Report on Stromboli (Italy) — October 2001

Bulletin of the Global Volcanism Network, vol. 26, no. 10 (October 2001)
Managing Editor: Richard Wunderman.

Stromboli (Italy) Major explosion at Stromboli kills a tourist on 20 October 2001

Please cite this report as:

Global Volcanism Program, 2001. Report on Stromboli (Italy). In: Wunderman, R (ed.), Bulletin of the Global Volcanism Network, 26:10. Smithsonian Institution. http://dx.doi.org/10.5479/si.GVP.BGVN200110-211040.

Volcano Profile |  Complete Bulletin |  Download PDF [future] |  Export Citation [future]


Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Continuing Strombolian activity resulted in crater-morphology changes during March-May 2001 (BGVN 26:07). Similar activity has continued at Stromboli (figure 67), with a major explosion occurring on 20 October.

On 20 October 2001 at 0237 ejecta from a major explosion at the active vents reached a group of tourists a few hundred meters away near Pizzo sopra La Fossa, severely injuring a woman who died a few days later at Messina hospital. On behalf of the Italian Civil Protection, Franco Barberi and others visited the crater on 21 October. The following is their report, including a summary of field observations, information provided by a Stromboli guide, and a brief examination of images recorded by a video camera at Pizzo sopra La Fossa managed by the Section of Catania of the Istituto Nazionale di Geofisica e Vulcanologia.

Figure (see Caption) Figure 67. Seismicity detected near the summit of Stromboli during May-early November 2001. The gray-shaded bars signify the number of recorded events per day; the much smaller solid-black bars signify saturating events (i.e. with ground velocity exceeding 100 µm/s). The line shows the daily average of tremor intensity derived from hourly 60-second samples. The seismic station is located 300 m from the craters at 800 m elevation. Courtesy of Jürg Alean and Roberto Carniel.

Major explosion on 20 October 2001. In the days preceding the explosion, since at least the afternoon of 16 October, Stromboli's activity was intense at crater 3 and less intense at craters 1 and 2. A strong explosion from crater 2 occurred at about 0100 on 17 October and was followed by a lingering prolonged incandescence within the crater indicating that magma was very near to the surface. The situation remained almost the same, with fluctuations, until the morning of 19 October, when activity decreased. It again gained vigor in the afternoon and during the following night, mostly from crater 1 and subordinately from crater 2. Activity at crater 3 was less frequent compared with that of the preceding days.

The major explosion at 0237 of 20 October is clearly visible on the recorded images. The ejected material was mostly made of large blocks of strongly altered old lava. At Pizzo sopra La Fossa, where the tourists were located, several blocks of these old lavas were observed, with a maximum size of 40 x 40 x 20 cm, and clear impact pits in the loose soil (a dozen over a surface of 40 m2). Fresh scoriaceous material was rare, making it difficult to assess whether any juvenile clasts were associated with emission of the solid blocks. Fresh scoriae were abundant descending the path that approaches crater 3. The guide confirmed that in the days preceding the accident, glowing scoriae from crater 3 landed on the path to the crater rim.

Examination of the freshly ejected material revealed two previously recognized pumice and scoria suites. Some fresh material showed the intermingling of black scoria and golden pumice characteristic of type "b" of the major explosions of Stromboli described in the background section below. The nature of emitted products indicates that the explosion of 20 October was of type "a." Both types of major explosions appear to have occurred within a couple of days.

The 20 October explosion produced a new crater hole, a few ten's of meters across, between craters 1 and 3 near a small pre-existing hornito. For a few hours after the explosion, activity remained high at crater 1 and some glowing scoria set fire to vegetation in the upper part of a neighboring small valley. On the morning of 21 October, the activity had returned to normal levels, with Strombolian explosions at about 20-minute intervals, mostly from crater 1.

Civil protection implications. Every year thousands of tourists climb Stromboli, attracted by its persistent activity. The Pizzo sopra La Fossa is an ideal site for observation, as it dominates the crater terrace hosting the active craters a few hundred meters below (see maps in BGVN 15:04). The sudden occurrence of major explosive bursts, with ejecta landing on Pizzo sopra La Fossa, represents a threat for these tourists. Accordingly, access to the crater zone is prohibited and it is forbidden to spend the night there. However, there is no apparent enforcement of the restrictions, and there are only a few warning notices at the beginning of the path. For many years Italian volcanologists have, in vain, suggested that local authorities build appropriate shelters at Pizzo sopra La Fossa, to allow tourists to observe the volcanic activity in reasonably safe conditions. The 20 October incident could have been avoided. For example, the tourists could have heeded the suggestion to immediately leave the zone, given by the guide, who found them at that dangerous site 4 hours before the explosion.

The search for possible geophysical and geochemical precursors of these major explosions continues. It remains the main objective of the volcanological research on Stromboli (Carapezza and Federico, 2000).

Background on petrology and eruption dynamics. Activity occurs mostly from three craters, conventionally named 1 to 3 from NE to SW. The craters are located at ~750 m elevation within the "crater terrace," a flat area in the upper part of Sciara del Fuoco, a depression cutting the NW flank of the volcano.

The ordinary persistent activity of the volcano (Strombolian), is characterized by continuous emission of steam and gas, frequent explosions of moderate energy, and a magma column at persistently high levels in the conduit that feeds the eruptive vents. During the normal Strombolian activity, explosions occur on average every 10-20 minutes and produce jets of gas, fragments of black, crystal-rich (~50% of phenocrysts), shoshonitic scoriae, and solid blocks of pre-existing lavas, usually strongly altered, ripped from the conduit walls. The jet height is around 200-300 m and ejecta fall mostly within the crater terrace without affecting the Pizzo sopra La Fossa zone and the access paths (Barberi and others, 1993).

This ordinary activity is periodically interrupted, on average twice a year, by more violent explosions that may be associated with lava-flow emission. Jets reach a height up to 500 m, and molten as well as solid fragments fall over an area with a radius of several hundred meters. The summit zone is frequently visited by tourists. Much rarer are the so-called "eruptive paroxysms" that occur on average every 5-15 years and may also affect the inhabited zones of the island (Stromboli and Ginostra villages) with showers of bombs and blocks, ash falls, glowing avalanches, and even small tsunamis (Barberi and others, 1993).

From the nature of the erupted products, two different types of major explosions have been identified at Stromboli (Barberi and others, 1993): a) events characterized by the emission of mainly solid old lava blocks, with subordinate fragments of new magma. They are probably produced by the sudden expansion of over-pressured gas pockets accumulated in proximity to the magma column in zones with obstructed conduits; b) sudden and violent lava fountains with high emission rates of vesiculated glowing magma fragments and minor solid blocks. During these events, in addition to the usual black scoriae of the ordinary Strombolian activity, and closely intermingled with them, are crystal poor (~10% of phenocrysts) golden pumices. The chemical compositions of the two types of lapilli are nearly identical, and the black scoria is interpreted as the degassed and largely crystallized equivalent of the golden pumice (Bertagnini and others, 1999; Metrich and others, 2001). Therefore, the major type "b" explosions seem generated by the injection of a discrete volume of deep, gas-rich, and largely liquid magma, into the cooler, crystal-rich, more viscous and degassed magma permanently present in the upper part of the eruptive system.

References. Barberi, F., Rosi, M., and Sodi, A., 1993, Volcanic hazard assessment at Stromboli based on review of historical data: Acta Vulcanol. 3, p.173-187.

Bertagnini, A., Coltelli, M., Landi, P., Pompilio, M., and Rosi, M., 1999, Violent explosions yield new insight into dynamics of Stromboli volcano: Eos, Transactions of the American Geophysical Union, v. 80, p. 633, 636.

Carapezza, M.L., and Federico, C., 2000, The contribution of fluid geochemistry to the volcano monitoring of Stromboli: J. Volcanol. Geoth. Res., v. 95, p. 227-245.

Metrich, N., Bertagnini, A., Landi, P., and Rosi, M., 2001, Crystallization driven by decompression and water loss at Stromboli volcano (Aeolian Islands, Italy): J. Petrol., v. 42, no. 8, p. 1471-1490.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small, 924-m-high island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period from about 13,000 to 5000 years ago was followed by formation of the modern Stromboli edifice. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5000 years ago as a result of the most recent of a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Franco Barberi, Dipartimento di Scienze Geologiche, Università di Roma Tre, Largo San L. Murialdo 1, 00146 Roma (Email: fbarbe@tin.it); Maria Luisa Carapezza, Gruppo Nazionale per la Vulcanologia, INGV, Via Nizza 128, 00198 Roma (Email: carapezza@ingv.it); Jürg Alean, Kantonsschule Zürcher Unterland, CH8180 Bülach, Switzerland (Email: lean@stromboli.net); Roberto Carniel, Dipartimento di Georisorse e Territorio, Università di Udine, via Cotonificio 114, I-33100 Udine, Italy (Email: carniel@dgt.uniud.it, URL: http://stromboli.net).