Report on Klyuchevskoy (Russia) — 20 November-26 November 2013
Smithsonian Institution / US Geological Survey
Weekly Volcanic Activity Report, 20 November-26 November 2013
Managing Editor: Sally Sennert.
Please cite this report as:
Global Volcanism Program, 2013. Report on Klyuchevskoy (Russia) (Sennert, S, ed.). Weekly Volcanic Activity Report, 20 November-26 November 2013. Smithsonian Institution and US Geological Survey.
Klyuchevskoy
Russia
56.056°N, 160.642°E; summit elev. 4754 m
All times are local (unless otherwise noted)
KVERT reported that at 1235 on 17 November an ash plume from Kliuchevskoi, detected in satellite images, rose to an altitude of 6.5 km (19,700 ft) a.s.l. and drifted 160 km NE. At 1322 an ash plume rose to an altitude of 7km (23,000 ft) a.s.l. and drifted 130 km NE. Video data then showed a high-intensity explosion and Strombolian activity prompting KVERT to raise the Aviation Color Code to Orange.
At 1416 on 19 November seismicity indicated a strong explosion, and observers reported that ash plumes rose to altitudes of 10-12 km (32,800-39,400 ft) a.s.l. and drifted SE. The Aviation Color Code was raised to Red. Later that day the altitudes of the ash plumes were lower; video images showed ash plumes rising to altitudes of 5-5.5 km(16,400-18,000 ft) a.s.l. and drifting NE. The Aviation Color Code was lowered to Orange.
Geological Summary. Klyuchevskoy is the highest and most active volcano on the Kamchatka Peninsula. Since its origin about 6,000 years ago, this symmetrical, basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during approximately the past 3,000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 and 3,600 m elevation. Eruptions recorded since the late 17th century have resulted in frequent changes to the morphology of the 700-m-wide summit crater. These eruptions over the past 400 years have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.