Report on Etna (Italy) — April 1980
Scientific Event Alert Network Bulletin, vol. 5, no. 4 (April 1980)
Managing Editor: David Squires.
Etna (Italy) Explosions from summit and SE craters; thermal anomaly on S flank
Please cite this report as:
Global Volcanism Program, 1980. Report on Etna (Italy) (Squires, D., ed.). Scientific Event Alert Network Bulletin, 5:4. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198004-211060
Etna
Italy
37.748°N, 14.999°E; summit elev. 3357 m
All times are local (unless otherwise noted)
During the evening of 14 April, explosions began from Etna's summit area and red-hot gases were emitted from the Southeast Crater. Explosions continued for the next several days. Residents of Zafferana, 11 km SE of the summit, saw large explosions on 16 and 17 April that were especially spectacular at night because of incandescence or perhaps lightning. Poor weather prevented observations from the IIV in Catania.
Etna guides who climbed the volcano, probably on 17 April, saw large fresh bombs near the Chasm and Bocca Nuova craters. Bombs were particularly prominent on the N and W sides of the central crater area. On 27 April at 1705, a large summit explosion produced a 3-km-high ash cloud. Renewed explosions began during the afternoon of 29 April and continued through the night from the Southeast Crater.
Geological Summary. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.
Information Contacts: R. Romano and L. Villari, IIV; J. Guest, Univ. of London; C. Archambault and J. Stoschek, CNET, France; J. Tanguy, Univ. de Paris VI; G. Scarpinati, Acireale.