Logo link to homepage

Report on Atmospheric Effects (1980-1989) — January 1985

Scientific Event Alert Network Bulletin, vol. 10, no. 1 (January 1985)
Managing Editor: Lindsay McClelland.

Atmospheric Effects (1980-1989) Major stratospheric warming evaporates aerosols

Please cite this report as:

Global Volcanism Program, 1985. Report on Atmospheric Effects (1980-1989) (McClelland, L., ed.). Scientific Event Alert Network Bulletin, 10:1. Smithsonian Institution.

Atmospheric Effects (1980-1989)

All times are local (unless otherwise noted)

Significant concentrations of aerosols from El Chichón remained in the stratosphere at the beginning of 1985. Major stratospheric warming in late December and January may have evaporated and recondensed the El Chichón aerosols over a large portion of mid and high northern latitudes.

A small stratospheric warming event started about 7 December over the Aleutians. Air circulation at the 30 km level carried air from the zone of warming toward the western United States, cooling the air in transport. Balloon-borne particle counters detected increased numbers of tiny condensation nuclei (CN) at about 30 km altitude over Laramie, Wyoming on 14 and 18 December. The bases of December particle count profiles were relatively smooth, suggesting that the CN droplets were about 1-2 weeks old.

A much larger and more intense stratospheric warming began in late December and increased stratospheric temperatures persisted through January. Labitzke et al. (1985) note that "The evolution of this warming was very unusual. Only the development of the winter of 1956/7 appears to be similar, although few stratospheric data are available from that event." They report that stratospheric warming was first observed 26 December over Sable Island (44°N, 60°W) where the temperature at about 30 km altitude (10 hPa) was -24°C. Within a few days, the entire Arctic had warmed, resulting in a complete reversal of the stratospheric and mesospheric circulation over high latitudes and a breakdown of the polar vortex. By 29 December, temperatures at 30 km over the Labrador Sea area were 55° higher than they had been 5 days earlier and effects extended over much of eastern and central North America. Satellite data showed the rapid disappearance of the polar vortex over Europe and radiosonde measurements over Berlin (52.32°N, 13.25°E) on 2 January showed that intense warming had occurred in the 3 days since the previous measurement. The lower and middle stratosphere remained very disturbed in mid-January and a new warming pulse was developing over Labrador.

Balloon soundings from Laramie on 9, 24, and 31 January measured CN concentrations as high as 100/cm3 at 30 km altitude, compared to background values of 2-3/cm3. In contrast to previous years, meteorological data suggested that Laramie was within the zone of warming, so the January soundings may have sampled ongoing or very fresh CN events.

January lidar data from Mauna Loa, Hawaii showed no major changes from the previous month. The profile on 15 January showed a pronounced peak, whereas the layer was much broader on the 22nd, but integrated backscattering values on the two nights were very similar. Early February lidar data from Hampton, Virginia were similar to those from previous measurements in November.

Reference. Labitzke, K., Lenschow, R., Naujokat, B., and Petzoldt, K., 1985, First note on the major stratospheric warming at the end of December 1984: Beilage zur Berliner Wetterkarte SO 1/85, Met. Inst. Free University of Berlin. A shortened version has been submitted to the Map Newsletter.

Information Contacts: D. Hofmann, Univ. of Wyoming; T. DeFoor, MLO; W. Fuller, NASA.