Logo link to homepage

Report on Ol Doinyo Lengai (Tanzania) — October 1990

Bulletin of the Global Volcanism Network, vol. 15, no. 10 (October 1990)
Managing Editor: Lindsay McClelland.

Ol Doinyo Lengai (Tanzania) Continued summit lava production from several vents

Please cite this report as:

Global Volcanism Program, 1990. Report on Ol Doinyo Lengai (Tanzania). In: McClelland, L. (ed.), Bulletin of the Global Volcanism Network, 15:10. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199010-222120.

Volcano Profile |  Complete Bulletin


Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


A group of scientists visited . . . 7-8 August, and were the first to reach the crater floor since June-July 1988.

"Considerable activity in the N crater was observed between March and August, concentrated around the centers T5/T9 and at the E end of the T4/T7 ridge (figure 18). No vent opened S of the saddle between the two craters (M1M2), but lava continued to flow S and the area of lava occupying the floor of the S depression increased slightly. Emission of steam and sulfur fumes continued, particularly N and E of the crater walls and E rim. No eruption of lava on the crater walls or rim had occurred since the formation of features C1, D, and the cluster of cones at A3/A5 (all pre-1988; 13:01). However, the top of T5/T9... reached the level of the E crater rim.

"At 0830 on 7 August, when the party... reached the E crater rim, shimmering heat was observed rising from the top of T5/T9, and there was noise like ocean surf from a small vent on the E end of T4/T7. There was an occasional spatter of fine fragments as lava splashed out of the top of T14.

Figure (see Caption) Figure 18. Active crater at Ol Doinyo Lengai, 7 August 1990, looking NE (top) and SE (bottom). The stippled area represents fresh lava. Tracings of photos courtesy of C. Nyamweru.

"Two large cones, T14 and T14A, are located on the E edge of ridge T4/T7. On the N slope of T14A, younger, dark gray material was visible overlying the heavily weathered brown material that formed the surface of the ridge in May. When first seen at about 0830, T14 was pale gray to white, with a few small vertical cracks on its upper slopes. During the morning, the noise of moving lava continued, with some episodes of silence. By 1200, parts of the cone's top cracked and bulged when lava bubbles burst within it. Between 1240 and 1307, part of the upper slope of the cone collapsed and there was a relatively violent eruption from a SW-facing vent near the top of the cone. Liquid lava was ejected to 10 m above the top of the cone, and also spilled over the edge of the vent, 10 m above the surrounding crater floor.

"Vigorous activity continued for much of the afternoon; occasionally there were 7-10 bursts (sprays) of lava in a 20-second period. At times the lava was thrown up from the vent, and at others it surged over the edge. Periodically, three separate tongues of lava were visible, following each other down the slope of the cone. The flows did not extend any distance away from the base of the cone, and the volumes of lava erupted were very small. After about 1500, the rate of activity gradually slowed, but it continued until at least 1900, when several large clots of lava were thrown as much as 40 m W of T14 (onto the slopes of T14A). Observation ceased at about 2000 and resumed at 0730 on 8 August. Little overnight change was apparent. On the morning of the 8th, moving lava was audible deep below T14, shimmering heat rose from the open vent of T14A, and steam came from the W end of T4/T7 (the oldest part of this feature).

"The tallest cone, T5/T9, extended up 30 m to a single peak, without a large open vent. It had not changed since the 9 July overflight. The slopes were mostly pale grey to white, with slight darkening by fumes at the very top, from which shimmering heat was rising. An open vent over 2 m across (H6) was still visible on the N slope of T5/T9, but there was no sign of activity.

"A low dome or 'blister,' T15, was located a few meters from H6 and... was the source of shimmering heat and noise of moving lava. A flow (F18), that had escaped N and W from this vent had reached the W wall of the crater (probably within 1 or 2 days of the 7 August visit). This flow was smooth, mostly dark brown, and still slightly warm on the 7th; cracking sounds could still be heard from below its surface.

"Cone T10 was almost entirely covered by lava from T5/T9;

"No sign of new effusion was visible at cones T8 or T11. The upper slopes of T8 were stained by considerable amounts of sulfur, and partial collapse of a small section of its lower W slope had occurred. Steam and sulfur fumes were being emitted from T11. In the center of the cone, a hole 2 m across (base not visible) contained bright yellow-orange stalactites, some >50 cm long. The overhanging N slope of the cone had not changed much since late 1988.

"Strong fumaroles were found on the W wall (around D and A5), on the N wall (near C1), and on the E wall, where extensive sulfur staining was present. Small steam sources were also found on the walls of the S depression. In general, emission of steam was very strong . . . .

"The saddle between the two craters, M1/M2, had possibly widened with increased flow of lava from N to S. No vents have opened in the S depression. Patches of burned vegetation have resulted on the S slopes, probably set afire by the heat from lava when it flowed against the surrounding slope, as observed in November 1988."

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: C. Nyamweru, Kenyatta Univ.