Logo link to homepage

Report on White Island (New Zealand) — May 1987

Scientific Event Alert Network Bulletin, vol. 12, no. 5 (May 1987)
Managing Editor: Lindsay McClelland.

White Island (New Zealand) Ash/block eruptions; inflation; seismicity

Please cite this report as:

Global Volcanism Program, 1987. Report on White Island (New Zealand). In: McClelland, L. (ed.), Scientific Event Alert Network Bulletin, 12:5. Smithsonian Institution. https://doi.org/10.5479/si.GVP.SEAN198705-241040.

Volcano Profile |  Complete Bulletin


White Island

New Zealand

37.52°S, 177.18°E; summit elev. 321 m

All times are local (unless otherwise noted)


Eruptive activity 13-22 May was the most intense of 1987. New ash deposits on the island were voluminous (perhaps 104-105 m3). The largest explosive eruptions threw ballistic blocks S and SSE of Congress Crater, and were similar in magnitude to the 25 January event (SEAN 12:01). On 16 May at 2036, blocks were incandescent and the ejection was accompanied by a shock wave. Major block eruptions appear to have occurred some time after heavy rain on 18-19 May, and have been followed by intermittent ash eruptions. Ash and steam eruptions were reported on 18 and 21 May.

A levelling survey on 12 May showed that inflation had continued E of Congress Crater (in the Donald Mound area), with 7 mm of uplift since mid-April and a total of 28 mm since 3 February. The area NW of Donald Mound, within 100 m of Congress Crater, continued to subside rapidly, falling 58 mm over the last year. Ground oscillations were observed during the levelling measurements, ~1 minute before an eruption. At 1134, an ash pulse was vigorously emitted from a vent in Congress Crater, forming a brown column. Lapilli of up to 50 mm were ejected and fell as far as 50 m from the rim of the 1978 crater complex. Tephra deposited prior to 12 May consisted of well-sorted lithic blocks and lapilli.

An aerial survey on 22 May showed that new, thick, light gray ash covered most of the E end of the island. A lobe of ashfall extended over the N crater wall, into the sea (N of Shark Bay). Blocks littered the flat SE of Donald Mound and were most abundant at the foot of the S crater wall. Impact craters were most abundant on the flatter slopes 60 m above the main crater floor. Blocks and impact craters extended down the S margin of the main crater floor.

Moderate medium-frequency tremor began 3 May and persisted until about 1200 on 22 May. Peak daily amplitude ranged from 11 to 40 mm. Some envelopes of pure harmonic tremor were recorded, especially on 13 May. "Strong" tremor was recorded during the 8.5 hours before tremor ceased on 22 May and larger E-type earthquake sequences occurred at both the commencement and cessation of the strong tremor. In the first 3 hours following the end of tremor, 100 C-type (medium-frequency) earthquakes occurred, the largest about M 1.5. Since 7 April, 2-30 low-frequency (B-type) volcanic earthquakes occurred/day, while high-frequency events (A-type) were rare. E-type eruption sequences had been recorded since 10 April and 18 were recorded 12-22 May, with the largest on 20 May at 2215. Two of the recorded E-type events were correlated with observed eruptions.

Geologic Background. Uninhabited 2 x 2.4 km White Island, one of New Zealand's most active volcanoes, is the emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes; the summit crater appears to be breached to the SE, because the shoreline corresponds to the level of several notches in the SE crater wall. Volckner Rocks, four sea stacks that are remnants of a lava dome, lie 5 km NNE. Intermittent moderate phreatomagmatic and strombolian eruptions have occurred throughout the short historical period beginning in 1826, but its activity also forms a prominent part of Maori legends. Formation of many new vents during the 19th and 20th centuries has produced rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project.

Information Contacts: J. Cole, Univ of Canterbury, Christchurch; I. Nairn and B. Scott, NZGS Rotorua.