Logo link to homepage

Report on Etna (Italy) — March 1981

Scientific Event Alert Network Bulletin, vol. 6, no. 3 (March 1981)
Managing Editor: Lindsay McClelland.

Etna (Italy) Large lava flows cause severe damage

Please cite this report as:

Global Volcanism Program, 1981. Report on Etna (Italy). In: McClelland, L (ed.), Scientific Event Alert Network Bulletin, 6:3. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198103-211060.

Volcano Profile |  Complete Bulletin


Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


An eruption 17-23 March extruded lava from several fissures on the NNW flank. Initial estimates indicate that the main flow reached 7.5 km in length, lava flows covered an area of 6 km2, and 30-35 x 106 m3 of lava were extruded [but later calculations from topographic measurements by Murray (1982) yield 18 x 106 m³] at a rate of 58-70 m3/s. Damage was estimated at about $10 million. Of the 90 historic eruptions of Etna for which location data are available, only three (1614, 1764, and 1918) occurred on the NW or NNW flanks.

Etna began to erupt on 17 March after a 2-day swarm of about 500 earthquakes, including a M 4-5 event during the morning of 16 March. On 17 March at 1337 an eruption fissure opened at about 2,550 m [corrected from 2,250 m] above sea level on the NW flank, trending approximately NW-SE. Lava fountains rose 100-200 m from this fissure and lava flowed rapidly westward. In the next 4 hours, three more fissures opened, the first and third also trending NW, the second WNW. All showed strong lava fountaining and were the source of lava flows. As fissures formed at lower altitudes, those higher on the volcano ceased to be active.

At 1855 on 17 March, another fissure opened at 1800 m elevation on the NNW flank, trending NW at its upper end, but after a short distance changed direction to more directly downslope. A large lava flow that originated from this fissure traveled 5 km within 4 hours, cut a railroad and highway (at 730 m altitude) during the night, and crossed another railway line and road (at 680 m altitude) early on 18 March. The lava destroyed orchards and farm buildings, and passed very close to the village of Montelaguardia, forcing the evacuation of its 250 residents. The fissure propagated downslope to 1,300 m altitude at 1130 on 18 March. The lower section extruded a small lava flow that briefly threatened Randazzo (population 15,000) but did not force its evacuation. By 1630, the center of the main flow was more than 1 km wide and its front had reached 650 m altitude, 100 m from the bed of the Alcantara River.

At 2200, another fissure opened between 1,235 and 1,140 m altitude extruding flows that moved toward Randazzo. By this time, the system of eruptive fissures had a total length of about 7.5 km. The main flow reached the Alcantara River bed (600 m above sea level) on 19 March at 1100, while the flows extruded from the fissure between 1,235 and 1,140 m altitude continued to advance slowly. By noon on 20 March, this fissure was characterized by mild spatter ejection that continued to feed slow-moving lava flows. However, the main flow had nearly halted. Sporadic activity between 1235 and 1140 m continued 21-22 March, finally ending during the evening of the 23rd. The longest flow from this fissure stopped at 900 m elevation, 2 km from Randazzo. More than 25 small earthquakes were recorded on 23 March, centered around the eruption fissures.

Throughout the period of lava extrusion, more or less intense emission of sand-size tephra occurred from Bocca Nuova, enlarging it to the W. Strong winds caused flank ashfalls on 22 March [as the Northeast Crater briefly ejected juvenile cinders; Tanguy and Patané, 1984].

Further References. Murray, J.B., 1982, Les Déformations de l'Etna à la suite de l'eruption de Mars 1981: Bull. PIRPSEV, no. 57.

Sanderson, T.J.O., Berrino, G., Corrado, G., and Grimaldi, M., 1983, Ground deformation and gravity accompanying the March 1981 eruption of Mount Etna: JVGR v. 16, p. 299-316.

Guest, J.E., Kilburn, C.R.J., Pinkerton, H., and Duncan, J.M., 1987, The evolution of lava flow-fields: Observations of the 1981 and 1983 eruptions of Mt. Etna, Sicily: BV v. 49, p. 527-540.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: R. Romano, IIV; UPI; AP.