas-and-ash plume observed with a webcam rose 1 km above the crater and drifted W, and ashfall was reported in Brisas (50 km SW). A layer of ash was deposited at the Observatorio Vulcanológico y Sismológico de Manizales (OVSM) on 13 August; they also reported ash emissions associated with seismic signals the next evening. Webcams showed gas-and-ash plumes rising 400 m and drifting W and NW during 15-16 August.
Minor amounts of ashfall were reported by SGC in areas around the volcano each month during September 2012 through 11 July 2013 (table 4), when a larger ash emission occurred. A noted increase in seismicity beginning on 13 April 2013 was also reported by SGC. The ash emission on 11 July was captured by the webcam in the Parque Nacional Natural Los Nevados (PNNN) (figure 72), and fine ash fell in Manizales. The Washington VAAC reported the ash plume at 6.1 km altitude. Multispectral imagery showed the plume extending 55 km NW. After 12 July 2013 there were no further reports from the Washington VAAC until December 2014.
Table 4. Ash emission events at Ruiz during September 2012-July 2013. Data compiled from various sources as shown.
Date |
Event |
Details |
Source |
06 Sep 2012 |
Small explosion |
Small ash emission. |
SGC Weekly Report, 3-9 Sep 2012 |
10 Oct 2012 |
Ash plume |
7.3 km altitude, drifting 35 km NW. |
Washington VAAC |
15-16 Nov 2012 |
Possible ash emission |
Weather clouds prevented observation, faint thermal anomaly detected. |
Washington VAAC |
10 Dec 2012 |
Tremor |
Early morning, gas and ash emissions. |
SGC Weekly Report, 3-9 Dec (published 11 Dec) 2012 |
09 Jan 2013 |
Tremor |
Ash and gas emission, ashfall reported in the Valle de las Tumbas, W of the summit crater. |
SGC Weekly Report, 7-13 Jan 2013 |
16 Jan 2013 |
Faint ash plume |
Drifting NE 50 km; hot spot. |
Washington VAAC |
11 Feb 2013 |
Gas and ash plume |
Webcam images and visual observation from Observatorio Manizales, 1,600 m above the crater. |
SGC Monthly Technical Report, February 2013 |
07-10 Mar 2013 |
Continuous tremor |
Gas and ash emissions reported by officials from the Parque Nacional Natural los Nevados (PNNN). |
SGC Weekly Report, 4-10 Mar 2013. |
11-17 Mar 2013 |
Continuous tremor |
Gas and ash emissions. |
SGC Weekly Report, 11-17 Mar 2013 |
10-30 Apr 2013 |
Constant tremor |
Small gas and ash emissions beginning 10 April. |
SGC Monthly Technical Report, Apr 2013 |
14 Apr 2013 |
Gas and ash plume |
Webcam image of gas and ash plume rose 630 m and drifted NW. |
INGEOMINAS daily report, 14 Apr 2013 |
15-21 Apr 2013 |
Ashfall confirmed |
Ashfall confirmed near Villahermosa (Tolima), 30 km NE. |
SGC Weekly Report, 15-21 Apr 2013 |
22 and 27 May 2013 |
Ash and gas emissions |
Confirmed by seismic signals as well as the webcams. |
SGC Monthly Report, May 2013 |
Jun 2013 |
Low-energy tremors |
Associated with gas and ash emissions, pulses of low energy. |
SGC Monthly Technical Report, June 2013 |
11 Jul 2013 |
Small ash emission |
Confirmed by OVSM webcams, and officials at PNNN. Ashfall reported in Valle de las Tumbas and Manizales. |
SGC Monthly Technical Report, July 2013; SGC Weekly Report 8-14 July 2013; Washington VAAC |
Evidence for ash emissions between August 2013 and April 2014 is sparse and intermittent. The SGC Monthly reports during this time mention pulses of low-energy tremor associated with emissions of gases, steam, and small amounts of ash every month except November, when they reported only steam and gas, but no specific dates are given. SGC's Technical Information Monthly reports mention occasional grayish coloration, suggesting ash in the gas-and-steam plumes during August-October 2013. Tremors associated with small amounts of ash and grayish coloration in the plumes are again noted from January through April 2014 without describing specific events.
The weekly activity reports issued by SGC make no mention of ash from August through November 2013. They note in weekly reports for 2-8 and 9-15 December that gray emissions possibly associated with ash in plumes of mostly water vapor and gases were observed. During the week of 16-23 December they recorded low-energy tremors associated with the output of small amounts of ash, which were reported in trace quantities in Manizales. In their 31 December 2013-6 January 2014 and 10-16 February 2014 weekly reports they noted the occurrence of tremors associated with ash and gas. There is no mention of ash in their March or April 2014 weekly reports. There is also no mention of ash emission in SGC monthly reports during May-October 2014. The MIROVA thermal anomaly data do show minor thermal anomalies in latest August and more persistent anomalies at the beginning of October 2014 (figure 73) prior to the reports of ash emissions during November.
Activity during November 2014-December 2015. A significant change in seismicity occurred beginning in the second week of November 2014. There was an increase in the number of long-period (LP) earthquakes, pulses of volcanic tremor, and several periods of continuous tremor (lasting for hours or even days) associated with fluid movement, and with emissions of gas and ash (table 5). Several of these periods were preceded by an LP event. The first significant pulse of volcanic tremor began on the evening of 18 November following an LP event and lasted more than 12 hours.
Table 5. Periods of continuous tremor associated with ash emissions at Ruiz during November 2014. Some of the tremor episodes were preceded by long-period (LP) events. Courtesy of SGC (Informe de Actividad, November 2014).
Date |
Time (local) |
Duration |
LP event (local time) |
18 Nov 2014 |
1918 |
More than 12 hours |
1918 |
20 Nov 2014 |
0224 |
More than 20 hours |
0223 |
21 Nov 2014 |
0108 |
More than 4 hours |
-- |
28 Nov 2014 |
1310 |
More than 4 hours |
1305 |
28 Nov 2014 |
1941 |
More than 8 hours |
-- |
29 Nov 2014 |
1307 |
More than 48 hours |
1305 |
The Unidad Nacional de Gestion de Riesgo de Desastres (UNGRD, National Disaster Risk Management Unit) coordinated an overflight during 19-21 November 2014 and observed fresh ash deposits on the S flank. Ash emissions were also verified in satellite imagery (figure 74) and by reports from nearby communities. The ash dispersed generally SE and SW during 18-21 November. Ash was again observed on the N side of the Arenas crater on 29 November in the early morning after a lengthy period of continuous tremor was recorded the previous day (see table 5).
During the second half of December 2014, SGC reported significant concentrations of ash in the emissions that were associated with continuous tremor episodes. On 15 December seismic signals indicating ash emissions were detected, and then confirmed by a local webcam and nearby residents. The Washington VAAC also noted an ash emission based on a pilot observation extending 16 km S at 7.6 km altitude. The next day they reported a narrow plume of minor volcanic ash extending 22 km SW of the summit at 6.1 km altitude. On 18 and 19 December the Washington VAAC reported ash plumes to altitudes of 7.9 and 9.1 km, respectively, that drifted SSW and dissipated within a few hours. A faint thermal anomaly was also detected. A satellite image taken on 26 December 2014 clearly shows ash deposits in nearly all directions from the Arenas crater (figure 75). Ashfall was reported during this time in the Caldas (W) and Risaralda (SW) departments.
According to the news source Prensa Latina, increased ash emissions at Ruiz prompted closure of the La Nubia airport (22 km NW) on 7 January 2015. On 14 January, the Washington VAAC reported an ash plume visible in satellite imagery extending 16 km SW of the summit at 6.7 km altitude. SGC reported seven episodes of continuous tremor on 4, 7, 14, 24, 26, 28, and 29 January, almost all of which were associated with ash emissions (figures 76). Ashfall was reported several times after these episodes in the Eje Cafetero area to the W of Ruiz.
Occasional minor ash emissions were reported during February 2015 during periods of continuous tremor, but most of the emissions were steam and gas. On 9 February, ashfall was reported in El Libano (29 km E), El Oso (10 km SE), and Murillo (17 km E). Although seismic tremors were diminished during March from the previous month, emissions associated with these tremors contained gases and minor amounts of ash from 8 March through the end of the month. Ashfall was reported after a tremor in the evening on 8 March by personnel from the Parque Nacional Natural Los Nevados (PNNN), the Observatorio Vulcanológico y Sismológico de Manizales (OVSM), and from the municipalities of Manizales and Villamaria (27 km NW).
An increase in several types of seismicity was observed by SGC during April 2015. Volcanic tremor, associated with gas and ash emissions, were confirmed through photographs taken by the webcams (figure 77), and by officials at PNNN and SGC. Ashfall was reported on 20 April in the municipalities of Manizales and Villamaría. The Washington VAAC reported a small puff of gas and minor amounts of ash visible in satellite imagery on 22 April at 7.3 km altitude drifting W about 40 km before dissipating. The MIROVA signal from the MODIS thermal anomaly data shows persistent thermal activity from late October 2014 through mid-April 2015 (figure 73).
Ash emissions were photographed by the webcams located in the Azufrado and Cerro Guali regions on at least eleven dates during May 2015. The Washington VAAC reported possible emissions on 19 and 26 May, but extensive weather clouds prevented satellite observations. Most of the frequent episodes of volcanic tremor during June were also associated with ash emissions which were photographed at least six times during the month. The Observatory at Manizales reported ash moving WNW on 6 June at about 800 m above the summit; weather clouds obscured satellite observations by the Washington VAAC.
A significant increase in ashfall was reported during July 2015 (figure 78), including in the regions of Caldas, Tolima, and Risaralda, as well as by officials in the Park (PNNN). The Observatory at Manizales (OVSM) reported an ash plume on 6 July at about 7.3 km altitude, but it was not observed in satellite data due to weather. The Washington VAAC noted ash emissions visible in satellite data and the webcam on 13 July, with a plume at 7 km altitude drifting NW a few tens of kilometers before dissipating. OVSM reported plumes at about 6 km moving S and W during 18-20 July. Seismic signals indicating emissions were reported on 23 July and observed in the webcam, according to the Washington VAAC. SGC noted seismic tremors and a plume on the morning of 26 July that rose to 3 km above the summit (8.2 km altitude) (figure 79); near summit-level emissions were also observed via the webcam on 26 and 27 July. Seismic data indicated continued occasional bursts of ash drifting W to WSW during the next few days. Ashfall was reported downwind in the municipalities of Chinchina (33 km NW), Palestina (35 km NW), Santa Rosa de Cabal (33 km W), Dosquebradas (40 km WSW), and Pereira (40 km WSW). A bright thermal anomaly was reported in satellite imagery on 31 July, but no ash was observed.
SGC reported greater instability at Ruiz compared with previous months during August 2015. Seismicity related to fracturing and fluid flow both increased during the month. Energy levels for spasmodic tremor related to gas and ash emissions were also generally higher. The Washington VAAC reported ash visible in satellite imagery on 6 August at 7.3 km altitude moving NW as far as 20 km for about 10 hours before dissipating. They noted another possible plume with minor ash on 12 August at 6.7 km drifting 55 km NW from the summit. Ashfall was reported on 23 August from officials of PNNN and residents of Pereira. A brief emission containing minor ash on 28 August, observed in a webcam, was reported by the Washington VAAC as extending about 35 km W. Ongoing emissions rising a few hundred meters above the summit with occasional small bursts of ash continued for the next two days.
The tremor event on 31 August 2015 was the largest since 18 November 2014; ashfall affected numerous cities and municipalities, including Manizales (30 km NW) (with the largest particle sizes towards the E side of the city), La Linda, La Cabaña (36 km NW), and trace amounts in Santagueda (40 km NW), Arauca (48 km NW), Kilómetro 41, Villamaría (27 km NW), Chinchiná, Palestina, and Neira (36 km NW) (figure 80). A news article reported that the La Nubia airport closed that day due to ash emissions. Most ash emissions during the month affected the regions of Caldas and Risaralda NW of the volcano.
The Washington VAAC issued advisory reports on 3, 12-15, 17, 23-24, 27, and 29-30 September 2015. Most reports were based on observations from the webcams near the volcano and/or seismic activity, but many events were not visible in satellite imagery due to weather clouds. Plume altitudes ranged from 5.5 to 7.9 km. Incandescence observed in a webcam on 4 September was followed by a high-energy tremor. The ash plumes reported by the Washington VAAC on 12 and 13 September rose to 7.9 km and drifted in several directions. Ash was moving to the NW below 5.2 km and extended for over 90 km; between 5.2 and 7.9 km altitude it extended about 80 km SW. Ongoing emissions with small bursts of ash continued through 15 September with a new emission to 7.6 km around 1600 that day.
The OVSM reported a strong seismic signal at 0728 on 17 September, but weather clouds blocked observation from satellite imagery of the potential ash plume. The largest tremor of the month occurred in the afternoon of 18 September and ash emissions were verified in the webcams as well as by SGO officials doing fieldwork in the area; ash emissions were also observed in the webcam on 19 September at 1556. SGO reported a seismic event on 22 September that produced water-vapor, gas, and ash plumes that rose 2 km above the crater and drifted mainly NW. An ash plume was confirmed by the Washington VAAC in a satellite image on 27 September extending about 70 km WNW at 6.1 km altitude. An advisory issued on 29 September noted ash to 8.5 km within 16 km of the summit. SGO noted that the 29 September emissions were observed both E and W of the volcano.
The Washington VAAC confirmed continuous ash emissions on 5 October 2015 at 7 km altitude extending about 25 km W of the summit. A gas, steam, and ash plume rose 1.7 km and drifted NW on 8 October. Another report of volcanic ash early on 9 October was not visible in satellite imagery, although a thermal anomaly persisted and seismicity was elevated. A small ash emission was spotted in imagery data drifting WNW late on 9 October. A gas, steam, and ash plume rose 1.8 km and drifted NW on 17 October. A discrete emission of ash rose to 9.1 km altitude on 22 October and drifted N. SGO reported ash emissions observed in webcams on 26 October, but weather clouds prevented satellite observation by the Washington VAAC. A gas, steam, and ash plume rose 1.7 km and drifted NW on 30 October.
SGC first noticed an unusual pattern of seismicity known as a "drumbeat" signal, for which they issued a special report on 20 August 2015. The "drumbeat" signal is characterized by discrete episodes of short duration (about 30 minutes each) that repeat at regular time intervals and show similar waveforms and energy. They are interpreted by volcanologists to represent phenomena associated with the ascent of high-viscosity magma to the surface and thus are an indicator of near-surface extrusion or dome building. SGC recorded the same signal on 8 September, and then again on 22 October (figure 81). Thermal anomalies near the Arenas crater were observed by SGO on 26, 28, and 30 September, and were again recorded on 7, 9, and 10 October 2015.
Seismic activity decreased slightly during November 2015, but there still were episodes of volcanic tremor associated with gas and ash emissions that were recorded by the webcams and personnel at PNNN. Continuous tremor signal was recorded on 1 and 4 November. The "drumbeat" signal was again briefly recorded on 13 November. Thermal anomalies increased in frequency and were observed on 4, 18, 20, 22, 26, and 27 November. SGC confirmed ash emissions on 5, 10, 14, 27, and 29 November. The Washington VAAC reported an ash plume on 14 November at 6.4 km altitude moving SW. SGC captured images of the ash plume from two different webcams (figure 82).
Thermal alerts captured by the University of Hawai'i's MODVOLC system appeared in December 2015 for the first time in several years. They were recorded on 3, 22, 26, and 31 December. Additionally, the MIROVA thermal anomaly system showed significant increases in anomalies at Ruiz during the last three months of 2015 (figure 83).
Minor episodes of volcanic tremor with ash emissions were reported by SGC during the first two weeks of December 2015. A significant volcanic tremor with ash emissions occurred on 20 December, and ashfall was reported by SGC officials, PNNN personnel, and residents near the volcano and in the city of Manizales. The Washington VAAC noted the ash plume at 6.1 km altitude with 25 km of the summit. A gas, steam and ash plume rose 1.7 km and drifted NW on 28 December.
Sulfur Dioxide emissions, June 2012-2015. Persistent, large SO2 plumes were captured from Ruiz many times during June 2012-December 2015 (figure 84 and 85). Every month during this period the OMI (Ozone Measuring Instrument) on the Aura satellite recorded days with SO2 emissions exceeding 2 DU (Dobson Units); many months had more than half of the recording days with values > 2 DU. Dobson Units are the number of molecules in a square centimeter of the atmosphere. If you were to compress all of the sulfur dioxide in a column of the atmosphere into a flat layer at standard temperature and pressure, one Dobson Unit would be 0.01 millimeters thick and contain 0.0285 grams of SO2 per square meter.
Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.
Information Contacts: Servicio Geologico Colombiano (SGC), Observatorio Vulcanologico Y Sismologico Manizales, Diagonal 53 N0. 34 - 53 - Bogotá D.C. Colombia (URL: http://www2.sgc.gov.co/Manizales.aspx); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Prensa Latina, Agencia Informativa Latinoamericana (URL: http://www.plenglish.com/).
Turrialba (Costa Rica) — June 2017
Cite this Report
Turrialba
Costa Rica
10.025°N, 83.767°W; summit elev. 3340 m
All times are local (unless otherwise noted)
Persistent explosions and ash emissions during 2015 and 2016
Strong fumarolic activity characterized activity at Costa Rica's Turrialba for several decades before a phreatic eruption in January 2010 resulted in ashfall tens of kilometers from the volcano. Since the January-March 2010 eruption, there have been one or two brief eruptive episodes with ash emissions each year, generally lasting days to weeks. An episode from 29 October through 8 December 2014 began with an ash explosion, followed by continuous emissions on 30 and 31 October. Several additional explosions with ash emissions occurred during November, followed by a strong Strombolian explosion on 8 December that included ashfall up to 1 cm thick in places, and ballistics deposited 300 m from the vent (BGVN 40:04). This report covers the increasing ash-emission activity during 2015 and 2016. Information comes primarily from the Observatorio Vulcanologico y Sysmologico de Costa Rica-Universidad Nacional (OVSICORI-UNA). Aviation alerts are issued by the Washington Volcanic Ash Advisory Center (VAAC).
Turrialba began a new eruptive episode with an ash plume on 8 March 2015. Frequent, intermittent ash-bearing events continued through mid-May, and tapered off during June, with a final event reported on 22 June 2015. The larger plumes rose 2-2.5 km above the vent rim and drifted in many different directions, leading to ashfall throughout the region as far as 40 km from the volcano. A 'bubble of magmatic gas' dispersed accumulated ash from the vent on 15 August 2015. An eruption on 16 October 2015 was the largest in a year, and the start of a new series of emissions that persisted through the end of October, dispersing ash for tens of kilometers in most directions. A brief period of ash emissions between 2 and 8 February 2016 deposited ash within a few kilometers of the summit crater. Ash emissions and frequent small explosions between 28 April and 7 May preceded a longer series of emissions that began with a significant explosion on 16 May, included significant ashfall in regions within 30 km, and lasted until late July 2016. Strombolian activity and pyroclastic flows were also reported during late May; ashfall was reported up to 100 km SW. A new series of explosions and ash emissions began on 13 September that continued nearly uninterrupted through the end of the year, although ashfall reports were greatest in October 2016.
Activity during 2015. Little activity was reported during January and February 2015. Seismicity slowly increased from short-duration, low-amplitude, higher-frequency events in January to more lower-frequency events in February. Very-long-period earthquakes (VLP's) began to register in February and became more pronounced during March, when some were associated with explosions and ash emissions. The first, short, effusive emissions with low ash content occurred on 8 March. The largest events with prolonged ash emissions occurred on 12 (figure 43) and 15 March.
Based on webcam views, weather models, and OVSICORI-UNA updates, the Washington VAAC reported that on 8 March diffuse ash emissions rose from the Cráter Oeste (West Crater) and seismicity increased. OVSICORI-UNA reported more ash emissions on 11 and 12 March. Almost continuous ash emissions were observed in the afternoon of 12 March punctuated by two noticeable explosions. Ash plumes rose as high as 2 km above the crater and drifted NW. Ashfall also occurred in the Valle Central and in the capital of San José (30 km WSW), and caused the closure of the Juan Santamaria International Airport (48 km W), which reopened during the evening on 13 March. The local Tobias Bolanos airport (40 km WSW) closed intermittently. On 13 March three short-duration explosions were reported. According to the Washington VAAC, ash plumes that day drifted 45 km NE at an altitude of 9.1 km, and drifted over 35 km W at an altitude of 6.1 km.
On 18 March, OVSICORI-UNA reported that gas, vapor, and ash plumes rose from Cráter Oeste and seismicity remained high. Observers in Finca La Central (2 km SW) noted gas-and-steam emissions. On 19 March two gas-and-water-vapor emissions were observed; one from Cráter Central contained a small amount of ash. At 1400 the webcam recorded strong emissions of gas, vapor, and tephra from Cráter Oeste. On 23 March a gas, vapor, and ash plume rose from Cráter Oeste, causing ashfall in areas E and SE of the crater including in the Cráter Central and El Mirador. In addition, a dense and vigorous gas-and-vapor plume caused Parque Nacional Volcán Turrialba authorities to recommend masks for protection against gas inhalation.
There were 11 gas-and-ash eruptions and 10 additional smaller ash emissions during April 2015. OVSICORI-UNA reported that a small ash eruption occurred on 3 April, causing ashfall in nearby areas including Silvia and La Central. On 5 April, an eruption generated a plume that rose 500 m and caused ashfall in Curridabat (31 km WSW), Granadilla (29 km WSW), San Pedro, Desamparados (35 km WSW), Aserrí (40 km SW), San Sebastián (37 km WSW), and Escazú (42 km WSW). The eruption of 7 April was the largest of the month (figure 44), and although it occurred at night, the visible ash plume rose to about 2.5 km above the summit. Ash and sulfur odors were reported in many areas of the city of San José (30-40 km WSW). The largest quantities of ash fell in the La Picada and La Silvia communities a few kilometers NNE of the volcano, and affected several hundred cows and other animals at dairy farms. Small ash emissions occurred on 8, 16, and 18 April, and every day during 20-24 April. The ash on 20 April dispersed N and affected Guápiles (20 km N). On 23 and 24 April, ash dispersed NW and affected the inhabitants of the Valle Central, and was reported at Tobias Bolanos and San Juan Santamaria international airports.
During May 2015, OVSICORI-UNA recorded 39 eruptions with ash emissions. In general, the plumes did not rise more than 500 m above the crater, and a few were accompanied by small pyroclastic flows. The largest events were on 1 and 4 May when emissions lasted for 4 and 23 minutes, respectively. The 4 May event produced an ash plume that rose 2.5 km and drifted SW. The eruption ejected ballistics 1 km from the crater. Most of the ashfall occurred around the crater. Reports of minor ashfall and sulfur odors came from communities 30-40 km WSW around the city of San José (Moravia, Coronado, Mata de Plátano, La Uruca, Guadalupe, Tibás, Calle Blancos, San Pedro Montes de Oca, Sabanilla Montes de Oca, Pavas, Zapote, Escazú, Paso Ancho, Curridabat, Santa Ana), and a few localities in the eastern region of Heredia (40 km W). Additional ash emissions were reported on 6, 11, 14, and 18 May. Although the multiple emissions on 18 May lasted as long or longer than earlier events (23 and 25 minutes), they were lower energy, and the plumes rose only 400-500 m above the summit crater.
OVSICORI-UNA reported that ash emissions occurred on 1, 4, 7, and 22 June 2015. The eruption on 1 June was the largest, and the small ash eruption on the afternoon of 22 June deposited ash mainly in the vicinity of the volcano to the SW (figure 45). They also reported a significant decrease in the seismic activity, such that by late June, the RSAM values had returned to levels similar to October 2014, prior to the start of the most recent eruptive events. Significant rains after April 2015 led to a shallow lake forming in the Cráter Oeste. Images taken in July of the Cráter Central showed deposits of eruptive material more than 2 m thick compared with May 2014.
Seismicity continued to decrease during August 2015. However, an event on 15 August comprised nine hours of tremor associated with the ascent and escape of a bubble of magmatic gas, according to OVSICORI-UNA. The resulting ash ejection was believed to be material that had accumulated at the bottom of the crater. Seismicity remained low during September, with no reported ash emissions.
An increase in seismicity began on 1 October 2015, and until a large eruption on 16 October (figure 46). This was followed on 23 October by a lengthy sequence of ash emissions that continued until 31 October. The 16 October eruption was the largest in terms of energy since the 30 October 2014 eruption. Most of the ash fell on the summit, but a plume headed NW and minor ashfall was reported in parts of the Valle Central such as la Unión, Concepción de Tres Ríos, Montes de Oca (30 km WSW), San Rafael de Coronado (26 km WSW), and Moravia (27 km W). A strong odor of sulfur was reported in Tierra Blanca (18 km SW), Pacayas (12 km SSW), Moravia, and Guadalupe (32 km WSW).
Seismicity increased between 16 and 23 October, when new ash emissions began and were accompanied by pyroclastic flows. Between 23 and 31 October, OVSICORI-UNA reported 57 small emissions and 120 explosions of varying size and characteristics. The Washington VAAC was unable to see most of the emissions in satellite imagery due to weather clouds, however the plumes on 31 October were reported at 4.3 km altitude moving W. Both seismic and eruptive activity declined considerably during November 2015. OVSICORI-UNA reported one small eruption on 27 November and a small explosion on 30 November; they did not mention ash related to either event.
Activity during 2016. OVSICORI-UNA reported a brief emission of gases and volcanic ash to 500 m above the crater on 2 February 2016. Residents of La Silva (2 km NW) reported a sulfur odor and ashfall on 5 February, and additional emissions above Cráter Oeste on 6 February. The Washington VAAC noted gray emissions on 8 February. The next report, on 3 April, described an explosion lasting less than one minute that generated a small gas-and-ash plume. Seismicity increased on 28 April, followed by ash emissions and frequent small explosions on 30 April and 1 May from Cráter Oeste. Gas-and-tephra emissions increased on 1 May with minor amounts of ash deposited in La Central (4 km SW) and La Pastora (6 km SSE). A larger ash plume on 2 May rose 2 km above the summit, and was followed by frequent explosions producing 1-km-high ash plumes the next day. Frequent explosions were again recorded during 3-5 May with ash plumes rising up to 1 km above Cráter Oeste. Small lahars were reported on 7 May, and small, frequent ash emissions accompanied spasmodic tremor on 8 May.
A significant explosion on 16 May 2016, that caused abundant ashfall on farms 2.5 km WNW, was the start of a new episode that lasted for more than two months. Frequent ash emissions continued the next day, although seismic tremor amplitude decreased substantially from the initial explosion. Numerous gas-and-ash emissions were reported during 17-19 May. Ashfall was reported in areas of Valle Central (30-40 km W), including Coronado, Guadalupe, and Heredia (38 km W). On 20 May a Strombolian phase began, producing an ash-and-gas plume that rose 3 km and drifted W. The eruptive column collapsed, generating pyroclastic flows that reached the nearby ranches of La Silva and La Picada, and the Cráter Central. According to a news article, some airlines canceled or delayed flights into the Juan Santamaría International Airport (48 km W).
Gas-and-ash emissions continued during 21-22 May; plumes rose as high as 600 m above the summit. Villagers reported ashfall in areas of San José (40 km WSW), Cartago (25 km SW), Alajuela (49 km W), Heredia (38 km W), Puriscal (65 km WSW), and Jaco (100 km SW). Ash plumes rose as high as 1 km and drifted W and SW on 23 May, causing ashfall in areas downwind including Tapezco (Zarcero-Alfaro Ruíz, 70 km WNW), Guácima de Alajuela (55 km WSW), Barva (39 km W), Finca Lara (17 km W), Finca Laguna (23 km WNW), Grecia, and Naranjo. A strong explosion on 24 May generated new ash plumes that rose 3.5 km and drifted SW. This event ejected large rocks around the crater and led to ashfall in multiple areas including Santa Rosa de Oreamuno, Santa Cecilia de Heredia, and San Francisco de Heredia, tens of kilometers to the W. Large amounts of ash (deposits 2-7 mm thick) fell in Carthage, Heredia (38 km W), San José (40 km W), and Alajuela (49 km W) from more explosions on 25 May that also ejected incandescent material.
A small explosion on 1 June 2016 began a new sequence of ash emissions, with plumes rising 1-2 km, that lasted until 4 June. Ashfall was reported in a number of communities including San Rafael de Moravia (31 km WSW), Sabana (38 km WSW), Buenos Aires (17 km N), and Pococí (45 km N) during 2-3 June. Ash emissions and explosions on 10 June caused ashfall and/or a sulfur odor in multiple areas of Valle Central including San Luis, Santo Domingo, Moravia, San Francisco, and Coronado. OVSICORI-UNA reported increased seismic activity on 16 June; the webcam showed areas of incandescence. Morning satellite imagery showed a diffuse ash plume extending 45 km WNW of the summit that dissipated by mid-afternoon. Tremor increased on 23 June, followed by a lengthy sequence of tremor episodes and ash emissions that lasted through 26 June; ashfall was reported in several neighborhoods in San José and Heredia. Increased tremor on 28 June was likely accompanied by ash emissions, but darkness and clouds obscured views from the webcam.
Strong tremor on 7 July 2016 was followed by an ash plume that rose 1 km above the crater and likely drifted WNW and WSW. Ashfall was recorded in many neighborhoods downwind, in San José, Heredia, and Turrubares. Emissions of large amounts of ash were visible in the webcam the next day, and ashfall was reported in many of the same areas as the day before. The Washington VAAC issued daily reports from 7 to 15 July of diffuse ash emissions observed in the webcam, generally rising less than 500 m above the summit. A new series of explosions during 22-25 July were recorded seismically, but visual observations were difficult due to fog. Hot rock fragments, gas, and ash were noted as high as 500 m above the crater on 24 July. Ash plumes rose to 3 km above the crater and drifted NW, W, and SW the next day. OVSICORI-UNA reported possible volcanic ash again on 29 July and 1 August, but weather clouds prevented views in satellite imagery.
Another new series of explosions and ash emissions began on 13 September 2016. They were reported daily from 15 September to the end of the month. Most plumes rose less than 1 km above the crater, but explosions on 19 September generated ash plumes that rose as high as 4 km and resulted in ashfall in many communities in the Valle Central, including those in San José (35 km WSW), Heredia (38 km W), Alajuela, and Cartago (25 km SW). According to news articles, flights in and out of the Juan Santamaría International Airport were canceled; the airport remained closed at least through the morning of 20 September. The Pavas San José Tobías Bolaños Airport in San José was also temporarily closed. Plumes that rose as high as 2 km were reported on 22, 26, and 27 September.
During a 22-24 September field visit OVSICORI-UNA scientists observed a significant lahar in the Rio Toro Amarillo which flows NW from Turrialba, that mobilized logs and large rocks in a 1.5-m-deep flow (figure 47). They had observed 3 cm of fresh ash in the drainage prior to the start of the rainfall on 22 September.
From 26 September through 24 November 2016 multiple reports were issued by the Washington VAAC virtually every day, usually reporting minor emissions of gas and ash. OVSICORI reported intermittent steam, gas, and ash emissions rising 500-1,000 m during all of October 2016. Ashfall was reported in Guadeloupe on 11 October. On 16 October OVSICORI-UNA noted that the almost constant ash emission in the previous few days affected the operation and communication of various scientific instruments installed at the top of the volcano and surrounding areas; communication with two seismic stations located near the summit was lost. Webcams showed continuing ash emissions rising as high as 1 km during 16-18 October. During 18-25 October, passive ash emissions continued, causing ashfall in Siquirres (30 ENE), Guacimo (23 km NNE), Guapiles (21 km N), Moravia (27 km W), San José (36 km WSW), Tibás (35 km WSW), Guadalupe (32 km WSW), Curridabat (32 km WSW), Tres Ríos (27 km SW), San Pedro (32 km WSW), and various areas of the Valle Central. Ashfall was reported in Nubes de Coronado (25 km W) on 28 October.
There were fewer reports of ashfall during November, although many areas of the Valle Central reported ashfall during 9-13 November. A small quantity of ash fell in Cartago and Paraiso de Cartago (25 km SE) on 20 November. The Washington VAAC again issued near-daily reports of ash and gas plumes between 6 December and the end of 2016. The weak and sporadic emissions generally rose only a few hundred meters, drifting in multiple directions, and there were few reports of ashfall in the surrounding communities.
Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.
Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/).
Unnamed
Tonga
20.852°S, 175.55°W; summit elev. -296 m
All times are local (unless otherwise noted)
Plumes of discolored water seen in satellite imagery during 23-28 January 2017
Murray Ford, a coastal geomorphologist from New Zealand's Auckland University, reported in a Radio New Zealand story on 1 February 2017 that satellite imagery showed a large plume of discolored water between Tongatapu and the volcanic Hunga Tonga-Hunga Ha'apai islands. The activity seen by Murray was on a Landsat 8 OLI (Operational Land Imager) satellite image acquired on 27 January 2017 (figure 2). which showed a bright area of discolored water above the summit and a broader area of discolored water immediately NW, likely from previous events. According to volcanologist Brad Scott (GNS Science) there are additional satellite images from 23, 26, 28, and 29 January 2017, indicating that the eruption had been ongoing for over a week. His colleagues in Tonga indicated a possible associated steam plume, but cloud cover made observations uncertain.
A report prepared by Taylor (2000) noted that there had been four previous reports of activity from this location: submarine activity in August 1911, a steam plume in July 1923, discolored water in 1970, and an ephemeral island near the end of an eruptive episode during 27 December 1998-14 January 1999 (also see BGVN 24:03). In a blog post about the latest eruption, Brad Scott (GNS Science) also stated that there had been discolored water and felt earthquakes sometime in 2007.
Reference: Taylor, P., 2000, A volcanic hazards assessment following the January 1999 eruption of Submarine Volcano III, Tofua Volcanic Arc, Kingdom of Tonga, Australian Volcanological Investigations (AVI) Occasional Report No. 99/01, 5 August 2000, 7 p.
Geologic Background. An unnamed submarine volcano is located 35 km NW of the Niu Aunofo lighthouse on Tongatapu Island. Tongatapu is a coral island at the southern end of an island chain paralleling the Tofua volcanic arc to the E. The volcano was constructed at the S end of a submarine ridge segment of the Tofua volcanic arc extending NNE to Falcon Island. The first documented eruptions took place in 1911 and 1923; an ephemeral island was formed in 1999.
Information Contacts: NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/, https://earthobservatory.nasa.gov/images/89565/underwater-eruption-near-tongatapu); Brad Scott, New Zealand GeoNet Project, a collaboration between the Earthquake Commission and GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand (URL: http://www.geonet.org.nz/, http://www.geonet.org.nz/news/1usjOmF4LqaI64qScMocuW); Radio New Zealand (URL: http://www.radionz.co.nz/international/pacific-news/323569/scientist-discovers-underwater-eruption-in-tonga).