Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Masaya (Nicaragua) Lava lake level drops but remains active through May 2020; weak gas plumes

Shishaldin (United States) Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Krakatau (Indonesia) Strombolian explosions, ash plumes, and crater incandescence during April 2020

Taal (Philippines) Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Unnamed (Tonga) Additional details and pumice raft drift maps from the August 2019 submarine eruption

Klyuchevskoy (Russia) Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Nyamuragira (DR Congo) Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyiragongo (DR Congo) Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Kavachi (Solomon Islands) Discolored water plumes seen using satellite imagery in 2018 and 2020

Kuchinoerabujima (Japan) Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Soputan (Indonesia) Minor ash emissions during 23 March and 2 April 2020

Heard (Australia) Eruptive activity including a lava flow during October 2019-April 2020



Masaya (Nicaragua) — June 2020 Citation iconCite this Report

Masaya

Nicaragua

11.985°N, 86.165°W; summit elev. 594 m

All times are local (unless otherwise noted)


Lava lake level drops but remains active through May 2020; weak gas plumes

Masaya, which is about 20 km NW of the Nicaragua’s capital of Managua, is one of the most active volcanoes in that country and has a caldera that contains a number of craters (BGVN 43:11). The Santiago crater is the one most currently active and it contains a small lava lake that emits weak gas plumes (figure 85). This report summarizes activity during February through May 2020 and is based on Instituto Nicaragüense de Estudios Territoriales (INETER) monthly reports and satellite data. During the reporting period, the volcano was relatively calm, with only weak gas plumes.

Figure (see Caption) Figure 85. Satellite images of Masaya from Sentinel-2 on 18 April 2020, showing and a small gas plume drifting SW (top, natural color bands 4, 3, 2) and the lava lake (bottom, false color bands 12, 11, 4). Courtesy of Sentinel Hub Playground.

According to INETER, thermal images of the lava lake and temperature data in the fumaroles were taken using an Omega infrared gun and a forward-looking infrared (FLIR) SC620 thermal camera. The temperatures above the lava lake have decreased since November 2019, when the temperature was 287°C, dropping to 96°C when measured on 14 May 2020. INETER attributed this decrease to subsidence in the level of the lava lake by 5 m which obstructed part of the lake and concentrated the gas emissions in the weak plume. Convection continued in the lava lake, which in May had decreased to a diameter of 3 m. Many landslides had occurred in the E, NE, and S walls of the crater rim due to rock fracturing caused by the high heat and acidity of the emissions.

During the reporting period, the MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system recorded numerous thermal anomalies from the lava lake based on MODIS data (figure 86). Infrared satellite images from Sentinel-2 regularly showed a strong signature from the lava lake through 18 May, after which the volcano was covered by clouds.

Figure (see Caption) Figure 86. Thermal anomalies at Masaya during February through May 2020. The larger anomalies with black lines are more distant and not related to the volcano. Courtesy of MIROVA.

Measurements of sulfur dioxide (SO2) made by INETER in the section of the Ticuantepe - La Concepción highway (just W of the volcano) with a mobile DOAS system varied between a low of just over 1,000 metric tons/day in mid-November 2019 to a high of almost 2,500 tons/day in late May. Temperatures of fumaroles in the Cerro El Comalito area, just ENE of Santiago crater, ranged from 58 to 76°C during February-May 2020, with most values in the 69-72°C range.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras caldera and is itself a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The Nindirí and Masaya cones, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6,500 years ago. Historical lava flows cover much of the caldera floor and there is a lake at the far eastern end. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals have caused health hazards and crop damage.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Shishaldin (United States) — June 2020 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Intermittent thermal activity and a possible new cone at the summit crater during February-May 2020

Shishaldin is located near the center of Unimak Island in Alaska, with the current eruption phase beginning in July 2019 and characterized by ash plumes, lava flows, lava fountaining, pyroclastic flows, and lahars. More recently, in late 2019 and into January 2020, activity consisted of multiple lava flows, pyroclastic flows, lahars, and ashfall events (BGVN 45:02). This report summarizes activity from February through May 2020, including gas-and-steam emissions, brief thermal activity in mid-March, and a possible new cone within the summit crater. The primary source of information comes from the Alaska Volcano Observatory (AVO) reports and various satellite data.

Volcanism during February 2020 was relatively low, consisting of weakly to moderately elevated surface temperatures during 1-4 February and occasional small gas-and-steam plumes (figure 37). By 6 February both seismicity and surface temperatures had decreased. Seismicity and surface temperatures increased slightly again on 8 March and remained elevated through the rest of the reporting period. Intermittent gas-and-steam emissions were also visible from mid-March (figure 38) through May. Minor ash deposits visible on the upper SE flank may have been due to ash resuspension or a small collapse event at the summit, according to AVO.

Figure (see Caption) Figure 37. Photo of a gas-and-steam plume rising from the summit crater at Shishaldin on 22 February 2020. Photo courtesy of Ben David Jacob via AVO.
Figure (see Caption) Figure 38. A Worldview-2 panchromatic satellite image on 11 March 2020 showing a gas-and-steam plume rising from the summit of Shishaldin and minor ash deposits on the SE flank (left). Aerial photo showing minor gas-and-steam emissions rising from the summit crater on 11 March (right). Some erosion of the snow and ice on the upper flanks is a result of the lava flows from the activity in late 2019 and early 2020. Photo courtesy of Matt Loewen (left) and Ed Fischer (right) via AVO.

On 14 March, lava and a possible new cone were visible in the summit crater using satellite imagery, accompanied by small explosion signals. Strong thermal signatures due to the lava were also seen in Sentinel-2 satellite data and continued strongly through the month (figure 39). The lava reported by AVO in the summit crater was also reflected in satellite-based MODIS thermal anomalies recorded by the MIROVA system (figure 40). Seismic and infrasound data identified small explosions signals within the summit crater during 14-19 March.

Figure (see Caption) Figure 39. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show a bright hotspot (yellow-orange) at the summit crater of Shishaldin during mid-March 2020 that decreases in intensity by late March. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. MIROVA thermal data showing a brief increase in thermal anomalies during late March 2020 and on two days in late April between periods of little to no activity. Courtesy of MIROVA.

AVO released a Volcano Observatory Notice for Aviation (VONA) stating that seismicity had decreased by 16 April and that satellite data no longer showed lava or additional changes in the crater since the start of April. Sentinel-2 thermal satellite imagery continued to show a weak hotspot in the crater summit through May (figure 41), which was also detected by the MIROVA system on two days. A daily report on 6 May reported a visible ash deposit extending a short distance SE from the summit, which had likely been present since 29 April. AVO noted that the timing of the deposit corresponds to an increase in the summit crater diameter and depth, further supporting a possible small collapse. Small gas-and-steam emissions continued intermittently and were accompanied by weak tremors and occasional low-frequency earthquakes through May (figure 42). Minor amounts of sulfur dioxide were detected in the gas-and-steam emissions during 20 and 29 April, and 2, 16, and 28 May.

Figure (see Caption) Figure 41. Sentinel-2 thermal satellite images (bands 12, 11, 8A) show occasional gas-and-steam emissions rising from Shishaldin on 26 February (top left) and 24 April 2020 (bottom left) and a weak hotspot (yellow-orange) persisting at the summit crater during April and early May 2020. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 42. A Worldview-1 panchromatic satellite image showing gas-and-steam emissions rising from the summit of Shishaldin on 1 May 2020 (local time) (left). Aerial photo of the N flank of Shishaldin with minor gas-and-steam emissions rising from the summit on 8 May (right). Photo courtesy of Matt Loewen (left) and Levi Musselwhite (right) via AVO.

Geologic Background. The beautifully symmetrical Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steam plume often rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the W and NE sides at 1,500-1,800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of Strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Krakatau (Indonesia) — June 2020 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Strombolian explosions, ash plumes, and crater incandescence during April 2020

Krakatau, located in the Sunda Strait between Indonesia’s Java and Sumatra Islands, experienced a major caldera collapse around 535 CE, forming a 7-km-wide caldera ringed by three islands. On 22 December 2018, a large explosion and flank collapse destroyed most of the 338-m-high island of Anak Krakatau (Child of Krakatau) and generated a deadly tsunami (BGVN 44:03). The near-sea level crater lake inside the remnant of Anak Krakatau was the site of numerous small steam and tephra explosions. A larger explosion in December 2019 produced the beginnings of a new cone above the surface of crater lake (BGVN 45:02). Recently, volcanism has been characterized by occasional Strombolian explosions, dense ash plumes, and crater incandescence. This report covers activity from February through May 2020 using information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), the Darwin Volcanic Ash Advisory Center (VAAC), and various satellite data.

Activity during February 2020 consisted of dominantly white gas-and-steam emissions rising 300 m above the crater, according to PVMBG. According to the Darwin VAAC, a ground observer reported an eruption on 7 and 8 February, but no volcanic ash was observed. During 10-11 February, a short-lived eruption was detected by seismograms which produced an ash plume up to 1 km above the crater drifting E. MAGMA Indonesia reported two eruptions on 18 March, both of which rose to 300 m above the crater. White gas-and-steam emissions were observed for the rest of the month and early April.

On 10 April PVMBG reported two eruptions, at 2158 and 2235, both of which produced dark ash plumes rising 2 km above the crater followed by Strombolian explosions ejecting incandescent material that landed on the crater floor (figures 108 and 109). The Darwin VAAC issued a notice at 0145 on 11 April reporting an ash plume to 14.3 km altitude drifting WNW, however this was noted with low confidence due to the possible mixing of clouds. During the same day, an intense thermal hotspot was detected in the HIMAWARI thermal satellite imagery and the NASA Global Sulfur Dioxide page showed a strong SO2 plume at 11.3 km altitude drifting W (figure 110). The CCTV Lava93 webcam showed new lava flows and lava fountaining from the 10-11 April eruptions. This activity was evident in the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data (figure 111).

Figure (see Caption) Figure 108. Webcam (Lava93) images of Krakatau on 10 April 2020 showing Strombolian explosions, strong incandescence, and ash plumes rising from the crater. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 109. Webcam image of incandescent Strombolian explosions at Krakatau on 10 April 2020. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 110. Strong sulfur dioxide emissions rising from Krakatau and drifting W were detected using the TROPOMI instrument on the Sentinel-5P satellite on 11 April 2020 (top row). Smaller volumes of SO2 were visible in Sentinel-5P/TROPOMI maps on 13 (bottom left) and 19 April (bottom right). Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 111. Thermal activity at Anak Krakatau from 29 June-May 2020 shown on a MIROVA Log Radiative Power graph. The power and frequency of the thermal anomalies sharply increased in mid-April. After the larger eruptive event in mid-April the thermal anomalies declined slightly in strength but continued to be detected intermittently through May. Courtesy of MIROVA.

Strombolian activity rising up to 500 m continued into 12 April and was accompanied by SO2 emissions that rose 3 km altitude, drifting NW according to a VAAC notice. PVMBG reported an eruption on 13 April at 2054 that resulted in incandescence as high as 25 m above the crater. Volcanic ash, accompanied by white gas-and-steam emissions, continued intermittently through 18 April, many of which were observed by the CCTV webcam. After 18 April only gas-and-steam plumes were reported, rising up to 100 m above the crater; Sentinel-2 satellite imagery showed faint thermal anomalies in the crater (figure 112). SO2 emissions continued intermittently throughout April, though at lower volumes and altitudes compared to the 11th. MODIS satellite data seen in MIROVA showed intermittent thermal anomalies through May.

Figure (see Caption) Figure 112. Sentinel-2 thermal satellite images showing the cool crater lake on 20 March (top left) followed by minor heating of the crater during April and May 2020. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Taal (Philippines) — June 2020 Citation iconCite this Report

Taal

Philippines

14.002°N, 120.993°E; summit elev. 311 m

All times are local (unless otherwise noted)


Eruption on 12 January with explosions through 22 January; steam plumes continuing into March

Taal volcano is in a caldera system located in southern Luzon island and is one of the most active volcanoes in the Philippines. It has produced around 35 recorded eruptions since 3,580 BCE, ranging from VEI 1 to 6, with the majority of eruptions being a VEI 2. The caldera contains a lake with an island that also contains a lake within the Main Crater (figure 12). Prior to 2020 the most recent eruption was in 1977, on the south flank near Mt. Tambaro. The United Nations Office for the Coordination of Humanitarian Affairs in the Philippines reports that over 450,000 people live within 40 km of the caldera (figure 13). This report covers activity during January through February 2020 including the 12 to 22 January eruption, and is based on reports by Philippine Institute of Volcanology and Seismology (PHIVOLCS), satellite data, geophysical data, and media reports.

Figure (see Caption) Figure 12. Annotated satellite images showing the Taal caldera, Volcano Island in the caldera lake, and features on the island including Main Crater. Imagery courtesy of Planet Inc.
Figure (see Caption) Figure 13. Map showing population totals within 14 and 17 km of Volcano Island at Taal. Courtesy of the United Nations Office for the Coordination of Humanitarian Affairs (OCHA).

The hazard status at Taal was raised to Alert Level 1 (abnormal, on a scale of 0-5) on 28 March 2019. From that date through to 1 December there were 4,857 earthquakes registered, with some felt nearby. Inflation was detected during 21-29 November and an increase in CO2 emission within the Main Crater was observed. Seismicity increased beginning at 1100 on 12 January. At 1300 there were phreatic (steam) explosions from several points inside Main Crater and the Alert Level was raised to 2 (increasing unrest). Booming sounds were heard in Talisay, Batangas, at 1400; by 1402 the plume had reached 1 km above the crater, after which the Alert Level was raised to 3 (magmatic unrest).

Phreatic eruption on 12 January 2020. A seismic swarm began at 1100 on 12 January 2020 followed by a phreatic eruption at 1300. The initial activity consisted of steaming from at least five vents in Main Crater and phreatic explosions that generated 100-m-high plumes. PHIVOLCS raised the Alert Level to 2. The Earth Observatory of Singapore reported that the International Data Center (IDC) for the Comprehensive test Ban Treaty (CTBT) in Vienna noted initial infrasound detections at 1450 that day.

Booming sounds were heard at 1400 in Talisay, Batangas (4 km NNE from the Main Crater), and at 1404 volcanic tremor and earthquakes felt locally were accompanied by an eruption plume that rose 1 km; ash fell to the SSW. The Alert Level was raised to 3 and the evacuation of high-risk barangays was recommended. Activity again intensified around 1730, prompting PHIVOLCS to raise the Alert Level to 4 and recommend a total evacuation of the island and high-risk areas within a 14-km radius. The eruption plume of steam, gas, and tephra significantly intensified, rising to 10-15 km altitude and producing frequent lightning (figures 14 and 15). Wet ash fell as far away as Quezon City (75 km N). According to news articles schools and government offices were ordered to close and the Ninoy Aquino International Airport (56 km N) in Manila suspended flights. About 6,000 people had been evacuated. Residents described heavy ashfall, low visibility, and fallen trees.

Figure (see Caption) Figure 14. Lightning produced during the eruption of Taal during 1500 on 12 January to 0500 on 13 January 2020 local time (0700-2100 UTC on 12 January). Courtesy of Chris Vagasky, Vaisala.
Figure (see Caption) Figure 15. Lightning strokes produced during the first days of the Taal January 2020 eruption. Courtesy of Domcar C Lagto/SIPA/REX/Shutterstock via The Guardian.

In a statement issued at 0320 on 13 January, PHIVOLCS noted that ashfall had been reported across a broad area to the north in Tanauan (18 km NE), Batangas; Escala (11 km NW), Tagaytay; Sta. Rosa (32 km NNW), Laguna; Dasmariñas (32 km N), Bacoor (44 km N), and Silang (22 km N), Cavite; Malolos (93 km N), San Jose Del Monte (87 km N), and Meycauayan (80 km N), Bulacan; Antipolo (68 km NNE), Rizal; Muntinlupa (43 km N), Las Piñas (47 km N), Marikina (70 km NNE), Parañaque (51 km N), Pasig (62 km NNE), Quezon City, Mandaluyong (62 km N), San Juan (64 km N), Manila; Makati City (59 km N) and Taguig City (55 km N). Lapilli (2-64 mm in diameter) fell in Tanauan and Talisay; Tagaytay City (12 km N); Nuvali (25 km NNE) and Sta (figure 16). Rosa, Laguna. Felt earthquakes (Intensities II-V) continued to be recorded in local areas.

Figure (see Caption) Figure 16. Ashfall from the Taal January 2020 eruption in Lemery (top) and in the Batangas province (bottom). Photos posted on 13 January, courtesy of Ezra Acayan/Getty Images, Aaron Favila/AP, and Ted Aljibe/AFP via Getty Images via The Guardian.

Magmatic eruption on 13 January 2020. A magmatic eruption began during 0249-0428 on 13 January, characterized by weak lava fountaining accompanied by thunder and flashes of lightning. Activity briefly waned then resumed with sporadic weak fountaining and explosions that generated 2-km-high, dark gray, steam-laden ash plumes (figure 17). New lateral vents opened on the N flank, producing 500-m-tall lava fountains. Heavy ashfall impacted areas to the SW, including in Cuenca (15 km SSW), Lemery (16 km SW), Talisay, and Taal (15 km SSW), Batangas (figure 18).

Figure (see Caption) Figure 17. Ash plumes seen from various points around Taal in the initial days of the January 2020 eruption, posted on 13 January. Courtesy of Eloisa Lopez/Reuters, Kester Ragaza/Pacific Press/Shutterstock, Ted Aljibe/AFP via Getty Images, via The Guardian.
Figure (see Caption) Figure 18. Map indicating areas impacted by ashfall from the 12 January eruption through to 0800 on the 13th. Small yellow circles (to the N) are ashfall report locations; blue circles (at the island and to the S) are heavy ashfall; large green circles are lapilli (particles measuring 2-64 mm in diameter). Modified from a map courtesy of Lauriane Chardot, Earth Observatory of Singapore; data taken from PHIVOLCS.

News articles noted that more than 300 domestic and 230 international flights were cancelled as the Manila Ninoy Aquino International Airport was closed during 12-13 January. Some roads from Talisay to Lemery and Agoncillo were impassible and electricity and water services were intermittent. Ashfall in several provinces caused power outages. Authorities continued to evacuate high-risk areas, and by 13 January more than 24,500 people had moved to 75 shelters out of a total number of 460,000 people within 14 km.

A PHIVOLCS report for 0800 on the 13th through 0800 on 14 January noted that lava fountaining had continued, with steam-rich ash plumes reaching around 2 km above the volcano and dispersing ash SE and W of Main Crater. Volcanic lighting continued at the base of the plumes. Fissures on the N flank produced 500-m-tall lava fountains. Heavy ashfall continued in the Lemery, Talisay, Taal, and Cuenca, Batangas Municipalities. By 1300 on the 13th lava fountaining generated 800-m-tall, dark gray, steam-laden ash plumes that drifted SW. Sulfur dioxide emissions averaged 5,299 metric tons/day (t/d) on 13 January and dispersed NNE (figure 19).

Figure (see Caption) Figure 19. Compilation of sulfur dioxide plumes from TROPOMI overlaid in Google Earth for 13 January from 0313-1641 UT. Courtesy of NASA Global Sulfur Dioxide Monitoring Page and Google Earth.

Explosions and ash emission through 22 January 2020. At 0800 on 15 January PHIVOLCS stated that activity was generally weaker; dark gray, steam-laden ash plumes rose about 1 km and drifted SW. Satellite images showed that the Main Crater lake was gone and new craters had formed inside Main Crater and on the N side of Volcano Island.

PHIVOLCS reported that activity during 15-16 January was characterized by dark gray, steam-laden plumes that rose as high as 1 km above the vents in Main Crater and drifted S and SW. Sulfur dioxide emissions were 4,186 t/d on 15 January. Eruptive events at 0617 and 0621 on 16 January generated short-lived, dark gray ash plumes that rose 500 and 800 m, respectively, and drifted SW. Weak steam plumes rose 800 m and drifted SW during 1100-1700, and nine weak explosions were recorded by the seismic network.

Steady steam emissions were visible during 17-21 January. Infrequent weak explosions generated ash plumes that rose as high as 1 km and drifted SW. Sulfur dioxide emissions fluctuated and were as high as 4,353 t/d on 20 January and as low as 344 t/d on 21 January. PHIVOLCS reported that white steam-laden plumes rose as high as 800 m above main vent during 22-28 January and drifted SW and NE; ash emissions ceased around 0500 on 22 January. Remobilized ash drifted SW on 22 January due to strong low winds, affecting the towns of Lemery (16 km SW) and Agoncillo, and rose as high as 5.8 km altitude as reported by pilots. Sulfur dioxide emissions were low at 140 t/d.

Steam plumes through mid-April 2020. The Alert Level was lowered to 3 on 26 January and PHIVOLCS recommended no entry onto Volcano Island and Taal Lake, nor into towns on the western side of the island within a 7-km radius. PHIVOLCS reported that whitish steam plumes rose as high as 800 m during 29 January-4 February and drifted SW (figure 20). The observed steam plumes rose as high as 300 m during 5-11 February and drifted SW.

Sulfur dioxide emissions averaged around 250 t/d during 22-26 January; emissions were 87 t/d on 27 January and below detectable limits the next day. During 29 January-4 February sulfur dioxide emissions ranged to a high of 231 t/d (on 3 February). The following week sulfur dioxide emissions ranged from values below detectable limits to a high of 116 t/d (on 8 February).

Figure (see Caption) Figure 20. Taal Volcano Island producing gas-and-steam plumes on 15-16 January 2020. Courtesy of James Reynolds, Earth Uncut.

On 14 February PHIVOLCS lowered the Alert Level to 2, noting a decline in the number of volcanic earthquakes, stabilizing ground deformation of the caldera and Volcano Island, and diffuse steam-and-gas emission that continued to rise no higher than 300 m above the main vent during the past three weeks. During 14-18 February sulfur dioxide emissions ranged from values below detectable limits to a high of 58 tonnes per day (on 16 February). Sulfur dioxide emissions were below detectable limits during 19-20 February. During 26 February-2 March steam plumes rose 50-300 m above the vent and drifted SW and NE. PHIVOLCS reported that during 4-10 March weak steam plumes rose 50-100 m and drifted SW and NE; moderate steam plumes rose 300-500 m and drifted SW during 8-9 March. During 11-17 March weak steam plumes again rose only 50-100 m and drifted SW and NE.

PHIVOLCS lowered the Alert Level to 1 on 19 March and recommended no entry onto Volcano Island, the area defined as the Permanent Danger Zone. During 8-9 April steam plumes rose 100-300 m and drifted SW. As of 1-2 May 2020 only weak steaming and fumarolic activity from fissure vents along the Daang Kastila trail was observed.

Evacuations. According to the Disaster Response Operations Monitoring and Information Center (DROMIC) there were a total of 53,832 people dispersed to 244 evacuation centers by 1800 on 15 January. By 21 January there were 148,987 people in 493 evacuation. The number of residents in evacuation centers dropped over the next week to 125,178 people in 497 locations on 28 January. However, many residents remained displaced as of 3 February, with DROMIC reporting 23,915 people in 152 evacuation centers, but an additional 224,188 people staying at other locations.

By 10 February there were 17,088 people in 110 evacuation centers, and an additional 211,729 staying at other locations. According to the DROMIC there were a total of 5,321 people in 21 evacuation centers, and an additional 195,987 people were staying at other locations as of 19 February.

The number of displaced residents continued to drop, and by 3 March there were 4,314 people in 12 evacuation centers, and an additional 132,931 people at other locations. As of 11 March there were still 4,131 people in 11 evacuation centers, but only 17,563 staying at other locations.

Deformation and ground cracks. New ground cracks were observed on 13 January in Sinisian (18 km SW), Mahabang Dahilig (14 km SW), Dayapan (15 km SW), Palanas (17 km SW), Sangalang (17 km SW), and Poblacion (19 km SW) Lemery; Pansipit (11 km SW), Agoncillo; Poblacion 1, Poblacion 2, Poblacion 3, Poblacion 5 (all around 17 km SW), Talisay, and Poblacion (11 km SW), San Nicolas (figure 21). A fissure opened across the road connecting Agoncillo to Laurel, Batangas. New ground cracking was reported the next day in Sambal Ibaba (17 km SW), and portions of the Pansipit River (SW) had dried up.

Figure (see Caption) Figure 21. Video screenshots showing ground cracks that formed during the Taal unrest and captured on 15 and 16 January 2020. Courtesy of James Reynolds, Earth Uncut.

Dropping water levels of Taal Lake were first observed in some areas on 16 January but reported to be lake-wide the next day. The known ground cracks in the barangays of Lemery, Agoncillo, Talisay, and San Nicolas in Batangas Province widened a few centimeters by 17 January, and a new steaming fissure was identified on the N flank of the island.

GPS data had recorded a sudden widening of the caldera by ~1 m, uplift of the NW sector by ~20 cm, and subsidence of the SW part of Volcano Island by ~1 m just after the main eruption phase. The rate of deformation was smaller during 15-22 January, and generally corroborated by field observations; Taal Lake had receded about 30 cm by 25 January but about 2.5 m of the change (due to uplift) was observed around the SW portion of the lake, near the Pansipit River Valley where ground cracking had been reported.

Weak steaming (plumes 10-20 m high) from ground cracks was visible during 5-11 February along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater. PHIVOLCS reported that during 19-24 February steam plumes rose 50-100 m above the vent and drifted SW. Weak steaming (plumes up to 20 m high) from ground cracks was visible during 8-14 April along the Daang Kastila trail which connects the N part of Volcano Island to the N part of the main crater.

Seismicity. Between 1300 on 12 January and 0800 on 21 January the Philippine Seismic Network (PSN) had recorded a total of 718 volcanic earthquakes; 176 of those had magnitudes ranging from 1.2-4.1 and were felt with Intensities of I-V. During 20-21 January there were five volcanic earthquakes with magnitudes of 1.6-2.5; the Taal Volcano network (which can detect smaller events not detectable by the PSN) recorded 448 volcanic earthquakes, including 17 low-frequency events. PHIVOLCS stated that by 21 January hybrid earthquakes had ceased and both the number and magnitude of low-frequency events had diminished.

Geologic Background. Taal is one of the most active volcanoes in the Philippines and has produced some of its most powerful historical eruptions. Though not topographically prominent, its prehistorical eruptions have greatly changed the landscape of SW Luzon. The 15 x 20 km Talisay (Taal) caldera is largely filled by Lake Taal, whose 267 km2 surface lies only 3 m above sea level. The maximum depth of the lake is 160 m, and several eruptive centers lie submerged beneath the lake. The 5-km-wide Volcano Island in north-central Lake Taal is the location of all historical eruptions. The island is composed of coalescing small stratovolcanoes, tuff rings, and scoria cones that have grown about 25% in area during historical time. Powerful pyroclastic flows and surges from historical eruptions have caused many fatalities.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Disaster Response Operations Monitoring and Information Center (DROMIC) (URL: https://dromic.dswd.gov.ph/); United Nations Office for the Coordination of Humanitarian Affairs, Philippines (URL: https://www.unocha.org/philippines); James Reynolds, Earth Uncut TV (Twitter: @EarthUncutTV, URL: https://www.earthuncut.tv/, YouTube: https://www.youtube.com/user/TyphoonHunter); Chris Vagasky, Vaisala Inc., Louisville, Colorado, USA (URL: https://www.vaisala.com/en?type=1, Twitter: @COweatherman, URL: https://twitter.com/COweatherman); Earth Observatory of Singapore, Nanyang Technological University, 50 Nanyang Avenue, Singapore (URL: https://www.earthobservatory.sg/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Relief Web, Flash Update No. 1 - Philippines: Taal Volcano eruption (As of 13 January 2020, 2 p.m. local time) (URL: https://reliefweb.int/report/philippines/flash-update-no-1-philippines-taal-volcano-eruption-13-january-2020-2-pm-local); Bloomberg, Philippines Braces for Hazardous Volcano Eruption (URL: https://www.bloomberg.com/news/articles/2020-01-12/philippines-raises-alert-level-in-taal-as-volcano-spews-ash); National Public Radio (NPR), Volcanic Eruption In Philippines Causes Thousands To Flee (URL: npr.org/2020/01/13/795815351/volcanic-eruption-in-philippines-causes-thousands-to-flee); Reuters (http://www.reuters.com/); Agence France-Presse (URL: http://www.afp.com/); Pacific Press (URL: http://www.pacificpress.com/); Shutterstock (URL: https://www.shutterstock.com/); Getty Images (URL: http://www.gettyimages.com/); Google Earth (URL: https://www.google.com/earth/).


Unnamed (Tonga) — March 2020 Citation iconCite this Report

Unnamed

Tonga

18.325°S, 174.365°W; summit elev. -40 m

All times are local (unless otherwise noted)


Additional details and pumice raft drift maps from the August 2019 submarine eruption

In the northern Tonga region, approximately 80 km NW of Vava’u, large areas of floating pumice, termed rafts, were observed starting as early as 7 August 2019. The area of these andesitic pumice rafts was initially 195 km2 with the layers measuring 15-30 cm thick and were produced 200 m below sea level (Jutzeler et al. 2020). The previous report (BGVN 44:11) described the morphology of the clasts and the rafts, and their general westward path from 9 August to 9 October 2019, with the first sighting occurring on 9 August NW of Vava’u in Tonga. This report updates details regarding the submarine pumice raft eruption in early August 2019 using new observations and data from Brandl et al. (2019) and Jutzeler et al. (2020).

The NoToVE-2004 (Northern Tonga Vents Expedition) research cruise on the RV Southern Surveyor (SS11/2004) from the Australian CSIRO Marine National Facility traveled to the northern Tonga Arc and discovered several submarine basalt-to-rhyolite volcanic centers (Arculus, 2004). One of these volcanic centers 50 km NW of Vava’u was the unnamed seamount (volcano number 243091) that had erupted in 2001 and again in 2019, unofficially designated “Volcano F” for reference purposes by Arculus (2004) and also used by Brandl et al. (2019). It is a volcanic complex that rises more than 1 km from the seafloor with a central 6 x 8.7 km caldera and a volcanic apron measuring over 50 km in diameter (figures 19 and 20). Arculus (2004) described some of the dredged material as “fresh, black, plagioclase-bearing lava with well-formed, glassy crusts up to 2cm thick” from cones by the eastern wall of the caldera; a number of apparent flows, lava or debris, were observed draping over the northern wall of the caldera.

Figure (see Caption) Figure 19. Visualization of the unnamed submarine Tongan volcano (marked “Volcano F”) using bathymetric data to show the site of the 6-8 August 2020 eruption and the rest of the cone complex. Courtesy of Philipp Brandl via GEOMAR.
Figure (see Caption) Figure 20. Map of the unnamed submarine Tongan volcano using satellite imagery, bathymetric data, with shading from the NW. The yellow circle indicates the location of the August 2019 activity. Young volcanic cones are marked “C” and those with pit craters at the top are marked with “P.” Courtesy of Brandl et al. (2019).

The International Seismological Centre (ISC) Preliminary Bulletin listed a particularly strong (5.7 Mw) earthquake at 2201 local time on 5 August, 15 km SSW of the volcano at a depth of 10 km (Brandl et al. 2019). This event was followed by six slightly lower magnitude earthquakes over the next two days.

Sentinel-2 satellite imagery showed two concentric rings originating from a point source (18.307°S 174.395°W) on 6 August (figure 21), which could be interpreted as small weak submarine plumes or possibly a series of small volcanic cones, according to Brandl et al. (2019). The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. By 8 August volcanic activity had decreased, but the pumice rafts that were produced remained visible through at least early October (BGVN 44:11). Brandl et al. (2019) states that, due to the lack of continued observed activity rising from this location, the eruption was likely a 2-day-long event during 6-8 August.

Figure (see Caption) Figure 21. Sentinel-2 satellite image of possible gas/vapor emissions (streaks) on 6 August 2019 drifting NW, which is the interpreted site for the unnamed Tongan seamount. The larger ring is about 1.2 km in diameter and the smaller one measures 250 m. Image using False Color (urban) rendering (bands 12, 11, 4); courtesy of Sentinel Hub Playground.

The pumice was first observed on 9 August occurred up to 56 km from the point of origin, according to Jutzeler et al. (2020). By calculating the velocity (14 km/day) of the raft using three satellites, Jutzeler et al. (2020) determined the pumice was erupted immediately after the satellite image of the submarine plumes on 6 August (UTC time). Minor activity at the vent may have continued on 8 and 11 August (UTC time) with pale blue-green water discoloration (figure 22) and a small (less than 1 km2) diffuse pumice raft 2-5 km from the vent.

Figure (see Caption) Figure 22. Sentinel-2 satellite image of the last visible activity occurring W of the unnamed submarine Tongan volcano on 8 August 2019, represented by slightly discolored blue-green water. Image using Natural Color rendering (bands 4, 3, 2) and enhanced with color correction; courtesy of Sentinel Hub Playground.

Continuous observations using various satellite data and observations aboard the catamaran ROAM tracked the movement and extent of the pumice raft that was produced during the submarine eruption in early August (figure 23). The first visible pumice raft was observed on 8 August 2019, covering more than 136.7 km2 between the volcanic islands of Fonualei and Late and drifting W for 60 km until 9 August (Brandl et al. 2019; Jutzeler 2020). The next day, the raft increased to 167.2-195 km2 while drifting SW for 74 km until 14 August. Over the next three days (10-12 August) the size of the raft briefly decreased in size to less than 100 km2 before increasing again to 157.4 km2 on 14 August; at least nine individual rafts were mapped and identified on satellite imagery (Brandl et al. 2019). On 15 August sailing vessels observed a large pumice raft about 75 km W of Late Island (see details in BGVN 44:11), which was the same one as seen in satellite imagery on 8 August.

Figure (see Caption) Figure 23. Map of the extent of discolored water and the pumice raft from the unnamed submarine Tongan volcano between 8 and 14 August 2019 using imagery from NASA’s MODIS, ESA’s Sentinel-2 satellite, and observations from aboard the catamaran ROAM (BGVN 44:11). Back-tracing the path of the pumice raft points to a source location at the unnamed submarine Tongan volcano. Courtesy of Brandl et al. (2019).

By 17 August high-resolution satellite images showed an area of large and small rafts measuring 222 km2 and were found within a field of smaller rafts for a total extent of 1,350 km2, which drifted 73 km NNW through 22 August before moving counterclockwise for three days (figure f; Jutzeler et al., 2020). Small pumice ribbons encountered the Oneata Lagoon on 30 August, the first island that the raft came into contact (Jutzeler et al. 2020). By 2 September, the main raft intersected with Lakeba Island (460 km from the source) (figure 24), breaking into smaller ribbons that started to drift W on 8 September. On 19 September the small rafts (less than 100 m x less than 2 km) entered the strait between Viti Levu and Vanua Levu, the two main islands of Fiji, while most of the others were stranded 60 km W in the Yasawa Islands for more than two months (Jutzeler et al., 2020).

Figure (see Caption) Figure 24. Time-series map of the raft dispersal from the unnamed submarine Tongan volcano using multiple satellite images. A) Map showing the first days of the raft dispersal starting on 7 August 2019 and drifting SW from the vent (marked with a red triangle). Precursory seismicity that began on 5 August is marked with a white star. By 15-17 August the raft was entrained in an ocean loop or eddy. The dashed lines represent the path of the sailing vessels. B) Map of the raft dispersal using high-resolution Sentinel-2 and -3 imagery. Two dispersal trails (red and blue dashed lines) show the daily dispersal of two parts of the raft that were separated on 17 August 2019. Courtesy of Jutzeler et al. (2020).

References: Arculus, R J, SS2004/11 shipboard scientists, 2004. SS11/2004 Voyage Summary: NoToVE-2004 (Northern Tonga Vents Expedition): submarine hydrothermal plume activity and petrology of the northern Tofua Arc, Tonga. https://www.cmar.csiro.au/data/reporting/get file.cfm?eovpub id=901.

Brandl P A, Schmid F, Augustin N, Grevemeyer I, Arculus R J, Devey C W, Petersen S, Stewart M , Kopp K, Hannington M D, 2019. The 6-8 Aug 2019 eruption of ‘Volcano F’ in the Tofua Arc, Tonga. Journal of Volcanology and Geothermal Research: https://doi.org/10.1016/j.jvolgeores.2019.106695

Jutzeler M, Marsh R, van Sebille E, Mittal T, Carey R, Fauria K, Manga M, McPhie J, 2020. Ongoing Dispersal of the 7 August 2019 Pumice Raft From the Tonga Arc in the Southwestern Pacific Ocean. AGU Geophysical Research Letters: https://doi.orh/10.1029/2019GL086768.

Geologic Background. A submarine volcano along the Tofua volcanic arc was first observed in September 2001. The newly discovered volcano lies NW of the island of Vava'u about 35 km S of Fonualei and 60 km NE of Late volcano. The site of the eruption is along a NNE-SSW-trending submarine plateau with an approximate bathymetric depth of 300 m. T-phase waves were recorded on 27-28 September 2001, and on the 27th local fishermen observed an ash-rich eruption column that rose above the sea surface. No eruptive activity was reported after the 28th, but water discoloration was documented during the following month. In early November rafts and strandings of dacitic pumice were reported along the coast of Kadavu and Viti Levu in the Fiji Islands. The depth of the summit of the submarine cone following the eruption determined to be 40 m during a 2007 survey; the crater of the 2001 eruption was breached to the E.

Information Contacts: Jan Steffen, Communication and Media, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Klyuchevskoy (Russia) — June 2020 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Strombolian activity November 2019 through May 2020; lava flow down the SE flank in April

Klyuchevskoy is part of the Klyuchevskaya volcanic group in northern Kamchatka and is one of the most frequently active volcanoes of the region. Eruptions produce lava flows, ashfall, and lahars originating from summit and flank activity. This report summarizes activity during October 2019 through May 2020, and is based on reports by the Kamchatkan Volcanic Eruption Response Team (KVERT) and satellite data.

There were no activity reports from 1 to 22 October, but gas emissions were visible in satellite images. At 1020 on 24 October (2220 on 23 October UTC) KVERT noted that there was a small ash component in the ash plume from erosion of the conduit, with the plume reaching 130 km ENE. The Aviation Colour Code was raised from Green to Yellow, then to Orange the following day. An ash plume continued on the 25th to 5-7 km altitude and extending 15 km SE and 70 km SW and reached 30 km ESE on the 26th. Similar activity continued through to the end of the month.

Moderate gas emissions continued during 1-19 November, but the summit was obscured by clouds. Strong nighttime incandescence was visible at the crater during the 10-11 November and thermal anomalies were detected on 8 and 10-13 November. Explosions produced ash plumes up to 6 km altitude on the 20-21st and Strombolian activity was reported during 20-22 November. Degassing continued from 23 November through 12 December, and a thermal anomaly was visible on the days when the summit was not covered by clouds. An ash plume was reported moving to the NW on the 13th, and degassing with a thermal anomaly and intermittent Strombolian activity then resumed, continuing through to the end of December with an ash plume reported on the 30th.

Gas-and-steam plumes continued into January 2020 with incandescence noted when the summit was clear (figure 33). Strombolian activity was reported again starting on the 3rd. A weak ash plume produced on the 6th extended 55 km E, and on the 21st an ash plume reached 5-5.5 km altitude and extended 190 km NE (figure 34). Another ash plume the next day rose to the same altitude and extended 388 km NE. During 23-29 Strombolian activity continued, and Vulcanian activity produced ash plumes up to 5.5 altitude, extending to 282 km E on the 30th, and 145 km E on the 31st.

Figure (see Caption) Figure 33. Incandescence and degassing were visible at Klyuchevskoy through January 2020, seen here on the 11th. Courtesy of KVERT.
Figure (see Caption) Figure 34. A low ash plume at Klyuchevskoy on 21 January 2020 extended 190 km NE. Courtesy of KVERT.

Strombolian activity continued throughout February with occasional explosions producing ash plumes up to 5.5 km altitude, as well as gas-and-steam plumes and a persistent thermal anomaly with incandescence visible at night. Starting in late February thermal anomalies were detected much more frequently, and with higher energy output compared to the previous year (figure 35). A lava fountain was reported on 1 March with the material falling back into the summit crater. Strombolian activity continued through early March. Lava fountaining was reported again on the 8th with ejecta landing in the crater and down the flanks (figure 36). A strong persistent gas-and-steam plume containing some ash continued along with Strombolian activity through 25 March (figure 37), with Vulcanian activity noted on the 20th and 25th. Strombolian and Vulcanian activity was reported through the end of March.

Figure (see Caption) Figure 35. This MIROVA thermal energy plot for Klyuchevskoy for the year ending 29 April 2020 (log radiative power) shows intermittent thermal anomalies leading up to more sustained energy detected from February through March, then steadily increasing energy through April 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 36. Strombolian explosions at Klyuchevskoy eject incandescent ash and gas, and blocks and bombs onto the upper flanks on 8 and 10 March 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 37. Weak ash emission from the Klyuchevskoy summit crater are dispersed by wind on 19 and 29 March 2020, with ash depositing on the flanks. Courtesy of IVS FEB RAS, KVERT.

Activity was dominantly Strombolian during 1-5 April and included intermittent Vulcanian explosions from the 6th onwards, with ash plumes reaching 6 km altitude. On 18 April a lava flow began moving down the SE flank (figures 38). A report on the 26th reported explosions from lava-water interactions with avalanches from the active lava flow, which continued to move down the SE flank and into the Apakhonchich chute (figures 39 and 40). This continued throughout April and May with sustained Strombolian and intermittent Vulcanian activity at the summit (figures 41 and 42).

Figure (see Caption) Figure 38. Strombolian activity produced ash plumes and a lava flow down the SE flank of Klyuchevskoy on 18 April 2020. Courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 39. A lava flow descends the SW flank of Klyuchevskoy and a gas plume is dispersed by winds on 21 April 2020. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 40. Sentinel-2 thermal satellite images show the progression of the Klyuchevskoy lava flow from the summit crater down the SE flank from 19-29 April 2020. Associated gas plumes are dispersed in various directions. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 41. Strombolian activity at Klyuchevskoy ejects incandescent ejecta, gas, and ash above the summit on 27 April 2020. Courtesy of D. Bud'kov, IVS FEB RAS, KVERT.
Figure (see Caption) Figure 42. Sentinel-2 thermal satellite images of Klyuchevskoy show the progression of the SE flank lava flow through May 2020, with associated gas plumes being dispersed in multiple directions. Courtesy of Sentinel Hub Playground.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyamuragira (DR Congo) — June 2020 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Intermittent thermal anomalies within the summit crater during December 2019-May 2020

Nyamuragira (also known as Nyamulagira) is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo and consists of a lava lake that reappeared in the summit crater in mid-April 2018. Volcanism has been characterized by lava emissions, thermal anomalies, seismicity, and gas-and-steam emissions. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

According to OVG, intermittent eruptive activity was detected in the lava lake of the central crater during December 2019 and January-April 2020, which also resulted in few seismic events. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows thermal anomalies within the summit crater that varied in both frequency and power between August 2019 and mid-March 2020, but very few were recorded afterward through late May (figure 88). Thermal hotspots identified by MODVOLC from 15 December 2019 through March 2020 were mainly located in the active central crater, with only three hotspots just outside the SW crater rim (figure 89). Sentinel-2 thermal satellite imagery also showed activity within the summit crater during January-May 2020, but by mid-March the thermal anomaly had visibly decreased in power (figure 90).

Figure (see Caption) Figure 88. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 27 July through May 2020 shows variably strong, intermittent thermal anomalies with a variation in power and frequency from August 2019 to mid-March 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 89. Map showing the number of MODVOLC hotspot pixels at Nyamuragira from 1 December 2019 t0 31 May 2020. 37 pixels were registered within the summit crater while 3 were detected just outside the SW crater rim. Courtesy of HIGP-MODVOLC Thermal Alerts System.
Figure (see Caption) Figure 90. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright yellow-orange) at Nyamuragira from February into April 2020. The strength of the thermal anomaly in the summit crater decreased by late March 2020, but was still visible. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Information contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/exp.


Nyiragongo (DR Congo) — June 2020 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Activity in the lava lake and small eruptive cone persists during December 2019-May 2020

Nyiragongo is located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo, part of the western branch of the East African Rift System and contains a 1.2 km-wide summit crater with a lava lake that has been active since at least 1971. Volcanism has been characterized by strong and frequent thermal anomalies, incandescence, gas-and-steam emissions, and seismicity. This report summarizes activity during December 2019 through May 2020 using information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

In the December 2019 monthly report, OVG stated that the level of the lava lake had increased. This level of the lava lake was maintained for the duration of the reporting period, according to later OVG monthly reports. Seismicity increased starting in November 2019 and was detected in the NE part of the crater, but it decreased by mid-April 2020. SO2 emissions increased in January 2020 to roughly 7,000 tons/day but decreased again near the end of the month. OVG reported that SO2 emissions rose again in February to roughly 8,500 tons/day before declining to about 6,000 tons/day. Unlike in the previous report (BGVN 44:12), incandescence was visible during the day in the active lava lake and activity at the small eruptive cone within the 1.2-km-wide summit crater has since increased, consisting of incandescence and some lava fountaining (figure 72). A field survey was conducted on 3-4 March where an OVG team observed active lava fountains and ejecta that produced Pele’s hair from the small eruptive cone (figure 73). During this survey, OVG reported that the level of the lava lake had reached the second terrace, which was formed on 17 January 2002 and represents remnants of the lava lake at different eruption stages. There, the open surface lava lake was observed; gas-and-steam emissions accompanied both the active lava lake and the small eruptive cone (figures 72 and 73).

Figure (see Caption) Figure 72. Webcam image of Nyiragongo in February 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG February 2020).
Figure (see Caption) Figure 73. Webcam image of Nyiragongo on 4 March 2020 showing an open lava lake surface and incandescence from the active crater cone within the 1.2 km-wide summit crater visible during the day, accompanied by white gas-and-steam emissions. Courtesy of OVG (Rapport OVG Mars 2020).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continued to show frequent strong thermal anomalies within 5 km of the summit crater through May 2020 (figure 74). Similarly, the MODVOLC algorithm reported multiple thermal hotspots almost daily within the summit crater between December 2019 and May 2020. These thermal signatures were also observed in Sentinel-2 thermal satellite imagery within the summit crater (figure 75).

Figure (see Caption) Figure 74. Thermal anomalies at Nyiragongo from 27 July through May 2020 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 75. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed ongoing thermal activity (bright yellow-orange) in the summit crater at Nyiragongo during January through April 2020. Courtesy of Sentinel Hub Playground.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kavachi (Solomon Islands) — May 2020 Citation iconCite this Report

Kavachi

Solomon Islands

8.991°S, 157.979°E; summit elev. -20 m

All times are local (unless otherwise noted)


Discolored water plumes seen using satellite imagery in 2018 and 2020

Kavachi is a submarine volcano located in the Solomon Islands south of Gatokae and Vangunu islands. Volcanism is frequently active, but rarely observed. The most recent eruptions took place during 2014, which consisted of an ash eruption, and during 2016, which included phreatomagmatic explosions (BGVN 42:03). This reporting period covers December 2016-April 2020 primarily using satellite data.

Activity at Kavachi is often only observed through satellite images, and frequently consists of discolored submarine plumes for which the cause is uncertain. On 1 January 2018 a slight yellow discoloration in the water is seen extending to the E from a specific point (figure 20). Similar faint plumes were observed on 16 January, 25 February, 2 March, 26 April, 6 May, and 25 June 2018. No similar water discoloration was noted during 2019, though clouds may have obscured views.

Figure (see Caption) Figure 20. Satellite images from Sentinel-2 revealed intermittent faint water discoloration (yellow) at Kavachi during the first half of 2018, as seen here on 1 January (top left), 25 February (top right), 26 April (bottom left), and 25 June (bottom right). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Activity resumed in 2020, showing more discolored water in satellite imagery. The first instance occurred on 16 March, where a distinct plume extended from a specific point to the SE. On 25 April a satellite image showed a larger discolored plume in the water that spread over about 30 km2, encompassing the area around Kavachi (figure 21). Another image on 30 April showed a thin ribbon of discolored water extending about 50 km W of the vent.

Figure (see Caption) Figure 21. Sentinel-2 satellite images of a discolored plume (yellow) at Kavachi beginning on 16 March (top left) with a significant large plume on 25 April (right), which remained until 30 April (bottom left). Images with “Natural color” rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. Named for a sea-god of the Gatokae and Vangunu peoples, Kavachi is one of the most active submarine volcanoes in the SW Pacific, located in the Solomon Islands south of Vangunu Island. Sometimes referred to as Rejo te Kvachi ("Kavachi's Oven"), this shallow submarine basaltic-to-andesitic volcano has produced ephemeral islands up to 1 km long many times since its first recorded eruption during 1939. Residents of the nearby islands of Vanguna and Nggatokae (Gatokae) reported "fire on the water" prior to 1939, a possible reference to earlier eruptions. The roughly conical edifice rises from water depths of 1.1-1.2 km on the north and greater depths to the SE. Frequent shallow submarine and occasional subaerial eruptions produce phreatomagmatic explosions that eject steam, ash, and incandescent bombs. On a number of occasions lava flows were observed on the ephemeral islands.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kuchinoerabujima (Japan) — May 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The most recent previous eruptive period took place during October 2018-February 2019 and primarily consisted of weak explosions, ash plumes, and ashfall. The current eruption began on 11 January 2020 after nearly a year of dominantly gas-and-steam emissions. Volcanism for this reporting period from March 2019 to April 2020 included explosions, ash plumes, SO2 emissions, and ashfall. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Volcanism at Kuchinoerabujima was relatively low during March through December 2019, according to JMA. During this time, SO2 emissions ranged from 100 to 1,000 tons/day. Gas-and-steam emissions were frequently observed throughout the entire reporting period, rising to a maximum height of 1.1 km above the crater on 13 December 2019. Satellite imagery from Sentinel-2 showed gas-and-steam and occasional ash emissions rising from the Shindake crater throughout the reporting period (figure 7). Though JMA reported thermal anomalies occurring on 29 January and continuing through late April 2020, Sentinel-2 imagery shows the first thermal signature appearing on 26 April.

Figure (see Caption) Figure 7. Sentinel-2 thermal satellite images showed gas-and-steam and ash emissions rising from Kuchinoerabujima. Some ash deposits can be seen on 6 February 2020 (top right). A thermal anomaly appeared on 26 April 2020 (bottom right). Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

An eruption on 11 January 2020 at 1505 ejected material 300 m from the crater and produced ash plumes that rose 2 km above the crater rim, extending E, according to JMA. The eruption continued through 12 January until 0730. The resulting ash plumes rose 400 m above the crater, drifting SW while the SO2 emissions measured 1,300 tons/day. Ashfall was reported on Yakushima Island (15 km E). Minor eruptive activity was reported during 17-20 January which produced gray-white plumes that rose 300-500 m above the crater. On 23 January, seismicity increased, and an eruption produced an ash plume that rose 1.2 km altitude, according to a Tokyo VAAC report, resulting in ashfall 2 km NE of the crater. A small explosion was detected on 24 January, followed by an increase in the number of earthquakes during 25-26 January (65-71 earthquakes per day were registered). Another small eruptive event detected on 27 January at 0148 was accompanied by a volcanic tremor and a change in tilt data. During the month of January, some inflation was detected at the base on the volcano and a total of 347 earthquakes were recorded. The SO2 emissions ranged from 200-1,600 tons/day.

An eruption on 1 February 2020 produced an eruption column that rose less than 1 km altitude and extended SE and SW (figure 8), according to the Tokyo VAAC report. On 3 February, an eruption from the Shindake crater at 0521 produced an ash plume that rose 7 km above the crater and ejected material as far as 600 m away. As a result, a pyroclastic flow formed, traveling 900-1,500 m SW. The previous pyroclastic flow that was recorded occurred on 29 January 2019. Ashfall was confirmed in the N part of Yakushima Island with a large amount in Miyanoura (32 km ESE) and southern Tanegashima. The SO2 emissions measured 1,700 tons/day during this event.

Figure (see Caption) Figure 8. Webcam images from the Honmura west surveillance camera of an ash plume rising from Kuchinoerabujima on 1 February 2020. Courtesy of JMA (Weekly bulletin report 509, February 2020).

Intermittent small eruptive events occurred during 5-9 February; field observations showed a large amount of ashfall on the SE flank which included lapilli that measured up to 2 cm in diameter. Additionally, thermal images showed 5-km-long pyroclastic flow deposits on the SW flank. An eruption on 9 February produced an ash plume that rose 1.2 km altitude, drifting SE. On 13 February a small eruption was detected in the Shindake crater at 1211, producing gray-white plumes that rose 300 m above the crater, drifting NE. Small eruptive events also occurred during 20-21 February, resulting in gas-and-steam emissions that rose 200 m above the crater. During the month of February, some horizontal extension was observed since January 2020 using GNSS data. The total number of earthquakes during this month drastically increased to 1225 compared to January. The SO2 emissions ranged from 300-1,700 tons/day.

By 2 March 2020, seismicity decreased, and activity declined. Gas-and-steam emissions continued infrequently for the duration of the reporting period. The SO2 emissions during March ranged from 700-2,100 tons/day, the latter of which occurred on 15 March. Seismicity increased again on 27 March. During 5-8 April 2020, small eruptive events were detected, generating ash plumes that rose 900 m above the crater (figure 9). The SO2 emissions on 6 April reached 3,200 tons/day, the maximum measurement for this reporting period. These small eruptive events continued from 13-20 and 23-25 April within the Shindake crater, producing gray-white plumes that rose 300-800 m above the crater.

Figure (see Caption) Figure 9. Webcam images from the Honmura Nishi (top) and Honmura west (bottom) surveillance cameras of ash plumes rising from Kuchinoerabujima on 6 March and 5 April 2020. Courtesy of JMA (Weekly bulletin report 509, March and April 2020).

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Soputan (Indonesia) — May 2020 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Minor ash emissions during 23 March and 2 April 2020

Soputan is a stratovolcano located in the northern arm of Sulawesi Island, Indonesia. Previous eruptive periods were characterized by ash explosions, lava flows, and Strombolian eruptions. The most recent eruption occurred during October-December 2018, which consisted mostly of ash plumes and some summit incandescence (BGVN 44:01). This report updates information for January 2019-April 2020 characterized by two ash plumes and gas-and-steam emissions. The primary source of information come from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Center (VAAC).

Activity during January 2019-April 2020 was relatively low; three faint thermal anomalies were observed at the summit at Soputan in satellite imagery for a total of three days on 2 and 4 January, and 1 October 2019 (figure 17). The MIROVA (Middle InfraRed Observation of Volcanic Activity) based on analysis of MODIS data detected 12 distal hotspots and six low-power hotspots within 5 km of the summit during August to early October 2019. A single distal thermal hotspot was detected in early March 2020. In March, activity primarily consisted of white to gray gas-and-steam plumes that rose 20-100 m above the crater, according to PVMBG. The Darwin VAAC issued a notice on 23 March 2020 that reported an ash plume rose to 4.3 km altitude; minor ash emissions had been visible in a webcam image the previous day (figure 18). A second notice was issued on 2 April, where an ash plume was observed rising 2.1 km altitude and drifting W.

Figure (see Caption) Figure 17. Sentinel-2 thermal satellite imagery detected a total of three thermal hotspots (bright yellow-orange) at the summit of Soputan on 2 and 4 January and 1 October 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. Minor ash emissions were seen rising from Soputan on 22 March 2020. Courtesy of MAGMA Indonesia.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Heard (Australia) — May 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Eruptive activity including a lava flow during October 2019-April 2020

Heard Island is located on the Kerguelen Plateau in the southern Indian Ocean and contains Big Ben, a snow-covered stratovolcano with intermittent volcanism reported since 1910. Due to its remote location, visual observations are rare; therefore, thermal anomalies and hotspots detected by satellite-based instruments are the primary source of information. This report updates activity from October 2019 to April 2020.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed three prominent periods of strong thermal anomaly activity during this reporting period: late October 2019, December 2019, and the end of April 2020 (figure 41). These thermal anomalies were relatively strong and occurred within 5 km of the summit. Similarly, the MODVOLC algorithm reported a total of six thermal hotspots during 28 October, 1 November 2019, and 26 April 2020.

Figure (see Caption) Figure 41. Thermal anomalies at Heard from 29 April 2019 through April 2020 as recorded by the MIROVA system (Log Radiative Power) were strong and frequent in late October, during December 2019, and at the end of April 2020. Courtesy of MIROVA.

Six thermal satellite images ranging from late October 2019 to late March showed evidence of active lava at the summit (figure 42). These images show hot material, possibly a lava flow, extending SW from the summit; a hotspot also remained at the summit. Cloud cover was pervasive during the majority of this reporting period, especially in April 2020, though gas-and-steam emissions were visible on 25 April through the clouds.

Figure (see Caption) Figure 42. Thermal satellite images of Heard Island’s Big Ben showing strong thermal signatures representing a lava flow in the SW direction from 28 October to 17 December 2019. These thermal anomalies are located NE from Mawson Peak. A faint thermal anomaly is also captured on 26 March 2020. Satellite images with atmospheric penetration (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 42, Number 12 (December 2017)

Managing Editor: Edward Venzke

Bogoslof (United States)

Explosions in July and August 2017; new lava dome visible 20-22 August destroyed by explosions that end on 30 August

Cleveland (United States)

Dome growth and destruction multiple times during January-November 2017

Dempo (Indonesia)

Phreatic explosion from the crater lake generates a dense ash plume in November 2017

Pacaya (Guatemala)

Pyroclastic cone in MacKenney crater grows above crater rim, January-September 2017

Sabancaya (Peru)

Continuous pulses of ash emissions for ten months, February-November 2017

Santa Maria (Guatemala)

Slow growth of new lava dome, persistent ash plumes, and nearby ashfall, January-October 2017

Sinabung (Indonesia)

Constant activity through September 2017, with ash plumes, block avalanches, and pyroclastic flows

Tungurahua (Ecuador)

Nearly constant ash emissions and frequent lahars during July-December 2015

Ulawun (Papua New Guinea)

Intermittent ash plumes during June-November 2017

Villarrica (Chile)

Lava lake level fluctuates and Strombolian activity persists during October 2016-November 2017



Bogoslof (United States) — December 2017 Citation iconCite this Report

Bogoslof

United States

53.93°N, 168.03°W; summit elev. 150 m

All times are local (unless otherwise noted)


Explosions in July and August 2017; new lava dome visible 20-22 August destroyed by explosions that end on 30 August

Intermittent eruptions from Bogoslof, 40 km N of the main Aleutian arc (BGVN 42:09, figure 2), have created and destroyed several distinct islands at the summit of this submarine volcano. Previous eruptions in 1927 and 1992 created lava domes that were subsequently heavily eroded, before the most recent eruption began in December 2016 (figure 16). Numerous explosions with ash plumes significantly changed the morphology of the island between December 2016 and March 2017. Ash plumes rose to over 10 km altitude during May-July 2017 multiple times. A lava dome briefly emerged in early June before it was destroyed by subsequent explosions. This report continues with an account of activity between July and December 2017. Eruptive activity ended on 30 August. Information comes primarily from the Alaska Volcano Observatory (AVO) and the Anchorage Volcanic Ash Advisory Center (VAAC).

Figure (see Caption) Figure 16. Worldview satellite image of Bogoslof collected at 2313 UTC on 12 June 2017, two days after a lava dome that appeared in the lagoon was destroyed. The circular embayments were formed by a series of more than 40 explosions that began in mid-December 2016. These explosions greatly reshaped the island as material was removed and redeposited as air fall. Vigorous steaming was visible from a region S of the most active vent areas in the lagoon. Lava extrusion produced a circular dome that first rose above the water on 5 June and grew to a diameter of ~160 m before being destroyed by an explosion early in the day on 10 June. Courtesy of AVO.

New explosions during 2, 4, 8, and 9-10 July 2017 produced ash plumes that rose from 6.1 to 11 km altitude. Although significant ash clouds were produced, there were no reports of ashfall in nearby communities. After almost a month of quiet, an eruption on 7 August created new tephra deposits, and extended the N shore of the island. This eruption created a significant SO2 plume that was recorded by satellite instruments. Intermittent pulses of tremor were recorded during mid-August. A new lava dome grew between 20 and 22 August to 160 m in diameter before it was destroyed in a series of explosions during 26-30 August. Thermal anomalies were observed in satellite data several times during September, and they tapered off into early October. Steam emissions were still visible in early November when the last weak thermal anomaly was reported. By early December, significant erosion had begun to change the island's shape, and only minor steam emissions were visible in clear satellite images.

Beginning at 1248 local time (AKDT) on 2 July 2017, a significant explosive event was detected in seismic and infrasound data, and observed in satellite imagery. The event lasted about 16 minutes, and produced an ash plume that rose to 11 km altitude and drifted E, passing N of Dutch Harbor. No explosions were reported the following day, but two events were detected in seismic, infrasound, and satellite data on 4 July. The first, at 1651, lasted 13 minutes and produced an eruption cloud that rose to 8.5 km altitude and drifted SE; the second 11-minute-long eruption began at 1907, and produced a small cloud that rose to 9.8 km altitude and drifted SE.

On the morning of 8 July 2017, an eruption with a total duration of 19 minutes began at 1015 AKDT and produced a volcanic cloud reaching an altitude of 9.1 km that drifted N. Overnight during 9-10 July Bogoslof erupted several times; the first two explosions during the 3-hour-long eruption produced a small ash cloud that rose to 6.1 km altitude and drifted SE, dissipating rapidly. Later on 10 July, an 8-minute-long eruption began at 1000 AKDT and a 15-minute-long eruption began at 1706 AKDT; neither produced a significant plume. None of the eruptions on 8, 9, or 10 July caused ashfall in local communities. Weakly elevated surface temperatures were observed in clear satellite images on 12 and 16 July.

Following almost a month of quiet, Bogoslof erupted again on 7 August 2017. The eruption was detected in seismic, infrasound, satellite, and lightning data. The eruption began at 1000 AKDT and lasted for about three hours, producing an ash plume that rose to 9.7 km altitude according to AVO, and drifted S over Umnak Island, then out over the Pacific Ocean. The Anchorage VAAC initially reported the plume at 10.4 km altitude moving S. A later pilot report noted an altitude of 12.2 km. Satellite measurements of sulfur dioxide (SO2) in the eruption cloud indicated the second highest mass of SO2 erupted since the onset of activity in December 2016 (figure 17). Satellite images of the island taken on 8 August showed new tephra deposits had surrounded the vent area, forming a new crater lake, and extending the N shore of the island by 250 m (figure 18).

Figure (see Caption) Figure 17. Although the data is coarsely pixelated, it is clear that a substantial SO2 plume emerged from Bogoslof during the 7 August eruption, as recorded by the OMPS instrument on the Suomio NPP satellite. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 18. Worldview true-color satellite image of Bogoslof acquired on 8 August 2017, one day after a 3-hour-long explosive eruption. Ashfall deposits have expanded the island towards the N as the result of the eruption and formed an enclosed crater lake. At the time of this satellite overpass, the level of the crater lake was below sea level. Previous events such as these (that formed a shallow crater lake) formed a deep crater that was subsequently filled by an influx of ocean water. Vigorous steaming was apparent from the likely site of the initial explosive event in mid-December 2016. Sediment coming from erosion of the island is seen offshore surrounding most of the island. A comparison with figure 16, above, shows the extent of new material added on 7 August. Data provided under the Digital Globe NextView License. Courtesy of AVO.

Several short-duration seismic and infrasound signals were detected at the stations on nearby islands on 9 August 2017. Weakly elevated surface temperatures and a minor steam plume were observed in satellite images. Two short pulses of tremor were seen in seismic data on 14 August, one lasting five minutes and the other lasting three minutes. Seismicity returned to background levels following the pulses and remained quiet until a series of small earthquakes the next morning. Seismicity again returned to background levels by the following afternoon, 16 August, and remained quiet through the rest of that week. Photographs taken during an overflight on 15 August indicated that the vent region, which had dried out during the 7 August eruption, had refilled with water (figure 19).

Figure (see Caption) Figure 19. An overflight of Bogoslof on 15 August 2017 showed the increase in area of the crater lake after the eruption of 7 August (see figure 18). View is to the SE. Courtesy of AVO.

Unrest continued during mid-August 2017, and available data suggested that a lava dome had formed within the intra-island lake just W of the 1992 lava dome. The new dome was first observed on 18 August, and during 20-22 August grew to about 160 m in diameter. Two small explosions were detected in infrasound data at 0410 AKDT on 22 August. These explosions did not produce any volcanic plumes recognizable in satellite data. Elevated surface temperatures were observed on 24 August along with a steam plume extending S about 17 km from the island. Satellite images showed elevated surface temperatures and a robust steam plume the next day drifting 70 km SE. A photo from a nearby low-altitude airplane on 26 August, taken shortly before the next explosion, confirmed the intense steam plume (figure 20) likely caused by the interaction of the new dome with seawater. Two MODVOLC thermal alerts were issued on 25 August, the first two since January 2017, and the last two for the year.

Figure (see Caption) Figure 20. Bogoslof volcano with a vigorous steam plume likely caused by interaction of the new, hot lava dome with seawater. Photo by Dave Withrow (NOAA/Fisheries), taken at about 1300 AKDT on 26 August aboard a NOAA twin otter (N56RF) aircraft while surveying harbor seals west of Dutch Harbor. They were 13 nautical miles (24 km) from Bogoslof when photo was taken looking E with a 400 mm lens. Courtesy of AVO.

An explosive eruption at 1629 AKDT on 26 August 2017 lasted for about four minutes and produced a cloud that was observed in satellite images drifting SE over southern Unalaska Island. Cloud-top temperatures seen in satellite data indicated that it rose as high as 7.3 km altitude. The Anchorage VAAC reported the plume at 8.2 km altitude several hours later. The eruption was observed in seismic, infrasound, and satellite data, and one lightning stroke was detected. Elevated surface temperatures persisted, suggesting to AVO scientists that the lava dome was possibly still present within the crater lake. Three short-duration eruptive events occurred during 27-28 August. On 27 August at 1508 AKDT a brief explosive event lasting about two minutes produced a volcanic cloud that reached about 7.9 km altitude and drifted SE. Another explosive eruption occurred at 0323 AKDT on 28 August and lasted about 25 minutes. Satellite imagery showed only a very small eruption cloud drifting ESE that dissipated quickly. The third event occurred at 1117 AKDT that morning and produced a small ash cloud that likely reached 9 km altitude before dissipating over the North Pacific Ocean. Modeling of ash fallout from the cloud indicated trace to minor ash fall over the Southern Bering Sea in the area just S of the volcano.

Elevated surface temperatures were noted in satellite data on 29 August, along with a steam plume drifting SSE, suggesting to AVO the presence of lava at the surface. An explosive eruption began the next morning at 0405 AKDT and continued intermittently for almost two hours. It produced an ash cloud that reached to about 6 km altitude and drifted SSE, dissipating over the southern Bering Sea and North Pacific Ocean area. A vapor plume extended about 65 km SSE later that day.

AVO reported on 8 September 2017 that available data suggested that the most recent lava dome, first observed on 18 August, was removed by the explosive eruptions of 27-30 August. In addition, a narrow isthmus of new land extended across the crater, bisecting it and creating two lakes. Elevated surface temperatures were recorded in a satellite images on 11, 14, 17, 19, and 23 September. Discolored water was visible in satellite images on 17 September and may have represented outflow from the crater. Elevated surface temperatures continued to be observed in satellite data during periods of clear weather into the first two weeks of October, and again briefly at the beginning of November. Several areas of steam emissions were visible in satellite imagery on 9 October (figure 21).

Figure (see Caption) Figure 21. Worldview-3 satellite image of Bogoslof Island acquired on 9 October 2017. The areas that exhibited active steam emission are highlighted with yellow and black dashed lines. Image data acquired with the Digital Globe NextView License. Courtesy of AVO.

A clear, high-resolution satellite image taken on 2 November showed continued steaming of the ground on the S side of the smaller crater lake. Weakly elevated surface temperatures consistent with a hot crater lake were last observed in clear nighttime satellite images on 10 November 2017. Imagery from 20 November showed warm regions in the crater lagoon and at the site of the steaming that had persisted for several months (see figure 21). AVO scientists noted that this was consistent with a slowly cooling, post-eruptive system, and was likely responsible for the occasional observation of slightly elevated surface temperatures in satellite data. The MIROVA graph of thermal anomalies supported the slow cooling trend observed by AVO after the last explosions on 30 August 2017 (figure 22).

Figure (see Caption) Figure 22. The last series of explosive events recorded at Bogoslof during 26-30 August 2017 coincided with the last significant thermal anomalies on the MIROVA graph (infrared MODIS data) that covers the year ending on 19 January 2018. Gradual tapering of thermal anomalies is consistent with AVO satellite observations of a cooling trend during September through early November. Courtesy of MIROVA.

More than sixty explosive events occurred between 20 December 2016 and 30 August 2017. The most energetic of these sent water-rich, volcanic ash clouds to altitudes exceeding 10.7 km. The resulting dispersed volcanic clouds impacted local and international aviation operations over portions of the North Pacific and Alaska. Although most of the volcanic ash fell into the ocean, trace amounts were twice deposited on the community of Unalaska and the Port of Dutch Harbor. The 2016-17 eruption greatly changed the morphology of Bogoslof Island. At its greatest extent, the area of the island increased to about three times its pre-eruption size. Nearly all of the new material on the island is unconsolidated pyroclastic fall and flow (surge) deposits. The deposits are highly susceptible to wave erosion and additional changes in the configuration of the island are likely. A satellite image from 3 December 2017 shows significant erosion of the island with the vent lagoon opened to the ocean on the north shore of the island (figure 23).

Figure (see Caption) Figure 23. Worldview-3 satellite image of Bogoslof Island on 3 December 2017. Erosion of the island by waves had removed substantial material, and no new eruptive material had been added to the island since the end of August 2017. The approximate area of the island in this image was 1.3 square kilometers. Image data acquired with the Digital Globe NextView License. Courtesy of AVO.

Geologic Background. Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: http://www.avo.alaska.edu/ ), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.dggs.alaska.gov/); Anchorage Volcanic Ash Advisory Center (VAAC), Alaska Aviation Weather Unit, NWS NOAA US Dept of Commerce, 6930 Sand Lake Road, Anchorage, AK 99502-1845(URL: http://vaac.arh.noaa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Cleveland (United States) — December 2017 Citation iconCite this Report

Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


Dome growth and destruction multiple times during January-November 2017

Dome growth and destruction accompanied by small ash explosions has been typical behavior at Alaska's Cleveland volcano in recent years (figures 20, 21, and 22). Located on Chuginadak Island in the Aleutians, slightly over 1,500 km SW of Anchorage, it has historical activity, including three large (VEI 3) eruptions, recorded back to 1893. The Alaska Volcano Observatory (AVO) and the Anchorage Volcanic Ash Advisory Center (VAAC) are responsible for monitoring activity and notifying air traffic of aviation hazards associated with Cleveland. This report provides a summary table of dome growth and destruction since 2013 (table 8), and details of continued activity from January through November 2017.

Figure (see Caption) Figure 20. A lava dome was growing at the summit of Cleveland on 4 August 2015. Concentric rings and radial fractures in the dome surface surrounded an elevated hot dome. Photo taken during the 2015 field season of the Islands of Four Mountains multidisciplinary project, work funded by the National Science Foundation, the USGS/AVO, and the Keck Geology Consortium. Courtesy of AVO.
Figure (see Caption) Figure 21. A 60-m-diameter lava dome was seen in this WorldView-1 satellite image from 25 May 2016 of Cleveland's summit crater. Image created by Rick Wessels, USGS. Image data copyright 2016 Digital Globe, NextView License. Courtesy of AVO.
Figure (see Caption) Figure 22. Thermal and photographic images of the lava dome that was growing in the summit crater of Cleveland on 26 July 2016. Top image is from a FLIR (Forward Looking InfraRed) camera, where warmer colors indicate hotter temperatures (scale is in Celsius); bottom image is a photograph of the summit crater, lava dome, and active fumaroles. AVO crew observed incandescence from the summit crater vent during this overflight. Courtesy of AVO.

Table 8. Observations of dome growth and other crater activity at Cleveland, 2013-2017. Data extracted from AVO reports.

Date Dome Observations
Jan-Feb 2013 New lava flow observed multiple times, 100 m across
4-6 May 2013 Explosions, ash cloud
 
Jun-Jul 2013 Elevated temperatures, satellite imagery
2-5 Oct 2013 Explosions
 
13 Nov 2013 Elevated surface temperatures near summit
25 Nov 2013 Explosion
 
28 Dec 2013 Strongly elevated surface temperature near summit
30 Dec 2013, 2 Jan 2014 Small ash cloud visible; explosion with ash plume
 
Jan-25 Feb 2014 Elevated surface temperatures near summit multiple times
25 Feb 2014 Two small explosions and ash clouds
 
7 Mar-4 Jun 2014 No detected activity
5 Jun 2014 Explosion
 
7 Jul 2014-Aug 2014 Intermittent weakly elevated surface temperatures at summit, vigorous steam plume, incandescence at summit during field visit
Late Aug-early Sep 2014 Elevated surface temperatures in satellite data
14, 24 Nov 2014 Vigorous steaming observed in webcam; Satellite image shows small lava dome in summit crater
5 Dec 2014-9 Jan 2015 Minor steaming and weakly elevated surface temperatures at summit
25, 28 Feb 2015 Weakly elevated surface temperatures at summit, low level steam plume observed
26 Mar 2015 Small steam plume, no further activity until 14 June
14 Jun 2015 Ash cover on upper flanks
 
17 Jun-21 Jul 2015 Elevated surface temperatures at summit
21 Jul 2015 Explosion
 
31 Jul, 4 Aug 2015 Strongly elevated surface temperatures at summit, photograph (figure 20) of lava dome in summit crater
6 Aug 2015 Small explosion
 
Aug-Oct 2015 Intermittent elevated surface temperatures at summit
29 Aug 2015 Seismic swarm
Sep-Nov 2015 No Reported Activity
Dec 2015 Elevated surface temperatures at summit
22-23 Dec 2015 Increased frequency of small VT events
 
Jan 2016 Elevated surface temperatures at summit
28 Feb 2016 Brief burst of small local earthquakes
 
Mar-1 April 2016 Elevated surface temperatures at summit
16 April 2016 Explosion
 
6 and 10 May 2016 Explosions
 
17-25 May 2016 Small lava dome observed (figure 21)
Jun-Jul 2016 Elevated surface temperatures at summit
26 Jul 2016 Lava dome observed (figure 22)
Aug-21 Oct 2016 Intermittent degassing, steam plumes, and elevated surface temperatures at summit
24, 28 Oct 2016 Explosion, ashfall observed
 
5 Nov 2016-23 Mar 2017 Elevated surface temperatures and intermittent steam emissions at summit. 3 Feb 2017 Satellite observation of lava dome
24 Mar 2017 Small explosion
 
Late Mar -15 May 2017 Elevated surface temperatures at summit crater; Dome observed 15 April
16 May 2017 Explosion
 
6-29 Jun 2017 Small, low-frequency earthquakes on 6 Jun, elevated surface temperatures at summit crater several times during June
4 Jul 2017 Explosion
 
7 Jul-21 Aug 2017 Elevated surface temperatures at summit crater; satellite (July 14-21) and photographic (July 25-26) observations of lava dome at summit (figure 23)
22 Aug 2017 Explosion
 
Late Aug-24 Sep 2017 Sporadic observations of elevated surface temperatures at summit crater
26, 28 Sep 2017 Explosions
 
28 Sep-Oct 2017 Elevated surface temperature at crater; lava effusion observed throughout October
28, 30 Oct 2017 Explosions
 
Early Nov 2017 Elevated surface temperatures at crater
14, 16 Nov 2017 Explosions

Lava dome extrusion may have been ongoing since early December 2016, when weakly elevated surface temperatures reappeared after the 24 October 2016 explosion. The lava dome was first observed in satellite imagery on 3 February 2017. Elevated surface temperatures were recorded throughout February and March 2017, and there was a small explosion on 24 March. Growth of a new dome was first observed on 15 April; it continued until being destroyed by an explosion on 16 May. Seismic data on 6 June and elevated temperatures on 7 June indicated growth of another dome, which continued until an explosion on 4 July 2017. There were multiple satellite and photographic observations of the growing dome during July and August; it was destroyed in an explosion on 22 August. Elevated surface temperatures were sporadically observed in early September. The next explosion took place on 26 September followed by two weaker ones on 28 September. Lava effusion was observed in satellite imagery throughout October. Small explosions on 28 and 30 October partly destroyed the lava dome. Elevated surface temperatures were recorded in early November along with small explosions on 14 and 16 November.

Activity during January-April 2017. While no activity was detected in infrasound or seismic data during January 2017, weakly elevated surface temperatures continued to be observed in infrequent clear satellite views (8 and 9 January), just as they were during 8-10 December and in infrared thermal data at the end of December (BGVN 42:04, figure 19). Low-level steam plumes were seen in clear views of the summit from the webcam during 15-19 and 21 January. Moderately elevated surface temperatures were observed in satellite data on 31 January 2017.

Satellite observations on 3 February 2017 confirmed the presence of a new lava dome at the bottom of the summit crater. The dome was about 70 m in diameter at that time, similar in size to previous domes. Observations in satellite imagery of weakly elevated surface temperatures at the summit continued during 7-9 February and during the last few days of the month. Minor steaming was seen in clear webcam images on 8 February. AVO noted that these observations were consistent with the presence of an active lava dome.

Minor steaming from the summit visible in clear webcam views, and slightly elevated surface temperatures in nighttime infrared satellite images, were present on several days during the first half of March. By the third week, surface temperatures were weakly to moderately elevated. At 0815 AKST (1615 UTC) on 24 March, a small explosion was detected in both seismic and infrasound (pressure sensor) data. This event was short-lived and similar to, if not smaller than, recent explosions. Cloud cover obscured observations by satellite. Slightly elevated surface temperatures were observed at the summit again during the last week of March.

No significant activity was detected in seismic, infrasound, or satellite data during the first two weeks of April 2017. A satellite image on 15 April, however, showed the presence of a small (less than 10-m-diameter) mound deep in the crater; the previous 75-m-diameter lava dome had been destroyed by the 24 March explosion. Satellite observations over the next several days indicated continued dome growth. Slightly elevated surface temperatures again appeared in a satellite view on 18 April. A satellite image on 23 April showed the dome partially filling the crater.

Activity during May-August 2017. Satellite images on 2 May showed that the lava dome was still active and had grown from about 15 m to more than 20 m in diameter. No further surface changes were evident on 8 May, indicating a pause or termination to the lava effusion. A short explosive eruption on 16 May at 1917 AKDT (17 May at 0317 UTC) was detected by local seismic instruments and lasted about 11 minutes. The resulting ash cloud rose to around 3.7-4.6 km altitude and was seen in satellite images to drift SW for about 5 hours. Satellite observations in the following days showed that the lava dome, built after the 24 March explosion, had been completely destroyed. Occasional clear webcam views showed steam emissions in the week following the 16 May explosion. Satellite imagery from 25 May suggested possible elevated surface temperatures at the summit while images from 26 May showed no change in the crater morphology since 16 May. No significant activity was detected in seismic or infrasound data for the remainder of May.

Evidence of possible lava effusion within the summit crater next appeared during the first week of June 2017. Small low-frequency earthquakes were detected on 6 June and elevated surface temperatures were observed in night-time satellite images on 7 June. Weakly elevated surface temperatures were observed in satellite images on 13, 19-23, and 29 June, and occasional clear webcam views of the summit showed light steaming. No activity was observed in seismic or infrasound data during the remainder of June.

A moderate explosive eruption lasting about ten minutes occurred early on the morning of 4 July at 0319 AKDT (1119 UTC). Elevated surface temperatures at the summit were visible after that on 7 and 14 July in satellite images, and occasional clear webcam views of the summit showed minor steaming. Satellite observations during 14-21 July revealed that a new dome, about 30 m in diameter and 10 m in height, had appeared at the bottom of the summit crater. Elevated surface temperatures were again observed on 22-24 July. New satellite observations between 21 and 28 July showed that the lava dome had reached about 42 m in diameter, with a slight inflation of its approximate height of 10 m. Minor steaming from the crater was seen in the webcam on 25 and 29-30 July; elevated surface temperatures were identified in satellite data on 30 July and 1 August. No activity was observed in seismic or infrasound data after the 4 July explosion for the remainder of the month.

Slow growth of the lava dome in the summit crater continued during the first few days of August 2017. Satellite observations showed that the dome surface area increased by about 75%, and covered an area of approximately 2,100 m2 (45 x 50 m) by 4 August. The height of the dome also increased due to intrusion of new lava. Elevated surface temperatures were observed in satellite data along with steam emissions from the summit crater seen in webcam images during periods of clear weather for the first few days of August, and again during 7-8 August. The small lava dome was observed during an overflight on 17 August (figure 23).

Figure (see Caption) Figure 23. A small lava dome grew inside the summit crater of Cleveland on 17 August 2017. Photo by Janet Schaefer, courtesy of AVO/ADGGS (Alaska Volcano Observatory/Alaska Division of Geological & Geophysical Surveys).

Minor degassing from the summit was seen in satellite and webcam images during 20-21 August. No explosive (ash-producing) activity was detected in seismic, infrasound, or webcam data in August until a 1-minute-long explosion on 22 August 2017 at 1043 AKDT (1843 UTC). Satellite data from 24 August indicated that the explosion destroyed the lava flow on the crater floor that had effused during July-August 2017. Explosion debris was evident on the crater floor, but no other changes to the summit area or flanks were noted. The 22 August explosion was detected by seismic and infrasound (air pressure) sensors, but no ash clouds were seen in satellite data. Nothing unusual was detected in seismic, infrasound, or satellite data for the remainder of August, except that elevated surface temperatures were observed sporadically in satellite data, suggesting that lava was present within the crater. A weak vapor plume was also sometimes visible at the summit in webcam images.

Activity during September-November 2017. Weakly elevated surface temperatures were observed in satellite data on 5 and 14 September 2017, along with minor steaming reported on 11, 17-19, and 22-24 September. These observations suggested to AVO the continued presence of lava in the crater. A small, short (three-minute-long) explosion was detected on local seismic and infrasound sensors at 1747 AKDT on 25 September (0147 on 26 September UTC) that produced a small volcanic cloud visible in satellite data about 30 minutes later with a height estimated at below 4.6 km altitude. Two weaker explosions were subsequently detected in infrasound and seismic data on 28 September (0516 and 0558 AKDT, 1319 and 1358 UTC), although no visible ash clouds were associated with these events. Weakly elevated surface temperatures during 28-30 September suggested that lava was present in the summit crater; a weak plume emanating from the crater could be seen when the summit was cloud-free.

Lava effusion in the crater was again noted in satellite data beginning on 30 September, forming a low dome that covered an area of about 4,200 m2 by 1 October 2017. Low-resolution satellite data from 6 October showed highly elevated surface temperatures, suggesting that slow growth of the dome continued. The dome doubled in size between 1 and 11 October when it appeared to cover an area of about 8,300 m2 and had approximate dimensions of 95 x 115 m. The number and intensity of elevated surface temperatures seen in satellite imagery declined during 7-13 October.

Satellite data from 15 October showed that the lava dome covered an area of about 9,500 m2 with dimensions of 100 x 125 m. There was no significant change in the size of the lava dome between 15 and 19 October based on satellite image analysis. On 16 October, satellite imagery revealed moderately elevated surface temperatures, and the webcam provided views of a small steam plume. Satellite data showed that the lava dome had grown further to about 110 x 140 m by 23 October and that surface temperatures were moderately elevated on 22 and 24 October. Small steam plumes were seen in webcam views during 22- 24 October. Small explosions on 28 and 30 October partly destroyed the dome within the summit crater. This was followed by slightly to moderately elevated surface temperatures occasionally observed in satellite imagery through the end of the month.

Moderately elevated surface temperatures were consistently observed in satellite imagery throughout the first half of November, suggesting new lava at or near the surface. Seismic and infrasound sensors detected a signal associated with low-level emissions shortly after midnight on 12 November. Two small explosions were also detected by the sensors on 14 and 16 November. These events were less energetic than those seen previously, and no volcanic cloud was observed following either explosion. A number of small earthquakes were detected on 14 November. Satellite observations of the summit indicated that a dome remained in the crater, and that the explosions were sourced from a vent in the middle of the dome. The satellite data showed no significant changes for the second half of November; although the volcano was obscured by cloud cover much of the time.

The infrared MIROVA thermal data for 2017 provided evidence that generally coincided with the satellite thermal observations of persistent heat production from dome growth throughout the year (figure 24).

Figure (see Caption) Figure 24. Infrared MODIS satellite data plotted with the MIROVA system shows intermittent thermal pulses from Cleveland for the year ending on 18 January 2018. Many of the spikes in thermal energy correspond to periods of satellite and photographic observation of dome growth. Courtesy of MIROVA.

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 it produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.dggs.alaska.gov/); Anchorage Volcanic Ash Advisory Center (VAAC), Alaska Aviation Weather Unit, NWS NOAA US Dept of Commerce, 6930 Sand Lake Road, Anchorage, AK 99502-1845 USA (URL: http://vaac.arh.noaa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Dempo (Indonesia) — December 2017 Citation iconCite this Report

Dempo

Indonesia

4.016°S, 103.121°E; summit elev. 3142 m

All times are local (unless otherwise noted)


Phreatic explosion from the crater lake generates a dense ash plume in November 2017

Activity at Dempo on Sumatra in recent years has consisted of brief phreatic eruptions, most recently single-day events on 25 September 2006 (BGVN 34:03) and 1 January 2009 (BGVN 34:01). There were no additional reports from the Center of Volcanology and Geological Hazard Mitigation (CVGHM), also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), until a brief episode of unrest in late April 2015, Another typically short phreatic explosion took place on 9 November 2017.

Activity during 2015. On 29 April the Alert Level was raised to 2 (on a scale of 1-4) by PVMBG following observations of diffuse white-gray plumes on 27 April rising to 50 m above the crater. Seismicity had increased during April compared to the previous month (figure 5). A Detik news report on 30 April quoted the PVMBG Head of the Western Volcano Field of Observation and Investigation, Hendra Gunawan, as saying that there had been tremor recorded over the previous four days. No ashfall was reported by PVMBG, and a phreatic eruption was only mentioned in the 29 April notice as a potential danger.

Figure (see Caption) Figure 5. Seismicity recorded at Dempo from 1 January to 29 April 2015. The types of earthquakes reported are HBS (Hembusan, puff or emission events), Trm (tremor), VB (shallow volcanic type B), VA (volcanic type A), TL (local tectonic), and TJ (distant tectonic). Courtesy of PVMBG.

Observers reported that during 1 June-9 September 2015 no plumes were seen and seismicity was low. On 10 September PVMBG lowered the Alert Level to 1.

Activity during 2017. Staff at the PVMBG Dempo observation post reported that no plumes rose from the crater during January and February 2017, but some diffuse white plumes during 1 March-4 April rose no higher than 50 m. Seismicity increased significantly above background levels from 21 March to 4 April (figure 5). On 5 April PVMBG raised the Alert Level to 2 based on visual and seismic data, but did not report any phreatic eruptions.

Figure (see Caption) Figure 6. Seismicity recorded at Dempo from 31 December 2016 to 6 April 2017. The types of earthquakes reported are HBS (Hembusan, puff or emission events), TRE (tremor), VB (shallow volcanic type B), VA (volcanic type A), TL (local tectonic), and TJ (distant tectonic). Courtesy of PVMBG.

According to PVMBG a three-minute-long phreatic eruption began at 1651 on 9 November 2017 and generated a dense ash plume that rose to 4.2 km altitude, about 1 km above the crater rim, and drifted S. Ashfall and sulfur gases were reported in villages on the S flanks, but there was no damage to property or injuries. The Alert Level remained at 2, with a 3-km-diameter exclusion zone; the Aviation Color Code was at Yellow.

Geologic Background. Dempo is a prominent stratovolcano that rises above the Pasumah Plain of SE Sumatra. The andesitic volcanic complex has two main peaks, Gunung Dempo and Gunung Marapi, constructed near the SE rim of a 3 x 5 km caldera breached to the north. The Dempo peak is slightly lower, and lies at the SE end of the summit complex. The taller Marapi cone was constructed within a crater cutting the older Gunung Dempo edifice. Remnants of seven craters are found at or near the summit, with volcanism migrating WNW over time. The large, 800 x 1100 m wide historically active crater cuts the NW side of the Marapi cone and contains a 400-m-wide lake located at the far NW end of the crater complex. Historical eruptions have been restricted to small-to-moderate explosive activity that produced ashfall near the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Detiknews (URL: https://news.detik.com/).


Pacaya (Guatemala) — December 2017 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Pyroclastic cone in MacKenney crater grows above crater rim, January-September 2017

Activity since 1961 at Pacaya has been characterized by extensive lava flows, bomb-laden Strombolian explosions, and ash plumes emerging from MacKenney crater and several vent fissures, impacting communities in the vicinity; several million people live within 50 km. After a few months of quiet, intermittent ash plumes and incandescence in early June 2015 marked the beginning of the latest eruptive episode, which has been ongoing since that time. Observations of incandescence increased during the second half of 2015, and the presence of a new pyroclastic cone, about 15 m in diameter at the center of MacKenney crater, was confirmed in mid-December 2015.

Strombolian activity from the cone continued throughout 2016. It was most active during June and July, depositing new ejecta onto the flanks. Although it had quieted down by the end of the year, persistent degassing, steam plumes, and occasional incandescence were still observed from the new cone. It had filled much of the crater by December 2016. This report describes the continued growth of the pyroclastic cone during January-September 2017, as well as new lava flows that emerged during February and March. Information was provided primarily by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) and satellite thermal data.

The pyroclastic cone inside MacKenney crater continued to grow sporadically during January-September 2017. Weak explosions in January produced ejecta 15 m above the top of the cone as steam and gas emissions rose about 400 m above the crater rim. By early February the top of the cone had risen to 10 m above the crater rim. Ejecta ranging in size from millimeters to 50 cm rose up to 25 m above the cone. Three small lava flows emerged from the crater in early February and flowed down the NW flank a few hundred meters before cooling. Growth of the cone continued more slowly during March-August, but incandescence was still observed, and weak explosions deposited tephra around the sides of the cone. Increased explosive activity during August reduced the height of the cone to slightly below the crater rim, but renewed explosions during September built it back up again to 10 m above the rim a few weeks later.

During January 2017, activity increased slightly compared with December 2016, and included degassing, tremors, incandescence, and weak explosions from MacKenney crater. Steam-and-gas plumes rose to around 400 m above the crater rim and generally drifted about 5 km before dissipating. Incandescence in the crater grew more visible towards the end of the month; ejecta from the pyroclastic cone within crater rose as much as 15 m above the crater rim. Seismic RSAM values also increased from a maximum of 2,500 to 3,500 units. The first MODVOLC thermal alert since 10 April 2016 appeared on 10 January 2017. Eight more alerts appeared during January, every few days for the rest of the month.

Degassing during February 2017 sent plumes slightly higher to 500 m above the crater . The top of the pyroclastic cone had risen to about 10 m above the crater rim by early February, as compared to about 10 m below the crater rim a year earlier in February 2016 (figure 78). Ejecta from the cone ranged in size from millimeters to 50 cm, and rose to heights of 10-25 m above the top of the cone with constant activity (figure 79).

Figure (see Caption) Figure 78. The pyroclastic cone inside MacKenney Crater at Pacaya grew substantially between February 2016 (upper photo) and 2 February 2017 (lower photo). View is to the NW with the 2010 fissure at the back, right side of the crater. Courtesy of INSIVUMEH (Reporte mensual, febrero 2017; Informe mensual de la actividad del Volcán Pacaya, junio 2017).
Figure (see Caption) Figure 79. Ejecta from the top of the pyroclastic cone inside MacKenney crater at Pacaya ranged in size from millimeters to approximately 50 cm, and was thrown tens of meters from the summit on 2 February 2017. Courtesy of INSIVUMEH (Reporte mensual, febrero 2017).

Three small lava flows were reported during February 2017, first emerging from the NW side of the crater from the fissure created during 2010 on 9 February 2017 and flowing NW towards Cerro Chino. Incandescent material was ejected 30-50 m above the crater rim and filled much of the crater. Lava travelled as far as 300 m down the NW flank. The dimensions of the flows were variable, but by the end of the month they were about 50 m long and 20 m wide. Ten MODVOLC thermal alerts were issued during February, indicating that activity was high inside and around the summit crater.

Steam plumes during March and April 2017 rose as high as 600 m above the crater rim. Lava flowed tens of meters outside the crater rim a few times at the end of March. The growth of the pyroclastic cone continued with Strombolian explosions of 10-25 m above the top of the cone during this time, and incandescence visible on clear nights. It was possible to see the new cone above the crater rim from the NW and W flanks (figure 80). Rumblings from the explosive activity were reported within 5 km of the cone. Although the three MODVOLC thermal alerts issued during the first week of March were the last through at least September 2017, weak explosions and nighttime incandescence continued during May as the pyroclastic cone continued to grow.

Figure (see Caption) Figure 80. The top of the new pyroclastic cone inside MacKenney crater at Pacaya was visible from the edge of nearby Cerro Chino crater, about 1 km NW, beginning in February 2017. Courtesy of INSIVUMEH (Reporte mensual, febrero 2017).

By June 2017, the steam plumes were rising about 800 m above the crater rim. The height of the pyroclastic cone remained at about 10 m above the crater rim, but continued to grow in volume and produce abundant steam and gas (figure 81). Similar emissions were reported during July, however, incandescence was only occasionally observed at night.

Figure (see Caption) Figure 81. Abundant steam and gas emerged from the upper part of the pyroclastic cone inside MacKenney crater at Pacaya on 17 June 2017. The dome rose height remained at about 10 m above the crater rim, shown in the lower left foreground. Courtesy of INSIVUMEH (Informe mensual de la actividad del Volcán Pacaya, junio 2017).

INSIVUMEH reported increased activity during August 2017 with the frequency of Strombolian explosions increasing to 5-7 per hour, and higher RSAM units recorded to 4,000; some material was ejected as high as 75 m above the crater rim, generating block avalanches as far as 100 m down the W flank. Explosions during 11 August reduced the height of the pyroclastic cone inside the crater such that it was no longer visible from the flank. Moderate to strong explosions were recorded a number of times during the month (figure 82).

Figure (see Caption) Figure 82. A thermal image of MacKenney crater at Pacaya on 18 August 2017 shows Strombolian activity at the summit. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Pacaya, Semana del 19-25 de Agosto de 2017).

Seismic and explosive activity remained high during September 2017. Two significant events were recorded. On 5 September RSAM values peaked at 5,000 units and remained elevated for about six hours before dropping back to average values around 2,000. This corresponded with a period of rebuilding of the pyroclastic cone within the crater. INSIVUMEH reported Strombolian explosions ejecting material as high as 100 m above the crater rim during 21-22 September. The second event lasted for about three days during 23 and 26 September when there was an increase in the rate of explosions, registering up to 40 per hour. After destruction of part of the cone during August, it was rebuilt to a level about 10 m above the crater rim again during this time.

Infrared thermal data generally agrees well with observations of increased activity and lava flows during January-March 2017 (figure 83). However, reports from INSIVUMEH indicate that explosive activity continued at the pyroclastic cone during April-September, although only the largest events during August and September created thermal signals that were captured in the MIROVA data.

Figure (see Caption) Figure 83. MIROVA graph of infrared MODIS data for the year ending on 15 October 2017 at Pacaya shows the thermal signature associated with lava flows and explosive activity during January through March 2017. Although increased explosive activity was reported in August and September, the thermal signal was much smaller. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Sabancaya (Peru) — December 2017 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Continuous pulses of ash emissions for ten months, February-November 2017

Activity that began in 1986 at Sabancaya was the first recorded in over 200 years. During the last period of substantial ash eruptions between 1990 and 1998 ashfall deposits up to 4 cm thick were reported 8 km E of the volcano. Intermittent seismic unrest and fumarolic emissions characterized activity from late 2012 through October 2016, with a few possible minor ash emissions unconfirmed during this period, and probable SO2 plumes.

Hybrid seismic events, related to the movement of magma, and SO2 emissions increased noticeably during September and October 2016. An explosive eruption period with numerous ash plumes began on 6 November 2016 and has continued throughout 2017. Continuous ash emissions with plume heights exceeding 10 km altitude were often recorded through February 2017. Thermal anomalies were first measured in satellite data in early November 2016, along with numerous significant SO2 plumes (BGVN 42:05). Details of the continuing eruptive activity at Sabancaya from February-November 2017 are discussed in this report with information from the two Peruvian observatories that monitor the volcano: Instituto Geofisico del Peru - Observatoria Vulcanologico del Sur (IGP-OVS), and Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico) (OVI-INGEMMET). Aviation reports and notices come from the Buenos Aires Volcanic Ash Advisory Center (VAAC), and satellite data is reported from several sources.

Images from December 2016. An expedition to Sabancaya during 9-18 December 2016 by photographer Martin Rietze recorded numerous ash emissions and the impacts of the ongoing eruption on the region (figures 31-36). Similar activity continued throughout 2017.

Figure (see Caption) Figure 31. Gas and a dense ash plume rose above Sabancaya during 12-15 December 2016 in this view taken 6.5 km NNE of the volcano. Photo copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 32. A column of ash drifted E from Sabancaya during 12-15 December 2016 while a cloud cap condensed on top of the plume. Image taken from 6.5 km NNE of the summit. Photo copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 33. An ash plume fanned out to the E from Sabancaya during 12-15 December 2016. Image taken from 15 km E. Photo copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 34. Sabancaya lies in the saddle between the older volcanic complexes of Ampato to the S (left) and Hualca Hualca to the N (right) in this view taken from 15 km E. It is the only one of the three to have erupted during the Holocene. An ash plume rose from Sabancaya during 12-15 December 2016, while ash from an earlier pulse is visible drifting S over Ampato. Photo copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 35. Trace amounts of ashfall from Sabancaya covered the region 10 km W of the volcano during 12-15 December 2016. Photo copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 36. An ash-and-steam plume rose vertically from Sabancaya during 12-15 December 2016 while a meteor streaked across the nighttime sky in this image taken 6.5 km NNE of the summit. Photo copyright by Martin Rietze, used with permission.

Summary of activity, February-November 2017. The persistent eruptive activity during February-November 2017 can be visualized by the continuous MIROVA plot of Log Radiative Power during this time (figure 37). The Buenos Aires VAAC issued 1,174 VAAC reports for Sabancaya during February-November 2017, with over 100 recorded each month (table 1). Tens of explosions were reported daily by OVI-INGEMMET and IGP-OVS throughout the period. Ash plumes usually rose to the 9-11 km altitude range (3,000-5,000 m above the summit), and drifted 30-50 km in many directions before dissipating. MODVOLC thermal alerts were reported between 2 and 16 times every month, and satellite data registered SO2 plumes with values greater than two Dobson Units multiple days each month (figure 38).

Figure (see Caption) Figure 37. MODIS infrared satellite data plotted by MIROVA for the 12 months ending 19 January 2018 show the continuous signature of thermal activity from Sabancaya during that time. Courtesy of MIROVA.

Table 1. Eruptive activity at Sabancaya, February-November 2017. Compiled using data from IGP-OVS/OVI-INGEMMET reports, the Buenos Aires VAAC, HIGP, and NASA GSFC.

Month VAAC Reports Avg Daily Explosions by week Max Plume Heights (m above crater) Plume Drift MODVOLC Alerts Days with SO2 over 2 DU
Feb 2017 108 58, 23, 19, 42 3,000-4,300 40 km, NW, N, S, SE, SW 6 12
Mar 2017 122 44, 36, 36, 37, 41 2,500-4,800 30-40 km, S, NW, SW, N 4 8
Apr 2017 113 27, 37, 36, 33 3,000-3,200 40 km NW, NE, SE, W, N 16 11
May 2017 117 41, 38, 39, 41 2,800-4,200 30-40 km NE, E, SE 4 3
Jun 2017 104 47, 31, 26, 15, 5 1,500-3,700 30-40 km E, SE, SW, S 4 5
Jul 2017 127 10, 19, 24, 40 3,500-5,500 40-50 km NW, S, E, N, SE 2 13
Aug 2017 124 65, 41, 46, 44 3,200-4,200 30-50 km N, SE, NW, S 12 10
Sep 2017 118 38, 29, 45, 45 2,500-3,500 30-40 km SE, E, NE 6 5
Oct 2017 120 42, 41, 47, 43 3,100-3,900 35-60 N, NW, W, S, SE, NE, E 9 8
Nov 2017 121 57, 66, 82, 78, 69 3,300-4,200 40-50 km N, NE, E, SE, NW, SW 11 10
Figure (see Caption) Figure 38. Numerous significant SO2 plumes were captured by the OMI instrument on the Aura satellite for Sabancaya during February-November 2017. Plumes drifted SSE on 4 March, 22 March, 30 July, and 6 August 2017 (top four images), and SW and W on 9 October and 10 November 2017 (bottom two images). The red pixels indicate values of Dobson Units (DU) greater than 2. Courtesy of NASA Goddard Space Flight Center.

Activity during February-November 2017. IGP-OVS and OVI-INGEMMET monitor seismicity, inflation and deflation, SO2 emissions, and visual activity with webcams from several locations around Sabancaya (figure 39). Ash plumes during February 2017 rose to heights of 3,000-4,300 m above the summit (figure 40). The average number of daily explosions decreased from 53 the first week to 19 the third week, and then increased to 42 during the last week. Ash plumes drifted up to 40 km in numerous directions.

Figure (see Caption) Figure 39. Stations where IGP-OVS and OVI-INGEMMET monitor seismicity (red), inflation and deflation (green), SO2 emissions (orange), and their webcam locations (yellow) for Sabancaya. Courtesy of IGP-OVS and OVI-INGEMMET weekly reports.
Figure (see Caption) Figure 40. Ash emission from Sabancaya, 12 February 2017. View from the OVI-INGEMMET webcam located near Coporaque, about 30 km NE. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitoreo de la Actividad del Volcan Sabancaya, Semana del 06 al 12 de febrero de 2017).

During March 2017 the number of daily explosions was very consistent averaging each week between 36 and 44 events. Maximum ash plume heights ranged from 2,500 to 4,800 m and drifted 30-40 km to either the NW or SW (figure 41). Ash fell in Pinchollo (20 km N) and Cabanaconde (22 km NW) during the last few days of the month.

Figure (see Caption) Figure 41. Ash emission from Sabancaya, 12 March 2017. Taken from OVI-INGEMMET webcam located about 4 km NE. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitoreo de la Actividad del Volcan Sabancaya, Semana del 06 al 12 de marzo de 2017).

Ash fell during the first week of April in Pinchollo, Maca (20 km NE) and Chivay (32 km NE). Plume heights during the month were slightly lower, ranging from 3,000-3,200 m and drifted 40 km in several directions. The frequency of daily explosions decreased slightly from March to an average each week ranging from 27 to37. The Buenos Aires VAAC reported that diffuse ash plumes drifted 100 km E on 9 April.

The frequency of daily explosions increased slightly during May; weekly averages ranged from 38 to 41. Plume heights were somewhat higher, at 2,800-4,200 m, and drifted 30-40 km in many directions (figure 42). There was a notable decrease during June 2017 in the number of daily explosions from an average during the first week of 47 to an average of only five at the end of the month. Deflation was observed in the GPS data after 21 June. Plume heights ranged from 1,500 to 3,700 m.

Figure (see Caption) Figure 42. On 20 May 2017 the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image of repeated puffs of ash rising from Sabancaya and drifting E. Courtesy of NASA Earth Observatory.

Activity increased steadily during July 2017. Daily explosions rose from an average of 10 during the first week to 40 the last week; ash plume heights were up to 5,000 m during those weeks (figures 43, 44) and drifted 50 km or more generally NW and SE. Ash plumes during the third week affected communities N of the volcano, including the villages of Cabanaconde, Pinchollo, Lari (20 km NE), Madrigal (20 km NE), Ichupampa (23 km NE), Maca and Achoma (21 km NE). Winds changed to the S on 22 July, so ashfall then affected Lluta (30 km SW), Huanca (75 km SSE), and some parts of Arequipa (80 km SSE).

Figure (see Caption) Figure 43. Ash and gas emission from Sabancaya rose several kilometers above the summit on 9 July 2017 in this OVI-INGEMMET image from their webcam located near Coporaque, about 30 km NE. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitoreo de la Actividad del Volcan Sabancaya, Semana del 03 al 09 de julio de 2017).
Figure (see Caption) Figure 44. On 26 July 2017, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this natural-color image of an ash plume drifting E from Sabancaya. The rising ash cast a shadow on the ground below. Courtesy of NASA Earth Observatory.

After averaging 65 explosions per day during the first week of August 2017, activity declined slightly to weekly averages of 41-46 explosions per day for the rest of the month. Plume heights ranged from 3,200 to 4,200 m and drifted generally 30-50 km NW or SE. During September 2017 activity was much the same. Plume heights ranged from 2,500-3,500 m, and drifted 30-40 km SE or NE. The weekly averages of daily explosion frequency varied between 29 and 45 events.

A noteworthy difference in activity occurred during October 2017, when there were tremors with ash emissions lasting for more than three hours per day during the last two weeks of the month. Daily explosion frequency averaged from 41 to 47 each week, and plume heights ranged from 3,100 to 3,900 m (figure 45). A few plumes drifted as far as 60 km during the third week of the month.

Figure (see Caption) Figure 45. A large ash and gas plume rose from Sabancaya on 21 October 2017 in this view from the OVI-INGEMMET webcam located near Coporaque, about 30 km NE. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitoreo de la Actividad del Volcan Sabancaya, Semana del 16 al 22 de octubre de 2017).

During November 2017 the number of daily explosions increased from an average of 57 the first week to 82 by the third week, decreasing to 69 at the end of the month. Plume heights remained at 3,300-4,200 m, drifting 40-50 km in several directions. Tremors with ash emissions lasted 1-2 hours most days.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET, (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru, Observatoria Vulcanologico del Sur (IGP-OVS), Arequipa Regional Office, Urb La Marina B-19, Cayma, Arequipa, Peru (URL: http://ovs.igp.gob.pe/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Martin Rietze (URL: http://www.mrietze.com/).


Santa Maria (Guatemala) — December 2017 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Slow growth of new lava dome, persistent ash plumes, and nearby ashfall, January-October 2017

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing since 1922. The youngest of the four vents in the complex, Caliente, has been actively erupting with ash explosions, pyroclastic, and lava flows for more than 40 years. During July-September 2016, daily weak ash emissions were punctuated weekly by stronger emissions that sent ash plumes to altitudes of 3.3-6 km, and numerous pyroclastic flows were reported (BGVN 42:07). A new lava dome appeared in October and had filled half of the crater by years end; the frequency of explosions increased to 25-35 per day by December 2016. Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center) provided regular updates on the continuing activity during the time period of this report from January-October 2017.

Activity at the Caliente dome was very consistent from January through October 2017. A lava dome that began growing during October 2016 continued to slowly increase in size. Its growth generated constant steam and gas emissions that rose 100-500 m above the dome, and daily explosions with ash that generally rose to 2.8-3.3 km altitude (200-800 m above the dome). Ashfall was reported almost daily in villages and farms within 5-12 km S and SW, including San Marcos Palajunoj, Loma Linda, Monte Bello, El Patrocinio, La Florida, El Faro, Patzulin, and others. There were 15-35 explosions per day throughout this time. As the lava dome within the Caliente summit crater increased in size, more block avalanches were observed traveling tens of meters down the flanks of Caliente, outside the crater rim. Several lahars affected the major drainages during May-October.

Fifteen to twenty small to moderate daily explosions with ash emissions were typical for the Caliente dome complex during most of January 2017, in addition to constant blue and white gas emissions from the top of the lava dome. This same pattern continued throughout February, when the new dome inside the summit crater continued to grow (figure 63). By March, the dome was large enough that occasional block avalanches of fresh lava reached outside the summit crater, and descended a few tens of meters onto the flanks; the lava dome, growing since October 2016, had not quite filled the crater (figure 64).

Figure (see Caption) Figure 63. The lava dome inside the summit crater of Caliente grew noticeably between 17 January and 28 February 2017 at Santa María in this view to the S. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA FEBRERO 2017).
Figure (see Caption) Figure 64. Ash and steam rises during an explosion from the new lava dome inside the summit crater of the Caliente dome of Santa María. Recently ejected blocks are steaming on the flanks close to the webcam on 19 March 2017. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA MARZO 2017).

By April 2017 the number of daily explosions had increased to 25-30, with similar energy levels and ash plume heights as earlier in the year. The Cabello de Ángel River continued downcutting through the 2014-2015 lava flows (figure 42, BGVN 41:09) creating a new channel that was 15-50 m deep (figure 65). During May, the number of daily explosions ranged from 9 to 26 (figure 66), and block avalanches from the new lava dome traveled short distances down the flanks. Two lahars were reported in May; on 6 May a lahar 30 m wide and 2.5 m deep descended the Cabello de Ángel drainage (a tributary of the Nimá I river on the S flank) carrying branches, tree trunks, and blocks up to 2 m in diameter. A smaller lahar on 31 May traveled down the Nimá I drainage and dragged smaller blocks and tree trunks down the channel.

Figure (see Caption) Figure 65. The Cabello de Ángel river cuts new channels through the 2014-2015 lava flows on the SE flank of Caliente dome at Santa María during April 2017. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA ABRIL 2017).
Figure (see Caption) Figure 66. A moderate explosion on 30 May 2017 from Santiaguito at Santa María sends an ash plume to 2.6 km altitude that then drifted SW. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA Mayo 2017).

Explosions during June 2017 continued at the rate of 14-36 per day, with ash plumes rising to 2.7-3.3 km altitude (figure 67). Juvenile material continued to fill and overtop the crater rim, creating weak block avalanches down the flanks. Increased precipitation during June resulted in five lahars descending the Cabello de Ángel, Nimá I, and San Isidro drainages on 1, 5, 7, 9, and 16 June. They ranged in size from 15 to 25 m wide and 1 to 1.5 m high, and transported blocks 1-2 m in diameter. A larger lahar on 1 June that traveled down the Cabello de Ángel drainage was 30 m wide and 2 m high.

Figure (see Caption) Figure 67. An ash plume at Santa María's Santiaguito complex on 21 June 2017 rises to 2.9 km. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA Junio 2017).

Similar explosive activity continued during July. On 5 July, a moderately-sized lahar descended the Cabello de Ángel drainage, a tributary of the Nimá I river. Near the El Faro estate, the lahar was 30 m wide and 1 m deep, and carried blocks 50 cm in diameter. On 14 July, another lahar traveled down the Nimá I drainage, which is a tributary of the Samalá. By August the summit crater of Caliente was nearly filled with the new lava dome, and overflows of block avalanches were more frequent, mostly traveling down the E flank (figure 68). A moderately-sized lahar descended the Nimá I drainage on 9 August.

Figure (see Caption) Figure 68. Fresh block avalanches were visible covering an area about 126 m wide and 246 m long near the summit of Caliente at Santa María when images from 31 July (left) and 2 August 2017 (right) were compared. Most of the block avalanches traveled down the east flank (A), but smaller avalanches traveled shorter distances down the NE flank (B). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 29 de julio al 04 de agosto de 2017).

Explosions with ash plumes rising hundreds of meters above the crater rim continued daily during September and October, and sent block avalanches down the NE and SE flanks of the dome. INSIVUMEH reported that on 11 October 2017 a 12-m-wide and 1.5-m-high lahar descended the Cabello de Ángel and the Nimá I drainages, carrying blocks up to 1 m in diameter. On 13 October, the seismic network detected moderate-to-strong lahars in the Cabello de Ángel and the Nimá I drainages triggered by heavy rain.

Relatively few VAAC reports were issued for Santa María during 2017 compared with the previous two years. The Washington VAAC observed an ash plume in satellite imagery drifting 15 km W at 4.6 km altitude on 14 January. Morning visible imagery on 1 February showed an ash plume 25 km SW at 3.8 km altitude. An ash emission was observed on 27 February a few kilometers WSW at or slightly above the summit. Multiple small puffs of ash extended 55 km WSW of the summit on 9 March, at 4.6 km altitude. An ash plume was centered 15 km NW of the summit at 3.8 km altitude and rapidly dissipating on 4 April. The next VAAC observation, on 2 June, was a small puff of ash located 30 km S of the summit. On 6 September, possible volcanic ash was drifting SW of the summit at 4.3 km altitude.

Infrared MODIS satellite data suggest low-level, persistent activity at Santa María throughout January-October 2017 (figure 69). This is consistent with photographs of a slowly growing lava dome at the summit, and persistent low-energy explosions with ash emissions and block avalanches during the year. There were no MODVOLC thermal anomalies during this time.

Figure (see Caption) Figure 69. Infrared MODIS thermal data graphed through the MIROVA system indicates a low but persistent level of thermal activity at Santa María for the year ending on 8 June 2017. This is consistent with the observations of a slowly growing lava dome inside the summit crater. Courtesy of MIROVA.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Sinabung (Indonesia) — December 2017 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


Constant activity through September 2017, with ash plumes, block avalanches, and pyroclastic flows

Indonesia's Sinabung volcano, located on North Sumatra, had its first confirmed Holocene eruption between 27 August and 18 September 2010; ash plumes rose up to 2 km above the summit, and falling ash and tephra caused fatalities and thousands of evacuations (BGVN 35:07). It remained quiet after the initial eruption until 15 September 2013, when a new eruption began that has continued for over three years. Details of events during October 2016-September 2017 are covered in this report. Information is provided by, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM, the Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and the Badan Nacional Penanggulangan Bencana (National Disaster Management Authority, BNPB).

Summary of activity during November 2013-September 2016. Thousands of evacuations took place during November and December 2013 when ash plumes reached heights between 6 and 11 km altitude multiple times. Ashfall from hundreds of pyroclastic flows in January 2014 covered communities in the region. Lava flows emerged from the summit in mid-January 2014 and traveled down the S flank. Pyroclastic flows on 1 February 2014 killed 17 people in the village of Sukameriah, located 3 km S of the summit (BGVN 39:01). The lava flow had advanced 2.5 km from the summit by 6 April 2014. Lava flows, ash plumes, and pyroclastic flows persisted throughout 2014 and 2015. Ash plumes generally rose up to about 5 km altitude, and pyroclastic flows traveled up to 4.5 km from the summit throughout this period (BGVN 39:10). Repeated lava dome growth and destruction was also reported by PVMBG during this time (BGVN 40:10).

Increases in lava dome volume and instability during June 2015 again led to evacuations of thousands living within 7 km of the volcano. Ash deposits were common in the communities up to 10-15 km away. Similar activity continued into 2016, with tens of pyroclastic flows affecting nearby communities during many months. In April 2016, over 9,000 people remained in evacuation centers. Ash plumes were reported 3-8 times each month by the Darwin VAAC between April and October 2016, with plume altitudes ranging generally from 3-5.5 km. Several fatalities were reported during May 2016 (BGVN 42:02). A lahar passed through Kutambaru village, 20 km NW of Sinabung, on 9 May and killed one and injured four people. A pyroclastic flow on 21 May 2016 killed 7 people in the village of Gamber, 4 km SE from the summit. Ashfall was reported during July 2016 more than 50 km NE, and incandescent lava was visible up to a kilometer from the summit. Continuous pyroclastic flows were reported on 25 August 2016, with an ash plume observed at 6.1 km altitude the following day.

Summary of activity during October 2016-September 2017. Ash plumes, block avalanches, and pyroclastic flows were all nearly constant at Sinabung throughout this period (table 7). The number of explosions recorded every month ranged from 37 (March 2017) to 105 (June 2017). The number of Volcanic Observatory Notices to Airmen (VONAs) each month ranged from 34 (September 2017) to 93 (June 2017). The Darwin VAAC reported ash plumes on 17 or more days every month of 2017 through September. Thermal anomaly signals also persisted throughout, likely caused primarily by dome growth and incandescent block avalanches.

Table 7. Ash plumes and explosions reported for Sinabung, October 2016-September 2017. Data from Darwin VAAC and PVMBG reports.

Month Days with Ash Plume Reports Ash Plume Altitudes (km) Ash Plume Drift Explosions reported (PVMBG) Number of VONA's issued (MAGMA) Comments
Oct 2016 5, 12, 26, 28-29, 31 3.4-4.6 km SE, E, SSE, NE -- -- --
Nov 2016 1, 2, 6, 11, 13, 14, 20, 29, 30 3.4-5.8 km E, W, E, NE, SE -- -- Multiple brief explosions; pyroclastic flows observed 1, 2 Nov
Dec 2016 15, 17, 19-21, 26, 27, 29-31 3.0-6.1 km SSE, E, S, SE, NW, S, SW -- -- Hotspot visible in satellite images on 30 Dec
Jan 2017 1, 8-15, 17-20, 22, 24, 26-31 3.4-5.5 km WSW, W, E, ESE, SW 101 58 Ash 50 km E and 75 km NE on 8 Jan; hot spot in satellite imagery 10 Jan
Feb 2017 1-14, 16-22, 24-26, 28 3.0-5.5, 6.7, 7.4 km SSE, S, NE, E, SE, SW, WSW, W 88 70 4 Feb explosion caused ash plume to 7.4 km altitude
Mar 2017 1, 2, 5, 7-18, 21, 22, 24, 25, 27, 29 3.0-5.5 km WNW, NW, SSE, NNW, W, S, SW, NE, N, E, ESE 37 34 Highest plumes, on 17 and 18 March, rose to 5.5 km altitude and drifted W and WSW
Apr 2017 5, 7, 9-20, 22, 24-30 3.0-5.5, 8.4 km ESE, E, SE, WNW, SSE, SSW, W, SW, WSW, NNE, S 104 58 Large explosion on 9 April, ash plume reported by a ground observer to 8.4 km altitude, drifting SE
May 2017 2-12, 14-17, 19-20, 23-31 3.4-8.8 km WSW, WNW, NW, SW, S, E, SE, NE, ESE, W, ENE 87 58 Series of large explosions during 17-20 May, several plumes rose to altitudes between 6.1 and 8.8 km
Jun 2017 1-27, 29, 30 2.7-5.5, 6.4 km NE, N, WNW, ENE, ESE, SE, SW, W, S, E, NW, NE, SSW, SSE 105 93 --
Jul 2017 2-3, 6, 8-11, 14, 15, 17-31 2.7-6.1 km ESE, NW, ENE, E, SE, W, WSW, SSW, ENE, NE 91 64 --
Aug 2017 1, 2, 6-10, 12, 16, 23-29, 31 2.7-5.5, 6.4 km ENE, SE, E, S, W, ESE, WNW, NNW, WSW 61 76 Large explosion on 2 Aug with ashfall in many places; Hotspots reported 6, 7 Aug
Sep 2017 1, 3, 7, 8, 12-16, 18, 22, 23, 25-29 3.0-5.5, 6.1-6.4 km ENE, WSW, E, W, NW, SE, ESE, SW 55 34 --

Activity during October 2016-September 2017. The visiting head of PVMGB observed an ash plume from an explosion on 28 September 2016. Ash emissions continued at Sinabung, with multiple aviation advisories issued by the Darwin VAAC through the end of 2016. Explosions generated ash plumes that rose to altitudes of 3.0-6.1 km, and drifted in multiple directions during the last quarter of 2016 (table 7). Pyroclastic flows were observed several times during November (figure 28), and a hotspot was visible in satellite imagery on 30 December.

Figure (see Caption) Figure 28. A large pyroclastic flow descended the E flank of Sinabung on 29 November 2016 in this view taken a few kilometers SE of the volcano. . Courtesy of Sadrah Peranginangin.

Activity during January 2017 was dominated by incandescent block avalanches (figure 29). PVMBG reported 101 ash-bearing explosions with plumes rising up to 1 km above the summit, and pyroclastic flows that traveled up to 3 km ESE and 500 m S. A You Tube video captured a pyroclastic flow and ash plume on 17 January 2017. Ash plumes were reported by the Darwin VAAC on 21 days during the month with plume heights ranging from 3.4-5.5 km altitude.

Figure (see Caption) Figure 29. Block avalanches descended the E flank of Sinabung many times during January 2017, including at 0134 local time on 17 January, as seen looking to the WSW. Courtesy of Endro Lewa.

Near-daily ash plumes from 88 explosive events during February 2017 rose to heights of 500-5,000 m above the summit (3.0-7.5 km altitude), and pyroclastic flows traveled 3.5 km E and 1 km S. The Darwin VAAC reported ash emissions on all but three days of the month. A large explosion on 4 February sent an ash plume to 7.4 km altitude that then drifted SE (figure 30), and on 9 February a large ash plume drifted WSW at 6.7 km altitude.

Figure (see Caption) Figure 30. Photo of an ash plume at Sinabung on 4 February 2017 that rose more than 5 km above the summit and slowly drifted SE. Photo taken from Kabanjahe, about 13 km SE. Courtesy of Sadrah Peranginangin.

Block avalanches continued to travel 500-2,000 m down the ESE flank during March 2017. Ash plume heights ranged from 500 to 3,000 m above the summit (3.0-5.5 km altitude) during the 37 explosion events reported by PVMBG (figure 31). Pyroclastic flows traveled 2.5 km down the S flank. The highest plumes of the month were recorded on 17 and 18 March; they rose to 5.5 km altitude and drifted W and WSW. The Darwin VAAC reported ash plumes during 21 days of the month.

Figure (see Caption) Figure 31. Photo of an ash plume at Sinabung on 29 March 2017 at 1548 local time, in this view looking W. Courtesy of Igan S. Sutawijaya.

During April 2017, block avalanches were observed traveling between 800 and 3,500 m down the SSE flank (figure 32), and 104 explosions were recorded by PVMBG. Ash plumes from these explosions rose to heights of 800 to 3,500 m above the summit. Pyroclastic flows descended 2.8 km down the S flank. A large explosion on 9 April reported in a VONA by a ground observer sent an ash plume to 8.4 km altitude, drifting SE. Pyroclastic flows were also observed on the SE flank. The Darwin VAAC reported ash plumes on 22 days of the month.

Figure (see Caption) Figure 32. Pyroclastic flows descended the S flank (left) and block avalanches descended the E flank of Sinabung near midnight on 4 April 2017, while a small explosion took place at the summit. Image taken from a small village a few kilometers from the base of the SE flank. Courtesy of Sadrah Peranginangin.

Ash plumes rose between 500 and 6,000 m above the summit during May 2017. Eighty-seven explosive events were recorded (figure 33), and block avalanches were observed traveling 500-1,500 m down the S and SE flanks. The Darwin VAAC reported ash plumes on 26 days during the month. A series of large explosions during 17-20 May resulted in several plumes that rose to altitudes between 6.1 and 8.8 km, in addition to numerous others at lower altitudes between 3.7 and 5.8 km. As of late May, over 9,000 people were still displaced from the volcano, living in either shelters or evacuation camps, according to BNPB.

Figure (see Caption) Figure 33. Strombolian activity at the summit of Sinabung on 1 May 2017. Courtesy of Sadrah Peranginangin.

Incandescent block avalanches and pyroclastic flows were persistent during June 2017. They moved down the SE and S flanks up to 2,500 m. PVMBG reported 105 explosive events with plume heights ranging from 500-4,000 m above the summit (figure 34). The largest explosions of the month, on 17 June, generated ash plumes that rose to 6.4 km altitude and drifted 15 km SW. The Darwin VAAC reported ash emissions every day except for 28 June.

Figure (see Caption) Figure 34. Ash plume rose from Sinabung on 26 June 2017. The view is from a small village about 7 kilometers ENE of the summit. Courtesy of Endro Lewa.

PVMBG reported 91 explosive events during July 2017 that produced ash plumes that rose 500-3,500 m above the summit. They also noted four pyroclastic flows that traveled 1-3 km down the S and SE flanks. Block avalanches continued on the S and E flanks, traveling as far as 3 km. The Darwin VAAC issued reports on 24 days during July. The largest explosions occurred on 20 and 23 July when ash plumes rose to 5.8 and 6.1 km altitude and drifted WSW, ENE, and SE (figure 35).

Figure (see Caption) Figure 35. A large ash plume from Sinabung rose more than 5 km above the summit on 20 July 2017. The view is from a small village about 7 kilometers ENE of the summit. Courtesy of Endro Lewa.

Although fewer explosive events (61) were reported during August, block avalanches continued to travel 500-2,300 m down the SE flank. Ash plumes rose 500-2,000 m above the summit; 22 pyroclastic flows traveled up to 4.5 km down the SE flank. The Darwin VAAC issued reports of ash emissions on 17 days of the month.

A large explosion on 2 August sent ash emissions to 5.5-6.4 km altitude (figure 36). The S-drifting plume brought ashfall to the communities of the Ndokum Siroga District (SE), Simpang (7 km SE), Gajah (8 kmE), Kabanjahe (13 km SE), and Naman Teran (5 km NE) (figures 37 and 38). PVMBG reported that the explosions of 2 August destroyed the lava dome at the summit, which had grown since April 2017 to about 2.3 million m3 in size before the explosion (figure 39). The volume of the lava dome was an estimated 23,700 m3 on 6 August, after the explosions.

Figure (see Caption) Figure 36. Photo showing the large eruption from Sinabung on 2 August 2017, with a dark ash plume and pyroclastic flows. Image taken 5 kilometers E of the summit, looking W. Courtesy of Endro Lewa.
Figure (see Caption) Figure 37. Many communities were affected by ashfall and pyroclastic flows from the large explosion at Sinabung on 2 August 2017. This village is located near the base of the E flank. Courtesy of Endro Lewa.
Figure (see Caption) Figure 38. A village on the SE flank of Sinabung, was covered with ash on 3 August 2017 after a large eruption the previous day that sent a column of ash to 4.2 km altitude and a pyroclastic flow down the adjacent slope, destroying vegetation in its path. Courtesy of Xinhuanet (Xinhua/YT Haryono).
Figure (see Caption) Figure 39. The dome at Sinabung on 3 August 2017 one day after its destruction in a large explosion. The volume according to PVMBG was 2.3 million cubic meters in early July and measured only 23,700 cubic meters after the explosion. Courtesy of Endro Lewa.

The explosions also produced pyroclastic flows that traveled SE and E 2.5-4.5 km and reached the Laborus river, increasing the size of a natural dam on the river that had been evolving from previous deposits. Ashfall was also reported to the E and NE at Berastagi (12 km E). Hot spots were recorded in satellite imagery on 6 and 7 August. Additional ash plumes to similar altitudes (5.5-6.4 km) were reported several other times during August (figure 40 and 41).

Figure (see Caption) Figure 40. An explosion at Sinabung on 8 August 2017. The ash plume rises 2,000 m and a pyroclastic flow descends the E flank in this view from a small village about 7 km ENE of the summit. Courtesy of Endro Lewa.
Figure (see Caption) Figure 41. Ash and steam plumes and block avalanches at Sinabung on 25 August 2017 in this view from a small village about 7 km ENE of the summit. Courtesy of Endro Lewa.

The impact of numerous pyroclastic flows on the SE and E flanks during 2016-2017 caused a natural dam to form on the Laborus River near Desa Sukanalu and Kutanonggal Village (figure 42). The estimate of the area covered by water behind the dam was over 100,000 m2 prior to the early August explosions, about one-tenth the size of Lake Laukawar, located further upstream.

Figure (see Caption) Figure 42. A natural dam on the Laborus River (right, 'Bendungan Laborus') was created by numerous pyroclastic flows; the lake area was 123,000 square meters prior to the 2-3 August explosions. Courtesy of PVMBG (Kegiatan Gunungapi Sinabung Pasca Letusan 2-3 Agustus 2017, 22 August 2017).

Activity diminished only slightly during September 2017. PVMGB reported 55 explosive events with ash plumes that rose 500-4,000 m above the summit (figure 43). Block avalanches fell 500-1,500 m down the SE flank, and five pyroclastic flows were observed in the same area which traveled 1.5 – 2.0 km. Reports of ash emissions were issued by the Washington VAAC on 17 days of the month. The highest ash plume during the month rose to 6.4 km altitude on 25 September.

Figure (see Caption) Figure 43. A lava dome and ash plume at the summit of Sinabung on 17 September 2017. Courtesy of Sadrah Peranginangin.

Thermal anomalies. Thermal anomalies persisted throughout October 2016-September 2017. MODVOLC thermal alerts were reported 1-10 times every month except for June 2017. The MIROVA system recorded persistent low to moderate radiative power (figure 44) consistent with the dome growth, explosions, and block avalanches reported by PVMBG.

Figure (see Caption) Figure 44. Thermal anomaly data shown on a MIROVA graph of log Radiative Power at Sinabung for the year ending 18 December 2017. Persistent intermittent pulses of thermal energy are consistent with dome growth and block avalanches reported by PVMBG. Courtesy of MIROVA.

References: Associated Press, 2017, Raw: Indonesia's Sinabung Volcano Spews Hot Ash (URL: https://www.youtube.com/watch?v=R3KhjpHVeaw), posted to YouTube 17 January 2017.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URLs: http://www.vsi.esdm.go.id/, https://magma.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral, (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Xinhua News (URL: http://news.xinhuanet.com/english/2017-08/03/c_136497362.htm); Igan S. Sutawijaya (URL: https://www.facebook.com/igansutawijaya/); Endro Lewa (URL: https://www.instagram.com/endro_lewa/); Sadrah Peranginangin (URL: https://www.facebook.com/sadrah.peranginangin).


Tungurahua (Ecuador) — December 2017 Citation iconCite this Report

Tungurahua

Ecuador

1.467°S, 78.442°W; summit elev. 5023 m

All times are local (unless otherwise noted)


Nearly constant ash emissions and frequent lahars during July-December 2015

Eight distinct episodes of activity occurred at Ecuador's Tungurahua from November 2011 through December 2014 that included 10-km-high ash plumes, Strombolian activity, pyroclastic flows, lahars and a lava flow (BGVN 42:05). Another distinct eruptive episode, during April and May 2015, consisted primarily of persistent ash emissions (BGVN 42:08). Abundant rainfall during the first half of 2015 led to numerous lahars, some of which disrupted travel on local roads. Continuing activity from July through December 2015 is described below based on information provided by the Observatorio del Volcán Tungurahua (OVT) of the Instituto Geofísico (IG-EPN) of Ecuador, and aviation alerts from the Washington Volcanic Ash Advisory Center (VAAC).

After the last ash emissions reported in mid-May 2015, only minor emissions of steam with no ash rising to 500 m above the crater were reported during June. However, activity increased again during July, when ashfall was reported nearly every day at the lookout stations around Tungurahua, and several larger explosions produced ash plumes that rose as high as 7.5 km altitude, about 2.5 km above the summit. Frequent rains during July resulted in lahars in six different drainages. Multiple explosions during August caused ash plumes and ashfall in communities within 20 km several times every week with the highest plume rising to 8.5 km altitude. A similar pattern continued during September 2015, with longer periods of seismic tremor, persistent ash emissions, and Strombolian activity that sent block avalanches down the flanks. The number and intensity of explosions increased in October; multiple explosions every week resulted in ashfall in communities within 25 km, mostly to the NW, and low-energy Strombolian activity persisted throughout the month. The strongest explosions of the period began with a series of seismic tremors on 10 November that persisted for nine days; daily ash plumes rose to between 7 and 8 km altitude, with the highest plume reported rising to at least 9.1 km altitude. Several millimeters of ashfall were reported in the nearby communities and at lookout stations, and the ash plume was recognized in satellite data more than 250 km from the summit before dissipating. Activity tapered off by the end of November, and only weak steam emissions were reported during December 2015.

Activity during July-September 2015. Persistent steam plumes in July rose up to 500 m above the summit crater and drifted generally W, often carrying small quantities of ash. Several lookout stations in communities located within 20 km NW and SW reported ashfall almost every day, including Choglontús (13 km WSW), Bilbao, and El Manzano (8 km SW). Other stations that reported ashfall during the month included Palitahua, Mocha, Chacauco, and Pillate. IG-EPN reported explosions with larger ash plumes on 3, 12, and 14 July that rose as high as 7.5 km (figure 86). Increased seismicity on 21 and 22 July was associated with emissions that caused ashfall in most of the reporting locations.

Figure (see Caption) Figure 86. An ash plume rises 1 km above the summit crater at Tungurahua on 3 July 2015. Courtesy of OVT, IG-EPN, photo by P. Espin (Informe No. 802, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 30 de junio al 07 de julio de 2015).

The Washington VAAC reported the ash plume on 3 July extending 25 km WSW from the summit at 5.2 km altitude (200 m above the crater); they also detected a faint hotspot in satellite imagery. They reported an ash plume extending 35 km WSW late in the day at 6.4 km on 14 July visible in satellite imagery (figure 87). An ash plume reported by the Washington VAAC on 31 July was moving SW at 6.7 km altitude.

Figure (see Caption) Figure 87. One of several explosions on 14 July 2015 at Tungurahua created an ash plume that rose at least 2 km above the summit and drifted W. Courtesy of OVT, IG-EPN, photo by F. Vasconez (Informe No. 803, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 07 de julio al 14 de julio de 2015).

Lahars were reported during 5-7, 18-19, 22-23, and 29-30 July in the Chontapamba, Rea, Achupashal, Juive, Pondoa and Puela river drainages. Heavy rain on 18 and 19 July generated mudflows in the Juive, Pondoa and La Pampa ravines. Blocks 40 cm in diameter were reported in the Puela River on 22 July, and blocks 1 meter in diameter were reported in the Chontapamba river on 29 July.

There were fewer events with ash emissions during August compared to July. A lahar sent 40-cm-diameter blocks down the Mapayacu ravine on 14 August. Two explosions on 15-16 August caused ashfall in Choglontus, Manzano, and Chontapamba. Small lahars from the Rea and Romero drainages blocked the Baños-Penipe road on 16 August. An explosion on 18 August sent an ash plume WSW and caused ashfall in Choglontus; the next day reddish ash and steam emissions around 1000 local time caused ashfall again in Choglontus. Black ashfall was reported there on 22 August. Increased seismic activity with several explosions on 25 August was accompanied by ash plumes that caused ashfall in Chontapamba, Pillate, Bilbao, and Juive Grande. Gray ash was reported in Chinchicoto and Yanayacu, and thick black ash was reported in Rumipamba, Pingili and Mocha. Fine-grained gray ash was reported in Mocha on 27 August.

The Washington VAAC reported occasional emissions of gas and minor volcanic ash on 1 August 2015. A pilot report of an ash plume rising to 7 km altitude and drifting W on 15 August was not detected in satellite imagery due to weather clouds, although ashfall was reported within 15 km of the summit. Another pilot report on 20 August noted an ash plume to 8.5 km altitude. The altitude of an ash plume spotted drifting W on 25 August was estimated to be between 7.6 and 9 km. Ongoing emission of gas and possible minor ash was reported on 30 August at 6.7 km altitude moving W; the faint plume later detected in satellite imagery was moving WNW and extended about 50 km from the summit.

Mudflows from substantial rain on 1 and 7 September 2015 affected the Achupashal ravine and again disrupted travel on the Baños-Penipe road (figure 88). An ash plume on 2 September reached 3 km above the crater and drifted NW, causing ashfall in Pillate, Quero, Santuario, La Galera and El Rosario. Asfall was reported the next day in El Manzano and Choglontus. The Washington VAAC reported the ash plume at 8 km altitude on 2 September; the satellite imagery showed it extending 15 km WNW.

Figure (see Caption) Figure 88. The Baños-Penipe road is frequently damaged by lahars in the Quebrada de Achupashal at Tungurahua, making travel difficult. The muddy water on 7 September 2015 washed out the road again. Courtesy of OVT, IG-EPN, photo by B. Bernard at 1359 local time (Informe No. 811, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 01 de septiembre de 2015 al 08 de septiembre).

Moderate to high amounts of ash characterized the emissions on 11 September 2015 (figure 89). The plumes rose 2 km above the crater, drifted W and caused slight ashfall in Chonglontus and El Manzano. Only Chonglontus reported additional ashfall the next day. The Washington VAAC initially reported the ash plume at 7.3 km altitude extending 40 km SW on 11 September. About 6 hours later, the leading edge of the plume was dissipating about 170 km SW. This was followed by a new ash plume late in the day that rose to 5.8 km altitude and drifted 15 km WSW from the summit. Slight incandescence was reported on 13 September along with minor ash and steam emissions that were moving W at 7.6 km altitude.

Figure (see Caption) Figure 89. An ash plume drifts W from Tungurahua on 11 September 2015. Courtesy of OVT, IG-EPN, photo by S. Santamaria (Informe No. 811, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 08 de septiembre de 2015 al 15 de septiembre).

Constant emission of moderate amounts of ash on 19 September 2015 created an ash plume that rose to 2 km above the crater and drifted NW. Ashfall was reported in El Manzano and Pillate. An explosion late in the day rattled structures in Pondoa, and was followed by observations of incandescence at the crater shortly after midnight. Ashfall was reported to the W in Pillate, El Manzano, Bilbao, Motilones, Chontapamba, and Choglontus the following day. Ongoing emissions were not visible in satellite imagery due to weather clouds. A sudden deflation in the deformation data was recorded on 19 September. Similar deflation events preceded major explosions in July 2013 and February 2014.

Several hours of seismic tremor on 27 September produced an ash-rich plume and incandescent blocks which descended the W flank. This was followed by additional explosions and periods of tremor, some lasting for more than an hour (figure 90), that produced ash plumes drifting SW. Ashfall was reported in the towns of Manzano, Choglontus, Cahuají, and Palictahua. Additional ashfall was reported the next day in Choglontus and Manzano. The Washington VAAC spotted a faint ash plume moving W in multispectral imagery on 27 September, and another plume at 6.7 km altitude moving slowly NW the next day around noon. New fumaroles not previously observed below the W flank of the crater were observed on 29 September for the first time.

Figure (see Caption) Figure 90. Lengthy tremors that registered at the seismic station RETU coincided with ash-rich plumes and incandescent blocks at Tungurahua between midnight and noon local time on 27 September 2015. Courtesy of OVT, IG-EPN (Informe No. 814, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 22 al 29 de septiembre de 2015).

Activity during October-December 2015. Tremors were followed by a significant explosion on 4 October 2015 that produced ash emissions and block avalanches that traveled down the W flank. Ashfall reports were issued from the communities of Manzano, Choglontus, and Cahuají, all located to the SW. The Washington VAAC reported the ash plume 35 km WSW of the summit at 9.1 km altitude. Seismic activity increased beginning on 8 October. On 11 October, four explosions produced Strombolian-style activity with incandescent blocks traveling down the Chomtapamba and Achupashal ravines, an ash plume rising 2 km above the crater, and ashfall in regions to the NW and SW including Manzano, Choglontus, Puela and Mocha. The Washington VAAC reported the ash plume extending W from the summit at 7.9 km altitude. Around 2000 local time, the ash plume resembled a large mushroom cloud, and loud noises were reported from Cusua. There were numerous reports of incandescent blocks and explosions heard on the N and E flanks during the evening and overnight into the next morning (figure 91). Ashfall was again reported in Choglontus on 13 October.

Figure (see Caption) Figure 91. Incandescent blocks descend the upper flank of Tungurahua at 1909 local time on 11 October 2015. Courtesy of OVT, IG-EPN, photo by E. Telenchana (Informe No. 816, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 06 al 13 de octubre de 2015).

An explosion in the early morning hours of 14 October was heard at all of the stations around the volcano. It was followed by ashfall in Choglontus. An ash emission on 19 October rose 1 km above the crater and drifted W and SW, producing ashfall in Choglontus, Bilbao, Pillate, and Cotaló. The Washington VAAC reported the plume extending 55 km NW of the summit at 6.7 km altitude. The next day, ongoing seismic data suggested frequent diffuse ash emissions. A plume was detected in multispectral data at 7.6 km altitude radiating E and rapidly dissipating. That afternoon (20 October), ashfall was reported in the Punzupala area. Ashfall continued from daily emissions for the next week with the most ashfall reported from Manzano, Choglontus, Bilbao, and Chacauco. Communities with trace amounts of ashfall included Ambato, Quero, Cevallos, Huachi, Chiquicha, Huambaló, Cotaló, and Pillate.

Incandescent material was observed traveling more than 1,000 m down the W flank from an explosion on 25 October. Local television reported ashfall in Ambato, Cevallos, Quero, and parts of Mocha and Tisaleo later that day. Swarms of LP earthquakes followed by episodes of ash emissions and low-energy Strombolian activity continued for the remainder of the month and into early November, causing sporadic ashfall in nearby villages. A small lahar was reported in the La Pampa ravine on 30 October.

An emission on 2 November 2015 created an ash plume that rose about 1.5 km above the crater and drifted E and NE; small quantities of ash were reported in the upper Runtun area. Incandescence at the summit crater from Strombolian activity was observed that night and for several days following. Heavy rains on 7 November caused mudflows in the Romero, Pingullo, and Achupashal ravines, and a larger lahar with meter-size blocks in the Chontapamba ravine. The Washington VAAC noted a dark emission from the volcano drifting W on 8 November at 5.5 km altitude.

A new series of tremors beginning on 10 November, coincided with more than a week of continuous ash emissions which reached 3.5 km above the crater and drifted in several directions. Incandescence was observed at night, and incandescent blocks descended generally up to 500 m down the NW, N, and E flanks during this period (figure 92).The Washington VAAC first reported an ash plume at 7.6 km altitude late in the evening on 10 November and continued with a constant series of reports for the next nine days. Most of the plumes were reported between 7 and 8 km altitude, drifting generally W (figure 93). The ash plumes produced heavy black ashfall in Manzano, Choglontus, Bilbao, Mocha, Quero, Cotaló, Tisaleo, Penipe and Cevallos. An ash plume was visible about 130 km W by midday on 11 November, and the plume had reached 8.2 km altitude. Loud noises were reported numerous times from the nearby communities for several days. On 12 November the Washington VAAC reported volcanic ash observed in satellite data extending 200 km WNW at 9.1 km altitude. Ashfall was heavy enough on 14 November to cause tree branches near Choglontus to bend under the weight of the ash.

Figure (see Caption) Figure 92. Strombolian activity from the summit of Tungurahua causes incandescent blocks to fall 500 m down the flanks of on 14 November 2015. Courtesy of OVT, IG-EPN, photo by V. Valverde (Informe No. 821, Síntesis seminal del estado del Volcán Tungurahua, Semana: 10 al 17 de noviembre de 2015).
Figure (see Caption) Figure 93. A dense ash plume rises from the summit of Tungurahua and drifts W on 17 November 2015. A small pyroclastic flow is visible on the NW flank (right side of image). Courtesy of OVT, IG-EPN, photo by S. Santamaria (Informe No. 822, Síntesis seminal del estado del Volcán Tungurahua, Semana: 17 al 24 de noviembre de 2015).

A plume on 15 November 2015 rose more than 5 km above the crater (10 km altitude), according to IG-EPN, and sent blocks about 1,000 m down the flanks. On 18 November, the Washington VAAC reported a narrowing plume extending 270 km W from the summit. The largest ashfalls occurred during the night of 18-19 November. Strombolian activity sent blocks 800 m down the flanks during the night, and a strong "jet" was observed in the eastern part of the crater. Incandescent material was observed from two eruptive vents late on 18 November. Five millimeters of ash were reported from the solar panels at the Tablor station on 19 November, deposited in less than 24 hours (figure 94). IG-EPN reported this event as one of the most significant ashfall events since 2010; many crops and livestock animals were affected. Dense ash emissions tapered off after 19 November, and smaller, less dense plumes rose 2 km above the crater on 22-23 November. The University of Hawaii's MODVOLC system issued thermal alerts for Tungurahua on 15 (2) and 19 (3) November, the only time during 2015. Significant sulfur dioxide (SO2) emissions were captured by the OMI instrument on the Aura Satellite during the mid-November episode from 11-19 November (figure 95).

Figure (see Caption) Figure 94. A 5-mm thick layer of ash was deposited on the solar panels of the Tablon station at Tungurahua in less that 24 hours on 19 November 2015. Courtesy of OVT, IG-EPN, photo by S. Santamaria (Informe No. 822, Síntesis seminal del estado del Volcán Tungurahua, Semana: 17 al 24 de noviembre de 2015).
Figure (see Caption) Figure 95. Substantial SO2 plumes originating from Tungurahua were recorded by the OMI instrument on the Aura satellite during 10-19 November 2015. Top left: the plume from Tungurahua drifts WSW while a smaller plume from Cotopaxi is visible about 90 km N on 10 November. Top right: the plume from Tungurahua drifts WNW on 12 November at the bottom of the image, a much smaller plume drifts W from Cotopaxi immediately above it, and a third SO2 plume is visible drifting WSW from Nevado del Ruiz in Columbia 750 km NNE. Lower left: a larger plume on 14 November drifts WSW from Tungurahua and probably includes some gas from Cotopaxi. Lower right: a large plume from Tungurahua disperses W on 17 November for well over 500 km. Courtesy of NASA Goddard Space Flight Center.

A seismic swarm with 33-35 events per hour began on 25 November, and tapered off to 3-5 events per hour by 30 November 2015. There was no increase in surface activity during the swarm, but rather a gradual decrease, with no significant ashfall reported during the last week of November. Activity diminished significantly during December 2015. Weak steam emissions that reached no higher than 500 m above the crater were typical. Seismicity remained low, and there were no reports of ash emissions or ashfall in the area.

Geologic Background. Tungurahua, a steep-sided andesitic-dacitic stratovolcano that towers more than 3 km above its northern base, is one of Ecuador's most active volcanoes. Three major edifices have been sequentially constructed since the mid-Pleistocene over a basement of metamorphic rocks. Tungurahua II was built within the past 14,000 years following the collapse of the initial edifice. Tungurahua II itself collapsed about 3000 years ago and produced a large debris-avalanche deposit and a horseshoe-shaped caldera open to the west, inside which the modern glacier-capped stratovolcano (Tungurahua III) was constructed. Historical eruptions have all originated from the summit crater, accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. Prior to a long-term eruption beginning in 1999 that caused the temporary evacuation of the city of Baños at the foot of the volcano, the last major eruption had occurred from 1916 to 1918, although minor activity continued until 1925.

Information Contacts: Instituto Geofísico (IG), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Ulawun (Papua New Guinea) — December 2017 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Intermittent ash plumes during June-November 2017

Activity at Ulawun has been characterized by intermittent seismic activity and weak ash emissions. The last significant episode was during October-November 2016 (BGVN 41:12). This report summarizes the next eruption, which began on 11 June 2017 and continued sporadically at least through October 2017. Data were provided by the Rabaul Volcano Observatory (RVO) and Darwin Volcanic Ash Advisory Centre (VAAC).

RVO reported that during 1 May-23 June 2017, white plumes rose from Ulawun. Seismicity was low and dominated by small low-frequency earthquakes, although RSAM values slowly increased and then spiked on 13 June. Ash emissions began on 11 June and then became dense during 21-23 June. Volcanic ash advisories from the Darwin VAAC warned of ash plumes from between 24 June and 3 November 2017 (table 5); no further volcanic ash warnings were issued after 3 November. Plumes generally rose to altitudes of 2.4-3 km, or a maximum of 700 m above the summit.

Table 5. Ash plumes from Ulawun during January-November 2017, based upon analyses of satellite imagery. Courtesy of Darwin VAAC.

Dates Plume altitude (km) Plume drift
24-26 Jun 2017 3 W
28 Jun 2017 2.7 W
04-08 Aug 2017 2.4-2.7 NW, W, and SW
09-10 Aug 2017 2.4 NW, W
17-18 Aug 2017 2.7 W
31 Aug-01 Sep 2017 2.7 SW, W, NW, and N
05 Sep 2017 2.7 SW
25 Sep 2017 3 WSW
26-27 Oct 2017 2.4 130 km S and SE
03 Nov 2017 3 NNE

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea.


Villarrica (Chile) — December 2017 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Lava lake level fluctuates and Strombolian activity persists during October 2016-November 2017

Historical eruptions at Chile's Villarrica (figure 34), documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Lava flows emerging from the glacier-covered summit created deadly lahars in 1964 and 1971 (CSLP 95-71); a similar event in late 1984 led to evacuations and no fatalities occurred. Since then, an intermittently active lava lake has been the source of explosive activity, incandescence, and thermal anomalies. Renewed activity in early December 2014 was followed by a large explosion on 3 March 2015 that included a 9-km-altitude ash plume. Significant thermal anomalies from continued Strombolian activity at the lava lake and small ash emissions persisted through October 2016 (BGVN 41:11). Activity has continued during October 2016-November 2017, with information provided primarily by the Southern Andes Volcano Observatory, (Observatorio Volcanológico de Los Andes del Sur, OVDAS) part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN), and Projecto Observación Villarrica Internet (POVI), part of the Fundacion Volcanes de Chile, a research group that studies volcanoes across Chile.

Figure (see Caption) Figure 34. View of Villarrica from the town of Villarrica located 30 km NW on 10 November 2016. The active lava vent was also photographed the same day (see figure 40). Courtesy of Cristian Gonzalez G.

Steam-and-gas emissions rising 200-1,000 m above the summit were observed throughout the period. The lava lake level inside the summit crater changed elevation by as much as 15 m during October 2016. Fluctuations of several meters up and down each month were reported through February 2017, and again in October 2017. Persistent minor gas-and-ash emissions, with small blocks and lapilli ejected onto the crater rim, were captured by the webcams and observed by visitors near the summit every month. Strombolian explosions and a "lava jet" sent ejecta more than 100 m above the crater rim during February 2017, and incandescent material rose 60 m above the crater rim on 1 July. Increased seismicity was detected during November 2017.

Activity during October-December 2016. Weak emissions of steam, gases, and volcanic ash near the summit were visible in the webcam during October 2016. The Buenos Aires Volcanic Ash Advisory Center (VAAC) noted a pilot report of an ash plume moving NNW on 20 October 2016 at 3.7 km altitude, slightly less than a kilometer above the summit. OVDAS reported that during the month, steam plumes rose less than 700 m and incandescence was visible at night when weather conditions permitted viewing of the summit. The MODVOLC thermal anomaly system issued 11 alerts during October. During several visits to the summit that month, POVI scientists observed that the lava lake had risen 15 m (figure 35) to a level that had been previously observed on 18 December 2015, 29 January, 28 March, and 18 September 2016. A small pyroclastic cone was visible inside the summit crater on 28 October (figure 36); by 30 October, most of it had collapsed and molten lava was again visible at the center (figure 37).

Figure (see Caption) Figure 35. Between 17 and 27 October 2016, the lava lake rose about 15 meters inside the summit crater of Villarrica, reaching a similar level observed on 18 December 2015, 29 January, 28 March, and 18 September 2016. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).
Figure (see Caption) Figure 36. A small pyroclastic cone is visible at the bottom of the summit crater at Villarrica on 28 October 2016 (red arrows). On the left slope sub-parallel annular fissures are visible (yellow arrows), indicating the imminent collapse of the nested structure. The white arrows point to residue precipitated from gas emissions. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).
Figure (see Caption) Figure 37. The nested cone visible on 28 October had collapsed by 30 October 2016 at Villarrica, and incandescent lava was visible inside the vent. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).

During November and December 2016, steam emissions rose only 400 m above the crater and incandescence was only occasionally visible in the webcams at night. Thermal activity detected by satellite, however, was relatively high; MODVOLC issued twelve thermal alerts during November and nine during December. The repeated growth and destruction of small pyroclastic cones within the summit crater was well documented by several visits of POVI scientists to the summit (figures 38 and 40). They also collected bombs ejected near the crater rim (figure 39), and observed persistent minor ash-and-gas emissions (figure 41).

Figure (see Caption) Figure 38. A new pyroclastic cone grows inside the summit crater of Villarrica on 7 November 2016, days after the collapse of the previous cone on 28 October. Black spatter from lava splashes stand out on the exposed slope. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).
Figure (see Caption) Figure 39. A piece of ejecta collected at the edges of the summit crater at Villarrica on 9 November 2016. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).
Figure (see Caption) Figure 40. The pyroclastic cone at the summit crater of Villarrica photographed on 7 November had partially collapsed by 10 November 2016, the same day of the photograph showing a quiet, clear summit (figure 34). The splashes of lava rose no more than 10 m above the crater floor. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).
Figure (see Caption) Figure 41. A small ash emission of rose from the summit of Villarrica on 17 November 2016 around 1050 local time. The larger image was taken by climbers, and the inset images are from the webcam. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).

Observations by POVI scientists during December 2016 included continued evidence of cone creation and destruction in the vent (figure 42), and small lava fountains (figure 43). Strombolian explosions with bombs were recorded by the webcam on 1, 2, and 3 December. Bombs were ejected more than 50 m above the crater rim, some as large as 1.5 m in diameter. Between 2 and 3 December they observed an 8-10 m drop of the lava in the vent, leaving behind a circular depression with a small incandescent chimney on the NNW side. The webcam captured ash emissions on 2, 14, 15, 18, and 19 December.

Figure (see Caption) Figure 42. The partial collapse of the nested semicircular cone, reported by POVI on 30 November, was evident by 2 December 2016 inside the summit crater of Villarrica. The active vent is about 10-15 m in diameter. On the left wall of the crater the debris of a small recent landslide is visible above the lava. Courtesy of POVI (Informe Preliminar, Comportamiento del Volcán Villarrica, 01 al 31 de Diciembre 2016).
Figure (see Caption) Figure 43. A small Strombolian explosion created a lava fountain inside the summit crater of Villarrica on 8 December 2016. Courtesy of POVI (Informe Preliminar, Comportamiento del Volcán Villarrica, 01 al 31 de Diciembre 2016).

Activity during January-May 2017. OVDAS reported nighttime incandescence and steam emissions less than 250 m high during January 2017. They were higher in February, rising 700 m above the crater rim. Six MODVOLC thermal alerts were issued in January and one in February.

Volcanologists from POVI reported an increase in activity during February (figure 44), including a sudden collapse of about 10 m of much of the material in the lava pit on 9 February, after which a new rise began almost immediately (figure 45). During 10-15 February, explosions from a narrow vent sent lava fountains and ejecta more than 100 m high (figures 46). On 13 February, they witnessed powerful "lava jets" that rose 150 m (figure 47); bombs up to a meter in diameter were ejected 50 m from the vent and spatter covered much of the inner walls of the crater. Between 5 and 26 February, pyroclastic debris raised the level of the bottom of the crater by 10-12 m (figure 48).

Figure (see Caption) Figure 44. An increase in thermal and explosive activity was apparent between 1 and 5 February 2017 at the summit crater of Villarrica. Recently deposited lapilli (L) between 2-64 mm were scattered around the funnel shaped crater on 5 February (right). Courtesy of POVI (Volcán Villarrica, Seguimiento Científico de Actividad Volcanánica, 01 al 28 de Febrero 2017).
Figure (see Caption) Figure 45. Fresh lava spattered on the inner wall of the summit crater at Villarrica on 11 February 2017, during a new rise in the magma level after a collapse two days earlier. The diameter of the active vent had increased significantly during the previous 24 hours. Courtesy of POVI (Volcán Villarrica, Seguimiento Científico de Actividad Volcanánica, 01 al 28 de Febrero 2017).
Figure (see Caption) Figure 46. Lava fountains exceeded 100 meters above the crater rim at Villarrica on 13 February 2017. Images captured just after midnight show the first explosion (lower right) at 0023 local time, followed two minutes later by the upper image, and another explosion (lower left) about 20 minutes later. Courtesy of POVI (Volcán Villarrica, Seguimiento Científico de Actividad Volcanánica, 01 al 28 de Febrero 2017).
Figure (see Caption) Figure 47. The active vent in the summit crater of Villarrica was about 7 m in diameter on 13 February 2017, and sporadically emitted powerful and noisy "lava jets" more than 150 m high. Courtesy of POVI (Volcán Villarrica, Seguimiento Científico de Actividad Volcanánica, 01 al 28 de Febrero 2017).
Figure (see Caption) Figure 48. Between 5 and 26 February 2017, the level of the bottom of the summit crater at Villarrica rose by about 10-12 m. Courtesy of POVI (Volcán Villarrica, Seguimiento Científico de Actividad Volcanánica, 01 al 28 de Febrero 2017).

During March 2017, OVDAS reported steam-and-gas emissions rising 1,000 m. They issued a special report on 23 March indicating an increase in the gas plume height and the occurrence of sporadic explosions of ballistic material that remained within the summit crater. Single MODVOLC thermal alerts were issued on 7 and 14 March 2017.

Nighttime incandescence and steam plumes rising to 550 m characterized activity reported by OVDAS during April 2017. Only a single MODVOLC thermal alert was issued on 4 April. Steam plumes were reported to only 250 m above the crater rim during May along with incandescence at night, but there were seven MODVOLC thermal alerts on four different days; 1 (2), 19 (3), 20, and 29 May.

Activity during June-November 2017. OVDAS reported low levels of activity during June 2017, with incandescence at night and steam plumes rising no higher than 170 m. Only a single MODVOLC thermal alert was issued on 20 June. On a visit to the summit crater on 5 June, POVI scientists observed a 10-m-diameter vent at the bottom of the crater, and lapilli fragments 2-64 mm in diameter distributed around the crater rim. A second visit on 19 June revealed increased explosive activity at the bottom of the crater, ash deposits on the inner walls of the crater, and more lapilli around the mouth of the crater (figure 49). POVI webcams recorded a significant increase in the intensity of incandescence from the summit crater on 24 June 2017 (figure 50).

Figure (see Caption) Figure 49. An increase in explosive activity with respect to that observed on 5 June was noted by POVI scientists on a visit to the summit crater of Villarrica on 19 June 2017. Fresh ash deposits and lapilli appeared on the snow around the crater rim (yellow arrows). Courtesy of POVI (Volcán Villarrica, Resumen del Comportamiento, Observado en Junio 2017).
Figure (see Caption) Figure 50. A significant increase in the intensity of the incandescence emitted from the summit crater at Villarrica was observed in the webcams during the night of 23-24 June 2017. The upper images show the incandescence in the early evening of 23 June, and the lower images were taken just after midnight on 24 June 2017 from the POVI webcam. Courtesy of POVI (Volcán Villarrica, Resumen del Comportamiento, Observado en Junio 2017).

On 1 July 2017, POVI captured a webcam image of Strombolian explosions that sent incandescent material 60 m high from the summit crater. OVDAS reported steam plumes rising no more than 550 m and incandescence at night during July; there were no reported MODVOLC thermal alerts that month, and only a single alert on 30 August. OVDAS reported steam plumes during August rising to 150 m, sporadic ash and larger pyroclastic emissions around the crater rim, and nighttime incandescence.

Activity decreased during September and October 2017, with continued steam emissions rising 300-500 m, minor ash emissions around the crater rim, and nighttime incandescence. Two MODVOLC thermal alerts were issued, on 4 and 16 September, and none during October. POVI scientists visited the summit during October 2017 and noted that the vent remained active, especially after 22 October. They observed that at least half of the inner walls of the crater were covered with fresh ash and lapilli, concentrated on the W, S, and NE sides. They estimated that the active vent was about 8 m in diameter, approximately 100 m down inside the crater (figure 51). The bottom of the crater appeared about 4 m higher than it was on 26 September 2017, and the vent diameter had expanded by 2 m. Ash and lapilli fragments were found around the edge of the crater on 15, 22, and 25 October. Ejections of small fragments of lava were captured by the webcam on 22 and 23 October.

Figure (see Caption) Figure 51. A panoramic image of the summit crater at Villarrica, looking S on 15 October 2017, showed pyroclastic material covering much of the inner surface of the crater wall. The vent was estimated to be about 8 m in diameter, at a depth of 100 m. Courtesy of POVI (Seguimiento y Estudio del Comportamiento, Volcán Villarrica, Octubre 2017).

OVDAS reported that during November 2017, the webcams near the summit showed evidence of low intensity, predominantly white degassing to low altitudes (100 m above the summit). Nighttime incandescence associated with occasional explosions around the crater were typical. They also noted that long-period (LP) seismicity increased in both energy amplitude and frequency during the last few days of the month. A gradual increase in RSAM values began on 15 November with a continuous tremor signal. A 4.1 magnitude event was reported on 24 November located 2.6 km ESE of the summit at a depth of 1.8 km. A single MODVOLC thermal alert was reported on 28 November.

Seismicity and thermal anomalies. Seismicity at Villarrica during October 2016-November 2017 was relatively stable (figure 52), although it varied between about 2,500 and 6,500 events per month, with over 90% recorded as LP events, and only a few VT (volcano-tectonic) events. The highest frequency values occurred in May (5,749) and November 2017 (6,484).

Figure (see Caption) Figure 52. Chart of the frequency of seismic events at Villarrica, October 2016-November 2017. LP are Long-Period events, and VT are Volcano-Tectonic events. Data courtesy of OVDAS, SERNAGEOMIN monthly reports.

Infrared data graphed by the MIROVA system (figure 53) indicated the continuous but decreasing frequency and intensity of thermal anomalies at Villarrica between November 2016 and November 2017.

Figure (see Caption) Figure 53. Infrared data graphed by the MIROVA system indicated the continuous but decreasing frequency and intensity of thermal anomalies at Villarrica between November 2016 and November 2017. Courtesy of MIROVA.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería, (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/; http://modis.higp.hawaii.edu/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php?lang=es); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Cristian Gonzalez G., flickr (URL:https://www.flickr.com/photos/cg_fotografia/), photo used under Creative Commons license (https://creativecommons.org/licenses/by-nd/2.0/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports