Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Kuchinoerabujima (Japan) Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Soputan (Indonesia) Minor ash emissions during 23 March and 2 April 2020

Heard (Australia) Eruptive activity including a lava flow during October 2019-April 2020

Kikai (Japan) Ash explosion on 29 April 2020

Fuego (Guatemala) Ongoing ash explosions, block avalanches, and intermittent lava flows

Ebeko (Russia) Frequent moderate explosions, ash plumes, and ashfall continue, December 2019-May 2020

Piton de la Fournaise (France) Fissure eruptions in February and April 2020 included lava fountains and flows

Sabancaya (Peru) Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Sheveluch (Russia) Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

Dukono (Indonesia) Numerous ash explosions continue through March 2020

Etna (Italy) Strombolian explosions and ash emissions continue, October 2019-March 2020

Merapi (Indonesia) Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020



Kuchinoerabujima (Japan) — May 2020 Citation iconCite this Report

Kuchinoerabujima

Japan

30.443°N, 130.217°E; summit elev. 657 m

All times are local (unless otherwise noted)


Eruption and ash plumes begin on 11 January 2020 and continue through April 2020

Kuchinoerabujima encompasses a group of young stratovolcanoes located in the northern Ryukyu Islands. All historical eruptions have originated from the Shindake cone, with the exception of a lava flow that originated from the S flank of the Furudake cone. The most recent previous eruptive period took place during October 2018-February 2019 and primarily consisted of weak explosions, ash plumes, and ashfall. The current eruption began on 11 January 2020 after nearly a year of dominantly gas-and-steam emissions. Volcanism for this reporting period from March 2019 to April 2020 included explosions, ash plumes, SO2 emissions, and ashfall. The primary source of information for this report comes from monthly and annual reports from the Japan Meteorological Agency (JMA) and advisories from the Tokyo Volcanic Ash Advisory Center (VAAC). Activity has been limited to Kuchinoerabujima's Shindake Crater.

Volcanism at Kuchinoerabujima was relatively low during March through December 2019, according to JMA. During this time, SO2 emissions ranged from 100 to 1,000 tons/day. Gas-and-steam emissions were frequently observed throughout the entire reporting period, rising to a maximum height of 1.1 km above the crater on 13 December 2019. Satellite imagery from Sentinel-2 showed gas-and-steam and occasional ash emissions rising from the Shindake crater throughout the reporting period (figure 7). Though JMA reported thermal anomalies occurring on 29 January and continuing through late April 2020, Sentinel-2 imagery shows the first thermal signature appearing on 26 April.

Figure (see Caption) Figure 7. Sentinel-2 thermal satellite images showed gas-and-steam and ash emissions rising from Kuchinoerabujima. Some ash deposits can be seen on 6 February 2020 (top right). A thermal anomaly appeared on 26 April 2020 (bottom right). Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.

An eruption on 11 January 2020 at 1505 ejected material 300 m from the crater and produced ash plumes that rose 2 km above the crater rim, extending E, according to JMA. The eruption continued through 12 January until 0730. The resulting ash plumes rose 400 m above the crater, drifting SW while the SO2 emissions measured 1,300 tons/day. Ashfall was reported on Yakushima Island (15 km E). Minor eruptive activity was reported during 17-20 January which produced gray-white plumes that rose 300-500 m above the crater. On 23 January, seismicity increased, and an eruption produced an ash plume that rose 1.2 km altitude, according to a Tokyo VAAC report, resulting in ashfall 2 km NE of the crater. A small explosion was detected on 24 January, followed by an increase in the number of earthquakes during 25-26 January (65-71 earthquakes per day were registered). Another small eruptive event detected on 27 January at 0148 was accompanied by a volcanic tremor and a change in tilt data. During the month of January, some inflation was detected at the base on the volcano and a total of 347 earthquakes were recorded. The SO2 emissions ranged from 200-1,600 tons/day.

An eruption on 1 February 2020 produced an eruption column that rose less than 1 km altitude and extended SE and SW (figure 8), according to the Tokyo VAAC report. On 3 February, an eruption from the Shindake crater at 0521 produced an ash plume that rose 7 km above the crater and ejected material as far as 600 m away. As a result, a pyroclastic flow formed, traveling 900-1,500 m SW. The previous pyroclastic flow that was recorded occurred on 29 January 2019. Ashfall was confirmed in the N part of Yakushima Island with a large amount in Miyanoura (32 km ESE) and southern Tanegashima. The SO2 emissions measured 1,700 tons/day during this event.

Figure (see Caption) Figure 8. Webcam images from the Honmura west surveillance camera of an ash plume rising from Kuchinoerabujima on 1 February 2020. Courtesy of JMA (Weekly bulletin report 509, February 2020).

Intermittent small eruptive events occurred during 5-9 February; field observations showed a large amount of ashfall on the SE flank which included lapilli that measured up to 2 cm in diameter. Additionally, thermal images showed 5-km-long pyroclastic flow deposits on the SW flank. An eruption on 9 February produced an ash plume that rose 1.2 km altitude, drifting SE. On 13 February a small eruption was detected in the Shindake crater at 1211, producing gray-white plumes that rose 300 m above the crater, drifting NE. Small eruptive events also occurred during 20-21 February, resulting in gas-and-steam emissions that rose 200 m above the crater. During the month of February, some horizontal extension was observed since January 2020 using GNSS data. The total number of earthquakes during this month drastically increased to 1225 compared to January. The SO2 emissions ranged from 300-1,700 tons/day.

By 2 March 2020, seismicity decreased, and activity declined. Gas-and-steam emissions continued infrequently for the duration of the reporting period. The SO2 emissions during March ranged from 700-2,100 tons/day, the latter of which occurred on 15 March. Seismicity increased again on 27 March. During 5-8 April 2020, small eruptive events were detected, generating ash plumes that rose 900 m above the crater (figure 9). The SO2 emissions on 6 April reached 3,200 tons/day, the maximum measurement for this reporting period. These small eruptive events continued from 13-20 and 23-25 April within the Shindake crater, producing gray-white plumes that rose 300-800 m above the crater.

Figure (see Caption) Figure 9. Webcam images from the Honmura Nishi (top) and Honmura west (bottom) surveillance cameras of ash plumes rising from Kuchinoerabujima on 6 March and 5 April 2020. Courtesy of JMA (Weekly bulletin report 509, March and April 2020).

Geologic Background. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km W of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. The youngest cone, centrally-located Shindake, formed after the NW side of Furudake was breached by an explosion. All historical eruptions have occurred from Shindake, although a lava flow from the S flank of Furudake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shindake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Soputan (Indonesia) — May 2020 Citation iconCite this Report

Soputan

Indonesia

1.112°N, 124.737°E; summit elev. 1785 m

All times are local (unless otherwise noted)


Minor ash emissions during 23 March and 2 April 2020

Soputan is a stratovolcano located in the northern arm of Sulawesi Island, Indonesia. Previous eruptive periods were characterized by ash explosions, lava flows, and Strombolian eruptions. The most recent eruption occurred during October-December 2018, which consisted mostly of ash plumes and some summit incandescence (BGVN 44:01). This report updates information for January 2019-April 2020 characterized by two ash plumes and gas-and-steam emissions. The primary source of information come from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Center (VAAC).

Activity during January 2019-April 2020 was relatively low; three faint thermal anomalies were observed at the summit at Soputan in satellite imagery for a total of three days on 2 and 4 January, and 1 October 2019 (figure 17). The MIROVA (Middle InfraRed Observation of Volcanic Activity) based on analysis of MODIS data detected 12 distal hotspots and six low-power hotspots within 5 km of the summit during August to early October 2019. A single distal thermal hotspot was detected in early March 2020. In March, activity primarily consisted of white to gray gas-and-steam plumes that rose 20-100 m above the crater, according to PVMBG. The Darwin VAAC issued a notice on 23 March 2020 that reported an ash plume rose to 4.3 km altitude; minor ash emissions had been visible in a webcam image the previous day (figure 18). A second notice was issued on 2 April, where an ash plume was observed rising 2.1 km altitude and drifting W.

Figure (see Caption) Figure 17. Sentinel-2 thermal satellite imagery detected a total of three thermal hotspots (bright yellow-orange) at the summit of Soputan on 2 and 4 January and 1 October 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. Minor ash emissions were seen rising from Soputan on 22 March 2020. Courtesy of MAGMA Indonesia.

Geologic Background. The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi's most active volcanoes. The youthful, largely unvegetated volcano is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Heard (Australia) — May 2020 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Eruptive activity including a lava flow during October 2019-April 2020

Heard Island is located on the Kerguelen Plateau in the southern Indian Ocean and contains Big Ben, a snow-covered stratovolcano with intermittent volcanism reported since 1910. Due to its remote location, visual observations are rare; therefore, thermal anomalies and hotspots detected by satellite-based instruments are the primary source of information. This report updates activity from October 2019 to April 2020.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed three prominent periods of strong thermal anomaly activity during this reporting period: late October 2019, December 2019, and the end of April 2020 (figure 41). These thermal anomalies were relatively strong and occurred within 5 km of the summit. Similarly, the MODVOLC algorithm reported a total of six thermal hotspots during 28 October, 1 November 2019, and 26 April 2020.

Figure (see Caption) Figure 41. Thermal anomalies at Heard from 29 April 2019 through April 2020 as recorded by the MIROVA system (Log Radiative Power) were strong and frequent in late October, during December 2019, and at the end of April 2020. Courtesy of MIROVA.

Six thermal satellite images ranging from late October 2019 to late March showed evidence of active lava at the summit (figure 42). These images show hot material, possibly a lava flow, extending SW from the summit; a hotspot also remained at the summit. Cloud cover was pervasive during the majority of this reporting period, especially in April 2020, though gas-and-steam emissions were visible on 25 April through the clouds.

Figure (see Caption) Figure 42. Thermal satellite images of Heard Island’s Big Ben showing strong thermal signatures representing a lava flow in the SW direction from 28 October to 17 December 2019. These thermal anomalies are located NE from Mawson Peak. A faint thermal anomaly is also captured on 26 March 2020. Satellite images with atmospheric penetration (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kikai (Japan) — May 2020 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Ash explosion on 29 April 2020

The Kikai caldera is located at the N end of Japan’s Ryukyu Islands and has been recently characterized by intermittent ash emissions and limited ashfall in nearby communities. On Satsuma Iwo Jima island, the larger subaerial fragment of the Kikai caldera, there was a single explosion with gas-and-steam and ash emissions on 2 November 2019, accompanied by nighttime incandescence (BGVN 45:02). This report covers volcanism from January 2020 through April 2020 with a single-day eruption occurring on 29 April based on reports from the Japan Meteorological Agency (JMA).

Since the last one-day eruption on 2 November 2019, volcanism at Kikai has been relatively low and primarily consisted of 107-170 earthquakes per month and intermittent white gas-and-steam emissions rising up to 1.3 km above the crater summit. Intermittent weak hotspots were observed at night in the summit in Sentinel-2 thermal satellite imagery and webcams, according to JMA (figures 14 and 15).

Figure (see Caption) Figure 14. Weak thermal hotspots (bright yellow-orange) were observed on 7 January (top) and 6 April 2020 (bottom) at Satsuma Iwo Jima (Kikai). Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 15. Incandescence at night on 10 January 2020 was observed at Satsuma Iwo Jima (Kikai) in the Iodake crater with the Iwanogami webcam. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, January 2nd year of Reiwa [2020]).

Weak incandescence continued in April 2020. JMA reported SO2 measurements during April were 400-2000 tons/day. A brief eruption in the Iodake crater on 29 April 2020 at 0609 generated a gray-white ash plume that rose 1 km above the crater (figure 16). No ashfall or ejecta was observed after the eruption on 29 April.

Figure (see Caption) Figure 16. The Iwanogami webcam captured a brief gray-white ash and steam plume rising above the Iodake crater rim on Satsuma Iwo Jima (Kikai) on 29 April 2020 at 0609 local time. The plume rose 1 km above the crater summit. Courtesy of JMA (An explanation of volcanic activity at Satsuma Iwo Jima, April 2nd year of Reiwa [2020]).

Geologic Background. Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Fuego (Guatemala) — April 2020 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Ongoing ash explosions, block avalanches, and intermittent lava flows

Fuego is a stratovolcano in Guatemala that has been erupting since 2002 with historical eruptions that date back to 1531. Volcanism is characterized by major ashfalls, pyroclastic flows, lava flows, and lahars. The previous report (BGVN 44:10) detailed activity that included multiple ash explosions, ash plumes, ashfall, active lava flows, and block avalanches. This report covers this continuing activity from October 2019 through March 2020 and consists of ash plumes, ashfall, incandescent ejecta, block avalanches, and lava flows. The primary source of information comes from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH), the Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

Summary of activity October 2019-March 2020. Daily activity persisted throughout October 2019-March 2020 (table 20) with multiple ash explosions recorded every hour, ash plumes that rose to a maximum of 4.8 km altitude each month drifting in multiple directions, incandescent ejecta reaching a 500 m above the crater resulting in block avalanches traveling down multiple drainages, and ashfall affecting communities in multiple directions. The highest rate of explosions occurred on 7 November with up to 25 per hour. Dominantly white fumaroles occurred frequently throughout this reporting period, rising to a maximum altitude of 4.5 km and drifting in multiple directions. Intermittent lava flows that reached a maximum length of 1.2 km were observed each month in the Seca (Santa Teresa) and Ceniza drainages (figure 128), but rarely in the Trinidad drainage. Thermal activity increased slightly in frequency and strength in late October and remained relatively consistent through mid-March as seen in the MIROVA analysis of MODIS satellite data (figure 129).

Table 20. Activity summary by month for Fuego with information compiled from INSIVUMEH daily reports.

Month Ash plume heights (km) Ash plume distance (km) and direction Drainages affected by avalanche blocks Villages reporting ashfall
Oct 2019 4.3-4.8 km 10-25 km, W-SW-S-NW Seca, Taniluyá, Ceniza, Trinidad, El Jute, Honda, and Las Lajas Panimaché I and II, Morelia, Santa Sofía, Porvenir, Finca Palo Verde, La Rochela, San Andrés Osuna, Sangre de Cristo, and San Pedro Yepocapa
Nov 2019 4.0-4.8 km 10-20 km, W-SW-S-NW Seca, Taniluyá, Trinidad, Las Lajas, Honda, and Ceniza Panimaché I and II, Morelia, Santa Sofía, Porvenir, Sangre de Cristo, Finca Palo Verde, and San Pedro Yepocapa
Dec 2019 4.2-4.8 km 10-25 km, W-SW-S-SE-N-NE Seca, Taniluya, Ceniza, Trinidad, and Las Lajas Morelia, Santa Sofía, Finca Palo Verde, El Porvenir, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, La Rochela, and San Andrés Osuna
Jan 2020 4.3-4.8 km 10-25 km, W-SW-S-N-NE-E Seca, Ceniza, Taniluyá, Trinidad, Honda, and Las Lajas Morelia, Santa Sofía, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, El Porvenir, Finca Palo Verde, Rodeo, La Rochela, Alotenango, El Zapote, Trinidad, La Reina, Ceilán
Feb 2020 4.3-4.8 km 8-25 km, W-SW-S-SE-E-NE-N-NW Seca, Ceniza, Taniluya, Trinidad, Las Lajas, Honda, La Rochela, El Zapote, and San Andrés Osuna Panimache I and II, Morelia, Santa Sofia, Sangre de Cristo, San Pedro Yepocapa, Rodeo, La Reina, Alotenango, Yucales, Siquinalá, Santa Lucia, El Porvenir, Finca Los Tarros, La Soledad, Buena Vista, La Cruz, Pajales, San Miguel Dueñas, Ciudad Vieja, San Miguel Escobar, San Pedro las Huertas, Antigua, La Rochela, and San Andrés Osuna
Mar 2020 4.3-4.8 km 10-23 km, W-SW-S-SE-N-NW Seca, Ceniza, Trinidad, Taniluyá, Las Lajas, Honda, La Rochela, El Zapote, San Andrés Osuna, Morelia, Panimache, and Santa Sofia San Andrés Osuna, La Rochela, El Rodeo, Chuchu, Panimache I and II, Santa Sofia, Morelia, Finca Palo Verde, El Porvenir, Sangre de Cristo, La Cruz, San Pedro Yepocapa, La Conchita, La Soledad, Alotenango, Aldea la Cruz, Acatenango, Ceilan, Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, and Honda
Figure (see Caption) Figure 128. Sentinel-2 thermal satellite images of Fuego between 21 November 2019 and 20 March 2020 showing lava flows (bright yellow-orange) traveling generally S and W from the crater summit. An ash plume can also be seen on 21 November 2019, accompanying the lava flow. Sentinel-2 satellite images with “Atmospheric penetration” (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 129. Thermal activity at Fuego increased in frequency and strength (log radiative power) in late October 2019 and remained relatively consistent through February 2020. In early March, there is a small decrease in thermal power, followed by a short pulse of activity and another decline. Courtesy of MIROVA.

Activity during October-December 2019. Activity in October 2019 consisted of 6-20 ash explosions per hour; ash plumes rose to 4.8 km altitude, drifting up to 25 km in multiple directions, resulting in ashfall in Panimaché I and II (8 km SW), Morelia (9 km SW), San Pedro Yepocapa (8 km NW), Sangre de Cristo (8 km WSW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), Finca Palo Verde, La Rochela and San Andrés Osuna. The Washington VAAC issued multiple aviation advisories for a total of nine days in October. Continuous white gas-and-steam plumes reached 4.1-4.4 km altitude drifting generally W. Weak SO2 emissions were infrequently observed in satellite imagery during October and January 2020 (figure 130) Incandescent ejecta was frequently observed rising 200-400 m above the summit, which generated block avalanches that traveled down the Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), El Jute, Honda, and Las Lajas (SE) drainages. During 3-7 October lahars descended the Ceniza, El Mineral, and Seca drainages, carrying tree branches, tree trunks, and blocks 1-3 m in diameter. During 6-8 and 13 October, active lava flows traveled up to 200 m down the Seca drainage.

Figure (see Caption) Figure 130. Weak SO2 emissions were observed rising from Fuego using the TROPOMI instrument on the Sentinel-5P satellite. Top left: 17 October 2019. Top right: 17 November 2019. Bottom left: 20 January 2020. Bottom right: 22 January 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

During November 2019, the rate of explosions increased to 5-25 per hour, the latter of which occurred on 7 November. The explosions resulted in ash plumes that rose 4-4.8 km altitude, drifting 10-20 km in the W direction. Ashfall was observed in Panimaché I and II, Morelia, Santa Sofía, Porvenir, Sangre de Cristo, Finca Palo Verde, and San Pedro Yepocapa. Multiple Washington VAAC notices were issued for 11 days in November. Continuous white gas-and-steam plumes rose up to 4.5 km altitude drifting generally W. Incandescent ejecta rose 100-500 m above the crater, generating block avalanches in Seca, Taniluyá, Trinidad, Las Lajas, Honda, and Ceniza drainages. Lava flows were observed for a majority of the month into early December measuring 100-900 m long in the Seca and Ceniza drainages.

The number of explosions in December 2019 decreased compared to November, recording 8-19 per hour with incandescent ejecta rising 100-400 m above the crater. The explosions generated block avalanches that traveled in the Seca, Taniluya, Ceniza, Trinidad, and Las Lajas drainages throughout the month. Ash plumes continued to rise above the summit crater to 4.8 km drifting up to 25 km in multiple directions. The Washington VAAC issued multiple daily notices almost daily in December. A continuous lava flow observed during 6-15, 21-22, 24, and 26 November through 9 December measured 100-800 m long in the Seca and Ceniza drainages.

Activity during January-March 2020. Incandescent Strombolian explosions continued daily during January 2020, ejecting material up to 100-500 m above the crater. Ash plumes continued to rise to a maximum altitude of 4.8 km, resulting in ashfall in all directions affecting Morelia, Santa Sofía, Sangre de Cristo, San Pedro Yepocapa, Panimaché I and II, El Porvenir, Finca Palo Verde, Rodeo, La Rochela, Alotenango, El Zapote, Trinidad, La Reina, and Ceilán. The Washington VAAC issued multiple notices for a total of 12 days during January. Block avalanches resulting from the Strombolian explosions traveled down the Seca, Ceniza, Taniluyá, Trinidad, Honda, and Las Lajas drainages. An active lava flow in the Ceniza drainage measured 150-600 m long during 6-10 January.

During February 2020, INSIVUMEH reported a range of 4-16 explosions per hour, accompanied by incandescent material that rose 100-500 m above the crater (figure 131). Block avalanches traveled in the Santa Teresa, Seca, Ceniza, Taniluya, Trinidad, Las Lajas, Honda, La Rochela, El Zapote, and San Andrés Osuna drainages. Ash emissions from the explosions continued to rise 4.8 km altitude, drifting in multiple directions as far as 25 km and resulting in ashfall in the communities of Panimache I and II, Morelia, Santa Sofia, Sangre de Cristo, San Pedro Yepocapa, Rodeo, La Reina, Alotenango, Yucales, Siquinalá, Santa Lucia, El Porvenir, Finca Los Tarros, La Soledad, Buena Vista, La Cruz, Pajales, San Miguel Dueñas, Ciudad Vieja, San Miguel Escobar, San Pedro las Huertas, Antigua, La Rochela, and San Andrés Osuna. Washington VAAC notices were issued almost daily during the month. Lava flows were active in the Ceniza drainage during 13-20, 23-24, and 26-27 February measuring as long as 1.2 km.

Figure (see Caption) Figure 131. Incandescent ejecta rose several hundred meters above the crater of Fuego on 6 February 2020, resulting in block avalanches down multiple drainages. Courtesy of Crelosa.

Daily explosions and incandescent ejecta continued through March 2020, with 8-17 explosions per hour that rose up to 500 m above the crater. Block avalanches from the explosions were observed in the Seca, Ceniza, Trinidad, Taniluyá, Las Lajas, Honda, Santa Teresa, La Rochela, El Zapote, San Andrés Osuna, Morelia, Panimache, and Santa Sofia drainages. Accompanying ash plumes rose 4.8 km altitude, drifting in multiple directions mostly to the W as far as 23 km and resulting in ashfall in San Andrés Osuna, La Rochela, El Rodeo, Chuchu, Panimache I and II, Santa Sofia, Morelia, Finca Palo Verde, El Porvenir, Sangre de Cristo, La Cruz, San Pedro Yepocapa, La Conchita, La Soledad, Alotenango, Aldea la Cruz, Acatenango, Ceilan, Taniluyá, Ceniza, Las Lajas, Trinidad, Seca, and Honda. Multiple Washington VAAC notices were issued for a total of 15 days during March. Active lava flows were observed from 16-21 March in the Trinidad and Ceniza drainages measuring 400-1,200 m long and were accompanied by weak to moderate explosions. By 23 March, active lava flows were no longer observed.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Crelosa, 3ra. avenida. 8-66, Zona 14. Colonia El Campo, Guatemala Ciudad de Guatemala (URL: http://crelosa.com/, post at https://www.youtube.com/watch?v=1P4kWqxU2m0&feature=youtu.be).


Ebeko (Russia) — June 2020 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Frequent moderate explosions, ash plumes, and ashfall continue, December 2019-May 2020

The current moderate explosive eruption of Ebeko has been ongoing since October 2016, with frequent ash explosions that have reached altitudes of 1.3-6 km (BGVN 42:08, 43:03, 43:06, 43:12, 44:12). Ashfall is common in Severo-Kurilsk, a town of about 2,500 residents 7 km ESE, where the Kamchatka Volcanic Eruptions Response Team (KVERT) monitor the volcano. During the reporting period, December 2019-May 2020, the Aviation Color Code remained at Orange (the second highest level on a four-color scale).

During December 2019-May 2020, frequent explosions generated ash plumes that reached altitudes of 1.5-4.6 km (table 9); reports of ashfall in Severo-Kurilsk were common. Ash explosions in late April caused ashfall in Severo-Kurilsk during 25-30 April (figure 24), and the plume drifted 180 km SE on the 29th. There was also a higher level of activity during the second half of May (figure 25), when plumes drifted up to 80 km downwind.

Table 9. Summary of activity at Ebeko, December 2019-May 2020. S-K is Severo-Kurilsk (7 km ESE of the volcano). TA is thermal anomaly in satellite images. In the plume distance column, only plumes that drifted more than 10 km are indicated. Dates based on UTC times. Data courtesy of KVERT.

Date Plume Altitude (km) Plume Distance Plume Directions Other Observations
30 Nov-05 Dec 2019 3 -- NE, E Intermittent explosions.
06-13 Dec 2019 4 -- E Explosions all week. Ashfall in S-K on 10-12 Dec.
15-17 Dec 2019 3 -- E Explosions. Ashfall in S-K on 16-17 Dec.
22-24 Dec 2019 3 -- NE Explosions.
01-02 Jan 2020 3 30 km N N Explosions. TA over dome on 1 Jan.
03, 05, 09 Jan 2020 2.9 -- NE, SE Explosions. Ashfall in S-K on 8 Jan.
11, 13-14 Jan 2020 3 -- E Explosions. Ashfall in S-K.
19-20 Jan 2020 3 -- E Ashfall in S-K on 19 Jan.
24-31 Jan 2020 4 -- E Explosions.
01-07 Feb 2020 3 -- E, S Explosions all week.
12-13 Feb 2020 1.5 -- E Explosions. Ashfall in S-K.
18-19 Feb 2020 2.3 -- SE Explosions.
21, 25, 27 Feb 2020 2.9 -- S, SE, NE Explosions. Ashfall in S-K on 22 Feb.
01-02, 05 Mar 2020 2 -- S, E Explosions.
08 Mar 2020 2.5 -- NE Explosions.
13, 17 Mar 2020 2.5 -- NE, SE Bursts of gas, steam, and small amount of ash.
24-25 Mar 2020 2.5 -- NE, W Explosions.
29 Mar-02 Apr 2020 2.2 -- NE, E Explosions. Ashfall in S-K on 1 Apr. TA on 30-31 Mar.
04-05, 09 Apr 2020 1.5 -- NE Explosions. TA on 5 Apr.
13 Apr 2020 2.5 -- SE Explosions.
18, 20 Apr 2020 -- -- -- TA on 18, 20 Apr.
24 Apr-01 May 2020 3.5 180 km SE on 29 Apr E, SE Explosions all week. Ashfall in S-K on 25-30 Apr.
01-08 May 2020 2.6 -- E Explosions all week. Ashfall in S-K on 3-5 May. TA on 3 May.
08-15 May 2020 4 -- E Explosions. Ashfall in S-K on 8-12 May. TA during 12-14 May.
14-15, 19-21 May 2020 3.6 80 km SW, S, SE during 14, 20-21 May -- Explosions. TA on same days.
22-29 May 2020 4.6 60 km SE E, SE Explosions all week. Ashfall in S-K on 22, 24 May.
29-31 May 2020 4.5 -- E, S Explosions. TA on 30 May.
Figure (see Caption) Figure 24. Photo of ash explosion at Ebeko at 2110 UTC on 28 April 2020, as viewed from Severo-Kurilsk. Courtesy of KVERT (L. Kotenko).
Figure (see Caption) Figure 25. Satellite image of Ebeko from Sentinel-2 on 27 May 2020, showing a plume drifting SE. Image using natural color rendering (bands 4, 3, 2) courtesy of Sentinel Hub Playground.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Piton de la Fournaise (France) — May 2020 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Fissure eruptions in February and April 2020 included lava fountains and flows

Piton de la Fournaise is a massive basaltic shield volcano on the French island of Réunion in the western Indian Ocean. Recent volcanism is characterized by multiple fissure eruptions, lava fountains, and lava flows (BGVN 44:11). The activity during this reporting period of November 2019-April 2020 is consistent with the previous eruption, including lava fountaining and lava flows. Information for this report comes from the Observatoire Volcanologique du Piton de la Fournaise (OVPF) and various satellite data.

Activity during November 2019-January 2020 was relatively low; no eruptive events were detected, according to OVPF. Edifice deformation resumed during the last week in December and continued through January. Seismicity significantly increased in early January, registering 258 shallow earthquakes from 1-16 January. During 17-31 January, the seismicity declined, averaging one earthquake per day.

Two eruptive events took place during February-April 2020. OVPF reported that the first occurred from 10 to 16 February on the E and SE flanks of the Dolomieu Crater. The second took place during 2-6 April. Both eruptive events began with a sharp increase in seismicity accompanied by edifice inflation, followed by a fissure eruption that resulted in lava fountains and lava flows (figure 193). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed the two eruptive events occurring during February-April 2020 (figure 194). Similarly, the MODVOLC algorithm reported 72 thermal signatures proximal to the summit crater from 12 February to 6 April. Both of these eruptive events were accompanied by SO2 emissions that were detected by the Sentinel-5P/TROPOMI instrument (figures 195 and 196).

Figure (see Caption) Figure 193. Location maps of the lava flows on the E flank at Piton de la Fournaise on 10-16 February 2020 (left) and 2-6 April 2020 (right) as derived from SAR satellite data. Courtesy of OVPF-IPGP, OPGC, LMV (Monthly bulletins of the Piton de la Fournaise Volcanological Observatory, February and April 2020).
Figure (see Caption) Figure 194. Two significant eruptive events at Piton de la Fournaise took place during February-April 2020 as recorded by the MIROVA system (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 195. Images of the SO2 emissions during the February 2020 eruptive event at Piton de la Fournaise detected by the Sentinel-5P/TROPOMI satellite. Top left: 10 February 2020. Top right: 11 February 2020. Bottom left: 13 February 2020. Bottom right: 14 February 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 196. Images of the SO2 emissions during the April 2020 eruptive event at Piton de la Fournaise detected by the Sentinel-5P/TROPOMI satellite. Left: 4 April 2020. Middle: 5 April 2020. Right: 6 April 2020. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

On 10 February 2020 a seismic swarm was detected at 1027, followed by rapid deformation. At 1050, volcanic tremors were recorded, signaling the start of the eruption. Several fissures opened on the E flank of the Dolomieu Crater between the crater rim and at 2,000 m elevation, as observed by an overflight during 1300 and 1330. These fissures were at least 1 km long and produced lava fountains that rose up to 10 m high. Lava flows were also observed traveling E and S to 1,700 m elevation by 1315 (figures 197 and 198). The farthest flow traveled E to an elevation of 1,400 m. Satellite data from HOTVOLC platform (OPGC - University of Auvergne) was used to estimate the peak lava flow rate on 11 February at 10 m3/s. By 13 February only one lava flow that was traveling E below the Marco Crater remained active. OVPF also reported the formation of a cone, measuring 30 m tall, surrounded by three additional vents that produced lava fountains up to 15 m high. On 15 February the volcanic tremors began to decrease at 1400; by 16 February at 1412 the tremors stopped, indicating the end of the eruptive event.

Figure (see Caption) Figure 197. Photo of a lava flow and degassing at Piton de la Fournaise on 10 February 2020. Courtesy of OVPF-IPGP.
Figure (see Caption) Figure 198. Photos of the lava flows at Piton de la Fournaise taken during the February 2020 eruption by Richard Bouchet courtesy of AFP News Service.

Volcanism during the month of March 2020 consisted of low seismicity, including 21 shallow volcanic tremors and near the end of the month, edifice inflation was detected. A second eruptive event began on 2 April 2020, starting with an increase in seismicity during 0815-0851. Much of this seismicity was located on the SE part of the Dolomieu Crater. A fissure opened on the E flank, consistent with the fissures that were active during the February 2020 event. Seismicity continued to increase in intensity through 6 April located dominantly in the SE part of the Dolomieu Crater. An overflight on 5 April at 1030 showed lava fountains rising more than 50 m high accompanied by gas-and-steam plumes rising to 3-3.5 km altitude (figures 199 and 200). A lava flow advanced to an elevation of 360 m, roughly 2 km from the RN2 national road (figure 199). A significant amount of Pele’s hair and clusters of fine volcanic products were produced during the more intense phase of the eruption (5-6 April) and deposited at distances more than 10 km from the eruptive site (figure 201). It was also during this period that the SO2 emissions peaked (figure 196). The eruption stopped at 1330 after a sharp decrease in volcanic tremors.

Figure (see Caption) Figure 199. Photos of a lava flow (left) and lava fountains (right) at Piton de la Fournaise during the April 2020 eruption. Left: photo taken on 2 April 2020 at 1500. Right: photo taken on 5 April 2020 at 1030. Courtesy of OVPF-IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, April 2020).
Figure (see Caption) Figure 200. Photo of the lava fountains erupting from Piton de la Fournaise on 4 April 2020. Photo taken by Richard Bouchet courtesy of Geo Magazine via Jeannie Curtis.
Figure (see Caption) Figure 201. Photos of Pele’s hair deposited due to the April 2020 eruption at Piton de la Fournaise. Samples collected near the Gîte du volcan on 7 April 2020 (left) and a cluster of Pele’s hair found near the Foc-Foc car park on 9 April 2020 (right). Courtesy of OVPF-IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, April 2020).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); GEO Magazine (AFP story at URL: https://www.geo.fr/environnement/la-reunion-fin-deruption-au-piton-de-la-fournaise-200397); AFP (URL: https://twitter.com/AFP/status/1227140765106622464, Twitter: @AFP, https://twitter.com/AFP); Jeannie Curtis (Twitter: @VolcanoJeannie, https://twitter.com/VolcanoJeannie).


Sabancaya (Peru) — June 2020 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Daily explosions with ash emissions, large SO2 flux, ongoing thermal anomalies, December 2019-May 2020

Although tephrochronology has dated activity at Sabancaya back several thousand years, renewed activity that began in 1986 was the first recorded in over 200 years. Intermittent activity since then has produced significant ashfall deposits, seismic unrest, and fumarolic emissions. A new period of explosive activity that began in November 2016 has been characterized by pulses of ash emissions with some plumes exceeding 10 km altitude, thermal anomalies, and significant SO2 plumes. Ash emissions and high levels of SO2 continued each week during December 2019-May 2020. The Observatorio Vulcanologico INGEMMET (OVI) reports weekly on numbers of daily explosions, ash plume heights and directions of drift, seismicity, and other activity. The Buenos Aires Volcanic Ash Advisory Center (VAAC) issued three or four daily reports of ongoing ash emissions at Sabancaya throughout the period.

The dome inside the summit crater continued to grow throughout this period, along with nearly constant ash, gas, and steam emissions; the average number of daily explosions ranged from 4 to 29. Ash and gas plume heights rose 1,800-3,800 m above the summit crater, and multiple communities around the volcano reported ashfall every month (table 6). Sulfur dioxide emissions were notably high and recorded daily with the TROPOMI satellite instrument (figure 75). Thermal activity declined during December 2019 from levels earlier in the year but remained steady and increased in both frequency and intensity during April and May 2020 (figure 76). Infrared satellite images indicated that the primary heat source throughout the period was from the dome inside the summit crater (figure 77).

Table 6. Persistent activity at Sabancaya during December 2019-May 2020 included multiple daily explosions with ash plumes that rose several kilometers above the summit and drifted in many directions; this resulted in ashfall in communities within 30 km of the volcano. Satellite instruments recorded SO2 emissions daily. Data courtesy of OVI-INGEMMET.

Month Avg. Daily Explosions by week Max plume Heights (m above crater) Plume drift (km) and direction Communities reporting ashfall Min Days with SO2 over 2 DU
Dec 2019 16, 13, 5, 5 2,600-3,800 20-30 NW Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, Chivay, Huambo, Cabanaconde 27
Jan 2020 10, 8, 11, 14, 4 1,800-3,400 30 km W, NW, SE, S Chivay, Yanque, Achoma 29
Feb 2020 8, 11, 20, 19 2,000-2,200 30 km SE, E, NE, W Huambo 29
Mar 2020 14, 22, 29, 18 2,000-3,000 30 km NE, W, NW, SW Madrigal, Lari, Pinchollo 30
Apr 2020 12, 12, 16, 13, 8 2,000-3,000 30 km SE, NW, E, S Pinchollo, Madrigal, Lari, Maca, Ichupampa, Yanque, Chivay, Coporaque, Achoma 27
May 2020 15, 14, 6, 16 1,800-2,400 30 km SW, SE, E, NE, W Chivay, Achoma, Maca, Lari, Madrigal, Pinchollo 27
Figure (see Caption) Figure 75. Sulfur dioxide anomalies were captured daily from Sabancaya during December 2019-May 2020 by the TROPOMI instrument on the Sentinel-5P satellite. Some of the largest SO2 plumes are shown here with dates listed in the information at the top of each image. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 76. Thermal activity at Sabancaya declined during December 2019 from levels earlier in the year but remained steady and increased slightly in frequency and intensity during April and May 2020, according to the MIROVA graph of Log Radiative Power from 23 June 2019 through May 2020. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Sentinel-2 satellite imagery of Sabancaya confirmed the frequent ash emissions and ongoing thermal activity from the dome inside the summit crater during December 2019-May 2020. Top row (left to right): On 6 December 2019 a large plume of steam and ash drifted N from the summit. On 16 December 2019 a thermal anomaly encircled the dome inside the summit caldera while gas and possible ash drifted NW. On 14 April 2020 a very similar pattern persisted inside the crater. Bottom row (left to right): On 19 April an ash plume was clearly visible above dense cloud cover. On 24 May the infrared glow around the dome remained strong; a diffuse plume drifted W. A large plume of ash and steam drifted SE from the summit on 29 May. Infrared images use Atmospheric penetration rendering (bands 12, 11, 8a), other images use Natural Color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

The average number of daily explosions during December 2019 decreased from a high of 16 the first week of the month to a low of five during the last week. Six pyroclastic flows occurred on 10 December (figure 78). Tremors were associated with gas-and-ash emissions for most of the month. Ashfall was reported in Pinchollo, Madrigal, Lari, Maca, Achoma, Coporaque, Yanque, and Chivay during the first week of the month, and in Huambo and Cabanaconde during the second week (figure 79). Inflation of the volcano was measured throughout the month. SO2 flux was measured by OVI as ranging from 2,500 to 4,300 tons per day.

Figure (see Caption) Figure 78. Multiple daily explosions at Sabancaya produced ash plumes that rose several kilometers above the summit. Left image is from 5 December and right image is from 11 December 2019. Note pyroclastic flows to the right of the crater on 11 December. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-49-2019/INGEMMET Semana del 2 al 8 de diciembre de 2019 and RSSAB-50-2019/INGEMMET Semana del 9 al 15 de diciembre de 2019).
Figure (see Caption) Figure 79. Communities to the N and W of Sabancaya recorded ashfall from the volcano the first week of December and also every month during December 2019-May 2020. The red zone is the area where access is prohibited (about a 12-km radius from the crater). Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

During January and February 2020 the number of daily explosions averaged 4-20. Ash plumes rose as high as 3.4 km above the summit (figure 80) and drifted up to 30 km in multiple directions. Ashfall was reported in Chivay, Yanque, and Achoma on 8 January, and in Huambo on 25 February. Sulfur dioxide flux ranged from a low of 1,200 t/d on 29 February to a high of 8,200 t/d on 28 January. Inflation of the edifice was measured during January; deformation changed to deflation in early February but then returned to inflation by the end of the month.

Figure (see Caption) Figure 80. Ash plumes rose from Sabancaya every day during January and February 2020. Left: 11 January. Right: 28 February. Courtesy of OVI (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-02-2020/INGEMMET Semana del 06 al 12 de enero del 2020 and RSSAB-09-2020/INGEMMET Semana del 24 de febrero al 01 de marzo del 2020).

Explosions continued during March and April 2020, averaging 8-29 per day. Explosions appeared to come from multiple vents on 11 March (figure 81). Ash plumes rose 3 km above the summit during the first week of March and again the first week of April; they were lower during the other weeks. Ashfall was reported in Madrigal, Lari, and Pinchollo on 27 March and 5 April. On 17 April ashfall was reported in Maca, Ichupampa, Yanque, Chivay, Coporaque, and Achoma. Sulfur dioxide flux ranged from 1,900 t/d on 5 March to 10,700 t/d on 30 March. Inflation at depth continued throughout March and April with 10 +/- 4 mm recorded between 21 and 26 April. Similar activity continued during May 2020; explosions averaged 6-16 per day (figure 82). Ashfall was reported on 6 May in Chivay, Achoma, Maca, Lari, Madrigal, and Pinchollo; heavy ashfall was reported in Achoma on 12 May. Additional ashfall was reported in Achoma, Maca, Madrigal, and Lari on 23 May.

Figure (see Caption) Figure 81. Explosions at Sabancaya on 11 March 2020 appeared to originate simultaneously from two different vents (left). The plume on 12 April was measured at about 2,500 m above the summit. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya, RSSAB-11-2020/INGEMMET Semana del 9 al 15 de marzo del 2020 and RSSAB-15-2020/INGEMMET Semana del 6 al 12 de abril del 2020).
Figure (see Caption) Figure 82. Explosions dense with ash continued during May 2020 at Sabancaya. On 11 and 29 May 2020 ash plumes rose from the summit and drifted as far as 30 km before dissipating. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitorio de la Actividad de la Volcan Sabancaya , RSSAB-20-2020/INGEMMET Semana del 11 al 17 de mayo del 2020 and RSSAB-22-2020/INGEMMET Semana del 25 al 31 de mayo del 2020).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sheveluch (Russia) — May 2020 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Lava dome growth and thermal anomalies continue through April 2020, but few ash explosions

The eruption at Sheveluch has continued for more than 20 years, with strong explosions that have produced ash plumes, lava dome growth, hot avalanches, numerous thermal anomalies, and strong fumarolic activity (BGVN 44:05). During this time, there have been periods of greater or lesser activity. The most recent period of increased activity began in December 2018 and continued through October 2019 (BGVN 44:11). This report covers activity between November 2019 to April 2020, a period during which activity waned. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT) and Tokyo Volcanic Ash Advisory Center (VAAC).

During the reporting period, KVERT noted that lava dome growth continued, accompanied by incandescence of the dome blocks and hot avalanches. Strong fumarolic activity was also present (figure 53). However, the overall eruption intensity waned. Ash plumes sometimes rose to 10 km altitude and drifted downwind over 600 km (table 14). The Aviation Color Code (ACC) remained at Orange (the second highest level on a four-color scale), except for 3 November when it was raised briefly to Red (the highest level).

Figure (see Caption) Figure 53. Fumarolic activity of Sheveluch’s lava dome on 24 January 2020. Photo by Y. Demyanchuk; courtesy of KVERT.

Table 14. Explosions and ash plumes at Sheveluch during November 2019-April 2020. Dates and times are UTC, not local. Data courtesy of KVERT and the Tokyo VAAC.

Dates Plume Altitude (km) Drift Distance and Direction Remarks
01-08 Nov 2019 -- 640 km NW 3 November: ACC raised to Red from 0546-0718 UTC before returning to Orange.
08-15 Nov 2019 9-10 1,300 km ESE
17-27 Dec 2019 6.0-6.5 25 km E Explosions at about 23:50 UTC on 21 Dec.
20-27 Mar 2020 -- 45 km N 25 March: Gas-and-steam plume containing some ash.
03-10 Apr 2020 10 km 526 km SE 8 April: Strong explosion at 1910 UTC.
17-24 Apr 2020 -- 140 km NE Re-suspended ash plume.

KVERT reported thermal anomalies over the volcano every day, except for 25-26 January, when clouds obscured observations. During the reporting period, thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm recorded hotspots on 10 days in November, 13 days in December, nine days in January, eight days in both February and March, and five days in April. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, detected numerous hotspots every month, almost all of which were of moderate radiative power (figure 54).

Figure (see Caption) Figure 54. Thermal anomalies at Sheveluch continued at elevated levels during November 2019-April 2020, as seen on this MIROVA Log Radiative Power graph for July 2019-April 2020. Courtesy of MIROVA.

High sulfur dioxide levels were occasionally recorded just above or in the close vicinity of Sheveluch by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite, but very little drift was observed.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Dukono (Indonesia) — May 2020 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions continue through March 2020

The ongoing eruption at Dukono is characterized by frequent explosions that send ash plumes to about 1.5-3 km altitude (0.3-1.8 km above the summit), although a few have risen higher. This type of typical activity (figure 13) continued through at least March 2020. The ash plume data below (table 21) were primarily provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and the Darwin Volcanic Ash Advisory Centre (VAAC). During the reporting period of October 2019-March 2020, the Alert Level remained at 2 (on a scale of 1-4) and the public was warned to remain outside of the 2-km exclusion zone.

Table 21. Monthly summary of reported ash plumes from Dukono for October 2019-March 2020. The direction of drift for the ash plume through each month was highly variable; notable plume drift each month was only indicated in the table if at least two weekly reports were consistent. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2019 1.8-3 Multiple
Nov 2019 1.8-2.3 E, SE, NE
Dec 2019 1.8-2.1 E, SE
Jan 2020 1.8-2.1 E, SE, SW, S
Feb 2020 2.1-2.4 S, SW
Mar 2020 1.5-2.3 Multiple
Figure (see Caption) Figure 13.Satellite image of Dukono from Sentinel-2 on 12 November 2019, showing an ash plume drifting E. Image uses natural color rendering (bands 4, 3, 2). Courtesy of Sentinel Hub Playground.

During the reporting period, high levels of sulfur dioxide were only recorded above or near the volcano during 30-31 October and 4 November 2019. High levels were recorded by the Ozone Mapping and Profiler Suite (OMPS) instrument aboard the Suomi National Polar-orbiting Partnership (NPP) satellite on 30 October 2019, in a plume drifting E. The next day high levels were also recorded by the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5 Precursor satellite on 31 October (figure 14) and 4 November 2019, in plumes drifting SE and NE, respectively.

Figure (see Caption) Figure 14. Sulfur dioxide emission on 31 October 2019 drifting E, probably from Dukono, as recorded by the TROPOMI instrument aboard the Sentinel-5P satellite. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — April 2020 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3320 m

All times are local (unless otherwise noted)


Strombolian explosions and ash emissions continue, October 2019-March 2020

Mount Etna is a stratovolcano located on the island of Sicily, Italy, with historical eruptions that date back 3,500 years. The most recent eruptive period began in September 2013 and has continued through March 2020. Activity is characterized by Strombolian explosions, lava flows, and ash plumes that commonly occur from the summit area, including the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. This reporting period covers information from October 2019 through March 2020 and includes frequent explosions and ash plumes. The primary source of information comes from the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Summary of activity during October 2019-March 2020. Strombolian activity and gas-and-steam and ash emissions were frequently observed at Etna throughout the entire reporting period, according to INGV and Toulouse VAAC notices. Activity was largely located within the main cone (Voragine-Bocca Nuova complex), the Northeast Crater (NEC), and the New Southeast Crater (NSEC). On 1, 17, and 19 October, ash plumes rose to a maximum altitude of 5 km. Due to constant Strombolian explosions, ground observations showed that a scoria cone located on the floor of the VOR Crater had begun to grow in late November and again in late January 2020. A lava flow was first detected on 6 December at the base of the scoria cone in the VOR Crater, which traveled toward the adjacent BN Crater. Additional lava flows were observed intermittently throughout the reporting period in the same crater. On 13 March, another small scoria cone had formed in the main VOR-BN complex due to Strombolian explosions.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows multiple episodes of thermal activity varying in power from 22 June 2019 to March 2020 (figure 286). The power and frequency of these thermal anomalies significantly decreased between August to mid-September. The pulse of activity in mid-September reflected a lava flow from the VOR Crater (BGVN 44:10). By late October through November, thermal anomalies were relatively weaker and less frequent. The next pulse in thermal activity reflected in the MIROVA graph occurred in early December, followed by another shortly after in early January, both of which were due to new lava flows from the VOR Crater. After 9 January the thermal anomalies remained frequent and strong; active lava flows continued through March accompanied by Strombolian explosions, gas-and-steam, SO2, and ash emissions. The most recent distinct pulse in thermal activity was seen in mid-March; on 13 March, another lava flow formed, accompanied by an increase in seismicity. This lava flow, like the previous ones, also originated in the VOR Crater and traveled W toward the BN Crater.

Figure (see Caption) Figure 286. Multiple episodes of varying activity at Etna from 22 June 2019 through March 2020 were reflected in the MIROVA thermal energy data (Log Radiative Power). Courtesy of MIROVA.

Activity during October-December 2019. During October 2019, VONA (Volcano Observatory Notice for Aviation) notices issued by INGV reported ash plumes rose to a maximum altitude of 5 km on 1, 17, and 19 October. Strombolian explosions occurred frequently. Explosions were detected primarily in the VOR-BN Craters, ejecting coarse pyroclastic material that fell back into the crater area and occasionally rising above the crater rim. Ash emissions rose from the VOR-BN and NEC while intense gas-and-steam emissions were observed in the NSEC (figure 287). Between 10-12 and 14-20 October fine ashfall was observed in Pedara, Mascalucia, Nicolosi, San Giovanni La Punta, and Catania. In addition to these ash emissions, the explosive Strombolian activity contributed to significant SO2 plumes that drifted in different directions (figure 288).

Figure (see Caption) Figure 287. Webcam images of ash emissions from the NE Crater at Etna from the a) CUAD (Catania) webcam on 10 October 2019; b) Milo webcam on 11 October 2019; c) Milo webcam on 12 October 2019; d) M.te Cagliato webcam on 13 October 2019. Courtesy of INGV (Report 42/2019, ETNA, Bollettino Settimanale, 07/10/2019 - 13/10/2019, data emissione 15/10/2019).
Figure (see Caption) Figure 288. Strombolian activity at Etna contributed to significant SO2 plumes that drifted in multiple directions during the intermittent explosions in October 2019. Top left: 1 October 2019. Top right: 2 October 2019. Middle left: 15 October 2019. Middle right: 18 October 2019. Bottom left: 13 November 2019. Bottom right: 1 December 2019. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.

The INGV weekly bulletin covering activity between 25 October and 1 November 2019 reported that Strombolian explosions occurred at intervals of 5-10 minutes from within the VOR-BN and NEC, ejecting incandescent material above the crater rim, accompanied by modest ash emissions. In addition, gas-and-steam emissions were observed from all the summit craters. Field observations showed the cone in the crater floor of VOR that began to grow in mid-September 2019 had continued to grow throughout the month. During the week of 4-10 November, Strombolian activity within the Bocca Nuova Crater was accompanied by gas-and-steam emissions. The explosions in the VOR Crater occasionally ejected incandescent ejecta above the crater rim (figures 289 and 290). For the remainder of the month Strombolian explosions continued in the VOR-BN and NEC, producing sporadic ash emissions. Isolated and discontinuous explosions in the New Southeast Crater (NSEC) also produced fine ash, though gas-and-steam emissions still dominated the activity at this crater. Additionally, the explosions from these summit craters were frequently accompanied by strong SO2 emissions that drifted in different directions as discrete plumes.

Figure (see Caption) Figure 289. Photo of Strombolian activity and crater incandescence in the Voragine Crater at Etna on 15 November 2019. Photo by B. Behncke, taken by Tremestieri Etneo. Courtesy of INGV (Report 47/2019, ETNA, Bollettino Settimanale, 11/11/2019 - 17/11/2019, data emissione 19/11/2019).
Figure (see Caption) Figure 290. Webcam images of summit crater activity during 26-29 November and 1 December 2019 at Etna. a) image recorded by the high-resolution camera on Montagnola (EMOV); b) and c) webcam images taken from Tremestieri Etneo on the southern slope of Etna showing summit incandescence; d) image recorded by the thermal camera on Montagnola (EMOT) showing summit incandescence at the NSEC. Courtesy of INGV (Report 49/2019, ETNA, Bollettino Settimanale, 25/11/2019 - 01/12/2019, data emissione 03/12/2019).

Frequent Strombolian explosions continued through December 2019 within the VOR-BN, NEC, and NSEC Craters with sporadic ash emissions observed in the VOR-BN and NEC. On 6 December, Strombolian explosions increased in the NSEC; webcam images showed incandescent pyroclastic material ejected above the crater rim. On the morning of 6 December a lava flow was observed from the base of the scoria cone in the VOR Crater that traveled toward the adjacent Bocca Nuova Crater. INGV reported that a new vent opened on the side of the saddle cone (NSEC) on 11 December and produced explosions until 14 December.

Activity during January-March 2020. On 9 January 2020 an aerial flight organized by RAI Linea Bianca and the state police showed the VOR Crater continuing to produce lava that was flowing over the crater rim into the BN Crater with some explosive activity in the scoria cone. Explosive Strombolian activity produced strong and distinct SO2 plumes (figure 291) and ash emissions through March, according to the weekly INGV reports, VONA notices, and satellite imagery. Several ash emissions during 21-22 January rose from the vent that opened on 11 December. According to INGV’s weekly bulletin for 21-26 January, the scoria cone in the VOR crater produced Strombolian explosions that increased in frequency and contributed to rapid cone growth, particularly the N part of the cone. Lava traveled down the S flank of the cone and into the adjacent Bocca Nuova Crater, filling the E crater (BN-2) (figure 292). The NEC had discontinuous Strombolian activity and periodic, diffuse ash emissions.

Figure (see Caption) Figure 291. Distinct SO2 plumes drifting in multiple directions from Etna were visible in satellite imagery as Strombolian activity continued through March 2020. Top left: 21 January 2020. Top right: 2 February 2020. Bottom left: 10 March 2020. Bottom right: 19 March 2020. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 292. a) A map of the lava field at Etna showing cooled flows (yellow) and active flows (red). The base of the scoria cone is outlined in black while the crater rim is outlined in red. b) Thermal image of the Bocca Nuova and Voragine Craters. The bright orange is the warmest temperature measure in the flow. Courtesy of INGV, photos by Laboratorio di Cartografia FlyeEye Team (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

Strombolian explosions continued into February 2020, accompanied by ash emissions and lava flows from the previous months (figure 293). During 17-23 February, INGV reported that some subsidence was observed in the central portion of the Bocca Nuova Crater. During 24 February to 1 March, the Strombolian explosions ejected lava from the VOR Crater up to 150-200 m above the vent as bombs fell on the W edge of the VOR crater rim (figure 294). Lava flows continued to move into the W part of the Bocca Nuova Crater.

Figure (see Caption) Figure 293. Webcam images of A) Strombolian activity and B) effusive activity fed by the scoria cone grown inside the VOR Crater at Etna taken on 1 February 2020. C) Thermal image of the lava field produced by the VOR Crater taken by L. Lodato on 3 February (bottom left). Image of BN-1 taken by F. Ciancitto on 3 February in the summit area (bottom right). Courtesy of INGV; Report 06/2020, ETNA, Bollettino Settimanale, 27/01/2020 - 02/02/2020, data emissione 04/02/2020 (top) and Report 07/2020, ETNA, Bollettino Settimanale, 03/02/2020 - 09/02/2020, data emissione 11/02/2020 (bottom).
Figure (see Caption) Figure 294. Photos of the VOR intra-crater scoria cone at Etna: a) Strombolian activity resumed on 25 February 2020 from the SW edge of BN taken by B. Behncke; b) weak Strombolian activity from the vent at the base N of the cone on 29 February 2020 from the W edge of VOR taken by V. Greco; c) old vent present at the base N of the cone, taken on 17 February 2020 from the E edge of VOR taken by B. Behncke; d) view of the flank of the cone, taken on 24 February 2020 from the W edge of VOR taken by F. Ciancitto. Courtesy of INGV (Report 10/2020, ETNA, Bollettino Settimanale, 24/02/2020 - 01/03/2020, data emissione 03/03/2020).

During 9-15 March 2020 Strombolian activity was detected in the VOR Crater while discontinuous ash emissions rose from the NEC and NSEC. Bombs were found in the N saddle between the VOR and NSEC craters. On 9 March, a small scoria cone that had formed in the Bocca Nuova Crater and was ejecting bombs and lava tens of meters above the S crater rim. The lava flow from the VOR Crater was no longer advancing. A third scoria cone had formed on 13 March NE in the main VOR-BN complex due to the Strombolian explosions on 29 February. Another lava flow formed on 13 March, accompanied by an increase in seismicity. The weekly report for 16-22 March reported Strombolian activity detected in the VOR Crater and gas-and-steam and rare ash emissions observed in the NEC and NSEC (figure 295). Explosions in the Bocca Nuova Crater ejected spatter and bombs 100 m high.

Figure (see Caption) Figure 295. Map of the summit crater area of Etna showing the active vents and lava flows during 16-22 March 2020. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Courtesy of INGV (Report 13/2020, ETNA, Bollettino Settimanale, 16/03/2020 - 22/03/2020, data emissione 24/03/2020).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/aeroweb/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Boris Behncke, Sonia Calvari, and Marco Neri, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: https://twitter.com/etnaboris, Image at https://twitter.com/etnaboris/status/1183640328760414209/photo/1).


Merapi (Indonesia) — April 2020 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Explosions produced ash plumes, ashfall, and pyroclastic flows during October 2019-March 2020

Merapi is a highly active stratovolcano located in Indonesia, just north of the city of Yogyakarta. The current eruption episode began in May 2018 and was characterized by phreatic explosions, ash plumes, block avalanches, and a newly active lava dome at the summit. This reporting period updates information from October 2019-March 2020 that includes explosions, pyroclastic flows, ash plumes, and ashfall. The primary reporting source of activity comes from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG) and Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM).

Some ongoing lava dome growth continued in October 2019 in the NE-SW direction measuring 100 m in length, 30 m in width, and 20 m in depth. Gas-and-steam emissions were frequent, reaching a maximum height of 700 m above the crater on 31 October. An explosion at 1631 on 14 October removed the NE-SW trending section of the lava dome and produced an ash plume that rose 3 km above the crater and extended SW for about 2 km (figures 90 and 91). The plume resulted in ashfall as far as 25 km to the SW. According to a Darwin VAAC notice, a thermal hotspot was detected in HIMAWARI-8 satellite imagery. A pyroclastic flow associated with the eruption traveled down the SW flank in the Gendol drainage. During 14-20 October lava flows from the crater generated block-and-ash flows that traveled 1 km SW, according to BPPTKG.

Figure (see Caption) Figure 90. An ash plume rising 3 km above Merapi on 14 October 2019.
Figure (see Caption) Figure 91. Webcam image of an ash plume rising above Merapi at 1733 on 14 October 2019. Courtesy of BPPTKG via Jaime S. Sincioco.

At 0621 on 9 November 2019, an eruption produced an ash plume that rose 1.5 km above the crater and drifted W. Ashfall was observed in the W region as far as 15 km from the summit in Wonolelo and Sawangan in Magelang Regency, as well as Tlogolele and Selo in Boyolali Regency. An associated pyroclastic flow traveled 2 km down the Gendol drainage on the SE flank. On 12 November aerial drone photographs were used to measure the volume of the lava dome, which was 407,000 m3. On 17 November, an eruption produced an ash plume that rose 1 km above the crater, resulting in ashfall as far as 15 km W from the summit in the Dukun District, Magelang Regency (figure 92). A pyroclastic flow accompanying the eruption traveled 1 km down the SE flank in the Gendol drainage. By 30 November low-frequency earthquakes and CO2 gas emissions had increased.

Figure (see Caption) Figure 92. An ash plume rising 1 km above Merapi on 17 November 2019. Courtesy of BPPTKG.

Volcanism was relatively low from 18 November 2019 through 12 February 2020, characterized primarily by gas-and-steam emissions and intermittent volcanic earthquakes. On 4 January a pyroclastic flow was recorded by the seismic network at 2036, but it wasn’t observed due to weather conditions. On 13 February an explosion was detected at 0516, which ejected incandescent material within a 1-km radius from the summit (figure 93). Ash plumes rose 2 km above the crater and drifted NW, resulting in ashfall within 10 km, primarily S of the summit; lightning was also seen in the plume. Ash was observed in Hargobinangun, Glagaharjo, and Kepuharjo. On 19 February aerial drone photographs were used to measure the change in the lava dome after the eruption; the volume of the lava had decreased, measuring 291,000 m3.

Figure (see Caption) Figure 93. Webcam image of an ash plume rising from Merapi at 0516 on 13 February 2020. Courtesy of MAGMA Indonesia and PVMBG.

An explosion on 3 March at 0522 produced an ash plume that rose 6 km above the crater (figure 94), resulting in ashfall within 10 km of the summit, primarily to the NE in the Musuk and Cepogo Boyolali sub-districts and Mriyan Village, Boyolali (3 km from the summit). A pyroclastic flow accompanied this eruption, traveling down the SSE flank less than 2 km. Explosions continued to be detected on 25 and 27-28 March, resulting in ash plumes. The eruption on 27 March at 0530 produced an ash plume that rose 5 km above the crater, causing ashfall as far as 20 km to the W in the Mungkid subdistrict, Magelang Regency, and Banyubiru Village, Dukun District, Magelang Regency. An associated pyroclastic flow descended the SSE flank, traveling as far as 2 km. The ash plume from the 28 March eruption rose 2 km above the crater, causing ashfall within 5 km from the summit in the Krinjing subdistrict primarily to the W (figure 94).

Figure (see Caption) Figure 94. Images of ash plumes rising from Merapi during 3 March (left) and 28 March 2020 (right). Images courtesy of BPPTKG (left) and PVMBG (right).

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Jamie S. Sincioco, Phillipines (Twitter: @jaimessincioco, Image at https://twitter.com/jaimessincioco/status/1227966075519635456/photo/1).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 42, Number 12 (December 2017)

Managing Editor: Edward Venzke

Bogoslof (United States)

Explosions in July and August 2017; new lava dome visible 20-22 August destroyed by explosions that end on 30 August

Cleveland (United States)

Dome growth and destruction multiple times during January-November 2017

Dempo (Indonesia)

Phreatic explosion from the crater lake generates a dense ash plume in November 2017

Pacaya (Guatemala)

Pyroclastic cone in MacKenney crater grows above crater rim, January-September 2017

Sabancaya (Peru)

Continuous pulses of ash emissions for ten months, February-November 2017

Santa Maria (Guatemala)

Slow growth of new lava dome, persistent ash plumes, and nearby ashfall, January-October 2017

Sinabung (Indonesia)

Constant activity through September 2017, with ash plumes, block avalanches, and pyroclastic flows

Tungurahua (Ecuador)

Nearly constant ash emissions and frequent lahars during July-December 2015

Ulawun (Papua New Guinea)

Intermittent ash plumes during June-November 2017

Villarrica (Chile)

Lava lake level fluctuates and Strombolian activity persists during October 2016-November 2017



Bogoslof (United States) — December 2017 Citation iconCite this Report

Bogoslof

United States

53.93°N, 168.03°W; summit elev. 150 m

All times are local (unless otherwise noted)


Explosions in July and August 2017; new lava dome visible 20-22 August destroyed by explosions that end on 30 August

Intermittent eruptions from Bogoslof, 40 km N of the main Aleutian arc (BGVN 42:09, figure 2), have created and destroyed several distinct islands at the summit of this submarine volcano. Previous eruptions in 1927 and 1992 created lava domes that were subsequently heavily eroded, before the most recent eruption began in December 2016 (figure 16). Numerous explosions with ash plumes significantly changed the morphology of the island between December 2016 and March 2017. Ash plumes rose to over 10 km altitude during May-July 2017 multiple times. A lava dome briefly emerged in early June before it was destroyed by subsequent explosions. This report continues with an account of activity between July and December 2017. Eruptive activity ended on 30 August. Information comes primarily from the Alaska Volcano Observatory (AVO) and the Anchorage Volcanic Ash Advisory Center (VAAC).

Figure (see Caption) Figure 16. Worldview satellite image of Bogoslof collected at 2313 UTC on 12 June 2017, two days after a lava dome that appeared in the lagoon was destroyed. The circular embayments were formed by a series of more than 40 explosions that began in mid-December 2016. These explosions greatly reshaped the island as material was removed and redeposited as air fall. Vigorous steaming was visible from a region S of the most active vent areas in the lagoon. Lava extrusion produced a circular dome that first rose above the water on 5 June and grew to a diameter of ~160 m before being destroyed by an explosion early in the day on 10 June. Courtesy of AVO.

New explosions during 2, 4, 8, and 9-10 July 2017 produced ash plumes that rose from 6.1 to 11 km altitude. Although significant ash clouds were produced, there were no reports of ashfall in nearby communities. After almost a month of quiet, an eruption on 7 August created new tephra deposits, and extended the N shore of the island. This eruption created a significant SO2 plume that was recorded by satellite instruments. Intermittent pulses of tremor were recorded during mid-August. A new lava dome grew between 20 and 22 August to 160 m in diameter before it was destroyed in a series of explosions during 26-30 August. Thermal anomalies were observed in satellite data several times during September, and they tapered off into early October. Steam emissions were still visible in early November when the last weak thermal anomaly was reported. By early December, significant erosion had begun to change the island's shape, and only minor steam emissions were visible in clear satellite images.

Beginning at 1248 local time (AKDT) on 2 July 2017, a significant explosive event was detected in seismic and infrasound data, and observed in satellite imagery. The event lasted about 16 minutes, and produced an ash plume that rose to 11 km altitude and drifted E, passing N of Dutch Harbor. No explosions were reported the following day, but two events were detected in seismic, infrasound, and satellite data on 4 July. The first, at 1651, lasted 13 minutes and produced an eruption cloud that rose to 8.5 km altitude and drifted SE; the second 11-minute-long eruption began at 1907, and produced a small cloud that rose to 9.8 km altitude and drifted SE.

On the morning of 8 July 2017, an eruption with a total duration of 19 minutes began at 1015 AKDT and produced a volcanic cloud reaching an altitude of 9.1 km that drifted N. Overnight during 9-10 July Bogoslof erupted several times; the first two explosions during the 3-hour-long eruption produced a small ash cloud that rose to 6.1 km altitude and drifted SE, dissipating rapidly. Later on 10 July, an 8-minute-long eruption began at 1000 AKDT and a 15-minute-long eruption began at 1706 AKDT; neither produced a significant plume. None of the eruptions on 8, 9, or 10 July caused ashfall in local communities. Weakly elevated surface temperatures were observed in clear satellite images on 12 and 16 July.

Following almost a month of quiet, Bogoslof erupted again on 7 August 2017. The eruption was detected in seismic, infrasound, satellite, and lightning data. The eruption began at 1000 AKDT and lasted for about three hours, producing an ash plume that rose to 9.7 km altitude according to AVO, and drifted S over Umnak Island, then out over the Pacific Ocean. The Anchorage VAAC initially reported the plume at 10.4 km altitude moving S. A later pilot report noted an altitude of 12.2 km. Satellite measurements of sulfur dioxide (SO2) in the eruption cloud indicated the second highest mass of SO2 erupted since the onset of activity in December 2016 (figure 17). Satellite images of the island taken on 8 August showed new tephra deposits had surrounded the vent area, forming a new crater lake, and extending the N shore of the island by 250 m (figure 18).

Figure (see Caption) Figure 17. Although the data is coarsely pixelated, it is clear that a substantial SO2 plume emerged from Bogoslof during the 7 August eruption, as recorded by the OMPS instrument on the Suomio NPP satellite. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 18. Worldview true-color satellite image of Bogoslof acquired on 8 August 2017, one day after a 3-hour-long explosive eruption. Ashfall deposits have expanded the island towards the N as the result of the eruption and formed an enclosed crater lake. At the time of this satellite overpass, the level of the crater lake was below sea level. Previous events such as these (that formed a shallow crater lake) formed a deep crater that was subsequently filled by an influx of ocean water. Vigorous steaming was apparent from the likely site of the initial explosive event in mid-December 2016. Sediment coming from erosion of the island is seen offshore surrounding most of the island. A comparison with figure 16, above, shows the extent of new material added on 7 August. Data provided under the Digital Globe NextView License. Courtesy of AVO.

Several short-duration seismic and infrasound signals were detected at the stations on nearby islands on 9 August 2017. Weakly elevated surface temperatures and a minor steam plume were observed in satellite images. Two short pulses of tremor were seen in seismic data on 14 August, one lasting five minutes and the other lasting three minutes. Seismicity returned to background levels following the pulses and remained quiet until a series of small earthquakes the next morning. Seismicity again returned to background levels by the following afternoon, 16 August, and remained quiet through the rest of that week. Photographs taken during an overflight on 15 August indicated that the vent region, which had dried out during the 7 August eruption, had refilled with water (figure 19).

Figure (see Caption) Figure 19. An overflight of Bogoslof on 15 August 2017 showed the increase in area of the crater lake after the eruption of 7 August (see figure 18). View is to the SE. Courtesy of AVO.

Unrest continued during mid-August 2017, and available data suggested that a lava dome had formed within the intra-island lake just W of the 1992 lava dome. The new dome was first observed on 18 August, and during 20-22 August grew to about 160 m in diameter. Two small explosions were detected in infrasound data at 0410 AKDT on 22 August. These explosions did not produce any volcanic plumes recognizable in satellite data. Elevated surface temperatures were observed on 24 August along with a steam plume extending S about 17 km from the island. Satellite images showed elevated surface temperatures and a robust steam plume the next day drifting 70 km SE. A photo from a nearby low-altitude airplane on 26 August, taken shortly before the next explosion, confirmed the intense steam plume (figure 20) likely caused by the interaction of the new dome with seawater. Two MODVOLC thermal alerts were issued on 25 August, the first two since January 2017, and the last two for the year.

Figure (see Caption) Figure 20. Bogoslof volcano with a vigorous steam plume likely caused by interaction of the new, hot lava dome with seawater. Photo by Dave Withrow (NOAA/Fisheries), taken at about 1300 AKDT on 26 August aboard a NOAA twin otter (N56RF) aircraft while surveying harbor seals west of Dutch Harbor. They were 13 nautical miles (24 km) from Bogoslof when photo was taken looking E with a 400 mm lens. Courtesy of AVO.

An explosive eruption at 1629 AKDT on 26 August 2017 lasted for about four minutes and produced a cloud that was observed in satellite images drifting SE over southern Unalaska Island. Cloud-top temperatures seen in satellite data indicated that it rose as high as 7.3 km altitude. The Anchorage VAAC reported the plume at 8.2 km altitude several hours later. The eruption was observed in seismic, infrasound, and satellite data, and one lightning stroke was detected. Elevated surface temperatures persisted, suggesting to AVO scientists that the lava dome was possibly still present within the crater lake. Three short-duration eruptive events occurred during 27-28 August. On 27 August at 1508 AKDT a brief explosive event lasting about two minutes produced a volcanic cloud that reached about 7.9 km altitude and drifted SE. Another explosive eruption occurred at 0323 AKDT on 28 August and lasted about 25 minutes. Satellite imagery showed only a very small eruption cloud drifting ESE that dissipated quickly. The third event occurred at 1117 AKDT that morning and produced a small ash cloud that likely reached 9 km altitude before dissipating over the North Pacific Ocean. Modeling of ash fallout from the cloud indicated trace to minor ash fall over the Southern Bering Sea in the area just S of the volcano.

Elevated surface temperatures were noted in satellite data on 29 August, along with a steam plume drifting SSE, suggesting to AVO the presence of lava at the surface. An explosive eruption began the next morning at 0405 AKDT and continued intermittently for almost two hours. It produced an ash cloud that reached to about 6 km altitude and drifted SSE, dissipating over the southern Bering Sea and North Pacific Ocean area. A vapor plume extended about 65 km SSE later that day.

AVO reported on 8 September 2017 that available data suggested that the most recent lava dome, first observed on 18 August, was removed by the explosive eruptions of 27-30 August. In addition, a narrow isthmus of new land extended across the crater, bisecting it and creating two lakes. Elevated surface temperatures were recorded in a satellite images on 11, 14, 17, 19, and 23 September. Discolored water was visible in satellite images on 17 September and may have represented outflow from the crater. Elevated surface temperatures continued to be observed in satellite data during periods of clear weather into the first two weeks of October, and again briefly at the beginning of November. Several areas of steam emissions were visible in satellite imagery on 9 October (figure 21).

Figure (see Caption) Figure 21. Worldview-3 satellite image of Bogoslof Island acquired on 9 October 2017. The areas that exhibited active steam emission are highlighted with yellow and black dashed lines. Image data acquired with the Digital Globe NextView License. Courtesy of AVO.

A clear, high-resolution satellite image taken on 2 November showed continued steaming of the ground on the S side of the smaller crater lake. Weakly elevated surface temperatures consistent with a hot crater lake were last observed in clear nighttime satellite images on 10 November 2017. Imagery from 20 November showed warm regions in the crater lagoon and at the site of the steaming that had persisted for several months (see figure 21). AVO scientists noted that this was consistent with a slowly cooling, post-eruptive system, and was likely responsible for the occasional observation of slightly elevated surface temperatures in satellite data. The MIROVA graph of thermal anomalies supported the slow cooling trend observed by AVO after the last explosions on 30 August 2017 (figure 22).

Figure (see Caption) Figure 22. The last series of explosive events recorded at Bogoslof during 26-30 August 2017 coincided with the last significant thermal anomalies on the MIROVA graph (infrared MODIS data) that covers the year ending on 19 January 2018. Gradual tapering of thermal anomalies is consistent with AVO satellite observations of a cooling trend during September through early November. Courtesy of MIROVA.

More than sixty explosive events occurred between 20 December 2016 and 30 August 2017. The most energetic of these sent water-rich, volcanic ash clouds to altitudes exceeding 10.7 km. The resulting dispersed volcanic clouds impacted local and international aviation operations over portions of the North Pacific and Alaska. Although most of the volcanic ash fell into the ocean, trace amounts were twice deposited on the community of Unalaska and the Port of Dutch Harbor. The 2016-17 eruption greatly changed the morphology of Bogoslof Island. At its greatest extent, the area of the island increased to about three times its pre-eruption size. Nearly all of the new material on the island is unconsolidated pyroclastic fall and flow (surge) deposits. The deposits are highly susceptible to wave erosion and additional changes in the configuration of the island are likely. A satellite image from 3 December 2017 shows significant erosion of the island with the vent lagoon opened to the ocean on the north shore of the island (figure 23).

Figure (see Caption) Figure 23. Worldview-3 satellite image of Bogoslof Island on 3 December 2017. Erosion of the island by waves had removed substantial material, and no new eruptive material had been added to the island since the end of August 2017. The approximate area of the island in this image was 1.3 square kilometers. Image data acquired with the Digital Globe NextView License. Courtesy of AVO.

Geologic Background. Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: http://www.avo.alaska.edu/ ), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.dggs.alaska.gov/); Anchorage Volcanic Ash Advisory Center (VAAC), Alaska Aviation Weather Unit, NWS NOAA US Dept of Commerce, 6930 Sand Lake Road, Anchorage, AK 99502-1845(URL: http://vaac.arh.noaa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Cleveland (United States) — December 2017 Citation iconCite this Report

Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


Dome growth and destruction multiple times during January-November 2017

Dome growth and destruction accompanied by small ash explosions has been typical behavior at Alaska's Cleveland volcano in recent years (figures 20, 21, and 22). Located on Chuginadak Island in the Aleutians, slightly over 1,500 km SW of Anchorage, it has historical activity, including three large (VEI 3) eruptions, recorded back to 1893. The Alaska Volcano Observatory (AVO) and the Anchorage Volcanic Ash Advisory Center (VAAC) are responsible for monitoring activity and notifying air traffic of aviation hazards associated with Cleveland. This report provides a summary table of dome growth and destruction since 2013 (table 8), and details of continued activity from January through November 2017.

Figure (see Caption) Figure 20. A lava dome was growing at the summit of Cleveland on 4 August 2015. Concentric rings and radial fractures in the dome surface surrounded an elevated hot dome. Photo taken during the 2015 field season of the Islands of Four Mountains multidisciplinary project, work funded by the National Science Foundation, the USGS/AVO, and the Keck Geology Consortium. Courtesy of AVO.
Figure (see Caption) Figure 21. A 60-m-diameter lava dome was seen in this WorldView-1 satellite image from 25 May 2016 of Cleveland's summit crater. Image created by Rick Wessels, USGS. Image data copyright 2016 Digital Globe, NextView License. Courtesy of AVO.
Figure (see Caption) Figure 22. Thermal and photographic images of the lava dome that was growing in the summit crater of Cleveland on 26 July 2016. Top image is from a FLIR (Forward Looking InfraRed) camera, where warmer colors indicate hotter temperatures (scale is in Celsius); bottom image is a photograph of the summit crater, lava dome, and active fumaroles. AVO crew observed incandescence from the summit crater vent during this overflight. Courtesy of AVO.

Table 8. Observations of dome growth and other crater activity at Cleveland, 2013-2017. Data extracted from AVO reports.

Date Dome Observations
Jan-Feb 2013 New lava flow observed multiple times, 100 m across
4-6 May 2013 Explosions, ash cloud
 
Jun-Jul 2013 Elevated temperatures, satellite imagery
2-5 Oct 2013 Explosions
 
13 Nov 2013 Elevated surface temperatures near summit
25 Nov 2013 Explosion
 
28 Dec 2013 Strongly elevated surface temperature near summit
30 Dec 2013, 2 Jan 2014 Small ash cloud visible; explosion with ash plume
 
Jan-25 Feb 2014 Elevated surface temperatures near summit multiple times
25 Feb 2014 Two small explosions and ash clouds
 
7 Mar-4 Jun 2014 No detected activity
5 Jun 2014 Explosion
 
7 Jul 2014-Aug 2014 Intermittent weakly elevated surface temperatures at summit, vigorous steam plume, incandescence at summit during field visit
Late Aug-early Sep 2014 Elevated surface temperatures in satellite data
14, 24 Nov 2014 Vigorous steaming observed in webcam; Satellite image shows small lava dome in summit crater
5 Dec 2014-9 Jan 2015 Minor steaming and weakly elevated surface temperatures at summit
25, 28 Feb 2015 Weakly elevated surface temperatures at summit, low level steam plume observed
26 Mar 2015 Small steam plume, no further activity until 14 June
14 Jun 2015 Ash cover on upper flanks
 
17 Jun-21 Jul 2015 Elevated surface temperatures at summit
21 Jul 2015 Explosion
 
31 Jul, 4 Aug 2015 Strongly elevated surface temperatures at summit, photograph (figure 20) of lava dome in summit crater
6 Aug 2015 Small explosion
 
Aug-Oct 2015 Intermittent elevated surface temperatures at summit
29 Aug 2015 Seismic swarm
Sep-Nov 2015 No Reported Activity
Dec 2015 Elevated surface temperatures at summit
22-23 Dec 2015 Increased frequency of small VT events
 
Jan 2016 Elevated surface temperatures at summit
28 Feb 2016 Brief burst of small local earthquakes
 
Mar-1 April 2016 Elevated surface temperatures at summit
16 April 2016 Explosion
 
6 and 10 May 2016 Explosions
 
17-25 May 2016 Small lava dome observed (figure 21)
Jun-Jul 2016 Elevated surface temperatures at summit
26 Jul 2016 Lava dome observed (figure 22)
Aug-21 Oct 2016 Intermittent degassing, steam plumes, and elevated surface temperatures at summit
24, 28 Oct 2016 Explosion, ashfall observed
 
5 Nov 2016-23 Mar 2017 Elevated surface temperatures and intermittent steam emissions at summit. 3 Feb 2017 Satellite observation of lava dome
24 Mar 2017 Small explosion
 
Late Mar -15 May 2017 Elevated surface temperatures at summit crater; Dome observed 15 April
16 May 2017 Explosion
 
6-29 Jun 2017 Small, low-frequency earthquakes on 6 Jun, elevated surface temperatures at summit crater several times during June
4 Jul 2017 Explosion
 
7 Jul-21 Aug 2017 Elevated surface temperatures at summit crater; satellite (July 14-21) and photographic (July 25-26) observations of lava dome at summit (figure 23)
22 Aug 2017 Explosion
 
Late Aug-24 Sep 2017 Sporadic observations of elevated surface temperatures at summit crater
26, 28 Sep 2017 Explosions
 
28 Sep-Oct 2017 Elevated surface temperature at crater; lava effusion observed throughout October
28, 30 Oct 2017 Explosions
 
Early Nov 2017 Elevated surface temperatures at crater
14, 16 Nov 2017 Explosions

Lava dome extrusion may have been ongoing since early December 2016, when weakly elevated surface temperatures reappeared after the 24 October 2016 explosion. The lava dome was first observed in satellite imagery on 3 February 2017. Elevated surface temperatures were recorded throughout February and March 2017, and there was a small explosion on 24 March. Growth of a new dome was first observed on 15 April; it continued until being destroyed by an explosion on 16 May. Seismic data on 6 June and elevated temperatures on 7 June indicated growth of another dome, which continued until an explosion on 4 July 2017. There were multiple satellite and photographic observations of the growing dome during July and August; it was destroyed in an explosion on 22 August. Elevated surface temperatures were sporadically observed in early September. The next explosion took place on 26 September followed by two weaker ones on 28 September. Lava effusion was observed in satellite imagery throughout October. Small explosions on 28 and 30 October partly destroyed the lava dome. Elevated surface temperatures were recorded in early November along with small explosions on 14 and 16 November.

Activity during January-April 2017. While no activity was detected in infrasound or seismic data during January 2017, weakly elevated surface temperatures continued to be observed in infrequent clear satellite views (8 and 9 January), just as they were during 8-10 December and in infrared thermal data at the end of December (BGVN 42:04, figure 19). Low-level steam plumes were seen in clear views of the summit from the webcam during 15-19 and 21 January. Moderately elevated surface temperatures were observed in satellite data on 31 January 2017.

Satellite observations on 3 February 2017 confirmed the presence of a new lava dome at the bottom of the summit crater. The dome was about 70 m in diameter at that time, similar in size to previous domes. Observations in satellite imagery of weakly elevated surface temperatures at the summit continued during 7-9 February and during the last few days of the month. Minor steaming was seen in clear webcam images on 8 February. AVO noted that these observations were consistent with the presence of an active lava dome.

Minor steaming from the summit visible in clear webcam views, and slightly elevated surface temperatures in nighttime infrared satellite images, were present on several days during the first half of March. By the third week, surface temperatures were weakly to moderately elevated. At 0815 AKST (1615 UTC) on 24 March, a small explosion was detected in both seismic and infrasound (pressure sensor) data. This event was short-lived and similar to, if not smaller than, recent explosions. Cloud cover obscured observations by satellite. Slightly elevated surface temperatures were observed at the summit again during the last week of March.

No significant activity was detected in seismic, infrasound, or satellite data during the first two weeks of April 2017. A satellite image on 15 April, however, showed the presence of a small (less than 10-m-diameter) mound deep in the crater; the previous 75-m-diameter lava dome had been destroyed by the 24 March explosion. Satellite observations over the next several days indicated continued dome growth. Slightly elevated surface temperatures again appeared in a satellite view on 18 April. A satellite image on 23 April showed the dome partially filling the crater.

Activity during May-August 2017. Satellite images on 2 May showed that the lava dome was still active and had grown from about 15 m to more than 20 m in diameter. No further surface changes were evident on 8 May, indicating a pause or termination to the lava effusion. A short explosive eruption on 16 May at 1917 AKDT (17 May at 0317 UTC) was detected by local seismic instruments and lasted about 11 minutes. The resulting ash cloud rose to around 3.7-4.6 km altitude and was seen in satellite images to drift SW for about 5 hours. Satellite observations in the following days showed that the lava dome, built after the 24 March explosion, had been completely destroyed. Occasional clear webcam views showed steam emissions in the week following the 16 May explosion. Satellite imagery from 25 May suggested possible elevated surface temperatures at the summit while images from 26 May showed no change in the crater morphology since 16 May. No significant activity was detected in seismic or infrasound data for the remainder of May.

Evidence of possible lava effusion within the summit crater next appeared during the first week of June 2017. Small low-frequency earthquakes were detected on 6 June and elevated surface temperatures were observed in night-time satellite images on 7 June. Weakly elevated surface temperatures were observed in satellite images on 13, 19-23, and 29 June, and occasional clear webcam views of the summit showed light steaming. No activity was observed in seismic or infrasound data during the remainder of June.

A moderate explosive eruption lasting about ten minutes occurred early on the morning of 4 July at 0319 AKDT (1119 UTC). Elevated surface temperatures at the summit were visible after that on 7 and 14 July in satellite images, and occasional clear webcam views of the summit showed minor steaming. Satellite observations during 14-21 July revealed that a new dome, about 30 m in diameter and 10 m in height, had appeared at the bottom of the summit crater. Elevated surface temperatures were again observed on 22-24 July. New satellite observations between 21 and 28 July showed that the lava dome had reached about 42 m in diameter, with a slight inflation of its approximate height of 10 m. Minor steaming from the crater was seen in the webcam on 25 and 29-30 July; elevated surface temperatures were identified in satellite data on 30 July and 1 August. No activity was observed in seismic or infrasound data after the 4 July explosion for the remainder of the month.

Slow growth of the lava dome in the summit crater continued during the first few days of August 2017. Satellite observations showed that the dome surface area increased by about 75%, and covered an area of approximately 2,100 m2 (45 x 50 m) by 4 August. The height of the dome also increased due to intrusion of new lava. Elevated surface temperatures were observed in satellite data along with steam emissions from the summit crater seen in webcam images during periods of clear weather for the first few days of August, and again during 7-8 August. The small lava dome was observed during an overflight on 17 August (figure 23).

Figure (see Caption) Figure 23. A small lava dome grew inside the summit crater of Cleveland on 17 August 2017. Photo by Janet Schaefer, courtesy of AVO/ADGGS (Alaska Volcano Observatory/Alaska Division of Geological & Geophysical Surveys).

Minor degassing from the summit was seen in satellite and webcam images during 20-21 August. No explosive (ash-producing) activity was detected in seismic, infrasound, or webcam data in August until a 1-minute-long explosion on 22 August 2017 at 1043 AKDT (1843 UTC). Satellite data from 24 August indicated that the explosion destroyed the lava flow on the crater floor that had effused during July-August 2017. Explosion debris was evident on the crater floor, but no other changes to the summit area or flanks were noted. The 22 August explosion was detected by seismic and infrasound (air pressure) sensors, but no ash clouds were seen in satellite data. Nothing unusual was detected in seismic, infrasound, or satellite data for the remainder of August, except that elevated surface temperatures were observed sporadically in satellite data, suggesting that lava was present within the crater. A weak vapor plume was also sometimes visible at the summit in webcam images.

Activity during September-November 2017. Weakly elevated surface temperatures were observed in satellite data on 5 and 14 September 2017, along with minor steaming reported on 11, 17-19, and 22-24 September. These observations suggested to AVO the continued presence of lava in the crater. A small, short (three-minute-long) explosion was detected on local seismic and infrasound sensors at 1747 AKDT on 25 September (0147 on 26 September UTC) that produced a small volcanic cloud visible in satellite data about 30 minutes later with a height estimated at below 4.6 km altitude. Two weaker explosions were subsequently detected in infrasound and seismic data on 28 September (0516 and 0558 AKDT, 1319 and 1358 UTC), although no visible ash clouds were associated with these events. Weakly elevated surface temperatures during 28-30 September suggested that lava was present in the summit crater; a weak plume emanating from the crater could be seen when the summit was cloud-free.

Lava effusion in the crater was again noted in satellite data beginning on 30 September, forming a low dome that covered an area of about 4,200 m2 by 1 October 2017. Low-resolution satellite data from 6 October showed highly elevated surface temperatures, suggesting that slow growth of the dome continued. The dome doubled in size between 1 and 11 October when it appeared to cover an area of about 8,300 m2 and had approximate dimensions of 95 x 115 m. The number and intensity of elevated surface temperatures seen in satellite imagery declined during 7-13 October.

Satellite data from 15 October showed that the lava dome covered an area of about 9,500 m2 with dimensions of 100 x 125 m. There was no significant change in the size of the lava dome between 15 and 19 October based on satellite image analysis. On 16 October, satellite imagery revealed moderately elevated surface temperatures, and the webcam provided views of a small steam plume. Satellite data showed that the lava dome had grown further to about 110 x 140 m by 23 October and that surface temperatures were moderately elevated on 22 and 24 October. Small steam plumes were seen in webcam views during 22- 24 October. Small explosions on 28 and 30 October partly destroyed the dome within the summit crater. This was followed by slightly to moderately elevated surface temperatures occasionally observed in satellite imagery through the end of the month.

Moderately elevated surface temperatures were consistently observed in satellite imagery throughout the first half of November, suggesting new lava at or near the surface. Seismic and infrasound sensors detected a signal associated with low-level emissions shortly after midnight on 12 November. Two small explosions were also detected by the sensors on 14 and 16 November. These events were less energetic than those seen previously, and no volcanic cloud was observed following either explosion. A number of small earthquakes were detected on 14 November. Satellite observations of the summit indicated that a dome remained in the crater, and that the explosions were sourced from a vent in the middle of the dome. The satellite data showed no significant changes for the second half of November; although the volcano was obscured by cloud cover much of the time.

The infrared MIROVA thermal data for 2017 provided evidence that generally coincided with the satellite thermal observations of persistent heat production from dome growth throughout the year (figure 24).

Figure (see Caption) Figure 24. Infrared MODIS satellite data plotted with the MIROVA system shows intermittent thermal pulses from Cleveland for the year ending on 18 January 2018. Many of the spikes in thermal energy correspond to periods of satellite and photographic observation of dome growth. Courtesy of MIROVA.

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.dggs.alaska.gov/); Anchorage Volcanic Ash Advisory Center (VAAC), Alaska Aviation Weather Unit, NWS NOAA US Dept of Commerce, 6930 Sand Lake Road, Anchorage, AK 99502-1845 USA (URL: http://vaac.arh.noaa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Dempo (Indonesia) — December 2017 Citation iconCite this Report

Dempo

Indonesia

4.016°S, 103.121°E; summit elev. 3142 m

All times are local (unless otherwise noted)


Phreatic explosion from the crater lake generates a dense ash plume in November 2017

Activity at Dempo on Sumatra in recent years has consisted of brief phreatic eruptions, most recently single-day events on 25 September 2006 (BGVN 34:03) and 1 January 2009 (BGVN 34:01). There were no additional reports from the Center of Volcanology and Geological Hazard Mitigation (CVGHM), also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), until a brief episode of unrest in late April 2015, Another typically short phreatic explosion took place on 9 November 2017.

Activity during 2015. On 29 April the Alert Level was raised to 2 (on a scale of 1-4) by PVMBG following observations of diffuse white-gray plumes on 27 April rising to 50 m above the crater. Seismicity had increased during April compared to the previous month (figure 5). A Detik news report on 30 April quoted the PVMBG Head of the Western Volcano Field of Observation and Investigation, Hendra Gunawan, as saying that there had been tremor recorded over the previous four days. No ashfall was reported by PVMBG, and a phreatic eruption was only mentioned in the 29 April notice as a potential danger.

Figure (see Caption) Figure 5. Seismicity recorded at Dempo from 1 January to 29 April 2015. The types of earthquakes reported are HBS (Hembusan, puff or emission events), Trm (tremor), VB (shallow volcanic type B), VA (volcanic type A), TL (local tectonic), and TJ (distant tectonic). Courtesy of PVMBG.

Observers reported that during 1 June-9 September 2015 no plumes were seen and seismicity was low. On 10 September PVMBG lowered the Alert Level to 1.

Activity during 2017. Staff at the PVMBG Dempo observation post reported that no plumes rose from the crater during January and February 2017, but some diffuse white plumes during 1 March-4 April rose no higher than 50 m. Seismicity increased significantly above background levels from 21 March to 4 April (figure 5). On 5 April PVMBG raised the Alert Level to 2 based on visual and seismic data, but did not report any phreatic eruptions.

Figure (see Caption) Figure 6. Seismicity recorded at Dempo from 31 December 2016 to 6 April 2017. The types of earthquakes reported are HBS (Hembusan, puff or emission events), TRE (tremor), VB (shallow volcanic type B), VA (volcanic type A), TL (local tectonic), and TJ (distant tectonic). Courtesy of PVMBG.

According to PVMBG a three-minute-long phreatic eruption began at 1651 on 9 November 2017 and generated a dense ash plume that rose to 4.2 km altitude, about 1 km above the crater rim, and drifted S. Ashfall and sulfur gases were reported in villages on the S flanks, but there was no damage to property or injuries. The Alert Level remained at 2, with a 3-km-diameter exclusion zone; the Aviation Color Code was at Yellow.

Geologic Background. Dempo is a prominent stratovolcano that rises above the Pasumah Plain of SE Sumatra. The andesitic volcanic complex has two main peaks, Gunung Dempo and Gunung Marapi, constructed near the SE rim of a 3 x 5 km caldera breached to the north. The Dempo peak is slightly lower, and lies at the SE end of the summit complex. The taller Marapi cone was constructed within a crater cutting the older Gunung Dempo edifice. Remnants of seven craters are found at or near the summit, with volcanism migrating WNW over time. The large, 800 x 1100 m wide historically active crater cuts the NW side of the Marapi cone and contains a 400-m-wide lake located at the far NW end of the crater complex. Historical eruptions have been restricted to small-to-moderate explosive activity that produced ashfall near the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Detiknews (URL: https://news.detik.com/).


Pacaya (Guatemala) — December 2017 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Pyroclastic cone in MacKenney crater grows above crater rim, January-September 2017

Activity since 1961 at Pacaya has been characterized by extensive lava flows, bomb-laden Strombolian explosions, and ash plumes emerging from MacKenney crater and several vent fissures, impacting communities in the vicinity; several million people live within 50 km. After a few months of quiet, intermittent ash plumes and incandescence in early June 2015 marked the beginning of the latest eruptive episode, which has been ongoing since that time. Observations of incandescence increased during the second half of 2015, and the presence of a new pyroclastic cone, about 15 m in diameter at the center of MacKenney crater, was confirmed in mid-December 2015.

Strombolian activity from the cone continued throughout 2016. It was most active during June and July, depositing new ejecta onto the flanks. Although it had quieted down by the end of the year, persistent degassing, steam plumes, and occasional incandescence were still observed from the new cone. It had filled much of the crater by December 2016. This report describes the continued growth of the pyroclastic cone during January-September 2017, as well as new lava flows that emerged during February and March. Information was provided primarily by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH) and satellite thermal data.

The pyroclastic cone inside MacKenney crater continued to grow sporadically during January-September 2017. Weak explosions in January produced ejecta 15 m above the top of the cone as steam and gas emissions rose about 400 m above the crater rim. By early February the top of the cone had risen to 10 m above the crater rim. Ejecta ranging in size from millimeters to 50 cm rose up to 25 m above the cone. Three small lava flows emerged from the crater in early February and flowed down the NW flank a few hundred meters before cooling. Growth of the cone continued more slowly during March-August, but incandescence was still observed, and weak explosions deposited tephra around the sides of the cone. Increased explosive activity during August reduced the height of the cone to slightly below the crater rim, but renewed explosions during September built it back up again to 10 m above the rim a few weeks later.

During January 2017, activity increased slightly compared with December 2016, and included degassing, tremors, incandescence, and weak explosions from MacKenney crater. Steam-and-gas plumes rose to around 400 m above the crater rim and generally drifted about 5 km before dissipating. Incandescence in the crater grew more visible towards the end of the month; ejecta from the pyroclastic cone within crater rose as much as 15 m above the crater rim. Seismic RSAM values also increased from a maximum of 2,500 to 3,500 units. The first MODVOLC thermal alert since 10 April 2016 appeared on 10 January 2017. Eight more alerts appeared during January, every few days for the rest of the month.

Degassing during February 2017 sent plumes slightly higher to 500 m above the crater . The top of the pyroclastic cone had risen to about 10 m above the crater rim by early February, as compared to about 10 m below the crater rim a year earlier in February 2016 (figure 78). Ejecta from the cone ranged in size from millimeters to 50 cm, and rose to heights of 10-25 m above the top of the cone with constant activity (figure 79).

Figure (see Caption) Figure 78. The pyroclastic cone inside MacKenney Crater at Pacaya grew substantially between February 2016 (upper photo) and 2 February 2017 (lower photo). View is to the NW with the 2010 fissure at the back, right side of the crater. Courtesy of INSIVUMEH (Reporte mensual, febrero 2017; Informe mensual de la actividad del Volcán Pacaya, junio 2017).
Figure (see Caption) Figure 79. Ejecta from the top of the pyroclastic cone inside MacKenney crater at Pacaya ranged in size from millimeters to approximately 50 cm, and was thrown tens of meters from the summit on 2 February 2017. Courtesy of INSIVUMEH (Reporte mensual, febrero 2017).

Three small lava flows were reported during February 2017, first emerging from the NW side of the crater from the fissure created during 2010 on 9 February 2017 and flowing NW towards Cerro Chino. Incandescent material was ejected 30-50 m above the crater rim and filled much of the crater. Lava travelled as far as 300 m down the NW flank. The dimensions of the flows were variable, but by the end of the month they were about 50 m long and 20 m wide. Ten MODVOLC thermal alerts were issued during February, indicating that activity was high inside and around the summit crater.

Steam plumes during March and April 2017 rose as high as 600 m above the crater rim. Lava flowed tens of meters outside the crater rim a few times at the end of March. The growth of the pyroclastic cone continued with Strombolian explosions of 10-25 m above the top of the cone during this time, and incandescence visible on clear nights. It was possible to see the new cone above the crater rim from the NW and W flanks (figure 80). Rumblings from the explosive activity were reported within 5 km of the cone. Although the three MODVOLC thermal alerts issued during the first week of March were the last through at least September 2017, weak explosions and nighttime incandescence continued during May as the pyroclastic cone continued to grow.

Figure (see Caption) Figure 80. The top of the new pyroclastic cone inside MacKenney crater at Pacaya was visible from the edge of nearby Cerro Chino crater, about 1 km NW, beginning in February 2017. Courtesy of INSIVUMEH (Reporte mensual, febrero 2017).

By June 2017, the steam plumes were rising about 800 m above the crater rim. The height of the pyroclastic cone remained at about 10 m above the crater rim, but continued to grow in volume and produce abundant steam and gas (figure 81). Similar emissions were reported during July, however, incandescence was only occasionally observed at night.

Figure (see Caption) Figure 81. Abundant steam and gas emerged from the upper part of the pyroclastic cone inside MacKenney crater at Pacaya on 17 June 2017. The dome rose height remained at about 10 m above the crater rim, shown in the lower left foreground. Courtesy of INSIVUMEH (Informe mensual de la actividad del Volcán Pacaya, junio 2017).

INSIVUMEH reported increased activity during August 2017 with the frequency of Strombolian explosions increasing to 5-7 per hour, and higher RSAM units recorded to 4,000; some material was ejected as high as 75 m above the crater rim, generating block avalanches as far as 100 m down the W flank. Explosions during 11 August reduced the height of the pyroclastic cone inside the crater such that it was no longer visible from the flank. Moderate to strong explosions were recorded a number of times during the month (figure 82).

Figure (see Caption) Figure 82. A thermal image of MacKenney crater at Pacaya on 18 August 2017 shows Strombolian activity at the summit. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Pacaya, Semana del 19-25 de Agosto de 2017).

Seismic and explosive activity remained high during September 2017. Two significant events were recorded. On 5 September RSAM values peaked at 5,000 units and remained elevated for about six hours before dropping back to average values around 2,000. This corresponded with a period of rebuilding of the pyroclastic cone within the crater. INSIVUMEH reported Strombolian explosions ejecting material as high as 100 m above the crater rim during 21-22 September. The second event lasted for about three days during 23 and 26 September when there was an increase in the rate of explosions, registering up to 40 per hour. After destruction of part of the cone during August, it was rebuilt to a level about 10 m above the crater rim again during this time.

Infrared thermal data generally agrees well with observations of increased activity and lava flows during January-March 2017 (figure 83). However, reports from INSIVUMEH indicate that explosive activity continued at the pyroclastic cone during April-September, although only the largest events during August and September created thermal signals that were captured in the MIROVA data.

Figure (see Caption) Figure 83. MIROVA graph of infrared MODIS data for the year ending on 15 October 2017 at Pacaya shows the thermal signature associated with lava flows and explosive activity during January through March 2017. Although increased explosive activity was reported in August and September, the thermal signal was much smaller. Courtesy of MIROVA.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Sabancaya (Peru) — December 2017 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Continuous pulses of ash emissions for ten months, February-November 2017

Activity that began in 1986 at Sabancaya was the first recorded in over 200 years. During the last period of substantial ash eruptions between 1990 and 1998 ashfall deposits up to 4 cm thick were reported 8 km E of the volcano. Intermittent seismic unrest and fumarolic emissions characterized activity from late 2012 through October 2016, with a few possible minor ash emissions unconfirmed during this period, and probable SO2 plumes.

Hybrid seismic events, related to the movement of magma, and SO2 emissions increased noticeably during September and October 2016. An explosive eruption period with numerous ash plumes began on 6 November 2016 and has continued throughout 2017. Continuous ash emissions with plume heights exceeding 10 km altitude were often recorded through February 2017. Thermal anomalies were first measured in satellite data in early November 2016, along with numerous significant SO2 plumes (BGVN 42:05). Details of the continuing eruptive activity at Sabancaya from February-November 2017 are discussed in this report with information from the two Peruvian observatories that monitor the volcano: Instituto Geofisico del Peru - Observatoria Vulcanologico del Sur (IGP-OVS), and Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico) (OVI-INGEMMET). Aviation reports and notices come from the Buenos Aires Volcanic Ash Advisory Center (VAAC), and satellite data is reported from several sources.

Images from December 2016. An expedition to Sabancaya during 9-18 December 2016 by photographer Martin Rietze recorded numerous ash emissions and the impacts of the ongoing eruption on the region (figures 31-36). Similar activity continued throughout 2017.

Figure (see Caption) Figure 31. Gas and a dense ash plume rose above Sabancaya during 12-15 December 2016 in this view taken 6.5 km NNE of the volcano. Photo copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 32. A column of ash drifted E from Sabancaya during 12-15 December 2016 while a cloud cap condensed on top of the plume. Image taken from 6.5 km NNE of the summit. Photo copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 33. An ash plume fanned out to the E from Sabancaya during 12-15 December 2016. Image taken from 15 km E. Photo copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 34. Sabancaya lies in the saddle between the older volcanic complexes of Ampato to the S (left) and Hualca Hualca to the N (right) in this view taken from 15 km E. It is the only one of the three to have erupted during the Holocene. An ash plume rose from Sabancaya during 12-15 December 2016, while ash from an earlier pulse is visible drifting S over Ampato. Photo copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 35. Trace amounts of ashfall from Sabancaya covered the region 10 km W of the volcano during 12-15 December 2016. Photo copyright by Martin Rietze, used with permission.
Figure (see Caption) Figure 36. An ash-and-steam plume rose vertically from Sabancaya during 12-15 December 2016 while a meteor streaked across the nighttime sky in this image taken 6.5 km NNE of the summit. Photo copyright by Martin Rietze, used with permission.

Summary of activity, February-November 2017. The persistent eruptive activity during February-November 2017 can be visualized by the continuous MIROVA plot of Log Radiative Power during this time (figure 37). The Buenos Aires VAAC issued 1,174 VAAC reports for Sabancaya during February-November 2017, with over 100 recorded each month (table 1). Tens of explosions were reported daily by OVI-INGEMMET and IGP-OVS throughout the period. Ash plumes usually rose to the 9-11 km altitude range (3,000-5,000 m above the summit), and drifted 30-50 km in many directions before dissipating. MODVOLC thermal alerts were reported between 2 and 16 times every month, and satellite data registered SO2 plumes with values greater than two Dobson Units multiple days each month (figure 38).

Figure (see Caption) Figure 37. MODIS infrared satellite data plotted by MIROVA for the 12 months ending 19 January 2018 show the continuous signature of thermal activity from Sabancaya during that time. Courtesy of MIROVA.

Table 1. Eruptive activity at Sabancaya, February-November 2017. Compiled using data from IGP-OVS/OVI-INGEMMET reports, the Buenos Aires VAAC, HIGP, and NASA GSFC.

Month VAAC Reports Avg Daily Explosions by week Max Plume Heights (m above crater) Plume Drift MODVOLC Alerts Days with SO2 over 2 DU
Feb 2017 108 58, 23, 19, 42 3,000-4,300 40 km, NW, N, S, SE, SW 6 12
Mar 2017 122 44, 36, 36, 37, 41 2,500-4,800 30-40 km, S, NW, SW, N 4 8
Apr 2017 113 27, 37, 36, 33 3,000-3,200 40 km NW, NE, SE, W, N 16 11
May 2017 117 41, 38, 39, 41 2,800-4,200 30-40 km NE, E, SE 4 3
Jun 2017 104 47, 31, 26, 15, 5 1,500-3,700 30-40 km E, SE, SW, S 4 5
Jul 2017 127 10, 19, 24, 40 3,500-5,500 40-50 km NW, S, E, N, SE 2 13
Aug 2017 124 65, 41, 46, 44 3,200-4,200 30-50 km N, SE, NW, S 12 10
Sep 2017 118 38, 29, 45, 45 2,500-3,500 30-40 km SE, E, NE 6 5
Oct 2017 120 42, 41, 47, 43 3,100-3,900 35-60 N, NW, W, S, SE, NE, E 9 8
Nov 2017 121 57, 66, 82, 78, 69 3,300-4,200 40-50 km N, NE, E, SE, NW, SW 11 10
Figure (see Caption) Figure 38. Numerous significant SO2 plumes were captured by the OMI instrument on the Aura satellite for Sabancaya during February-November 2017. Plumes drifted SSE on 4 March, 22 March, 30 July, and 6 August 2017 (top four images), and SW and W on 9 October and 10 November 2017 (bottom two images). The red pixels indicate values of Dobson Units (DU) greater than 2. Courtesy of NASA Goddard Space Flight Center.

Activity during February-November 2017. IGP-OVS and OVI-INGEMMET monitor seismicity, inflation and deflation, SO2 emissions, and visual activity with webcams from several locations around Sabancaya (figure 39). Ash plumes during February 2017 rose to heights of 3,000-4,300 m above the summit (figure 40). The average number of daily explosions decreased from 53 the first week to 19 the third week, and then increased to 42 during the last week. Ash plumes drifted up to 40 km in numerous directions.

Figure (see Caption) Figure 39. Stations where IGP-OVS and OVI-INGEMMET monitor seismicity (red), inflation and deflation (green), SO2 emissions (orange), and their webcam locations (yellow) for Sabancaya. Courtesy of IGP-OVS and OVI-INGEMMET weekly reports.
Figure (see Caption) Figure 40. Ash emission from Sabancaya, 12 February 2017. View from the OVI-INGEMMET webcam located near Coporaque, about 30 km NE. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitoreo de la Actividad del Volcan Sabancaya, Semana del 06 al 12 de febrero de 2017).

During March 2017 the number of daily explosions was very consistent averaging each week between 36 and 44 events. Maximum ash plume heights ranged from 2,500 to 4,800 m and drifted 30-40 km to either the NW or SW (figure 41). Ash fell in Pinchollo (20 km N) and Cabanaconde (22 km NW) during the last few days of the month.

Figure (see Caption) Figure 41. Ash emission from Sabancaya, 12 March 2017. Taken from OVI-INGEMMET webcam located about 4 km NE. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitoreo de la Actividad del Volcan Sabancaya, Semana del 06 al 12 de marzo de 2017).

Ash fell during the first week of April in Pinchollo, Maca (20 km NE) and Chivay (32 km NE). Plume heights during the month were slightly lower, ranging from 3,000-3,200 m and drifted 40 km in several directions. The frequency of daily explosions decreased slightly from March to an average each week ranging from 27 to37. The Buenos Aires VAAC reported that diffuse ash plumes drifted 100 km E on 9 April.

The frequency of daily explosions increased slightly during May; weekly averages ranged from 38 to 41. Plume heights were somewhat higher, at 2,800-4,200 m, and drifted 30-40 km in many directions (figure 42). There was a notable decrease during June 2017 in the number of daily explosions from an average during the first week of 47 to an average of only five at the end of the month. Deflation was observed in the GPS data after 21 June. Plume heights ranged from 1,500 to 3,700 m.

Figure (see Caption) Figure 42. On 20 May 2017 the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image of repeated puffs of ash rising from Sabancaya and drifting E. Courtesy of NASA Earth Observatory.

Activity increased steadily during July 2017. Daily explosions rose from an average of 10 during the first week to 40 the last week; ash plume heights were up to 5,000 m during those weeks (figures 43, 44) and drifted 50 km or more generally NW and SE. Ash plumes during the third week affected communities N of the volcano, including the villages of Cabanaconde, Pinchollo, Lari (20 km NE), Madrigal (20 km NE), Ichupampa (23 km NE), Maca and Achoma (21 km NE). Winds changed to the S on 22 July, so ashfall then affected Lluta (30 km SW), Huanca (75 km SSE), and some parts of Arequipa (80 km SSE).

Figure (see Caption) Figure 43. Ash and gas emission from Sabancaya rose several kilometers above the summit on 9 July 2017 in this OVI-INGEMMET image from their webcam located near Coporaque, about 30 km NE. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitoreo de la Actividad del Volcan Sabancaya, Semana del 03 al 09 de julio de 2017).
Figure (see Caption) Figure 44. On 26 July 2017, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this natural-color image of an ash plume drifting E from Sabancaya. The rising ash cast a shadow on the ground below. Courtesy of NASA Earth Observatory.

After averaging 65 explosions per day during the first week of August 2017, activity declined slightly to weekly averages of 41-46 explosions per day for the rest of the month. Plume heights ranged from 3,200 to 4,200 m and drifted generally 30-50 km NW or SE. During September 2017 activity was much the same. Plume heights ranged from 2,500-3,500 m, and drifted 30-40 km SE or NE. The weekly averages of daily explosion frequency varied between 29 and 45 events.

A noteworthy difference in activity occurred during October 2017, when there were tremors with ash emissions lasting for more than three hours per day during the last two weeks of the month. Daily explosion frequency averaged from 41 to 47 each week, and plume heights ranged from 3,100 to 3,900 m (figure 45). A few plumes drifted as far as 60 km during the third week of the month.

Figure (see Caption) Figure 45. A large ash and gas plume rose from Sabancaya on 21 October 2017 in this view from the OVI-INGEMMET webcam located near Coporaque, about 30 km NE. Courtesy of OVI-INGEMMET (Reporte Semanal de Monitoreo de la Actividad del Volcan Sabancaya, Semana del 16 al 22 de octubre de 2017).

During November 2017 the number of daily explosions increased from an average of 57 the first week to 82 by the third week, decreasing to 69 at the end of the month. Plume heights remained at 3,300-4,200 m, drifting 40-50 km in several directions. Tremors with ash emissions lasted 1-2 hours most days.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET, (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa (URL: http://ovi.ingemmet.gob.pe); Instituto Geofisico del Peru, Observatoria Vulcanologico del Sur (IGP-OVS), Arequipa Regional Office, Urb La Marina B-19, Cayma, Arequipa, Peru (URL: http://ovs.igp.gob.pe/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Martin Rietze (URL: http://www.mrietze.com/).


Santa Maria (Guatemala) — December 2017 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Slow growth of new lava dome, persistent ash plumes, and nearby ashfall, January-October 2017

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing since 1922. The youngest of the four vents in the complex, Caliente, has been actively erupting with ash explosions, pyroclastic, and lava flows for more than 40 years. During July-September 2016, daily weak ash emissions were punctuated weekly by stronger emissions that sent ash plumes to altitudes of 3.3-6 km, and numerous pyroclastic flows were reported (BGVN 42:07). A new lava dome appeared in October and had filled half of the crater by years end; the frequency of explosions increased to 25-35 per day by December 2016. Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center) provided regular updates on the continuing activity during the time period of this report from January-October 2017.

Activity at the Caliente dome was very consistent from January through October 2017. A lava dome that began growing during October 2016 continued to slowly increase in size. Its growth generated constant steam and gas emissions that rose 100-500 m above the dome, and daily explosions with ash that generally rose to 2.8-3.3 km altitude (200-800 m above the dome). Ashfall was reported almost daily in villages and farms within 5-12 km S and SW, including San Marcos Palajunoj, Loma Linda, Monte Bello, El Patrocinio, La Florida, El Faro, Patzulin, and others. There were 15-35 explosions per day throughout this time. As the lava dome within the Caliente summit crater increased in size, more block avalanches were observed traveling tens of meters down the flanks of Caliente, outside the crater rim. Several lahars affected the major drainages during May-October.

Fifteen to twenty small to moderate daily explosions with ash emissions were typical for the Caliente dome complex during most of January 2017, in addition to constant blue and white gas emissions from the top of the lava dome. This same pattern continued throughout February, when the new dome inside the summit crater continued to grow (figure 63). By March, the dome was large enough that occasional block avalanches of fresh lava reached outside the summit crater, and descended a few tens of meters onto the flanks; the lava dome, growing since October 2016, had not quite filled the crater (figure 64).

Figure (see Caption) Figure 63. The lava dome inside the summit crater of Caliente grew noticeably between 17 January and 28 February 2017 at Santa María in this view to the S. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA FEBRERO 2017).
Figure (see Caption) Figure 64. Ash and steam rises during an explosion from the new lava dome inside the summit crater of the Caliente dome of Santa María. Recently ejected blocks are steaming on the flanks close to the webcam on 19 March 2017. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA MARZO 2017).

By April 2017 the number of daily explosions had increased to 25-30, with similar energy levels and ash plume heights as earlier in the year. The Cabello de Ángel River continued downcutting through the 2014-2015 lava flows (figure 42, BGVN 41:09) creating a new channel that was 15-50 m deep (figure 65). During May, the number of daily explosions ranged from 9 to 26 (figure 66), and block avalanches from the new lava dome traveled short distances down the flanks. Two lahars were reported in May; on 6 May a lahar 30 m wide and 2.5 m deep descended the Cabello de Ángel drainage (a tributary of the Nimá I river on the S flank) carrying branches, tree trunks, and blocks up to 2 m in diameter. A smaller lahar on 31 May traveled down the Nimá I drainage and dragged smaller blocks and tree trunks down the channel.

Figure (see Caption) Figure 65. The Cabello de Ángel river cuts new channels through the 2014-2015 lava flows on the SE flank of Caliente dome at Santa María during April 2017. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA ABRIL 2017).
Figure (see Caption) Figure 66. A moderate explosion on 30 May 2017 from Santiaguito at Santa María sends an ash plume to 2.6 km altitude that then drifted SW. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA Mayo 2017).

Explosions during June 2017 continued at the rate of 14-36 per day, with ash plumes rising to 2.7-3.3 km altitude (figure 67). Juvenile material continued to fill and overtop the crater rim, creating weak block avalanches down the flanks. Increased precipitation during June resulted in five lahars descending the Cabello de Ángel, Nimá I, and San Isidro drainages on 1, 5, 7, 9, and 16 June. They ranged in size from 15 to 25 m wide and 1 to 1.5 m high, and transported blocks 1-2 m in diameter. A larger lahar on 1 June that traveled down the Cabello de Ángel drainage was 30 m wide and 2 m high.

Figure (see Caption) Figure 67. An ash plume at Santa María's Santiaguito complex on 21 June 2017 rises to 2.9 km. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA Junio 2017).

Similar explosive activity continued during July. On 5 July, a moderately-sized lahar descended the Cabello de Ángel drainage, a tributary of the Nimá I river. Near the El Faro estate, the lahar was 30 m wide and 1 m deep, and carried blocks 50 cm in diameter. On 14 July, another lahar traveled down the Nimá I drainage, which is a tributary of the Samalá. By August the summit crater of Caliente was nearly filled with the new lava dome, and overflows of block avalanches were more frequent, mostly traveling down the E flank (figure 68). A moderately-sized lahar descended the Nimá I drainage on 9 August.

Figure (see Caption) Figure 68. Fresh block avalanches were visible covering an area about 126 m wide and 246 m long near the summit of Caliente at Santa María when images from 31 July (left) and 2 August 2017 (right) were compared. Most of the block avalanches traveled down the east flank (A), but smaller avalanches traveled shorter distances down the NE flank (B). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito (1402-03), Semana del 29 de julio al 04 de agosto de 2017).

Explosions with ash plumes rising hundreds of meters above the crater rim continued daily during September and October, and sent block avalanches down the NE and SE flanks of the dome. INSIVUMEH reported that on 11 October 2017 a 12-m-wide and 1.5-m-high lahar descended the Cabello de Ángel and the Nimá I drainages, carrying blocks up to 1 m in diameter. On 13 October, the seismic network detected moderate-to-strong lahars in the Cabello de Ángel and the Nimá I drainages triggered by heavy rain.

Relatively few VAAC reports were issued for Santa María during 2017 compared with the previous two years. The Washington VAAC observed an ash plume in satellite imagery drifting 15 km W at 4.6 km altitude on 14 January. Morning visible imagery on 1 February showed an ash plume 25 km SW at 3.8 km altitude. An ash emission was observed on 27 February a few kilometers WSW at or slightly above the summit. Multiple small puffs of ash extended 55 km WSW of the summit on 9 March, at 4.6 km altitude. An ash plume was centered 15 km NW of the summit at 3.8 km altitude and rapidly dissipating on 4 April. The next VAAC observation, on 2 June, was a small puff of ash located 30 km S of the summit. On 6 September, possible volcanic ash was drifting SW of the summit at 4.3 km altitude.

Infrared MODIS satellite data suggest low-level, persistent activity at Santa María throughout January-October 2017 (figure 69). This is consistent with photographs of a slowly growing lava dome at the summit, and persistent low-energy explosions with ash emissions and block avalanches during the year. There were no MODVOLC thermal anomalies during this time.

Figure (see Caption) Figure 69. Infrared MODIS thermal data graphed through the MIROVA system indicates a low but persistent level of thermal activity at Santa María for the year ending on 8 June 2017. This is consistent with the observations of a slowly growing lava dome inside the summit crater. Courtesy of MIROVA.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Sinabung (Indonesia) — December 2017 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


Constant activity through September 2017, with ash plumes, block avalanches, and pyroclastic flows

Indonesia's Sinabung volcano, located on North Sumatra, had its first confirmed Holocene eruption between 27 August and 18 September 2010; ash plumes rose up to 2 km above the summit, and falling ash and tephra caused fatalities and thousands of evacuations (BGVN 35:07). It remained quiet after the initial eruption until 15 September 2013, when a new eruption began that has continued for over three years. Details of events during October 2016-September 2017 are covered in this report. Information is provided by, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM, the Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and the Badan Nacional Penanggulangan Bencana (National Disaster Management Authority, BNPB).

Summary of activity during November 2013-September 2016. Thousands of evacuations took place during November and December 2013 when ash plumes reached heights between 6 and 11 km altitude multiple times. Ashfall from hundreds of pyroclastic flows in January 2014 covered communities in the region. Lava flows emerged from the summit in mid-January 2014 and traveled down the S flank. Pyroclastic flows on 1 February 2014 killed 17 people in the village of Sukameriah, located 3 km S of the summit (BGVN 39:01). The lava flow had advanced 2.5 km from the summit by 6 April 2014. Lava flows, ash plumes, and pyroclastic flows persisted throughout 2014 and 2015. Ash plumes generally rose up to about 5 km altitude, and pyroclastic flows traveled up to 4.5 km from the summit throughout this period (BGVN 39:10). Repeated lava dome growth and destruction was also reported by PVMBG during this time (BGVN 40:10).

Increases in lava dome volume and instability during June 2015 again led to evacuations of thousands living within 7 km of the volcano. Ash deposits were common in the communities up to 10-15 km away. Similar activity continued into 2016, with tens of pyroclastic flows affecting nearby communities during many months. In April 2016, over 9,000 people remained in evacuation centers. Ash plumes were reported 3-8 times each month by the Darwin VAAC between April and October 2016, with plume altitudes ranging generally from 3-5.5 km. Several fatalities were reported during May 2016 (BGVN 42:02). A lahar passed through Kutambaru village, 20 km NW of Sinabung, on 9 May and killed one and injured four people. A pyroclastic flow on 21 May 2016 killed 7 people in the village of Gamber, 4 km SE from the summit. Ashfall was reported during July 2016 more than 50 km NE, and incandescent lava was visible up to a kilometer from the summit. Continuous pyroclastic flows were reported on 25 August 2016, with an ash plume observed at 6.1 km altitude the following day.

Summary of activity during October 2016-September 2017. Ash plumes, block avalanches, and pyroclastic flows were all nearly constant at Sinabung throughout this period (table 7). The number of explosions recorded every month ranged from 37 (March 2017) to 105 (June 2017). The number of Volcanic Observatory Notices to Airmen (VONAs) each month ranged from 34 (September 2017) to 93 (June 2017). The Darwin VAAC reported ash plumes on 17 or more days every month of 2017 through September. Thermal anomaly signals also persisted throughout, likely caused primarily by dome growth and incandescent block avalanches.

Table 7. Ash plumes and explosions reported for Sinabung, October 2016-September 2017. Data from Darwin VAAC and PVMBG reports.

Month Days with Ash Plume Reports Ash Plume Altitudes (km) Ash Plume Drift Explosions reported (PVMBG) Number of VONA's issued (MAGMA) Comments
Oct 2016 5, 12, 26, 28-29, 31 3.4-4.6 km SE, E, SSE, NE -- -- --
Nov 2016 1, 2, 6, 11, 13, 14, 20, 29, 30 3.4-5.8 km E, W, E, NE, SE -- -- Multiple brief explosions; pyroclastic flows observed 1, 2 Nov
Dec 2016 15, 17, 19-21, 26, 27, 29-31 3.0-6.1 km SSE, E, S, SE, NW, S, SW -- -- Hotspot visible in satellite images on 30 Dec
Jan 2017 1, 8-15, 17-20, 22, 24, 26-31 3.4-5.5 km WSW, W, E, ESE, SW 101 58 Ash 50 km E and 75 km NE on 8 Jan; hot spot in satellite imagery 10 Jan
Feb 2017 1-14, 16-22, 24-26, 28 3.0-5.5, 6.7, 7.4 km SSE, S, NE, E, SE, SW, WSW, W 88 70 4 Feb explosion caused ash plume to 7.4 km altitude
Mar 2017 1, 2, 5, 7-18, 21, 22, 24, 25, 27, 29 3.0-5.5 km WNW, NW, SSE, NNW, W, S, SW, NE, N, E, ESE 37 34 Highest plumes, on 17 and 18 March, rose to 5.5 km altitude and drifted W and WSW
Apr 2017 5, 7, 9-20, 22, 24-30 3.0-5.5, 8.4 km ESE, E, SE, WNW, SSE, SSW, W, SW, WSW, NNE, S 104 58 Large explosion on 9 April, ash plume reported by a ground observer to 8.4 km altitude, drifting SE
May 2017 2-12, 14-17, 19-20, 23-31 3.4-8.8 km WSW, WNW, NW, SW, S, E, SE, NE, ESE, W, ENE 87 58 Series of large explosions during 17-20 May, several plumes rose to altitudes between 6.1 and 8.8 km
Jun 2017 1-27, 29, 30 2.7-5.5, 6.4 km NE, N, WNW, ENE, ESE, SE, SW, W, S, E, NW, NE, SSW, SSE 105 93 --
Jul 2017 2-3, 6, 8-11, 14, 15, 17-31 2.7-6.1 km ESE, NW, ENE, E, SE, W, WSW, SSW, ENE, NE 91 64 --
Aug 2017 1, 2, 6-10, 12, 16, 23-29, 31 2.7-5.5, 6.4 km ENE, SE, E, S, W, ESE, WNW, NNW, WSW 61 76 Large explosion on 2 Aug with ashfall in many places; Hotspots reported 6, 7 Aug
Sep 2017 1, 3, 7, 8, 12-16, 18, 22, 23, 25-29 3.0-5.5, 6.1-6.4 km ENE, WSW, E, W, NW, SE, ESE, SW 55 34 --

Activity during October 2016-September 2017. The visiting head of PVMGB observed an ash plume from an explosion on 28 September 2016. Ash emissions continued at Sinabung, with multiple aviation advisories issued by the Darwin VAAC through the end of 2016. Explosions generated ash plumes that rose to altitudes of 3.0-6.1 km, and drifted in multiple directions during the last quarter of 2016 (table 7). Pyroclastic flows were observed several times during November (figure 28), and a hotspot was visible in satellite imagery on 30 December.

Figure (see Caption) Figure 28. A large pyroclastic flow descended the E flank of Sinabung on 29 November 2016 in this view taken a few kilometers SE of the volcano. . Courtesy of Sadrah Peranginangin.

Activity during January 2017 was dominated by incandescent block avalanches (figure 29). PVMBG reported 101 ash-bearing explosions with plumes rising up to 1 km above the summit, and pyroclastic flows that traveled up to 3 km ESE and 500 m S. A You Tube video captured a pyroclastic flow and ash plume on 17 January 2017. Ash plumes were reported by the Darwin VAAC on 21 days during the month with plume heights ranging from 3.4-5.5 km altitude.

Figure (see Caption) Figure 29. Block avalanches descended the E flank of Sinabung many times during January 2017, including at 0134 local time on 17 January, as seen looking to the WSW. Courtesy of Endro Lewa.

Near-daily ash plumes from 88 explosive events during February 2017 rose to heights of 500-5,000 m above the summit (3.0-7.5 km altitude), and pyroclastic flows traveled 3.5 km E and 1 km S. The Darwin VAAC reported ash emissions on all but three days of the month. A large explosion on 4 February sent an ash plume to 7.4 km altitude that then drifted SE (figure 30), and on 9 February a large ash plume drifted WSW at 6.7 km altitude.

Figure (see Caption) Figure 30. Photo of an ash plume at Sinabung on 4 February 2017 that rose more than 5 km above the summit and slowly drifted SE. Photo taken from Kabanjahe, about 13 km SE. Courtesy of Sadrah Peranginangin.

Block avalanches continued to travel 500-2,000 m down the ESE flank during March 2017. Ash plume heights ranged from 500 to 3,000 m above the summit (3.0-5.5 km altitude) during the 37 explosion events reported by PVMBG (figure 31). Pyroclastic flows traveled 2.5 km down the S flank. The highest plumes of the month were recorded on 17 and 18 March; they rose to 5.5 km altitude and drifted W and WSW. The Darwin VAAC reported ash plumes during 21 days of the month.

Figure (see Caption) Figure 31. Photo of an ash plume at Sinabung on 29 March 2017 at 1548 local time, in this view looking W. Courtesy of Igan S. Sutawijaya.

During April 2017, block avalanches were observed traveling between 800 and 3,500 m down the SSE flank (figure 32), and 104 explosions were recorded by PVMBG. Ash plumes from these explosions rose to heights of 800 to 3,500 m above the summit. Pyroclastic flows descended 2.8 km down the S flank. A large explosion on 9 April reported in a VONA by a ground observer sent an ash plume to 8.4 km altitude, drifting SE. Pyroclastic flows were also observed on the SE flank. The Darwin VAAC reported ash plumes on 22 days of the month.

Figure (see Caption) Figure 32. Pyroclastic flows descended the S flank (left) and block avalanches descended the E flank of Sinabung near midnight on 4 April 2017, while a small explosion took place at the summit. Image taken from a small village a few kilometers from the base of the SE flank. Courtesy of Sadrah Peranginangin.

Ash plumes rose between 500 and 6,000 m above the summit during May 2017. Eighty-seven explosive events were recorded (figure 33), and block avalanches were observed traveling 500-1,500 m down the S and SE flanks. The Darwin VAAC reported ash plumes on 26 days during the month. A series of large explosions during 17-20 May resulted in several plumes that rose to altitudes between 6.1 and 8.8 km, in addition to numerous others at lower altitudes between 3.7 and 5.8 km. As of late May, over 9,000 people were still displaced from the volcano, living in either shelters or evacuation camps, according to BNPB.

Figure (see Caption) Figure 33. Strombolian activity at the summit of Sinabung on 1 May 2017. Courtesy of Sadrah Peranginangin.

Incandescent block avalanches and pyroclastic flows were persistent during June 2017. They moved down the SE and S flanks up to 2,500 m. PVMBG reported 105 explosive events with plume heights ranging from 500-4,000 m above the summit (figure 34). The largest explosions of the month, on 17 June, generated ash plumes that rose to 6.4 km altitude and drifted 15 km SW. The Darwin VAAC reported ash emissions every day except for 28 June.

Figure (see Caption) Figure 34. Ash plume rose from Sinabung on 26 June 2017. The view is from a small village about 7 kilometers ENE of the summit. Courtesy of Endro Lewa.

PVMBG reported 91 explosive events during July 2017 that produced ash plumes that rose 500-3,500 m above the summit. They also noted four pyroclastic flows that traveled 1-3 km down the S and SE flanks. Block avalanches continued on the S and E flanks, traveling as far as 3 km. The Darwin VAAC issued reports on 24 days during July. The largest explosions occurred on 20 and 23 July when ash plumes rose to 5.8 and 6.1 km altitude and drifted WSW, ENE, and SE (figure 35).

Figure (see Caption) Figure 35. A large ash plume from Sinabung rose more than 5 km above the summit on 20 July 2017. The view is from a small village about 7 kilometers ENE of the summit. Courtesy of Endro Lewa.

Although fewer explosive events (61) were reported during August, block avalanches continued to travel 500-2,300 m down the SE flank. Ash plumes rose 500-2,000 m above the summit; 22 pyroclastic flows traveled up to 4.5 km down the SE flank. The Darwin VAAC issued reports of ash emissions on 17 days of the month.

A large explosion on 2 August sent ash emissions to 5.5-6.4 km altitude (figure 36). The S-drifting plume brought ashfall to the communities of the Ndokum Siroga District (SE), Simpang (7 km SE), Gajah (8 kmE), Kabanjahe (13 km SE), and Naman Teran (5 km NE) (figures 37 and 38). PVMBG reported that the explosions of 2 August destroyed the lava dome at the summit, which had grown since April 2017 to about 2.3 million m3 in size before the explosion (figure 39). The volume of the lava dome was an estimated 23,700 m3 on 6 August, after the explosions.

Figure (see Caption) Figure 36. Photo showing the large eruption from Sinabung on 2 August 2017, with a dark ash plume and pyroclastic flows. Image taken 5 kilometers E of the summit, looking W. Courtesy of Endro Lewa.
Figure (see Caption) Figure 37. Many communities were affected by ashfall and pyroclastic flows from the large explosion at Sinabung on 2 August 2017. This village is located near the base of the E flank. Courtesy of Endro Lewa.
Figure (see Caption) Figure 38. A village on the SE flank of Sinabung, was covered with ash on 3 August 2017 after a large eruption the previous day that sent a column of ash to 4.2 km altitude and a pyroclastic flow down the adjacent slope, destroying vegetation in its path. Courtesy of Xinhuanet (Xinhua/YT Haryono).
Figure (see Caption) Figure 39. The dome at Sinabung on 3 August 2017 one day after its destruction in a large explosion. The volume according to PVMBG was 2.3 million cubic meters in early July and measured only 23,700 cubic meters after the explosion. Courtesy of Endro Lewa.

The explosions also produced pyroclastic flows that traveled SE and E 2.5-4.5 km and reached the Laborus river, increasing the size of a natural dam on the river that had been evolving from previous deposits. Ashfall was also reported to the E and NE at Berastagi (12 km E). Hot spots were recorded in satellite imagery on 6 and 7 August. Additional ash plumes to similar altitudes (5.5-6.4 km) were reported several other times during August (figure 40 and 41).

Figure (see Caption) Figure 40. An explosion at Sinabung on 8 August 2017. The ash plume rises 2,000 m and a pyroclastic flow descends the E flank in this view from a small village about 7 km ENE of the summit. Courtesy of Endro Lewa.
Figure (see Caption) Figure 41. Ash and steam plumes and block avalanches at Sinabung on 25 August 2017 in this view from a small village about 7 km ENE of the summit. Courtesy of Endro Lewa.

The impact of numerous pyroclastic flows on the SE and E flanks during 2016-2017 caused a natural dam to form on the Laborus River near Desa Sukanalu and Kutanonggal Village (figure 42). The estimate of the area covered by water behind the dam was over 100,000 m2 prior to the early August explosions, about one-tenth the size of Lake Laukawar, located further upstream.

Figure (see Caption) Figure 42. A natural dam on the Laborus River (right, 'Bendungan Laborus') was created by numerous pyroclastic flows; the lake area was 123,000 square meters prior to the 2-3 August explosions. Courtesy of PVMBG (Kegiatan Gunungapi Sinabung Pasca Letusan 2-3 Agustus 2017, 22 August 2017).

Activity diminished only slightly during September 2017. PVMGB reported 55 explosive events with ash plumes that rose 500-4,000 m above the summit (figure 43). Block avalanches fell 500-1,500 m down the SE flank, and five pyroclastic flows were observed in the same area which traveled 1.5 – 2.0 km. Reports of ash emissions were issued by the Washington VAAC on 17 days of the month. The highest ash plume during the month rose to 6.4 km altitude on 25 September.

Figure (see Caption) Figure 43. A lava dome and ash plume at the summit of Sinabung on 17 September 2017. Courtesy of Sadrah Peranginangin.

Thermal anomalies. Thermal anomalies persisted throughout October 2016-September 2017. MODVOLC thermal alerts were reported 1-10 times every month except for June 2017. The MIROVA system recorded persistent low to moderate radiative power (figure 44) consistent with the dome growth, explosions, and block avalanches reported by PVMBG.

Figure (see Caption) Figure 44. Thermal anomaly data shown on a MIROVA graph of log Radiative Power at Sinabung for the year ending 18 December 2017. Persistent intermittent pulses of thermal energy are consistent with dome growth and block avalanches reported by PVMBG. Courtesy of MIROVA.

References: Associated Press, 2017, Raw: Indonesia's Sinabung Volcano Spews Hot Ash (URL: https://www.youtube.com/watch?v=R3KhjpHVeaw), posted to YouTube 17 January 2017.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URLs: http://www.vsi.esdm.go.id/, https://magma.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral, (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Xinhua News (URL: http://news.xinhuanet.com/english/2017-08/03/c_136497362.htm); Igan S. Sutawijaya (URL: https://www.facebook.com/igansutawijaya/); Endro Lewa (URL: https://www.instagram.com/endro_lewa/); Sadrah Peranginangin (URL: https://www.facebook.com/sadrah.peranginangin).


Tungurahua (Ecuador) — December 2017 Citation iconCite this Report

Tungurahua

Ecuador

1.467°S, 78.442°W; summit elev. 5023 m

All times are local (unless otherwise noted)


Nearly constant ash emissions and frequent lahars during July-December 2015

Eight distinct episodes of activity occurred at Ecuador's Tungurahua from November 2011 through December 2014 that included 10-km-high ash plumes, Strombolian activity, pyroclastic flows, lahars and a lava flow (BGVN 42:05). Another distinct eruptive episode, during April and May 2015, consisted primarily of persistent ash emissions (BGVN 42:08). Abundant rainfall during the first half of 2015 led to numerous lahars, some of which disrupted travel on local roads. Continuing activity from July through December 2015 is described below based on information provided by the Observatorio del Volcán Tungurahua (OVT) of the Instituto Geofísico (IG-EPN) of Ecuador, and aviation alerts from the Washington Volcanic Ash Advisory Center (VAAC).

After the last ash emissions reported in mid-May 2015, only minor emissions of steam with no ash rising to 500 m above the crater were reported during June. However, activity increased again during July, when ashfall was reported nearly every day at the lookout stations around Tungurahua, and several larger explosions produced ash plumes that rose as high as 7.5 km altitude, about 2.5 km above the summit. Frequent rains during July resulted in lahars in six different drainages. Multiple explosions during August caused ash plumes and ashfall in communities within 20 km several times every week with the highest plume rising to 8.5 km altitude. A similar pattern continued during September 2015, with longer periods of seismic tremor, persistent ash emissions, and Strombolian activity that sent block avalanches down the flanks. The number and intensity of explosions increased in October; multiple explosions every week resulted in ashfall in communities within 25 km, mostly to the NW, and low-energy Strombolian activity persisted throughout the month. The strongest explosions of the period began with a series of seismic tremors on 10 November that persisted for nine days; daily ash plumes rose to between 7 and 8 km altitude, with the highest plume reported rising to at least 9.1 km altitude. Several millimeters of ashfall were reported in the nearby communities and at lookout stations, and the ash plume was recognized in satellite data more than 250 km from the summit before dissipating. Activity tapered off by the end of November, and only weak steam emissions were reported during December 2015.

Activity during July-September 2015. Persistent steam plumes in July rose up to 500 m above the summit crater and drifted generally W, often carrying small quantities of ash. Several lookout stations in communities located within 20 km NW and SW reported ashfall almost every day, including Choglontús (13 km WSW), Bilbao, and El Manzano (8 km SW). Other stations that reported ashfall during the month included Palitahua, Mocha, Chacauco, and Pillate. IG-EPN reported explosions with larger ash plumes on 3, 12, and 14 July that rose as high as 7.5 km (figure 86). Increased seismicity on 21 and 22 July was associated with emissions that caused ashfall in most of the reporting locations.

Figure (see Caption) Figure 86. An ash plume rises 1 km above the summit crater at Tungurahua on 3 July 2015. Courtesy of OVT, IG-EPN, photo by P. Espin (Informe No. 802, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 30 de junio al 07 de julio de 2015).

The Washington VAAC reported the ash plume on 3 July extending 25 km WSW from the summit at 5.2 km altitude (200 m above the crater); they also detected a faint hotspot in satellite imagery. They reported an ash plume extending 35 km WSW late in the day at 6.4 km on 14 July visible in satellite imagery (figure 87). An ash plume reported by the Washington VAAC on 31 July was moving SW at 6.7 km altitude.

Figure (see Caption) Figure 87. One of several explosions on 14 July 2015 at Tungurahua created an ash plume that rose at least 2 km above the summit and drifted W. Courtesy of OVT, IG-EPN, photo by F. Vasconez (Informe No. 803, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 07 de julio al 14 de julio de 2015).

Lahars were reported during 5-7, 18-19, 22-23, and 29-30 July in the Chontapamba, Rea, Achupashal, Juive, Pondoa and Puela river drainages. Heavy rain on 18 and 19 July generated mudflows in the Juive, Pondoa and La Pampa ravines. Blocks 40 cm in diameter were reported in the Puela River on 22 July, and blocks 1 meter in diameter were reported in the Chontapamba river on 29 July.

There were fewer events with ash emissions during August compared to July. A lahar sent 40-cm-diameter blocks down the Mapayacu ravine on 14 August. Two explosions on 15-16 August caused ashfall in Choglontus, Manzano, and Chontapamba. Small lahars from the Rea and Romero drainages blocked the Baños-Penipe road on 16 August. An explosion on 18 August sent an ash plume WSW and caused ashfall in Choglontus; the next day reddish ash and steam emissions around 1000 local time caused ashfall again in Choglontus. Black ashfall was reported there on 22 August. Increased seismic activity with several explosions on 25 August was accompanied by ash plumes that caused ashfall in Chontapamba, Pillate, Bilbao, and Juive Grande. Gray ash was reported in Chinchicoto and Yanayacu, and thick black ash was reported in Rumipamba, Pingili and Mocha. Fine-grained gray ash was reported in Mocha on 27 August.

The Washington VAAC reported occasional emissions of gas and minor volcanic ash on 1 August 2015. A pilot report of an ash plume rising to 7 km altitude and drifting W on 15 August was not detected in satellite imagery due to weather clouds, although ashfall was reported within 15 km of the summit. Another pilot report on 20 August noted an ash plume to 8.5 km altitude. The altitude of an ash plume spotted drifting W on 25 August was estimated to be between 7.6 and 9 km. Ongoing emission of gas and possible minor ash was reported on 30 August at 6.7 km altitude moving W; the faint plume later detected in satellite imagery was moving WNW and extended about 50 km from the summit.

Mudflows from substantial rain on 1 and 7 September 2015 affected the Achupashal ravine and again disrupted travel on the Baños-Penipe road (figure 88). An ash plume on 2 September reached 3 km above the crater and drifted NW, causing ashfall in Pillate, Quero, Santuario, La Galera and El Rosario. Asfall was reported the next day in El Manzano and Choglontus. The Washington VAAC reported the ash plume at 8 km altitude on 2 September; the satellite imagery showed it extending 15 km WNW.

Figure (see Caption) Figure 88. The Baños-Penipe road is frequently damaged by lahars in the Quebrada de Achupashal at Tungurahua, making travel difficult. The muddy water on 7 September 2015 washed out the road again. Courtesy of OVT, IG-EPN, photo by B. Bernard at 1359 local time (Informe No. 811, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 01 de septiembre de 2015 al 08 de septiembre).

Moderate to high amounts of ash characterized the emissions on 11 September 2015 (figure 89). The plumes rose 2 km above the crater, drifted W and caused slight ashfall in Chonglontus and El Manzano. Only Chonglontus reported additional ashfall the next day. The Washington VAAC initially reported the ash plume at 7.3 km altitude extending 40 km SW on 11 September. About 6 hours later, the leading edge of the plume was dissipating about 170 km SW. This was followed by a new ash plume late in the day that rose to 5.8 km altitude and drifted 15 km WSW from the summit. Slight incandescence was reported on 13 September along with minor ash and steam emissions that were moving W at 7.6 km altitude.

Figure (see Caption) Figure 89. An ash plume drifts W from Tungurahua on 11 September 2015. Courtesy of OVT, IG-EPN, photo by S. Santamaria (Informe No. 811, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 08 de septiembre de 2015 al 15 de septiembre).

Constant emission of moderate amounts of ash on 19 September 2015 created an ash plume that rose to 2 km above the crater and drifted NW. Ashfall was reported in El Manzano and Pillate. An explosion late in the day rattled structures in Pondoa, and was followed by observations of incandescence at the crater shortly after midnight. Ashfall was reported to the W in Pillate, El Manzano, Bilbao, Motilones, Chontapamba, and Choglontus the following day. Ongoing emissions were not visible in satellite imagery due to weather clouds. A sudden deflation in the deformation data was recorded on 19 September. Similar deflation events preceded major explosions in July 2013 and February 2014.

Several hours of seismic tremor on 27 September produced an ash-rich plume and incandescent blocks which descended the W flank. This was followed by additional explosions and periods of tremor, some lasting for more than an hour (figure 90), that produced ash plumes drifting SW. Ashfall was reported in the towns of Manzano, Choglontus, Cahuají, and Palictahua. Additional ashfall was reported the next day in Choglontus and Manzano. The Washington VAAC spotted a faint ash plume moving W in multispectral imagery on 27 September, and another plume at 6.7 km altitude moving slowly NW the next day around noon. New fumaroles not previously observed below the W flank of the crater were observed on 29 September for the first time.

Figure (see Caption) Figure 90. Lengthy tremors that registered at the seismic station RETU coincided with ash-rich plumes and incandescent blocks at Tungurahua between midnight and noon local time on 27 September 2015. Courtesy of OVT, IG-EPN (Informe No. 814, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 22 al 29 de septiembre de 2015).

Activity during October-December 2015. Tremors were followed by a significant explosion on 4 October 2015 that produced ash emissions and block avalanches that traveled down the W flank. Ashfall reports were issued from the communities of Manzano, Choglontus, and Cahuají, all located to the SW. The Washington VAAC reported the ash plume 35 km WSW of the summit at 9.1 km altitude. Seismic activity increased beginning on 8 October. On 11 October, four explosions produced Strombolian-style activity with incandescent blocks traveling down the Chomtapamba and Achupashal ravines, an ash plume rising 2 km above the crater, and ashfall in regions to the NW and SW including Manzano, Choglontus, Puela and Mocha. The Washington VAAC reported the ash plume extending W from the summit at 7.9 km altitude. Around 2000 local time, the ash plume resembled a large mushroom cloud, and loud noises were reported from Cusua. There were numerous reports of incandescent blocks and explosions heard on the N and E flanks during the evening and overnight into the next morning (figure 91). Ashfall was again reported in Choglontus on 13 October.

Figure (see Caption) Figure 91. Incandescent blocks descend the upper flank of Tungurahua at 1909 local time on 11 October 2015. Courtesy of OVT, IG-EPN, photo by E. Telenchana (Informe No. 816, Síntesis seminal del estado del Volcán Tungurahua, Semana: Del 06 al 13 de octubre de 2015).

An explosion in the early morning hours of 14 October was heard at all of the stations around the volcano. It was followed by ashfall in Choglontus. An ash emission on 19 October rose 1 km above the crater and drifted W and SW, producing ashfall in Choglontus, Bilbao, Pillate, and Cotaló. The Washington VAAC reported the plume extending 55 km NW of the summit at 6.7 km altitude. The next day, ongoing seismic data suggested frequent diffuse ash emissions. A plume was detected in multispectral data at 7.6 km altitude radiating E and rapidly dissipating. That afternoon (20 October), ashfall was reported in the Punzupala area. Ashfall continued from daily emissions for the next week with the most ashfall reported from Manzano, Choglontus, Bilbao, and Chacauco. Communities with trace amounts of ashfall included Ambato, Quero, Cevallos, Huachi, Chiquicha, Huambaló, Cotaló, and Pillate.

Incandescent material was observed traveling more than 1,000 m down the W flank from an explosion on 25 October. Local television reported ashfall in Ambato, Cevallos, Quero, and parts of Mocha and Tisaleo later that day. Swarms of LP earthquakes followed by episodes of ash emissions and low-energy Strombolian activity continued for the remainder of the month and into early November, causing sporadic ashfall in nearby villages. A small lahar was reported in the La Pampa ravine on 30 October.

An emission on 2 November 2015 created an ash plume that rose about 1.5 km above the crater and drifted E and NE; small quantities of ash were reported in the upper Runtun area. Incandescence at the summit crater from Strombolian activity was observed that night and for several days following. Heavy rains on 7 November caused mudflows in the Romero, Pingullo, and Achupashal ravines, and a larger lahar with meter-size blocks in the Chontapamba ravine. The Washington VAAC noted a dark emission from the volcano drifting W on 8 November at 5.5 km altitude.

A new series of tremors beginning on 10 November, coincided with more than a week of continuous ash emissions which reached 3.5 km above the crater and drifted in several directions. Incandescence was observed at night, and incandescent blocks descended generally up to 500 m down the NW, N, and E flanks during this period (figure 92).The Washington VAAC first reported an ash plume at 7.6 km altitude late in the evening on 10 November and continued with a constant series of reports for the next nine days. Most of the plumes were reported between 7 and 8 km altitude, drifting generally W (figure 93). The ash plumes produced heavy black ashfall in Manzano, Choglontus, Bilbao, Mocha, Quero, Cotaló, Tisaleo, Penipe and Cevallos. An ash plume was visible about 130 km W by midday on 11 November, and the plume had reached 8.2 km altitude. Loud noises were reported numerous times from the nearby communities for several days. On 12 November the Washington VAAC reported volcanic ash observed in satellite data extending 200 km WNW at 9.1 km altitude. Ashfall was heavy enough on 14 November to cause tree branches near Choglontus to bend under the weight of the ash.

Figure (see Caption) Figure 92. Strombolian activity from the summit of Tungurahua causes incandescent blocks to fall 500 m down the flanks of on 14 November 2015. Courtesy of OVT, IG-EPN, photo by V. Valverde (Informe No. 821, Síntesis seminal del estado del Volcán Tungurahua, Semana: 10 al 17 de noviembre de 2015).
Figure (see Caption) Figure 93. A dense ash plume rises from the summit of Tungurahua and drifts W on 17 November 2015. A small pyroclastic flow is visible on the NW flank (right side of image). Courtesy of OVT, IG-EPN, photo by S. Santamaria (Informe No. 822, Síntesis seminal del estado del Volcán Tungurahua, Semana: 17 al 24 de noviembre de 2015).

A plume on 15 November 2015 rose more than 5 km above the crater (10 km altitude), according to IG-EPN, and sent blocks about 1,000 m down the flanks. On 18 November, the Washington VAAC reported a narrowing plume extending 270 km W from the summit. The largest ashfalls occurred during the night of 18-19 November. Strombolian activity sent blocks 800 m down the flanks during the night, and a strong "jet" was observed in the eastern part of the crater. Incandescent material was observed from two eruptive vents late on 18 November. Five millimeters of ash were reported from the solar panels at the Tablor station on 19 November, deposited in less than 24 hours (figure 94). IG-EPN reported this event as one of the most significant ashfall events since 2010; many crops and livestock animals were affected. Dense ash emissions tapered off after 19 November, and smaller, less dense plumes rose 2 km above the crater on 22-23 November. The University of Hawaii's MODVOLC system issued thermal alerts for Tungurahua on 15 (2) and 19 (3) November, the only time during 2015. Significant sulfur dioxide (SO2) emissions were captured by the OMI instrument on the Aura Satellite during the mid-November episode from 11-19 November (figure 95).

Figure (see Caption) Figure 94. A 5-mm thick layer of ash was deposited on the solar panels of the Tablon station at Tungurahua in less that 24 hours on 19 November 2015. Courtesy of OVT, IG-EPN, photo by S. Santamaria (Informe No. 822, Síntesis seminal del estado del Volcán Tungurahua, Semana: 17 al 24 de noviembre de 2015).
Figure (see Caption) Figure 95. Substantial SO2 plumes originating from Tungurahua were recorded by the OMI instrument on the Aura satellite during 10-19 November 2015. Top left: the plume from Tungurahua drifts WSW while a smaller plume from Cotopaxi is visible about 90 km N on 10 November. Top right: the plume from Tungurahua drifts WNW on 12 November at the bottom of the image, a much smaller plume drifts W from Cotopaxi immediately above it, and a third SO2 plume is visible drifting WSW from Nevado del Ruiz in Columbia 750 km NNE. Lower left: a larger plume on 14 November drifts WSW from Tungurahua and probably includes some gas from Cotopaxi. Lower right: a large plume from Tungurahua disperses W on 17 November for well over 500 km. Courtesy of NASA Goddard Space Flight Center.

A seismic swarm with 33-35 events per hour began on 25 November, and tapered off to 3-5 events per hour by 30 November 2015. There was no increase in surface activity during the swarm, but rather a gradual decrease, with no significant ashfall reported during the last week of November. Activity diminished significantly during December 2015. Weak steam emissions that reached no higher than 500 m above the crater were typical. Seismicity remained low, and there were no reports of ash emissions or ashfall in the area.

Geologic Background. Tungurahua, a steep-sided andesitic-dacitic stratovolcano that towers more than 3 km above its northern base, is one of Ecuador's most active volcanoes. Three major edifices have been sequentially constructed since the mid-Pleistocene over a basement of metamorphic rocks. Tungurahua II was built within the past 14,000 years following the collapse of the initial edifice. Tungurahua II itself collapsed about 3000 years ago and produced a large debris-avalanche deposit and a horseshoe-shaped caldera open to the west, inside which the modern glacier-capped stratovolcano (Tungurahua III) was constructed. Historical eruptions have all originated from the summit crater, accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. Prior to a long-term eruption beginning in 1999 that caused the temporary evacuation of the city of Baños at the foot of the volcano, the last major eruption had occurred from 1916 to 1918, although minor activity continued until 1925.

Information Contacts: Instituto Geofísico (IG), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Ulawun (Papua New Guinea) — December 2017 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Intermittent ash plumes during June-November 2017

Activity at Ulawun has been characterized by intermittent seismic activity and weak ash emissions. The last significant episode was during October-November 2016 (BGVN 41:12). This report summarizes the next eruption, which began on 11 June 2017 and continued sporadically at least through October 2017. Data were provided by the Rabaul Volcano Observatory (RVO) and Darwin Volcanic Ash Advisory Centre (VAAC).

RVO reported that during 1 May-23 June 2017, white plumes rose from Ulawun. Seismicity was low and dominated by small low-frequency earthquakes, although RSAM values slowly increased and then spiked on 13 June. Ash emissions began on 11 June and then became dense during 21-23 June. Volcanic ash advisories from the Darwin VAAC warned of ash plumes from between 24 June and 3 November 2017 (table 5); no further volcanic ash warnings were issued after 3 November. Plumes generally rose to altitudes of 2.4-3 km, or a maximum of 700 m above the summit.

Table 5. Ash plumes from Ulawun during January-November 2017, based upon analyses of satellite imagery. Courtesy of Darwin VAAC.

Dates Plume altitude (km) Plume drift
24-26 Jun 2017 3 W
28 Jun 2017 2.7 W
04-08 Aug 2017 2.4-2.7 NW, W, and SW
09-10 Aug 2017 2.4 NW, W
17-18 Aug 2017 2.7 W
31 Aug-01 Sep 2017 2.7 SW, W, NW, and N
05 Sep 2017 2.7 SW
25 Sep 2017 3 WSW
26-27 Oct 2017 2.4 130 km S and SE
03 Nov 2017 3 NNE

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea.


Villarrica (Chile) — December 2017 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Lava lake level fluctuates and Strombolian activity persists during October 2016-November 2017

Historical eruptions at Chile's Villarrica (figure 34), documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Lava flows emerging from the glacier-covered summit created deadly lahars in 1964 and 1971 (CSLP 95-71); a similar event in late 1984 led to evacuations and no fatalities occurred. Since then, an intermittently active lava lake has been the source of explosive activity, incandescence, and thermal anomalies. Renewed activity in early December 2014 was followed by a large explosion on 3 March 2015 that included a 9-km-altitude ash plume. Significant thermal anomalies from continued Strombolian activity at the lava lake and small ash emissions persisted through October 2016 (BGVN 41:11). Activity has continued during October 2016-November 2017, with information provided primarily by the Southern Andes Volcano Observatory, (Observatorio Volcanológico de Los Andes del Sur, OVDAS) part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN), and Projecto Observación Villarrica Internet (POVI), part of the Fundacion Volcanes de Chile, a research group that studies volcanoes across Chile.

Figure (see Caption) Figure 34. View of Villarrica from the town of Villarrica located 30 km NW on 10 November 2016. The active lava vent was also photographed the same day (see figure 40). Courtesy of Cristian Gonzalez G.

Steam-and-gas emissions rising 200-1,000 m above the summit were observed throughout the period. The lava lake level inside the summit crater changed elevation by as much as 15 m during October 2016. Fluctuations of several meters up and down each month were reported through February 2017, and again in October 2017. Persistent minor gas-and-ash emissions, with small blocks and lapilli ejected onto the crater rim, were captured by the webcams and observed by visitors near the summit every month. Strombolian explosions and a "lava jet" sent ejecta more than 100 m above the crater rim during February 2017, and incandescent material rose 60 m above the crater rim on 1 July. Increased seismicity was detected during November 2017.

Activity during October-December 2016. Weak emissions of steam, gases, and volcanic ash near the summit were visible in the webcam during October 2016. The Buenos Aires Volcanic Ash Advisory Center (VAAC) noted a pilot report of an ash plume moving NNW on 20 October 2016 at 3.7 km altitude, slightly less than a kilometer above the summit. OVDAS reported that during the month, steam plumes rose less than 700 m and incandescence was visible at night when weather conditions permitted viewing of the summit. The MODVOLC thermal anomaly system issued 11 alerts during October. During several visits to the summit that month, POVI scientists observed that the lava lake had risen 15 m (figure 35) to a level that had been previously observed on 18 December 2015, 29 January, 28 March, and 18 September 2016. A small pyroclastic cone was visible inside the summit crater on 28 October (figure 36); by 30 October, most of it had collapsed and molten lava was again visible at the center (figure 37).

Figure (see Caption) Figure 35. Between 17 and 27 October 2016, the lava lake rose about 15 meters inside the summit crater of Villarrica, reaching a similar level observed on 18 December 2015, 29 January, 28 March, and 18 September 2016. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).
Figure (see Caption) Figure 36. A small pyroclastic cone is visible at the bottom of the summit crater at Villarrica on 28 October 2016 (red arrows). On the left slope sub-parallel annular fissures are visible (yellow arrows), indicating the imminent collapse of the nested structure. The white arrows point to residue precipitated from gas emissions. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).
Figure (see Caption) Figure 37. The nested cone visible on 28 October had collapsed by 30 October 2016 at Villarrica, and incandescent lava was visible inside the vent. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).

During November and December 2016, steam emissions rose only 400 m above the crater and incandescence was only occasionally visible in the webcams at night. Thermal activity detected by satellite, however, was relatively high; MODVOLC issued twelve thermal alerts during November and nine during December. The repeated growth and destruction of small pyroclastic cones within the summit crater was well documented by several visits of POVI scientists to the summit (figures 38 and 40). They also collected bombs ejected near the crater rim (figure 39), and observed persistent minor ash-and-gas emissions (figure 41).

Figure (see Caption) Figure 38. A new pyroclastic cone grows inside the summit crater of Villarrica on 7 November 2016, days after the collapse of the previous cone on 28 October. Black spatter from lava splashes stand out on the exposed slope. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).
Figure (see Caption) Figure 39. A piece of ejecta collected at the edges of the summit crater at Villarrica on 9 November 2016. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).
Figure (see Caption) Figure 40. The pyroclastic cone at the summit crater of Villarrica photographed on 7 November had partially collapsed by 10 November 2016, the same day of the photograph showing a quiet, clear summit (figure 34). The splashes of lava rose no more than 10 m above the crater floor. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).
Figure (see Caption) Figure 41. A small ash emission of rose from the summit of Villarrica on 17 November 2016 around 1050 local time. The larger image was taken by climbers, and the inset images are from the webcam. Courtesy of POVI (Volcán Villarrica, 27 de Octubre al 30 de Noviembre 2016).

Observations by POVI scientists during December 2016 included continued evidence of cone creation and destruction in the vent (figure 42), and small lava fountains (figure 43). Strombolian explosions with bombs were recorded by the webcam on 1, 2, and 3 December. Bombs were ejected more than 50 m above the crater rim, some as large as 1.5 m in diameter. Between 2 and 3 December they observed an 8-10 m drop of the lava in the vent, leaving behind a circular depression with a small incandescent chimney on the NNW side. The webcam captured ash emissions on 2, 14, 15, 18, and 19 December.

Figure (see Caption) Figure 42. The partial collapse of the nested semicircular cone, reported by POVI on 30 November, was evident by 2 December 2016 inside the summit crater of Villarrica. The active vent is about 10-15 m in diameter. On the left wall of the crater the debris of a small recent landslide is visible above the lava. Courtesy of POVI (Informe Preliminar, Comportamiento del Volcán Villarrica, 01 al 31 de Diciembre 2016).
Figure (see Caption) Figure 43. A small Strombolian explosion created a lava fountain inside the summit crater of Villarrica on 8 December 2016. Courtesy of POVI (Informe Preliminar, Comportamiento del Volcán Villarrica, 01 al 31 de Diciembre 2016).

Activity during January-May 2017. OVDAS reported nighttime incandescence and steam emissions less than 250 m high during January 2017. They were higher in February, rising 700 m above the crater rim. Six MODVOLC thermal alerts were issued in January and one in February.

Volcanologists from POVI reported an increase in activity during February (figure 44), including a sudden collapse of about 10 m of much of the material in the lava pit on 9 February, after which a new rise began almost immediately (figure 45). During 10-15 February, explosions from a narrow vent sent lava fountains and ejecta more than 100 m high (figures 46). On 13 February, they witnessed powerful "lava jets" that rose 150 m (figure 47); bombs up to a meter in diameter were ejected 50 m from the vent and spatter covered much of the inner walls of the crater. Between 5 and 26 February, pyroclastic debris raised the level of the bottom of the crater by 10-12 m (figure 48).

Figure (see Caption) Figure 44. An increase in thermal and explosive activity was apparent between 1 and 5 February 2017 at the summit crater of Villarrica. Recently deposited lapilli (L) between 2-64 mm were scattered around the funnel shaped crater on 5 February (right). Courtesy of POVI (Volcán Villarrica, Seguimiento Científico de Actividad Volcanánica, 01 al 28 de Febrero 2017).
Figure (see Caption) Figure 45. Fresh lava spattered on the inner wall of the summit crater at Villarrica on 11 February 2017, during a new rise in the magma level after a collapse two days earlier. The diameter of the active vent had increased significantly during the previous 24 hours. Courtesy of POVI (Volcán Villarrica, Seguimiento Científico de Actividad Volcanánica, 01 al 28 de Febrero 2017).
Figure (see Caption) Figure 46. Lava fountains exceeded 100 meters above the crater rim at Villarrica on 13 February 2017. Images captured just after midnight show the first explosion (lower right) at 0023 local time, followed two minutes later by the upper image, and another explosion (lower left) about 20 minutes later. Courtesy of POVI (Volcán Villarrica, Seguimiento Científico de Actividad Volcanánica, 01 al 28 de Febrero 2017).
Figure (see Caption) Figure 47. The active vent in the summit crater of Villarrica was about 7 m in diameter on 13 February 2017, and sporadically emitted powerful and noisy "lava jets" more than 150 m high. Courtesy of POVI (Volcán Villarrica, Seguimiento Científico de Actividad Volcanánica, 01 al 28 de Febrero 2017).
Figure (see Caption) Figure 48. Between 5 and 26 February 2017, the level of the bottom of the summit crater at Villarrica rose by about 10-12 m. Courtesy of POVI (Volcán Villarrica, Seguimiento Científico de Actividad Volcanánica, 01 al 28 de Febrero 2017).

During March 2017, OVDAS reported steam-and-gas emissions rising 1,000 m. They issued a special report on 23 March indicating an increase in the gas plume height and the occurrence of sporadic explosions of ballistic material that remained within the summit crater. Single MODVOLC thermal alerts were issued on 7 and 14 March 2017.

Nighttime incandescence and steam plumes rising to 550 m characterized activity reported by OVDAS during April 2017. Only a single MODVOLC thermal alert was issued on 4 April. Steam plumes were reported to only 250 m above the crater rim during May along with incandescence at night, but there were seven MODVOLC thermal alerts on four different days; 1 (2), 19 (3), 20, and 29 May.

Activity during June-November 2017. OVDAS reported low levels of activity during June 2017, with incandescence at night and steam plumes rising no higher than 170 m. Only a single MODVOLC thermal alert was issued on 20 June. On a visit to the summit crater on 5 June, POVI scientists observed a 10-m-diameter vent at the bottom of the crater, and lapilli fragments 2-64 mm in diameter distributed around the crater rim. A second visit on 19 June revealed increased explosive activity at the bottom of the crater, ash deposits on the inner walls of the crater, and more lapilli around the mouth of the crater (figure 49). POVI webcams recorded a significant increase in the intensity of incandescence from the summit crater on 24 June 2017 (figure 50).

Figure (see Caption) Figure 49. An increase in explosive activity with respect to that observed on 5 June was noted by POVI scientists on a visit to the summit crater of Villarrica on 19 June 2017. Fresh ash deposits and lapilli appeared on the snow around the crater rim (yellow arrows). Courtesy of POVI (Volcán Villarrica, Resumen del Comportamiento, Observado en Junio 2017).
Figure (see Caption) Figure 50. A significant increase in the intensity of the incandescence emitted from the summit crater at Villarrica was observed in the webcams during the night of 23-24 June 2017. The upper images show the incandescence in the early evening of 23 June, and the lower images were taken just after midnight on 24 June 2017 from the POVI webcam. Courtesy of POVI (Volcán Villarrica, Resumen del Comportamiento, Observado en Junio 2017).

On 1 July 2017, POVI captured a webcam image of Strombolian explosions that sent incandescent material 60 m high from the summit crater. OVDAS reported steam plumes rising no more than 550 m and incandescence at night during July; there were no reported MODVOLC thermal alerts that month, and only a single alert on 30 August. OVDAS reported steam plumes during August rising to 150 m, sporadic ash and larger pyroclastic emissions around the crater rim, and nighttime incandescence.

Activity decreased during September and October 2017, with continued steam emissions rising 300-500 m, minor ash emissions around the crater rim, and nighttime incandescence. Two MODVOLC thermal alerts were issued, on 4 and 16 September, and none during October. POVI scientists visited the summit during October 2017 and noted that the vent remained active, especially after 22 October. They observed that at least half of the inner walls of the crater were covered with fresh ash and lapilli, concentrated on the W, S, and NE sides. They estimated that the active vent was about 8 m in diameter, approximately 100 m down inside the crater (figure 51). The bottom of the crater appeared about 4 m higher than it was on 26 September 2017, and the vent diameter had expanded by 2 m. Ash and lapilli fragments were found around the edge of the crater on 15, 22, and 25 October. Ejections of small fragments of lava were captured by the webcam on 22 and 23 October.

Figure (see Caption) Figure 51. A panoramic image of the summit crater at Villarrica, looking S on 15 October 2017, showed pyroclastic material covering much of the inner surface of the crater wall. The vent was estimated to be about 8 m in diameter, at a depth of 100 m. Courtesy of POVI (Seguimiento y Estudio del Comportamiento, Volcán Villarrica, Octubre 2017).

OVDAS reported that during November 2017, the webcams near the summit showed evidence of low intensity, predominantly white degassing to low altitudes (100 m above the summit). Nighttime incandescence associated with occasional explosions around the crater were typical. They also noted that long-period (LP) seismicity increased in both energy amplitude and frequency during the last few days of the month. A gradual increase in RSAM values began on 15 November with a continuous tremor signal. A 4.1 magnitude event was reported on 24 November located 2.6 km ESE of the summit at a depth of 1.8 km. A single MODVOLC thermal alert was reported on 28 November.

Seismicity and thermal anomalies. Seismicity at Villarrica during October 2016-November 2017 was relatively stable (figure 52), although it varied between about 2,500 and 6,500 events per month, with over 90% recorded as LP events, and only a few VT (volcano-tectonic) events. The highest frequency values occurred in May (5,749) and November 2017 (6,484).

Figure (see Caption) Figure 52. Chart of the frequency of seismic events at Villarrica, October 2016-November 2017. LP are Long-Period events, and VT are Volcano-Tectonic events. Data courtesy of OVDAS, SERNAGEOMIN monthly reports.

Infrared data graphed by the MIROVA system (figure 53) indicated the continuous but decreasing frequency and intensity of thermal anomalies at Villarrica between November 2016 and November 2017.

Figure (see Caption) Figure 53. Infrared data graphed by the MIROVA system indicated the continuous but decreasing frequency and intensity of thermal anomalies at Villarrica between November 2016 and November 2017. Courtesy of MIROVA.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería, (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/; http://modis.higp.hawaii.edu/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php?lang=es); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Cristian Gonzalez G., flickr (URL:https://www.flickr.com/photos/cg_fotografia/), photo used under Creative Commons license (https://creativecommons.org/licenses/by-nd/2.0/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports