Logo link to homepage

Report on St. Helens (United States) — October 1983

Scientific Event Alert Network Bulletin, vol. 8, no. 10 (October 1983)
Managing Editor: Lindsay McClelland.

St. Helens (United States) Deformation, SO2 emission, and seismicity increase as lava extrusion pattern changes

Please cite this report as:

Global Volcanism Program, 1983. Report on St. Helens (United States). In: McClelland, L. (ed.), Scientific Event Alert Network Bulletin, 8:10. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198310-321050.

Volcano Profile |  Complete Bulletin


St. Helens

United States

46.2°N, 122.18°W; summit elev. 2549 m

All times are local (unless otherwise noted)


Growth of the composite lava dome continued through October. At the end of September, the pattern of lava extrusion began to change, with lava redirected southward along the margin of the active lobe. Examination of daily airphotos indicated that by 6 October a substantial area of uplift had developed along the S edge of the lobe and a spine was emerging from a point about 50 m WSW of the vent that had fed the active lobe since the beginning of May. The spine grew 1.5-2 m per day until 15 October, then its growth slowed to about 0.5 m/day for the next 2 weeks. The spine reached 30 m in height, 17 m higher than any other point on the dome. From the spine, a sharp, lateral ridge extended about 100 m NE. By 31 October, this feature had crumbled. The spine remained nearly intact, but had stopped growing and some crumbling had occurred.

As the spine grew, lava emerged from a "spreading center" just to the S, pushing the spine slowly NW. Lava advanced S and SE along the periphery of the May lobe at roughly 1-2 m/day through October, thickening this portion of the lobe by a factor of 4-5. As this area of the lobe grew, advance of the NE end of the lobe slowed and had nearly stagnated by the end of October.

Although deformation of the S and SE flanks of the dome stopped accelerating about 6 October as the spine began to emerge, outward movement of this part of the dome continued at high but relatively stable rates of as much as 120 cm/day through October as the active lobe advanced and thickened. The crater floor adjacent to the S and SE flanks of the dome also continued to deform slightly through October, with a maximum uplift of 6-8 cm and maximum horizontal strain of about 20 cm during the month.

SO2 emission averaged 75 ± 45 t/d in October. Several days of elevated SO2 emission 1-8 October (reaching 210 t/d on the 1st) accompanied the onset of the changed lava extrusion pattern on the dome. From 8 October through the end of the month, rates dropped to 30-80 t/d. Several small gas-and-ash ejections from an explosion pit near the summit of the dome continued to occur daily, elevating SO2 flux to 3-4 times background, usually for only a few minutes but occasionally for tens of minutes. Plumes were usually grayish-white and contained only a little tephra. Sand-size and occasionally cobble-size fragments fell near the vent, but only small quantities of very fine material were deposited on the crater rim.

Since November 1980, a drainage system has developed in the 1980 pyroclastic-flow deposits. In the late spring of 1983, steam was noted in the drainage system for the first time. A zone of six to eight small hot springs had developed near the N edge of the crater at the contact between hydrothermally altered ancestral dacite and the pyroclastic-flow deposits. Flow rates were typically less than 1 liter per second. Temperatures measured at the springs in September and on 26 October ranged from 76 to 91°C, pH was 7.1-8.2, and specific conductance was 3,300-5,800 mhos. Travertine was being deposited at one of the springs.

Seismic energy release declined in mid-September, but a gradual increase began in early October, leveling off about 9-10 October at roughly twice the late September rate. A small decrease in the slope of the energy release curve occurred in late October but poor weather may have caused instrumental interference. By early November, the mid-October rates had been regained. Little change in surface events was observed in October. In the summer, many surface seismic events were the result of seasonal avalanching from the crater walls, but in October most were caused by steam ejections.

Geologic Background. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago and has been the most active volcano in the Cascade Range during the Holocene. Prior to 2200 years ago, tephra, lava domes, and pyroclastic flows were erupted, forming the older St. Helens edifice, but few lava flows extended beyond the base of the volcano. The modern edifice was constructed during the last 2200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the north flank, and were witnessed by early settlers.

Information Contacts: D. Swanson, T. Casadevall, USGS CVO, Vancouver, WA; R. Norris, University of Washington.