Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information contained in these reports is preliminary at time of publication and subject to change.

 Bulletin of the Global Volcanism Network - Volume 39, Number 08 (August 2014)


Cleveland (United States)

Multiple explosions and minor ash plumes continue into September 2014

Manam (Papua New Guinea)

Intermittent ash plumes and incandescence during June 2013-September 2014

Rabaul (Papua New Guinea)

Minor eruptions continue until 29 August 2014, explosion sends ash plume to 18 km altitude

Sheveluch (Russia)

Ongoing eruption with ash plumes to 11 km through August 2014


Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local


Multiple explosions and minor ash plumes continue into September 2014

Download or Cite this Report

Cleveland experienced frequent minor ash emissions during January 2012-September 2013. During that reporting period activity was monitored by the seismic network on nearby Umnak Island (140 km NE) or through satellite imagery because there was no ground-based seismic instrumentation. In April 2012 and May 2013, explosion-generated ash plumes reached more than 4 km above the summit crater (BVGN 38:10). Some energetic eruptions were also accompanied by dome destruction and hot lahars that descended the flanks.

During October 2013-September 2014, the time period covered in this report, activity included short-duration explosions recorded by the Alaska Volcano Observatory's (AVO) infrasound or pressure sensors and the seismic network, and weakly elevated surface temperatures and plumes recorded by satellite imagery (table 1 and figure 1). The volcano Alert Level was raised to Watch (Aviation Color Code raised to Orange) during 2-9 January 2014 as a result of explosions creating minor ash plumes, but returned to Advisory (Yellow) on 10 January.

Table 1.Notable observations of Cleveland based on infrasound sensors and satellite imagery during October 2013-September 2014. Courtesy of AVO.

Date Time Infrasound sensors Satellite imagery
02 Oct 2013 0424 Short duration explosion. --
05 Oct 2013 -- Continuous pressure waves; discrete small explosions. --
13 Nov 2013 -- -- Weakly elevated surface temperatures near summit.
25 Nov 2013 1931 Small, short duration explosion. --
28 Dec 2013 1229 Brief explosion. Elevated temperatures.
30 Dec 2013 1906 Brief explosion. Minor ash plumes detached from summit.
01 Jan 2014 1900 Explosion. Minor ash plumes detached from summit.
02 Feb 2014 -- -- Weak elevated surface temperatures.
17, 19, 20 Feb 2014 -- -- Steam plume.
24 Feb 2014 1917 Explosion. Small ash clouds; 5 km altitude.
25 Feb 2014 0135 Explosion. Small ash clouds; 5 km altitude.
05 Jun 2014 1008 Explosion. Small detached ash plume.
06 Jun 2014 0004 -- Small, detached cloud with a weak ash signal.
07 Jul 2014 -- -- Weakly elevated surface temperatures.
08-09 Jul 2014 -- -- Vigorous steam and gas plume.
20, 21, 26-31 Jul 2014 -- -- Elevated surface temperature in summit crater.
18 Aug 2014 -- -- Elevated surface temperature.
01-05 Sep 2014 -- -- Thermal feature at summit.
Figure 1. Graphical summary of activity at Cleveland, showing the days with observed activity during October 2013-Septamber 2014. Courtesy of AVO.

Activity during October-December 2013. A small explosion was detected by infrasound sensors on 2 October 2013. The following two days, three total explosions were recorded. On 5 October continuous pressure waves likely due to gas jetting and discrete small explosions were recorded by infrasound sensors on Okmok, located on Umnak Island.

From October through the first three weeks of December, evidence of further ash emissions was absent from satellite imagery. After the two explosions on 28 and 30 December 2013, AVO stated ash clouds may have been generated but were not detected in satellite data.

Activity during January-March 2014. By 2 January 2014, AVO observed that Cleveland seemed to have entered a "renewed phase of elevated unrest." Ash plumes visible in satellite images extended 75-100 km N of the volcano. Subsequent analysis of the images concluded the plumes rose no more than 4.6 km altitude.

Following explosions in late February 2014, satellite observations showed deposits of ash and large lava blocks on the upper flank, 2.5 km from the summit. This indicated the February explosions were more energetic than those commonly observed over the past few years.

In the evening of 6 March, residents of Nikolski (located on Umnak Island) reported small bursts of ash rising less than 300 m above the summit. These small, brief, events were not detected by satellite imagery or by AVO seismic and infrasound networks.

Activity during June-September 2014. After two months of relative quiet, an explosion on 5 June was recorded by the Dillingham acoustic infrasound array and seismic stations at Korovin volcano, 288 km W. The event was reported to be short in duration and had a similar amplitude to explosions in past years. A detached cloud observed on 6 June had an altitude of 7.6 km, travelled 140 km SW, and subsequently dissipated.

During the week of 8 August 2014, scientists working near Cleveland observed steady gas-and-steam plumes emitted from the summit crater, and incandescence at the summit. According to AVO, on 15 August scientists reported "puffing activity consisting of steam and gas from the summit and vapor clouds over the volcano."

In mid-August, the National Science Foundation sent researchers to install two monitoring stations, powered by batteries and solar power, on Chugunadak Island 15 km from Cleveland's summit. This was the first time modern geological equipment had been placed in such close proximity to Mount Cleveland due to its remote location. Station CLES (Cleveland East) at the SE base of Cleveland hosts both broadband and short-period seismometers, along with two infrasound sensors. On the SE coast of Chuginadak (figure 2) station CLCO (Concord Point) consists of short-period seismometers, a web-camera, and an array of five infrasound sensors. The monitoring stations will provide real-time observations to scientists who have previously been relying solely on distant seismic networks and satellite data.

Figure 2. View of Cleveland on 20 September 2014 taken from the newly installed web camera located near Concord Point, Chuginadak Island. It looks WNW to Cleveland. Mount Herbert is visible on the far left, along with Mount Carlisle on the right. The camera turns on once an hour to capture three images. Courtesy of AVO.

On the evening of 17 August, a steam plume was visible from the web camera at Station CLES, followed by another small steam plume the morning of 29 August.

Geologic Background. Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/ ), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA (URL: http://www.gi.alaska.edu/), and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.dggs.alaska.gov/)

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local


Intermittent ash plumes and incandescence during June 2013-September 2014

Download or Cite this Report

Volcanic activity at Manam from January 2011 through May 2013 (BGVN 38:06) consisted of occasional ash plumes and several pyroclastic flows. Most explosions during that period were minor, with ash plumes rising only a few kilometers in altitude and drifting 200 km downwind. From June 2013 through September 2014 activity was mild to moderate with most emissions only rising a few kilometers. Periods of increased activity included high seismicity and pyroclastic flows. Audible explosions were frequently reported.

Activity during June-December 2013. During June, Main Crater primarily emitted white vapor, and night glow was noted on 2 and 17 June. Seismicity varied during the year; the highest seismicity of 2013 was recorded in June due to a pyroclastic flow.

Activity levels at Southern Crater intensified on 13 June when weak emissions of diffuse gray plumes were followed by two explosions at midnight which were heard in Bogia, 25-30 km SSW. Between 14 and 15 June diffuse emissions of gray-brown ash continued, rising 100 m above the crater. On 15 June residents on the W side of the island reported audible explosions and incandescent lava ejections were observed during the night.

On 17 June Southern Crater's activity once again increased, with occasional dark ash clouds rising from the crater. During the night RVO noted crater glow, Strombolian activity, and associated noises/shockwaves. Strombolian activity further increased on 18 June with plumes rising about 800 m and drifting NW. At 0635 a small pyroclastic flow in SE Valley travelled down to 400 m elevation, resulting in ash clouds that rose 900 m. At night, On 19 June dark-gray ash plumes rising 200 m above the crater were accompanied by occasional explosive booming noises and shock waves. Observers noted incandescent lava ejections at night before a decrease in activity on 20 June. On 22 June ash plumes rose to 2.4 km altitude and drifted 45 km NE and NW.

During 22-31 July both craters released white vapor; Southern Crater also emitted blue vapor over 25-26 July. Deep and low booming noises were heard on the island on most days since 24 July, however, on 30 July a loud explosion was heard in Bogia. Seismicity fluctuated but remained high.

During August the Main Crater only emitted white plumes, but Southern Crater produced light gray ash that rose ~100 m and drifted NW during 18-20, 22-23, and 25 August. Glow was visible from Southern Crater on 19, 21-26, and 27-28 August; incandescent lava fragments were ejected during 21-25 August.

Based on a pilot observation, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that on 19 August an ash plume from Manam rose to an altitude of 4.6 km (15,000 ft) a.s.l. and drifted 65 km NW. On 26 August, ash plumes rose to 3 km altitude and drifted ~150 km NW. RVO noted dark emissions from that a small eruption that began at 1830 on 27 August, but that changed the next day to light gray-brown ash that rose 500-600 m above the crater and blew W to NW. Overnight until the morning of 28 August, there was crater glow, incandescent ejections, and associated noises. Afterwards, the activity subsided to minor emissions of diffuse gray-brown ash clouds.

During September, activity remained low except on 27 September when an ash plume rose from Southern Crater to 3 km altitude and drifted 45 km E. Both craters had low levels of activity from October to December; Main Crater emitted white vapor while Southern Crater emitted white and occasionally blue vapor. On 31 October, and 28 and 30 November, Southern Crater also generated light gray clouds and crater glow. Main Crater had occasional gray ash emissions during 13-14 December and crater glow was observed during 11-13 and 15 December. Southern Crater erupted gray ash on 6, 10, 13, and 14 December and had bright glow during 6-10 and 12-13 December. No plumes rose higher than 100 m above the crater.

Activity during January-September 2014. RVO reports for this period were only available for March and September 2014. During March the craters showed little to no activity and seismicity was low. Southern Crater had mild activity in September, except when an ash plume rose to 2.1 km altitude and drifted ~27 km NW on 6 September. Darwin VAAC observed the plume in satellite imagery from MTSAT (Multi-functional Transport SATellite) at 1032, though it was partially covered by meteorological clouds common in that area.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Department of Mineral Policy and Geohazards Management, Volcanological Observatory Geohazards Management Division, P.O. Box 386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC) (URL: http://www.bom.gov.au/info/vaac/).

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local


Minor eruptions continue until 29 August 2014, explosion sends ash plume to 18 km altitude

Download or Cite this Report

Our last Bulletin report (BGVN 38:10) covered from August 2011 to December 2013, during which Rabaul's intracaldera cone, Tavurvur, often discharged modest eruptions. During that period there were several distinct events ranging from significant ashfall to the creation of a new lava dome in June 2013. This report describes activity at the Tavurvur cone between January 2014 and the end of September 2014, using data primarily gathered from the Rabaul Volcanic Observatory (RVO) and the Darwin Volcanic Ash Advisory Center (VAAC). Excepting the event on 29 August 2014 when Tavurvur sent an ash plume to ~18 km altitude, activity consisted mostly of a few minor explosions and ashfall. Caldera unrest, which included earthquakes and deformation, also continued. Ashfall is a continuing hazard in Rabaul town (3-5 km NW), which according to a recent survey has a population of ~10,000 people; an estimated 52,693 people live within a 10-km radius of Tavurvur.

Activity during January-August 2014. Tavurvur remained mostly quiet in January-February 2014 with varying amounts of white to blue vapor rising up to 100 m over the crater rim. Seismicity was low with a few small earthquakes. On 12 February a diffuse gray/brown ash plume rose 50-100 m. Only the summit was affected by the resulting ashfall. GPS measurements showed a constant yet slow uplift of the middle of the caldera.

Tavurvur continued to have small to moderate explosions in March, with gray ash plumes rising 1000 m. Deposits were characterized by a thin layer of brown ash. Explosion earthquakes were recorded on 1 (1), 6 (2), 7 (1), 8 (1), 9 (1), 10 (1), and 11 (2) March. Ash emissions continued and led to browned flora on the nearby peak, Turanguna (aka. South Daughter). During the latter part of March, Tavurvur quieted, and was either without vapor or only released white vapor. Seismicity during this period was very low, but a few low-frequency earthquakes occurred during explosions. There were three M~5 earthquakes on 20 March and a few very small earthquakes between 28 and 30 March (unstated quantity and magnitude). Short-term inflation was seen on Matupit Island, and continuous long-term inflation on the Tavurvur cone. In past years, Rabaul's caldera floor has undergone long-term recovery from the 1994 eruption and on Matupit Island there has been deflation associated with the 2006 eruption, during which a benchmark subsided by ~55 cm. RVO noted that the most likely cause of the recent Matupit inflation was processes (e.g. intrusion/vesiculation) affecting the volume of the magma at depth.

During April-June 2014 there were no VAAC reports or RVO data available. SO2 data from NASA showed only very modest plumes, suggesting little activity. There was hardly any activity in July and most of August except for an ash emission that drifted NNW and resulted in ashfall in Rabaul town on 7 July. Distinct ashfall events occurred on 15, 16, 17, and 26 July. RVO noted minor plumes (up to 1 km altitude) of white vapor and a little blue vapor which they attributed to new hot material near the surface. Seismicity was low with three earthquakes (intensity III–IV) on 15 July and a single low-frequency event on each of 15, 16, 21, 22, and 29 July, with five such events on 26 July. Larger magnitude earthquakes on 15-17 and 26 July corresponded to volcanic explosions. An examination of the summit crater on 25 July showed a weak glow on the summit and that the crater had deflated since the earlier 10 July examination. There were also regular low noises produced by gas release. No additional RVO data was issued until 29 August.

Explosion on 29 August 2014. The most dramatic event during the past several years occurred when a Strombolian explosion starting between 0330 and 0400 and lasting until 0657 on 29 August sent an ash plume to ~18 km altitude (figure 1). Smaller explosions at irregular intervals continued through 0641 on 30 August (figure 2). Table 1 provides an overview of key events during the eruption. A crater inspection during late September indicated that the 29 August eruption left the crater shallower. The visible fill consisted of blocky lava and the once smooth rim was covered with large chunks. Observers also noted active emissions at 3-4 areas.

Table 1. Details of Rabaul's explosion and seismic activity on 29 August 2014. Noises such as explosive, roaring, or rumbling sounds were largely omitted. The primary data source is RVO, but most of the information shown was conveyed through Darwin VAAC reports. All times are local unless otherwise noted, UTC + 10 hours.

Date (Time) Remarks
29 Aug (0330-0400) Start of Strombolian eruption. Shock waves.
29 Aug (0400-0530) Eruption plume ~3000 m above Tavurvur's vent moving WNW. Ash and scoria affected Rabaul town before the wind shifted, to later affect Malaguna, Matupit, and S of the vent.
29 Aug (0645-0657) Eruption's subsidence/conclusion. Diffuse white emissions.
29 Aug (daylight) Strong explosions. Lessened seismic activities. Conclusion of volcanic tremors. 1000 m altitude ash plumes drifted NW. 0848: First Volcanic Ash Advisory (VAA) issued. Satellite image acquired 44 min. later (MTSAT-2).
30 Aug (night) Strong discrete explosions. Thick, white 1000 m ash plumes drifted NW. Increased time interval in between events accompanied by incandescent lava fragments (figure 4). 1254-1435: Data was acquired for the OMI satellite image with the largest SO2 plume (Fig. 8)
30 Aug (0641) End of strong explosions. White vapor and minor diffuse blue vapor.
30-31 Aug High seismicity with several low-frequency earthquakes, 80/hour.
31 Aug (0300) Decreased seismicity. Low-frequency earthquakes, 15/hour.
01-12 Sep Subsidence of all activity. White vapor and minor blue vapor. Fine ash on the ground swept into atmosphere by SE winds. No night glow. Discrete explosions and mild ash puffs on 1-2 Sep. Minimal ground deformation. Low seismicity with low-frequency earthquakes occurring at a rate of 10/hour during 1-2 Sep; 15-20/hour during 3-4 Sep; 20-30/hour during 5-12 Sep.
13-19 Sep Mild activity. Low seismicity with 25-35 total low-frequency earthquakes. Ground deformation fluctuating within 2 cm of the new elevation reached during the 29 August eruption. On 18 Sep, an explosion at 1242 produced a pale gray ash plume reaching ~500 m above the vent before moving NW.
20-26 Sep Mild activity, tectonic earthquake, and crater inspection. Diffuse white vapor and minute traces of blue vapor. Low seismicity with 15-20 total low-frequency earthquakes.
27 Sep-03 Oct Mild activity, tectonic earthquake. Diffuse white vapor and minute traces of blue vapor. Low seismicity with less than 10 total low-frequency earthquakes.
Figure 1. Rabaul's 29 August 2014 eruption glowing intensely and emitting a plume at 0526. This was captured about two hours after the eruption's onset, facing approximately NNE. Rabaul town is to the left and the harbor entrance of Blanche bay is towards the right. Courtesy of PNG Climate Network.
Figure 2. Two views of the ash plume on 30 August 2014 from Rabaul's Tavurvur as seen from an airplane. In the topmost picture, Tavurvur's vent and Blanche bay are easily distinguishable. Courtesy of Derek Schock (as posted on Twitter).

Satellite imagery (MTSAT-2 VDIFF) taken ~6 hours after the eruption's onset showed that the plume had slightly detached from the vent and been swept into a funnel-like shape fanning W to SW of the vent. According to VAAC reports from the same time, the ash plume had an altitude of ~18 km. Darwin VAAC noted that the direction and speed of all three plumes on 29 August were assessed using ash and SO2 data. A few hours after the eruption, the ash diffused, leaving behind SO2 in the atmosphere.

Ashfall in New Britain was mainly to the W of Tavurvur (figure 3). On 31 August no new airborne ash was detected and all volcanic ash advisories were terminated. By the end of September, the remains of atmospheric ash and SO2 released by the 29 August eruption had completely disappeared.

Figure 3. Landsat images of New Britain from 27 April 2014 and 2 September 2014, depicting the ashfall from the 29 August 2014 eruption. As seen in the lower image, the ash (brown area) deposited towards the W and at a distance curved SW. Courtesy of Jesse Allen and Adam Voiland, NASA Earth Observatory.

Satellite SO2 emissions and mass estimates. Tavurvur's SO2 emissions varied throughout the reporting period with only small masses recorded in the atmospheric column except for those related to the late August eruption. The purpose of these SO2 mass values is to establish the size and potential atmospheric impacts of eruptions. Satellite SO2 data from Rabaul was reported by the NASA Goddard MEASURES website and the Darwin VAAC.

Tavurvur's SO2 emissions were registered by the Ozone Monitoring Instrument (OMI) (table 2). The greatest atmospheric column SO2 mass resulted from the 28 August eruption's plume one day later with a total of 20.5 kilotons, more accurately defined at ~18 kilotons by Simon Carn after his initial analysis of the data. On 27 September 2014, the SO2 was also significant from other volcanoes in the region and the total mass value for the region was 0.12 kt. Thus, in this case, it was hard to compute the individual contribution from Tavurvur without further processing.

Table 2. Days during 2014 with Rabaul SO2 plumes of substantial size, above 1 Dobson Unit (DU). Time and dates are in UTC. The mass column corresponds to the automated output of the total mass for the entire image/region, except for the adjusted value on 29 August. The plume from Tavurvur was dominant except for 27 September when there were multiple plume inputs. Data from 29 and 30 August are discussed in greater detail in the text. Data courtesy of NASA MEASURES and Simon Carn.

Date (2014) Direction from Rabaul Maximum distance from Rabaul (km) Mass of SO2 within image (kiloton, kt)
05 Feb SW 50 0.127
25 Mar S 100 0.507, may be affected by cloud cover
29 Aug NW, W, SW, S More than 500 20.5 (adjusted to 18.5)
30 Aug W and S More than 500a 9.34
27 Sep W and SW 100 0.120, may be affected by cloud covera

On 29 August 2014, the 20.5 kt plume (figure 4) was observed to the NW, W, SW, and S at 0254-0435 UTC (1254-1435 local). By 30 August the plume had decreased to ~10 kt, a number which was most likely inaccurate since OMI imagery depicts the plume ~1000 km S of Rabaul and a part of the plume was outside the observed region.

Figure 4. OMI SO2 image for the Rabaul eruption captured between 0254-0435 UTC on 29 August (1254-1435 local), ~9.5 hours after the eruption's onset at 1730 UTC the previous day. According to the automated output, parts of the plume registered greater than ~3 DU (the red area). The plume also extended N to S for ~400 km and covered ~147,000 km2. Inaccuracies in the density (DU) of the plume might have been caused by the OMI row anomalies or the regions between the dotted lines to the E and W of the plume. Courtesy of the NASA MEASURES website.

According to Simon Carn, various inaccuracies may have appeared in the automated input for the plume altitudes. For example, the OMI data was compiled assuming a plume altitude of 8 km, which differs from the ~18 km altitude of the eruption plume and the ~1 km altitudes of all other ash plumes as noted by the Darwin VAAC. This difference would result in an overestimate of the 29-30 August total column masses and an underestimate of all other total column masses. Cloud cover may have also affected the estimates. When a meteorological cloud resides either above or below the volcanogenic SO2 gas plume, the total column mass estimate may be, respectively, underestimated or overestimated. Carn computed and adjusted to compensate for these complicating factors, resulting in a more accurate (but still preliminary) estimate for the SO2 column mass at 18.5 kt, or ~2 kt less than the original measurement of ~20.5 kt. For greater details regarding these and other inaccuracies in images processed with automated algorithms, see the Reventador report in BGVN 39:07 and the reference list therein.

Darwin VAAC Advisories. The Darwin VAAC issued Support to Aviation Control Service SO2 (SACS SO2) and Volcanic Ash Advisories (VAA) beginning at 0848 on 29 August (2248 UTC on 28 August). Regular updates continued through mid-day on 31 August. During the immediate aftermath, the SO2 was similar in location to the ash plume (figure 5). The Aviation Color Code was raised from Orange to Red during the eruption, but was later returned to Orange.

Figure 5. Ash movement forecasts shown for 6-hour intervals starting at 1142 LT (0142 UTC) on 29 August. (Read panels from left to right on both rows starting at the top left.) The ash (and/or SO2) movement was projected to advance to the NW, W, SW, and S at comparatively slow velocities. Abbreviations located below the forecast include SFC (ground surface) and FL (flight level, where FL100 would correspond to 10,000 ft). Courtesy of Darwin VAAC.

Videos. Several videos were taken of the 29 August eruption and post-eruption phases. One impressive video was made from a moving boat looking NE across Blanche bay, taken during daylight hours well after the initial violent Strombolian phase of the 29 August eruption. GVP was unable to establish direct contact with the videographers, Phil and Linda McNamara, leaving open questions about the video's acquisition time and other details. The video, originally posted on 5 September, had received over 6 million views by 8 September according to Daily Mail, perhaps owing to a sharp, loud explosion and shock wave that was recorded, followed by the impact of ballistic material into the bay between the boat and Tavurvur. Many lower quality versions of the video are now online containing misleading artifacts, but the one posted by Bacobjee (2014) was labeled HD (720p) and plays at a rate of 30 frames per second.

A compilation of video clips recorded by Christopher Hamilton (figure 6) from a boat, the Obelisk, located S of Tavurvur in Blanche Bay shows the progression of activity during the main explosive event (table 3). Hamilton stated that he was on board and asleep on the night of 29 August when he was "woken up by golf ball-sized pumice and heavy ash coming through the hatches of the boat." Hamilton recorded the activity, and provided GVP with additional footage not available online.

Figure 6. A set of still images from a video of the 29 August 2014 Tavurvur eruption at Rabaul captures different eruptive stages during both darkness and daylight. Images were taken from a video compilation of high-definition clips posted on Flickr (Hamilton, 2014).

Table 5. Christopher Hamilton's videos documenting Rabaul's 29 August eruption are briefly discussed in the text. Most of the described activity can be seen in both videos, but some activity for 0739 and 0750 was only present on the non-public video provided by Hamilton, along with other observations as noted. Still image designation refers to figure 6. All video times have been adjusted to local time. All heights are in altitude.

Time Still Image Video Details
0441 A Glowing fountain rose to ~0.7 km. Yellow center surrounded by massive zone of red ejections with many arcing ballistics. The provided video contains views of small discrete lingering ash clouds up to ~0.1 km in diameter. Main, larger ash plume difficult to distinguish and may have been largely outside the field of view. The cone's upper surfaces glowed red and yellow with the growth of spatter-fed lava flows.
0532 B Yellow center of columnar glowing fountain rose to ~0.5 km. Ash plume extended well beyond frame and portions moved rapidly upwards. Visible ash clouds progressively lightened from black to light gray overhead and were traversed by several lightning flashes.
0543 C Outstanding view of both Tavurvur and Rabaul town using wide angle lens. Reddish glow visible from cone rim to at least ~0.5 km. Gray ash plume rose to ~2.1 km and then curved left. In the provided video, the plume suddenly changed from gray below to white above at ~2.7 km elevation. Diffuse, gray ashfall returned to ground in far left and cone was covered with dusty light clouds.
0739 -- Thin, white cloud released. Summit hidden by Turanguna peak in forefront.
0750 -- Gray plume erupted to ~0.5 km. Reddish lava ejections formed ashfall. Cone was covered with lumpy cloudlike matter.
Unknown D Gray plume rose to ~0.8 km. Cone was covered in dense clouds.
0754 E Gray plume erupted to ~0.5 km and continued to progress upwards (in provided video) to ~0.9 km. Reddish lava ejections formed ashfall. Material descended the cone. Internal shockwave phenomenon (2 seconds later) moved slowly at ~17 m/s. Clouds crossed by shockwave to the left of cone appeared lighter in color.
0758 F Zoom of reddish lava ejections which spread outwards in sheet, before rapidly forming a volley of distinct ballistics. When these landed, they resulted in dusty ejecta on land and upward-jetting splashes of water in Blanche bay.

References. Bacobjee, 5 September 2014, Volcanic Eruption in Papua New Guinea, Youtube (URL: http://www.youtube.com/watch?v=BUREX8aFbMs) [accessed in November 2014]

Daily Mail, 8 September 2014, (URL: http://www.dailymail.co.uk/sciencetech/article-2747577/Holy-smokes-Watch-explosive-moment-volcano-erupts-triggers-SONIC-BOOM-sending-shockwaves-sky.html) [accessed in February 2015]

Giddings, T. E., Rusak, Z., & Fish, J., 2001, A transonic small-disturbance model for the propagation of weak shock waves in heterogeneous gases, Journal of Fluid Mechanics [accessed in February 2015]

Headlines America, 6 September 2014, (URL: http://www.headlinesamerica.com/holy-smoking-toledos-tourists-capture-video-of-volcano-erupting) [accessed in December 2014]

Hamilton, Christopher, 2 September 2014, Rabaul Volcanic Eruption, Flickr/Leah Chris (URL: http://www.flickr.com/photos/125506007@N06/14935764197/) [accessed in November 2014]

Nave, Carl R., 2014, Speed of Sound in Air, Hyperphysics, (URL: http://hyperphysics.phy-astr.gsu.edu/hbase/sound/souspe.html) [accessed in March 2015]

News.com.au, 29 August 2014, PNG Volcano Tavurvur eruption may disrupt Australian flights, News.com.au (URL: http://www.news.com.au/travel/travel-updates/png-volcano-tavurvur-eruption-may-disrupt-australian-flights/story-e6frfq80-1227040827996) [accessed in November 2014]

Revkin, AC, 4 September 2014, Dynamic Planet: Under the Volcano in Papua New Guinea, The New York Times/ Opinion Pages/ Dot Earth, (URL: http://dotearth.blogs.nytimes.com/2014/09/04/dynamic-planet-under-the-volcano-in-papua-new-guinea/) [accessed in February 2015]

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Rabaul Volcano Observatory, Department of Mineral Policy and Geohazards Management, Volcanological Observatory Geohazards Management Division, P.O. Box 386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC) (URL: http://www.bom.gov.au/info/vaac/); Jesse Allan and Adam Voiland, NASA Earth Observatory (URL: http://earthobservatory.nasa.gov); NASA MEASURES (URL: http://so2.gsfc.nasa.gov/); Simon Carn, Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931 USA (URL: http://www.volcarno.com) and Global Volcanism Program, Smithsonian Institution, National Museum of Natural History, Washington, DC; William C. Burton, US Geological Survey, 12201 Sunrise Valley Dr, Reston, Virginia 20192; Christopher Hamilton, CHPhotographic, (URL: www.chphotographic.com).

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local


Ongoing eruption with ash plumes to 11 km through August 2014

Download or Cite this Report

Sheveluch has been frequently active since 1980, remaining so through at least August 2014. Activity has included strong explosions that have ejected ash plumes high into the atmosphere, hot avalanches, lava flows, incandescence, fumarolic activity, and cycles of lava dome growth and destruction. Our previous report (BGVN 38:04) described activity through May 2013; this report summarizes subsequent activity through August 2014.

Based on visual observations and analyses of satellite data, the Kamchatka Volcanic Eruptions Response Team (KVERT) reported that from 31 May 2013 through August 2014, viscous lava continued to contribute to lava-dome growth which was accompanied by hot avalanches, incandescence, and fumarolic activity. Most weeks a thermal anomaly was detected on the lava dome. The lava flow direction varied between the NW, N, and NE flanks during May-mid-November 2013. During 22-29 November the flow from a new lava dome shifted to the NW flank of the older dome and continued through February 2014. During 4-11 April, the flow moved to the SE flank of the new dome. Ashfall and pyroclastic flows near the summit could be seen in satellite imagery on 31 January 2014 (figure 1). Some of the tallest reported plumes ejected ash to altitudes as high as 10-12 km (table 1).

Figure 1. Natural-color Landsat 8 images of Sheveluch collected on 31 January 2014. The image shows ash- and pyroclastic-flow deposits on the volcano's flanks. The pyroclastic flows were generated by collapses on a new lava dome, growing on the NW face of an older dome that had recently been the site of most activity. Courtesy of NASA Earth Observatory; images by Jesse Allen and Robert Simmon, using Landsat data from the USGS Earth Explorer.

Table 1.Notable explosive activity at Sheveluch compiled from KVERT and Tokyo VAAC reports, June 2013-August 2014. VAAC data were based on analyses of satellite imagery, notices from Yelizovo Airport (UHPP) and the Kamchatka Branch of Geophysical Services (KBGS; Russian Academy of Sciences). Explosions that ejected plumes to under 4 km altitude or were unverified (i.e., possible or uncertain cases) were omitted.

Dates Event Ash plume altitude (km)/ drift distance and direction Remarks
10 Jun 2013 Explosion (6.5 min) 8 --
22 Jun 2013 Two explosions; first (4 min) 6 / NW --
27 Jun 2013 Strong explosions 0710-0800 10-12 / SE, SW Aviation Color Code raised to Red, lowered to Orange later that day. ~2 mm ash deposits in Klyuchi, 50 km SW; ashfall also in Lazo village to the SW.
28 Jun 2013 Two explosions 6-7 --
29-30 Jun 2013 -- 5.5-6.4 / E, SE --
26 Jul 2013 Strong explosion 10 / 520 km SE --
29 Jul 2013 Explosions 6.1-6.4 --
05 Aug 2013 Explosion 6.5-7 / 50 km ESE --
10-11 Aug 2013 -- 7-7.5 --
09-17 Aug 2013 -- 5-7 / E, NE --
18 Oct 2013 Several explosions and plumes during 1506-1759 9-10 / SE Aviation Color Code raised to Red for a few hours. Lava dome continued to grow.
30 Oct-05 Nov 2013 Several strong explosions 7-10 / 200 km NE --
01-08 Nov 2013 Several strong explosions 7 / 290 km SE --
08-15 Nov 2013 Several strong explosions 7 --
22-29 Nov 2013 Moderate explosions -- New lava dome extruded onto NW part of older lava dome.
03 Dec 2013 Strong explosion 8-9 / NW, 200 km N Continuous hot avalanches, pyroclastic flows on SW and NW flanks. Color Code raised to Red for a few hours. Ashfall in Ivashka village.
29 Nov-31 Dec 2013 Moderate explosions -- New lava-dome extrusion continued.
10 Jan 2014 Moderate explosions 6 / 110 km ENE --
12-13 Jan 2014 Strong explosions 7-9 / ESE, 50 km WSW, 400 km SW New lava dome extrusion continued. Minor ashfall in Klyuchi village, 50 km SW.
20-22 Jan 2014 -- 7-8/300 km WNW --
23 Jan 2014 -- 7-8/N --
06-07 Feb 2014 Large explosion 9-10 Satellite image showed large ash cloud (240 x 180 km) over Sea of Okhotsk, 320 km WNW, at 4-5 km altitude. Pyroclastic flow on SW flank, 12 km long.
13 May 2014 -- 7-9.5 / 60-90 km NW --
26-27 May 2014 Explosion 3-10 / 850 km S; 800 km SSE --
30 Jun 2014 -- 7 --
05-08 Jul 2014 -- 11 --
18 Jul 2014 Explosion 8.2 --
09 Aug 2014 -- 4.6 --

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (Email: kvert@kscnet.ru, URL: http://www.kscnet.ru/ivs/); Tokyo Volcanic Ash Advisory Center (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); NASA Earth Observatory (URL:http://earthobservatory.nasa.gov/IOTD/view.php?id=8303).

Search Bulletin Archive by Publication Date


Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in the Selected Bulletin tab.


   

The default month and year is the latest issue available.

 Atmospheric Effects


The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

View Atmospheric Effects Reports

 Special Announcements


Special announcements of various kinds and obituaries.

View Special Announcements Reports

 Additional Reports


Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Turkey


False Report of Sea of Marmara Eruption


Africa (northeastern) and Red Sea


False Report of Somalia Eruption


Africa (eastern)


False Report of Elgon Eruption


Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


New Britain


Likuranga


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake

Kawio Barat


Mindanao


False Report of Mount Pinokis Eruption


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Mikura Seamount

Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Mongolia


Har-Togoo


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Ecuador


Altar


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge



 Special Announcements


Special Announcement Reports