Logo link to homepage

Report on Soufriere Hills (United Kingdom) — March 1996


Soufriere Hills

Bulletin of the Global Volcanism Network, vol. 21, no. 3 (March 1996)
Managing Editor: Richard Wunderman.

Soufriere Hills (United Kingdom) Escalating dome growth spawns pyroclastic flows and another evacuation

Please cite this report as:

Global Volcanism Program, 1996. Report on Soufriere Hills (United Kingdom) (Wunderman, R., ed.). Bulletin of the Global Volcanism Network, 21:3. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199603-360050



Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


During March ash plumes continued to blow over the Capital and environs, and the rate of dome extrusion escalated. Later, on 3 April, explosions at the dome and pyroclastic flows down the Tar River prompted an evacuation of the southern part of the island.

Seismicity during March from both rockfalls and deeper sources continued in a manner consistent with dome growth. Tremor was repeatedly recorded at Gages station. Although there were exceptions, deformation mainly continued as a shortening of line lengths equivalent to ~1 mm/day (similar to trends seen since mid-November). The chief exception was on the W flank (Amersham to Chances Steps line), which on March 11 showed a surprising 3 cm lengthening since last measured on February 19. This is a reversal of the shortening that occurred from October to late December on this line.

Numerous rockfalls and avalanches from the dome in early March chiefly appeared on the dome's SW and NW sides. Next, they were repeatedly seen on the NW but some also started in the dome's central area (week 2). Rockfalls then shifted from the dome's NW margin to the E margin (week 3). Later rockfalls descended the NW, W, and E margins (week 4).

Rapidly growing spines continued to be common during much of March. They were noted on the dome's SW (weeks 1 and 2) and NW (week 4). On the NW, one spine achieved the greatest absolute height of any yet seen. It extruded rapidly, rising 10 m over an interval of about one day on 26-27 March. Over a 24-hour interval beginning at 1600 on 21 March, another spine's vertical growth measured ~7 m.

The dome's topography was mapped during week 2 from Farrell's lookout (on the WNW). The resulting map allowed workers to estimate the dome's mid-March volume as ~6.7 x 106 m3, a value comparable to previous, cruder estimates made in the field. It appeared that the dome's growth rate increased 7- to 10-fold in the last few months. Specifically, the late-November and December rate was ~0.2-0.3 m3/second whereas the March rate was closer to 2 m3/sec. On 3 and 12 March the growing dome's summit elevations were 845 and 875 m, a 30 m rise in ~9 days. Later, on 20 March, a visit to Gages Wall revealed that, even though this sector had few rockfalls around the time of the visit, the dome's talus apron had grown to within ~15 m of the wall's top.

During week 2, fine ash carried from some larger rock falls was deposited on the upper W flanks. On 17 March, viewers on Farrell's lookout were enveloped in a warm ash cloud following a rockfall that occurred without a noticeable explosive component. That same day an explosion may have helped drive an ash column to 2,300 m.

Other relatively large ash clouds appeared repeatedly during late March and early April. On 27 March there were ash clouds generated at 0642, 0700, 0848, and 1725. The 0642 event produced an ash column that reached a height of 2,000-2,300 m and blew W blanketing areas in vicinity of the Capital. The 0642 event accompanied a seismic signal comprised of seven pulses in a 14-minute interval; the 0700 event generated a smaller ash column accompanied by three seismic pulses. Except for these intervals of unusual seismicity and frequent signals from large rockfalls, seismicity during the 24-hour interval prior to the 27 March events had been generally quiet. Helicopter observations shortly after the 0700 event disclosed that ash had been channeled to the E down a drainage called the Hot River Ghaut. Hot ash had traveled for ~1 km from the dome, igniting dead trees along its path. Observers witnessed the 0848 event, but it was much smaller and areally restricted.

Several other plumes on 31 March led to a nearly one-hour interval late that day when unusually intense seismicity registered at all the stations. The seismicity was correlated with ash plumes that blew W. On 1 April a helicopter flight confirmed the largest block-and-ash flows yet seen. Although runout distances were similar to those seen on 27 March (on the order of 1 km from the base of the Castle Peak dome), those on 1 April entrained bigger blocks and had a more widely dispersed dilute component that burned a broader swath of trees and foliage around the Tar River Soufriere (~1 km NE of Castle Peak's summit).

Until a small explosive event at 0652 on 3 April, the majority of the airborne ash was thought to have come from rockfalls and avalanches off the dome. This explosion, and several other significant ones the same day, discharged from a fissure on the dome's E flank, a spot that also appeared as the source of recent rockfalls. At various times on 3 April, continuous ash emissions came from the crater area. The activity continued to build during the day, with many small explosive seismic signals and continuous tremor recorded at the closest seismic station on Chances Peak.

At 1518, a pyroclastic flow occurred in the Tar River area. It traveled ~1.9 km down this drainage and burned vegetation and set fire to sulfur at the Tar River Soufriere. It also extended 1.9 km down the Hot River Valley (to where the road crosses the river), stopping ~400 m upslope of the Tar River Estate house. Although no inhabited areas were affected by the pyroclastic flow, the settlement of Long Ground lies ~2 km NE of Castle Peak's summit. The flow generated an ash plume that rose to ~6,700 m. Much of the ash blew N in light and variable winds. Other pyroclastic flows occurred at 1808 and 1818. These events, some of which were captured on NASA GOES satellite images, prompted scientists to note the possibility of further explosive eruptions during the next few days and to urge residents to move to the island's N end. The 3 April evacuation continued through at least 30 April.

Geological Summary. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), c/o Chief Minister's Office, PO Box 292, Plymouth, Montserrat (URL: http://www.mvo.ms/); NOAA/NESDIS Synoptic Analysis Branch (SAB), Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA.