Report on Soufriere Hills (United Kingdom) — 21 November-27 November 2001
Smithsonian / US Geological Survey Weekly Volcanic Activity Report,
21 November-27 November 2001
Managing Editor: Gari Mayberry
Please cite this report as:
Global Volcanism Program, 2001. Report on Soufriere Hills (United Kingdom). In: Mayberry, G (ed.), Weekly Volcanic Activity Report, 21 November-27 November 2001. Smithsonian Institution and US Geological Survey.
Soufriere Hills
United Kingdom
16.72°N, 62.18°W; summit elev. 915 m
All times are local (unless otherwise noted)
The level of volcanic activity at Soufrière Hills increased during 16-23 November in comparison to the previous week. Morphological changes were observed at the volcano's summit; lava-dome growth shifted from the E to the W and the summit area was crowned by spines with an average elevation of 940 m a.s.l. Rockfall activity was relatively low, but intensified towards the end of the report week. Rockfalls were mainly concentrated on the W side of the active area, rather than the E as in previous weeks. Incandescent material was visible at night on the E and W sides of dome. A hybrid and long-period earthquake swarm began on 14 November, reaching a peak on 21 November before slightly declining.
Geological Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.