Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Fuego (Guatemala) Ongoing ash plume explosions and block avalanches, April-September 2019

Erta Ale (Ethiopia) Continued summit activity and lava flow outbreaks during April-October 2019

Karymsky (Russia) Moderate explosive activity with ash plumes through 24 September 2019

Shishaldin (United States) Active lava lake and spattering on 23 July 2019; minor explosions and lava fountaining on 17 August

Klyuchevskoy (Russia) Ongoing weak thermal anomalies during July-September 2019, but no ash plumes after 1 August

Heard (Australia) Ongoing thermal anomalies at the summit crater during April-September 2019

Dukono (Indonesia) Eruption with frequent ash plumes continues through September 2019

Poas (Costa Rica) Occasional phreatic explosions continue through September 2019

Etna (Italy) Five lava flows and numerous ash plumes and Strombolian explosions, April-September 2019

Ubinas (Peru) Intermittent ash explosions in June-August 2019

Santa Maria (Guatemala) Persistent explosions with local ashfall, March-August 2019; frequent lahars during June; increased explosions in early July

Stromboli (Italy) Major explosions on 3 July and 28 August 2019; hiker killed by ejecta



Fuego (Guatemala) — September 2019 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Ongoing ash plume explosions and block avalanches, April-September 2019

Guatemala's Volcán de Fuego was continuously active through September 2019; it has been erupting vigorously since 2002 with historical observations of eruptions dating back to 1531. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars. Large explosions with hundreds of fatalities occurred during 3-5 June 2018; after a brief pause, significant activity resumed and continued during April-September 2019, the period covered in this report. Reports are provided by the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH) and the National Office of Disaster Management (CONRED); aviation alerts of ash plumes are issued by the Washington Volcanic Ash Advisory Center (VAAC). Satellite data from NASA and other sources provide valuable information about heat flow and gas emissions.

Daily activity continued at a high level throughout April-September 2019 (table 19) with multiple ash explosions every hour, incandescent ejecta reaching hundreds of meters above the summit sending block avalanches down multiple ravines, and ash falling on communities on the SW flank and beyond. During April and part of May a lava flow was also active in the Seca ravine. Although explosive activity remained at a high level throughout the period, thermal activity began a decline in May that continued through September, noticeable in both the MIROVA radiative power data (figure 117), and monthly images of MODVOLC thermal alerts (figure 118).

Table 19. Activity summary by month for Fuego with information compiled from INSIVUMEH daily reports.

Month Fumarole Color, Height (m), Direction Ash Explosions per hour Ash Plume Heights (km) Ash Plume Distance (km) and Direction Incandescent Ejecta Height (m) Ravines affected by avalanche blocks Sounds and Vibrations Villages Reporting ashfall Lava Flow activity
Apr 2019 Gray and White, 4,100-4,500, W-SW 10-25 4.3-5.0 10-25, W-SW-E-N 100-450 Seca, Taniluyá, Ceniza, Trinidad, Las Lajas and Honda Weak to moderate rumbles, shock waves rattled roofs, train engine noises every 5-20 minutes Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Los Yucales, Finca Palo Verde, Sangre de Cristo, San Pedro Yepocapa, La Rochela, Ceilán, El Rodeo, Alotenango, Ciudad Vieja, Osuna Active flow in Seca ravine, 200-800 m long
May 2019 Gray and White, 4,200-4,500, W-SW-S 12-26 4.5-4.9 10-30, W-SW-S-SE 200-450 Seca, Taniluyá, Ceniza, Trinidad, El Jute, Las Lajas and Honda Weak to moderate rumbles, shock waves rattled roofs, train engine noises at regular intervals Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Los Yucales, Finca Palo Verde, Sangre de Cristo, San Pedro Yepocapa, Ceilán, La Rochela Active flow in Seca ravine, 300-1,000 m
Jun 2019 White, 4,100-4,500, E-SE-N-W-SW 10-24 4.4-4.8 10-30, W-SW-NW-N-E-SE 200-450 Seca, Taniluyá, Ceniza, Trinidad, El Jute, Las Lajas and Honda Weak to moderate rumbles, shock waves rattled roofs, train engine noises every 5-10 minutes Sangre de Cristo, Yepocapa, Morelia, Santa Sofía, Panimache I and II, El Porvenir, Finca Palo Verde, La Rochela, Ceilán, Alotenango, San Miguel Dueñas --
Jul 2019 White, 4,100-4,500, W-SW 8-25 4.3-4.8 10-25, W-SW 150-450 Seca, Taniluyá, Ceniza, Trinidad, El Jute, Las Lajas and Honda Weak to moderate rumbles, shock waves rattled roofs, train engine noises every 5-15 minutes Morelia, Santa Sofía, El Porvenir, Finca Palo Verde, San Pedro Yepocapa, Panimaché I y II, Sangre de Cristo, La Rochela, Ceilán --
Aug 2019 White, 4,100-4,500, W-SW 10-23 4.4-4.8 10-25 W-SW 200-400 Seca, Taniluyá, Ceniza, Trinidad, El Jute, Las Lajas y Honda Weak to moderate rumbles, shock waves rattle windows; train engine noises every 3-13 minutes Morelia, Santa Sofía, El Porvenir, Finca Palo Verde, San Pedro Yepocapa, Panimaché I y II, Sangre de Cristo, and others Flow in Seca ravine, 13 Aug 75-100 m
Sep 2019 White, 4,100-4,400, W-SW 5-22 4.4-4.8 10-20 W-SW 200-400 Seca, Taniluyá, Ceniza, Trinidad, El Jute, Las Lajas and Honda Weak to moderate rumbles, shock waves rattled roofs, train engine noises every 3-10 minutes Panimaché I, Panimache II villages,Morelia, Santa Sofía, Palo Verde estate, San Pedro Yepocapa, Sangre de Cristo, El Porvenir, La Rochela villages and Ceylon --
Figure (see Caption) Figure 117. Thermal activity at Fuego increased steadily from January through April 2019, and then began a gradual decline through September as seen in this MIROVA graph of Radiative Power. The active lava flow in the Seca Ravine in April and early May likely contributed to the higher heat values during that time. Courtesy of MIROVA.
Figure (see Caption) Figure 118. A steady decline in thermal activity at Fuego is apparent in the MODVOLC thermal alert images for April-September 2019. During April and early May a lava flow was active in the Seca ravine that extended as far as 1,000 m from the summit. Courtesy of MODVOLC.

Activity increased at the very end of March 2019. The rate of explosions increased to 14-32 events per hour by 31 March; ash plumes rose to 5 km altitude and resulted in ashfall in numerous nearby communities. An early morning lava flow that day reached 800 m down the Seca ravine. Continuous white and gray fumarolic plumes reached 4.1 to 4.4 km altitude during April 2019 and drifted generally W and SW. There were about 15-20 ash-bearing explosions per hour; the highest rate of 25 per hour occurred on 10 April. Plume altitudes were below 4.8 km for most of the month; on 28 and 29 April they rose to 5.0 and 4.9 km. For most of the month they drifted W and SW; the wind direction changed to the E during 10-16 April. Most days of the month ashfall was reported in the communities of Panimaché I y II, Morelia, Santa Sofía, Finca Palo Verde, San Pedro Yepocapa, Sangre de Cristo and El Porvenir on the W and SW flank. During 10-13 April when the wind direction changed to easterly, communities to the NE, E and SE of Alotenango, Ciudad Vieja, La Reunión, La Rochela, El Rodeo, Osuna, Ceilán and others on the N and E flanks were affected by ashfall. The Washington VAAC issued multiple daily advisories on 18 days in April, identifying short-lived ash plumes drifting with the prevailing winds.

Incandescent ejecta rose 200-300 m above the summit on most days (figure 119). During 23-25 April, ejecta rose 300-450 m above the summit. Six ravines were affected by the incandescent avalanche blocks nearly every day: the Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, and Honda. The explosions caused rumbles, shock waves that rattled roofs, and sounds similar to a train locomotive at intervals of 5-20 minutes in nearby communities throughout the month. A lava flow was present in the Seca (Santa Teresa) ravine for most of the month; its length varied from 200 to 800 m. Special reports of lahars were issued seven times during April. On 4 April a moderate lahar descended the Seca ravine carrying centimeter- to meter-sized blocks, tree trunks and branches. During 9-11 April nine lahars were recorded in the Las Lajas, El Jute, Seca, Rio Mineral, Taniluya, and Ceniza ravines. The largest flows were 20 m wide and 3 m deep carrying blocks and debris up to 3 m in diameter; they were warm and thick with a strong sulfurous odor. Two more lahars were reported on 18 April in the Taniluya and Ceniza ravines carrying 1-2 m sized blocks in a warm, sulfurous flow.

Figure (see Caption) Figure 119. Incandescent ejecta rose several hundred meters above the summit of Fuego on 30 April 2019 and sent large blocks down multiple ravines, typical activity for the entire month. Courtesy of CONRED (Boletín Informativo No. 1242019, martes, 30 de abril 2019, VOLCÁN DE FUEGO BAJO CONSTANTE MONITOREO).

During May 2019, primarily white fumaroles rose to 4.2-4.5 km altitude and drifted W, SW, and S; gray fumaroles were reported only during the first few days of the month. Generally, 15-20 ash explosions per hour occurred; the maximum was 26 on 17 May. Ash plume heights ranged from 4.5-4.8 km altitude nearly every day, drifting 10-25 km primarily W, SW, and S throughout the month, except for 6-8 May when plumes drifted NW and 18-19 May when wind directions changed and sent ash S and SE. Plumes drifted 25-30 km SE, S, and SW on 19 May. Ashfall was reported daily from communities on the W flank including Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Los Yucales, Finca Palo Verde, Sangre de Cristo, and San Pedro Yepocapa, among others, and also from the E side including Ceilán and La Rochela when the wind direction changed. The Washington VAAC issued multiple daily ash advisories on 19 days during May.

Incandescent Strombolian activity continued sending ejecta 200-300 m above the summit during the first half of the month and 300-450 m high during the latter half (figure 120). Seven major ravines, the Seca, Taniluyá, Ceniza, Trinidad, El Jute, Las Lajas, and Honda were affected by block avalanches throughout the month. Intermittent explosions caused rumbles, shock waves that rattled roofs, and sounds similar to a train locomotive at frequent intervals on most days. The lava flow in the Seca ravine advanced from 300 m length on 2 May to 1,000 m long on 9 May. It was reported as being 500 m long on 18 May but was not active after that date. Numerous lahars descended multiple ravines in May. INSIVUMEH issued nine special reports of lahar activity on 3, 14, 16, 20, 23, and 27-29 May. They affected the Las Lajas, Ceniza, El Jute, El Mineral, and Seca ravines. The thick, pasty flows contained blocks of various sizes up to 3 m in diameter along with tree trunks and branches. Several were warm with a sulfurous smell (figure 121). SO2 emissions remained low throughout April-September with only minor emissions recorded in satellite data on 1 April and 9 May 2019 (figure 122).

Figure (see Caption) Figure 120. Incandescent ejecta at Fuego was captured on 27 May 2019 under a starry night sky by photographer Diego Rizzo in a 25-second exposure. Block avalanches are seen descending several ravines. NASA used the photo as an Astronomy Photo of the day and noted that the central plane of the Milky Way galaxy runs diagonally from the upper left, with a fleeting meteor just below, and the trail of a satellite to the upper right. The planet Jupiter also appears toward the upper left, with the bright star Antares just to its right. Much of the land and the sky were captured together in a single 25-second exposure taken in mid-April from the side of Acatenango volcano; the meteor was captured in a similar frame taken about 30 minutes earlier and added to this image digitally. Courtesy of NASA Astronomy Picture of the Day, copyright by Diego Rizzo.
Figure (see Caption) Figure 121. Lahars were reported at Fuego nine separate times during May 2019. A steaming lahar descends a ravine at Fuego on 11 May 2019 (top). The Santa Teresa Canyon was clogged with debris from numerous past lahars on 22 May 2019. INSIVUMEH monitors the ravines continuously during the rainy season. Courtesy of CONRED (Boletín Informativo No. 1382019, sábado, 11 de mayo 2019, LLUVIAS GENERAN DESCENSO DE LAHARES EN EL VOLCÁN DE FUEGO and Boletín Informativo No. 1562019, miércoles, 22 de mayo 2019, SE REGISTRA DESCENSO DE LAHARES MODERADOS EN EL VOLCÁN DE FUEGO).
Figure (see Caption) Figure 122. Weak SO2 emissions were recorded from Fuego on 1 April and 9 May 2019 by the TROPOMI instrument on the Sentinel 5P satellite. Courtesy of NASA Goddard Space Flight Center.

The fumarolic plumes were only white during June 2019, rising to 4.1-4.5 km altitude daily, drifting W or SW except during the first days of the month when variable winds sent the steam N, E, and SE. Explosions with ash took place 15-20 times per hour on most days with plumes rising to 4.5-4.8 km altitude and drifting primarily W or SW except for the first days of the month (figure 123). On most days, ash plumes drifted 15-20 km W and SW, except during 2-7 June when winds sent ash E, SE, N, and NW. Ashfall was reported virtually every day in Sangre de Cristo, Yepocapa, Morelia, Santa Sofía, and Panimache I and II. In addition, the communities of El Porvenir, Los Yucales, and Finca Palo Verde reported ashfall several days each week. During 2, 4, and 7 June, the N and SE winds caused ash to fall in Alotenango and San Miguel Dueñas. The Washington VAAC issued ash advisories on 15 days during June.

Figure (see Caption) Figure 123. Emissions of both steam and ash rose from Fuego on 11 June 2019. Courtesy of Paul A. Wallace, University of Liverpool.

The height of the Strombolian ejecta varied from 200-300 m above the summit on many days in June , but also was sometimes stronger, rising 300-450 m. While block avalanches were reported in all seven barrancas (ravines) more than once (Seca, Taniluyá, Ceniza, Trinidad, El Jute, Las Lajas and Honda), on all days they were reported in the Seca, Taniluya, Ceniza, and Trinidad. Weak to moderate rumbles and shock waves rattled roofs every day, and train engine noises were heard every 5-10 minutes. Seven special reports of lahars were issued on days 2, 11, 21-23, and 30. They affected the Las Lajas, El Jute, Seca, El Mineral, and Ceniza ravines with thick, pasty flows containing blocks 1-3 m in size, shaking the ground as they flowed downstream.

During July 2019, white steam plumes rose daily from the summit of Fuego to an altitude of 4.1-4.3 km and drifted W and SW; higher plumes on 30 and 31 July rose to 4.5 km altitude. Fifteen to twenty ash explosions per hour were typical throughout the month and produced ash plumes that rose to 4.3-4.8 km altitude and drifted SW and W for 10-25 km before dissipating (figure 124). Near-daily ashfall was reported in Morelia, Santa Sofía, El Porvenir, Finca Palo Verde, San Pedro Yepocapa, Panimaché I y II, and Sangre de Cristo; La Rochela and Ceilán also reported ash on 4 and 6 July. Incandescent ejecta height varied from 150-450 m above the summit from day to day, sending block avalanches down all seven ravines on many days. Weak to moderate rumbles and shock waves rattled roofs every day, and train engine noises were heard every 5-15 minutes. On 19 July noises and vibrations were heard and felt 25 km away. Only one lahar was reported on 12 July in the Las Lajas ravine. It was warm, with a sulfurous odor, and carried volcanic ash, sand, and blocks 1-3 m in diameter that shook the ground as they flowed downstream. The Washington VAAC issued ash advisories on 13 days during July.

Figure (see Caption) Figure 124. Steam-and-ash plumes rose from Fuego on 12 July 2019 in this image taken at dawn from Villa Flores San Miguel Petapa. Courtesy of Alex Cruz (cropped and color adjusted from original).

White steam plumes continued during August 2019, rising to an altitude of 4.1-4.5 km and drifting W and SW daily. Ash-bearing explosions continued also at a rate of about 15-20 per hour throughout the month, rising most days to between 4.5 and 4.7 km altitude. They drifted 15-20 km W or SW nearly every day before dissipating. Every day during the month, ashfall was reported in Morelia, Santa Sofía, El Porvenir, Finca Palo Verde, San Pedro Yepocapa, Panimaché I y II, Sangre de Cristo, and other communities on the SW flank. The Washington VAAC reported ash plumes at Fuego on 15 days during August (figure 125).

Figure (see Caption) Figure 125. An ash emission at Fuego was recorded on 22 August 2019. Courtesy of William Chigna.

Incandescent ejecta also rose every day during August 2019 to 200-300 m above the summit, a few days were reported to 350-400 m. Every day, block avalanches descended the Seca, Taniluyá, Ceniza, and Trinidad ravines; most days blocks also traveled down the Las Lajas and Honda ravines, and many days they were also reported in the El Jute ravine (figure 126). Every 5-10 minutes, every day, weak and moderate rumbles sounding like a train engine shook buildings and rattled roofs in the nearby villages. On 13 August a small lava flow, 75-100 m long, was reported in the Seca ravine. Six lahars were reported on 3 August. They occurred in the Santa Teresa, Mineral, Ceniza, El Jute, and Las Lajas ravines. The thick pasty flows carried blocks 1-2 m in diameter, tree trunks and branches, and disrupted the roads between Siquinala and San Andres Osuna and El rodeo and El Zapote. The next day two more occurred in the Seca and Mineral drainages. From 17-20 August, six more lahars occurred, most in the Las Lajas drainage, but also in the Seca, Mineral and Ceniza ravines.

Figure (see Caption) Figure 126. Incandescent blocks traveled down several ravines at Fuego on 2 August 2019. Courtesy of Publinews Guatamala.

There were no changes in the steam fumaroles during September 2019; plumes seldom rose over 4.3 km altitude and continued drifting W and SW. The ash explosion rate decreased somewhat and rates of 5-10 per hour were typical on many days. Ash plume heights remained constant around 4.5-4.7 km altitude most days, also drifting W and SW 15-20 km before dissipating (figure 127). While ashfall was reported daily in Panimaché I, Morelia, Santa Sofía, Porvenir, Palo Verde, Yepocapa and other communities on the SW flank for the first half of the month, it grew more intermittent during the second half of September. South-directed winds deposited ash on La Rochela villages and Ceylon on 25 September. The Washington VAAC issued aviation ash advisories on 11 days during the month. Strombolian ejecta mostly rose 200-300 m above the summit; occasionally it reached 300-400 m. On most days, block avalanches descended the Seca, Taniluyá, Ceniza, Trinidad, and Las Lajas ravines; occasionally they were reported in the El Jute and Honda ravines as well. Every day, rumbles and shock waves shook roofs in nearby villages every 5-10 minutes. Lahars were reported twice, on 2 ad 9 September, in the Seca and Rio Mineral drainages both days, dragging branches, tree trunks and blocks up to 2 m in diameter.

Figure (see Caption) Figure 127. An ash plume drifts from the summit of Fuego on 16 September 2019, seen from the La Reunion webcam. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán de Fuego (1402-09), Semana del 14 al 20 de septiembre de 2,019).

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php); NASA Astronomy Picture of the day (URL: https://apod.nasa.gov/apod/ap190527.html); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Paul A. Wallace, Lecturer in Geology, University of Liverpool, Liverpool England (URL: https://www.liverpool.ac.uk/environmental-sciences/staff/paul-wallace/, Twitter: @Paul_A_Wallace, URL: https://twitter.com/Paul_A_Wallace/status/1138527752963993600); Alex Cruz, Photojournalist, Guatemala (Twitter: @ACruz_elP, URL: https://twitter.com/ACruz_elP/status/1149690904023691264/photo/1); William Chigna, Guatemala (Twitter: @William_Chigna, URL: https://twitter.com/William_Chigna/status/1164575009966370816); Publinews Guatemala, (Twitter: @PublinewsGT, URL: https://twitter.com/PublinewsGT/status/1157288917365903360).


Erta Ale (Ethiopia) — November 2019 Citation iconCite this Report

Erta Ale

Ethiopia

13.6°N, 40.67°E; summit elev. 613 m

All times are local (unless otherwise noted)


Continued summit activity and lava flow outbreaks during April-October 2019

Erta Ale, located in Ethiopia, contains multiple active pit craters both within the summit and the southeast calderas. On 17 January 2017 the active lava lake displayed intense spattering, fountaining, and rim overflows with lava flows that traveled as far as 1 km, forming a lava flow field. During April 2018 through March 2019 minor activity continued in both the summit and southeast calderas, and along the active lava flow to the E (BGVN 44:04). This report updates volcanism from April through October 2019. Information primarily comes from infrared satellite images and MODIS data.

Continued lava flow breakouts occurred from April through October 2019. On 4 May 2019 a lava flow outbreak was observed in satellite imagery NE of the summit caldera (figure 92). This outbreak continued to appear in clear-weather thermal satellite images through 13 June when it was seen south of its original location (figure 93). Faint incandescence is observed at the summit caldera between June and October 2019, though it is more pronounced in the months of August through October. On 28 June a second smaller lava flow outbreak occurred within 3.8 km of the summit location. The two lava flow outbreaks remained active at least through 18 June. The distal NE lava flow does not appear in very similar images from 17 August or 16 September 2019, but three proximal thermal anomalies are seen in the southeastern caldera within 4 km of the summit. The thermal anomalies remained within 5 km through October 2019.

Figure (see Caption) Figure 92. Sentinel-2 thermal satellite imagery of Erta Ale volcanism on 4 May 2019 with thermal anomalies observed to the northeast of the summit caldera (bright orange). White plumes are seen rising from the summit with faint incandescence. Sentinel-2 satellite images with "False Color (Urban)" (bands 12, 11, 4) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 93. Sentinel-2 thermal satellite imagery of Erta Ale volcanism between 8 June and 21 October 2019. Lava flow outbreaks initially occur in the distal NE part of the lava flow, which then migrates slightly south. A second lava flow outbreak is seen less than 5 km of the summit caldera. Faint incandescence is seen at the summit caldera in each of these images. Sentinel-2 satellite images with "False Color (Urban)" (bands 12, 11, 4) rendering; courtesy of Sentinel Hub Playground.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed consistently high-power thermal anomalies during this reporting period (figure 94). Through July 2019 these thermal anomalies were detected at distances greater than 5 km from the summit. In early August 2019 there was an abrupt decrease in the distance that continued through late October 2019 (figure 94); this likely indicates when the distal NE outbreak ended and lava emissions from the closer SE locations increased (see satellite images in figure 93). The distance changes of MODIS thermal anomalies from the summit seen in MIROVA are corroborated by MODVOLC data, which show no distal NE thermal alert pixels after July 2019 (figure 95).

Figure (see Caption) Figure 94. Two time-series plots of thermal anomalies from Erta Ale for the year ending on 24 October 2019 as recorded by the MIROVA system. The top plot (A) shows that the thermal anomalies were consistently strong (measured in log radiative power) and occurred frequently. The lower plot (B) shows these anomalies as function of distance from the summit, including a sudden decrease in the distance (measured in kilometers) in early August 2019 that reflects a change in lava flow outbreak location. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Locations of the thermal alerts at Erta Ale during November 2018-July 2019 (top) and August-October 2019 (bottom) identified by the MODVOLC system. A majority of the proximal (less than 5 km from the summit) thermal anomalies are found within the southeastern calderas while the distal (beyond 5 km) anomalies are northeast of the summit. Note that the distal NE anomalies are not present after July 2019. Two thermal alerts mark the location of the summit caldera (bottom map). Data courtesy of HIGP-MODVOLC Thermal Alerts System.

Geologic Background. Erta Ale is an isolated basaltic shield that is the most active volcano in Ethiopia. The broad, 50-km-wide edifice rises more than 600 m from below sea level in the barren Danakil depression. Erta Ale is the namesake and most prominent feature of the Erta Ale Range. The volcano contains a 0.7 x 1.6 km, elliptical summit crater housing steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Fresh-looking basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera is renowned for one, or sometimes two long-term lava lakes that have been active since at least 1967, or possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Karymsky (Russia) — November 2019 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Moderate explosive activity with ash plumes through 24 September 2019

Eruptive activity at Karymsky has been frequent since 1996, with moderate ash explosions, gas-and-steam emissions, and thermal anomalies. The latest eruptive period began in mid-February 2019 (BGVN 44:05) when explosions resumed after more than four months of quiet, producing an ash plume that extended 55 km downwind. Intermittent explosive activity continued until 24 September 2019. The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT).

Ash plumes were reported during the second half of February and the first half of March 2019 (BGVN 44:05). During May-September 2019 similar activity continued, with ash plumes being generated at least every few days (table 12). Though not included in the weekly KVERT report as notable events, obvious ash plumes were also seen in Sentinel-2 imagery on 22 July and photographed from an aircraft on 23 July. Volcanologists doing fieldwork on 14 August observed an ash plume rising to 5 km altitude (figure 44). A week later, during 20-22 August, explosions generated ash plumes as high as 6 km altitude that were visible in satellite imagery (figure 45). Although not noted in KVERT reports, a photo from 9 September showed a plume blowing downwind directly from the summit crater (figure 46). No significant ash plumes were reported by KVERT after 24 August, but the last ash explosion was recorded on 24 September.

Table 12. Notable ash plumes reported from Karymsky during May-October 2019. All dates are in UTC. Courtesy of KVERT.

Date Observations
06-07 May 2019 Gas-and-steam plume containing ash rose to 2-2.2 km in altitude and drifted 105 km SE and SW.
21 May 2019 Ash plume drifted 9 km SW.
24 May 2019 Ash plume identified in satellite images drifted 45 km NE.
13-17 Jul 2019 Ash plumes drifted 60 km in multiple directions.
25 Jul 2019 Ash plume drifted 134 km SE.
26 Jul 2019 Ash plume drifted 60 km SE.
03-05 Aug 2019 Ash plumes drifted 180 km SE and NW.
06 Aug 2019 Ash plume rose 2-2.5 km in altitude and drifted about 17 km NW.
14 Aug 2019 Volcanologists observed explosions and ash plumes that rose to 5 km altitude. Satellite images showed ash plumes drifting E and SSE that same day.
20-22 Aug 2019 Ash plumes visible in satellite images drifted 500 km SW. Explosions on 21 August produced ash plumes to 6 km altitude.
23-24 Aug 2019 Ash plumes drifted 51 km SE.
Figure (see Caption) Figure 44. Aerial photo showing an ash plume rising to 5 km altitude from Karymsky 14 August 2019. Photo by D. Melnikov; courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 45. Satellite image from Sentinel-2 (natural color) of an ash plume at Karymsky on 21 August 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 46. Photo showing explosive activity at Karymsky at 1920 UTC on 9 September 2019. Photo by A. Manevich; courtesy of IVS FEB RAS, KVERT.

During May-October 2019, thermal anomalies were detected with the MODIS satellite instruments analyzed using the MODVOLC algorithm only on 25 July (2 pixels) and 21 August (10 pixels). Consistent with both observations, KVERT noted ash explosions on those dates. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, detected numerous hotspots in May, none in June, 3 in July, 5 in August, and none in September or October. KVERT reported that a thermal anomaly was visible in satellite images on most, if not all, days when not obscured by clouds.

The Aviation Color Code remained at Orange (the second highest level on a four-color scale) until 3 October, when KVERT reduced it to Yellow, after which moderate gas-and-steam activity continued.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Shishaldin (United States) — October 2019 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Active lava lake and spattering on 23 July 2019; minor explosions and lava fountaining on 17 August

Recent activity at Shishaldin, located on Unimak Island within the Aleutian Islands, has included a lava eruption in the summit crater, thermal anomalies, elevated seismicity, and gas-and-steam and ash plumes (BGVN 41:11). This report describes minor gas-and-steam emissions, increased seismicity, thermal anomalies, lava fountaining accompanied by minor explosive activity, and a spatter cone. The primary source of information is the Alaska Volcano Observatory (AVO). This report updates activity through September 2019.

Volcanism was relatively low between March 2016 and early July 2019; increased seismicity and steam emissions were detected in December 2017, but the activity declined in February 2018. Elevated seismicity and some thermal anomalies accompanied by incandescence observed in satellite imagery (when not obscured by clouds) returned in mid-July 2019 (figure 12).

Figure (see Caption) Figure 12. Summary graphic of MODVOLC thermal alerts measured over Shishaldin during July-September 2019. Courtesy of HIGP - MODVOLC Thermal Alerts System.

Elevated surface temperatures and low-level seismic tremors remained elevated through September 2019 (figure 13). Field crews reported an active lava lake and minor spattering within the summit crater on 23 July 2019 (figures 14 and 15). Satellite imagery showed the presence of a small spatter cone and some lava flows within the summit crater on 28 July. A small steam plume was observed in satellite imagery and webcam images on 29 July, 20 August, and 30 September.

Figure (see Caption) Figure 13. Sentinel-2 satellite imagery of Shishaldin showing detected thermal anomalies between the months of July and September 2019. Top left: Satellite image on 19 July showing a gas-and-steam plume. Top center: On 29 July a thermal anomaly is detected in the summit crater. Top right: On 28 August, the thermal anomaly is still present. Bottom left: On 7 September, the thermal anomaly continues. Bottom right: On 24 September, the power of the thermal anomaly significantly decreases. Atmospheric penetration satellite image (bands 12, 11, 8A) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 14. Photo of surface lava within the summit crater at Shishaldin taken on 23 July 2019. Photo by David Fee (color corrected); courtesy of Alaska Volcano Observatory (AVO).
Figure (see Caption) Figure 15. Photo of lava and a slightly growing spatter cone within the summit crater at Shishaldin taken on 23 July 2019. Photo by Dane Ketner (color corrected); courtesy of Alaska Volcano Observatory (AVO).

On 17 August 2019, a video taken by NOAA during an overflight showed repetitive minor explosive activity and low-level lava fountaining within the summit crater. This activity may have continued through 24 September, according to AVO. The spatter cone grew slightly in August and September, partially filling the summit crater. Accompanying lava flows also grew slightly during this time.

Satellite data from 3 September showed SO2 emissions and elevated surface temperatures. Satellite imagery and tiltmeter data recorded a collapse and slumping of the summit crater floor, which may have occurred on 19 September. In the last few weeks of September, seismicity and surface temperatures decreased to slightly above background levels.

According to MIROVA (Middle InfraRed Observation of Volcanic Activity) data from MODIS satellite instruments, more frequent thermal anomalies were detected in mid-July 2019 and remained elevated through early September (figure 16).

Figure (see Caption) Figure 16. Thermal anomalies increased at Shishaldin from mid-July 2019 through early September and then abruptly stopped as recorded by MIROVA (log radiative power). Courtesy of MIROVA.

Geologic Background. The beautifully symmetrical volcano of Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The 2857-m-high, glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steady steam plume rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is Holocene in age and largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the west and NE sides at 1500-1800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Klyuchevskoy (Russia) — October 2019 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Ongoing weak thermal anomalies during July-September 2019, but no ash plumes after 1 August

During September 2018 through June 2019, activity at Klyuchevskoy was characterized by weak thermal anomalies and moderate Strombolian-type explosions. Ash emissions were only reported on 1-2 July and 1 August during the period of July-September 2019. The volcano is monitored by the Kamchatkan Volcanic Eruption Response Team (KVERT) and is the primary source of information.

According to KVERT, moderate activity continued from July through at least the middle of September, with gas-and-steam emissions. At the beginning of July, KVERT reported incandescence in the crater. During 1-2 July, ash plumes drifted as far as 85 km E and SE. Ash plumes were visible blowing E in Sentinel-2 images on 17 and 19 July (figure 32); steam plumes were evident on some other days. KVERT reported that an ash emission was seen in webcam images on 1 August.

Figure (see Caption) Figure 32. An ash plume can be seen blowing E from the summit crater of Klyuchevskoy in this Sentinel-2 natural color (bands 4, 3, 2) satellite image from 17 July 2019. Courtesy of Sentinel Hub Playground.

No thermal anomalies were detected with the MODIS satellite instruments analyzed using the MODVOLC algorithm. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, detected no thermal anomalies in June, four scattered ones in July, and only one in August, all low power. According to KVERT, a weak thermal anomaly was detected throughout the reporting period, at least through mid-September, except for the numerous days when the volcano was obscured by clouds; the temperature of the anomalies had steadily decreased with time.

Instruments aboard NASA satellites detected high levels of sulfur dioxide near or directly above the volcano every day during the first week of July and on 12 July, but not on other days during the reporting period. However, the origin for the high levels may, at least in part, have been due to other active volcanoes in the area.

At the beginning of July, the Aviation Color Code (ACC) remained at Orange (the second highest level on a four-color scale). Because of decreased activity, KVERT lowered the ACC to Yellow on 30 August and to Green (the lowest on the scale) on 24 September.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Heard (Australia) — October 2019 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Ongoing thermal anomalies at the summit crater during April-September 2019

Heard Island, in the Southern Indian Ocean, is about 4,000 km from its closest point to Australia and about 1,500 km from the closest point in Antarctica. Because of the island's remoteness, monitoring is primarily accomplished by satellites. The Big Ben volcano has been active intermittently since 1910, if not before (BGVN 42:10), and thermal anomalies have been observed every month since June 2018 (BGVN 43:10, 44:04). The current reporting period is from April to September 2019.

During April-September 2019, only one thermal anomaly was detected with the MODIS satellite instruments analyzed using the MODVOLC algorithm, and that was on 10 June (2 pixels). The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, detected a few scattered thermal alerts in late May-early June and three in September; most were between 1-2 km of the summit and of low to moderate power.

The island is usually covered by heavy clouds, obscuring satellite views. However, Sentinel-2 satellite imagery detected cloud-obscured thermal anomalies during the reporting period, most likely due to a persistent lava lake and possibly lava flows (BGVN 41:08).

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben because of its extensive ice cover. The historically active Mawson Peak forms the island's high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Dukono (Indonesia) — October 2019 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Eruption with frequent ash plumes continues through September 2019

The eruption at Dukono, ongoing since 1933, is typified by frequent ash explosions and ash plumes (BGVN 43:04). This activity continued through at least September 2019. The data below were primarily provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Center for Volcanology and Geological Hazard Mitigation (CVGHM), and the Darwin Volcanic Ash Advisory Centre (VAAC).

According to PVMBG, during April-September 2019 the volcano continued to generate ash plumes almost every day that rose to altitudes of 1.5-3 km (table 20, figure 12). Ashfall was reported on 8 August at the Galela Airport, Maluku Utara, 17 km NW. The Alert Level remained at 2 (on a scale of 1-4), and the 2-km exclusion zone remained in effect.

Table 20. Monthly summary of reported ash plumes from Dukono for April-September 2019. The direction of drift for the ash plume through each month was highly variable, but did not extend for any notable distances during this reporting period. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Apr 2019 1.5-2.4 --
May 2019 1.5-3 --
Jun 2019 1.8-2.4 --
Jul 2019 1.5-2.1 --
Aug 2019 1.8-2.1 --
Sep 2019 1.5-2.1 --
Figure (see Caption) Figure 12. Satellite image from Sentinel-2 (natural color) of an ash plume at Dukono on 4 August 2019, with the plume blowing almost straight up. Courtesy of Sentinel Hub Playground.

Instruments aboard NASA satellites detected high levels of sulfur dioxide near or directly above the volcano on 11, 20-22 April; 17, 22, and 27 May; 15-18 August; and 23-24 and 29 September. However, the cause of the high levels may, at least in part, have been due to other active volcanoes in the area.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Poas (Costa Rica) — October 2019 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Occasional phreatic explosions continue through September 2019

Activity at Poás is characterized by weak phreatic explosions and gas-and-ash-emissions, with a hot acid lake that occasionally disappears (BGVN 44:05). During the current reporting period of May-September 2019, this weak activity continued. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), and most of the material below comes from their weekly bulletins (Boletin Semanal Vulcanologia).

According to OVSICORI-UNA, a period of continuous emissions occurred during 30 April-1 May with plumes rising 300 m above the crater rim and drifting SW. Ash emissions were visible for a few hours on 30 April, and incandescence was visible at night. OVSICORI-UNA did not report any additional phreatic explosions in May until daily phreatic, geyser-type explosions were observed between 29 May and 1 June, which reached approximately 100 m above the vent. A phreatic explosion on 10 June reached approximately 20-30 m in height, and frequent small phreatic explosions (heights below 20 m) were reported through 16 June.

OVSICORI-UNA reported that on 12 June small geyser-like explosions ejected material less than 50 m high at a rate of about once per hour. At 0604 on 18 June an explosion that lasted about six minutes produced a plume of unknown height. Residents reportedly heard several loud noises during 0610-0615 and observed a plume rising from the crater. Ash fell in Cajón (12 km SW), San Luis de Grecia (11 km SW), Los Ángeles, San Miguel de Grecia (11 km SW), San Isidro (28 km SE), and San Roque (23 km SSE). Whitish ash deposits surrounding the crater, especially on the W and S sectors, were visible in webcam images. On 21 June frequent small phreatic explosions from vent A (Boca Roja) were visible during good viewing conditions ejecting material less than 10 m high.

No additional phreatic activity was reported by OVSICORI-UNA during rest of June or July. The small crater lake was still present on 5 July when visible in satellite imagery and as seen by visitors (figure 130), During the first part of August geyser-like explosions occurred on several days, and reached a maximum height of 50 m. This activity culminated on 17 August with about 30 explosions/day from the vent (Boca Roja). At least one event at 0650 on that day generated a 1-km-high plume of steam, gas, and fine particles. By 26 August, the geyser-type activity had ceased. Geyser-type phreatic explosions resumed on 12 September, reaching a maximum height of 30 m. The number of explosions increased up to 10-15 events/hour and then became continuous for a short time. A phreatic explosion occurred on 22 September at 2059 that generated a plume that rose 3 km above the crater rim and drifted NE. During 22-23 September explosions generated plumes that rose 1 km.

Figure (see Caption) Figure 130. View of the Poás crater on 5 July 2019. The volcano is surrounded by cloud-cover, and there is some steam rising from the crater lake. Photo by Sheila DeForest (Creative Commons BY-SA license).

According to OVSICORI-UNA, during 16-26 September sulfur dioxide emissions drifted W and NE, causing a sulfur odor in Alajuela, Heredia, San José, and Cartago. Acidic rain was recorded at an official's house in the Poás Volcano National Park (PNVP) on 23 September and at the Universidad Nacional Costa Rica (UNA) in Heredia (23 km SE) on 26 September. On 30 September, at 0540, a 5-minute long phreatic explosion ejected sediment, and produced a plume that rose 2 km above the crater rim and drifted SW. Ashfall and a sulfur odor was reported in Trojas de Sarchi (10 km SW) and Grecia (16 km SSW). Officials closed the PNVP because of the eruption and ongoing elevated seismicity; the park remained closed the next day.

During the first week of August, strong evaporation had reduced the intracrater lake significantly, and by mid-September, the lake had disappeared. At the end of September, however, some water had begun to accumulate again.

General monitoring data. During April and May, OVSICORI-UNA took few gas measurements due to an unfavorable wind direction. An SO2 measurement during the first part of June was between 100 and 200 t/d. Flux remained low through July, with low SO2/CO2 ratios, and high H2S/SO2 ratios, which OVSICORI-UNA stated were consistent with water infiltration. At the end of July, SO2 concentrations significantly increased to 300-800 t/d, with H2S disappearing and the CO2/SO2 ratio declining, with some fluctuations. Levels remained high through most of August, but had decreased to about 300 t/d by the end of the month. They rose again in September, with fluctuations, and on 29 September were measured at about 1,000 t/d before falling to between 300-400 t/d.

According to OVSICORI-UNA weekly reports, seismicity was relatively low during the reporting period, with a few VTs and LPs and normal background tremor. No significant deformation occurred, except for some deflation in June and July.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Sheila DeForest (URL: https://www.facebook.com/sheila.deforest).


Etna (Italy) — October 2019 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Five lava flows and numerous ash plumes and Strombolian explosions, April-September 2019

Italy's Mount Etna on the island of Sicily has had historically recorded eruptions for the past 3,500 years and has been erupting continuously since September 2013 through at least September 2019. Lava flows, explosive eruptions with ash plumes, and Strombolian lava fountains commonly occur from its summit areas that include the Northeast Crater (NEC), the Voragine-Bocca Nuova (or Central) complex (VOR-BN), the Southeast Crater (SEC, formed in 1978), and the New Southeast Crater (NSEC, formed in 2011). The newest crater, referred to as the "cono della sella" (saddle cone), emerged during early 2017 in the area between SEC and NSEC. Varying activity that included several lava flows, Strombolian activity, and numerous ash plumes from most of the active summit vents and several flank fissures occurred during April-September 2019, the period covered in this report, with information provided primarily by the Osservatorio Etneo (OE), part of the Catania Branch of Italy's Istituo Nazionale di Geofisica e Vulcanologica (INGV).

Degassing of variable intensity was typical activity from all the vents at Etna during much of April 2019. Intermittent ash emission and Strombolian activity occurred at Bocca Nuova, especially during the last week. Minor ash emissions were reported from NEC and NSEC the last week as well. Most of the activity at the summit during May 2019 was focused around the New South East Crater (NSEC); repeated Strombolian activity was witnessed from the E vent near the summit throughout the month. Beginning on 30 May, two fissures opened on the N and SE flanks of NSEC and produced lava flows that traveled E and SE across the W wall of the Valle del Bove. The flows ceased during the first week of June; activity for the rest of that month consisted of intermittent explosions with small ash plumes from Voragine and Bocca Nuova. Discontinuous Strombolian explosions and isolated ash emissions from NEC, NSEC, and Bocca Nuova characterized activity during the first half of July 2019; the explosions intensified at NSEC later in the month. A lava flow emerged from the lower NE flank of NSEC on 18 July that lasted for several days. Explosions produced substantial ash plumes from the NSEC summit crater, causing ashfall nearby, and a new flow emerged from a fissure on the S flank of NSEC on 27 July.

Explosions with intermittent ash emissions during August 2019 were focused primarily on the North East Crater (NEC), with occasional ash emissions from Bocca Nuova. These continued into early September. Activity increased to include Strombolian explosions with the ash emissions at NEC, Bocca Nuova, and Voragine where a scoria cone formed deep within the crater from continued Strombolian activity. A lava flow emerged from the base of the scoria cone on 18 September and was active for about four days, sending branches of lava into multiple areas of the adjacent Bocca Nuova crater. Ash emissions at NEC continued during the end of the month. The multiple episodes of varying activity during the period were reflected in the MIROVA thermal energy data; spikes of thermal activity that corresponded to periods of lava effusion were apparent late May-early June, multiple times in July, and during the second half of September (figure 260).

Figure (see Caption) Figure 260. The multiple episodes of varying activity at Etna from 11 December 2018 through September 2019 were reflected in the MIROVA thermal energy data; spikes of thermal activity were apparent in late April, late May-early June, multiple times in July, and during the second half of September. The largest energy spikes correlated with lava flows. Courtesy of MIROVA.

Activity during April-May 2019. During a site visit to the summit on 1 April scientists from INGV noted weak degassing from both pit craters, BN-1 and BN-2, within Bocca Nuova (BN); the Voragine (VOR) and North East Crater (NEC) were emitting abundant steam and gas emissions. The New Southeast Crater (NSEC) also had significant fumarolic activity concentrated primarily on the crater rim along with gas plumes visible from both the E vent and the 24 December 2018 flank fissure (figure 261). A brief episode of ash emission was observed from BN on the morning of 8 April. Persistent pulsating flashes of incandescence were noted at the E vent of NSEC during the second week. A new vent was observed in the inner wall of the Voragine crater during an inspection on 19 April, located immediately below the vent which formed on 12 January 2019 (figure 262). During the last week of April there were ten episodes of ash emission from BN, two from NEC, and one produced by the E vent at NSEC. Strombolian activity was observed on the morning of 28 April at BN-1, and persistent incandescence was visible from the E vent of NSEC. Early on 30 April both BN-1 and BN-2 were producing explosions every few seconds. Coarse ejecta (lapilli and bombs) rose higher than the crater rim; most fell back within the crater, but some material was observed on the rim the following day.

Figure (see Caption) Figure 261. During a site visit to the summit of Etna on 1 April 2019 scientists from INGV noted weak degassing from both pit craters, BN-1 and BN-2, within Bocca Nuova (BN); Voragine (VOR) and North East Crater (NEC) were emitting abundant steam and gas emissions, and the New Southeast Crater (NSEC) also had significant fumarolic activity concentrated primarily on the crater rim along with gas plumes visible from both the E vent (bocca orientale) and the 24 December 2018 flank fissure. Courtesy of INGV, photos by Laboratorio di Cartografia FlyeEye Team (Report 15/2019, ETNA, Bollettino Settimanale, 01/04/2019 - 07/04/2019, data emissione 09/04/2019).
Figure (see Caption) Figure 262. A new vent was observed at the W rim of Etna's Voragine crater on 19 April 2019. INGV scientists concluded that it likely formed during 17-18 April. It was located immediately below a pit crater that opened on 12 January 2019. Inset shows thermal image of the vents. Courtesy of INGV (Report 17/2019, ETNA, Bollettino Settimanale, 15/04/2019 - 21/04/2019, data emissione 24/04/2019).

Activity at the summit during May 2019 was focused around the New South East Crater (NSEC). Discontinuous Strombolian activity was observed at the E vent of NSEC early on 2 May accompanied by ash emissions from the summit vent that rose about 1,000 m (figure 263). Explosion frequency increased beginning on 5 May with weak and discontinuous ash emissions reported from the NSEC summit for the next several days; ash emissions were also observed from the Saddle vent and the NSEC E vent during 6-8 May. In addition to ash emissions and Strombolian activity continuing from both the summit and E vents at NSEC during the third and fourth weeks, overnight on 17-18 May several larger Strombolian explosions sent pyroclastic ejecta tens of meters above the crater rim (figure 264). The explosion intervals ranged from a few minutes to a few hours. The new vent that had formed at Voragine in mid-April coalesced with the 12 January vent during the second week of May; dilute ash was observed from the BN-1 vent on 23 May.

Figure (see Caption) Figure 263. Strombolian activity at the E vent of NSEC at Etna was accompanied by ash emission on 2 May 2019. Left image is from the thermal camera at La Montagnola and the right image is from Tremestieri Etneo, taken by B. Behncke. Coutesy of INGV (Report 19/2019, ETNA, Bollettino Settimanale, 29/04/2019 - 05/05/2019, data emissione 07/05/2019).
Figure (see Caption) Figure 264. Strombolian activity sent ejecta from a vent at Etna's NSEC crater on 14 May 2019 (a) and was captured by the Monte Cagliato thermal camera. Ash emission from the same vent was also visible that day (b) and on 17 May (c). Strombolian explosions from the E Vent of NSEC on 17 May (d) were captured by the EMOH (Montagnola) webcam. Courtesy of INGV (Report 21/2019, ETNA, Bollettino Settimanale, 13/05/2019 - 19/05/2019, data emissione 21/05/2019).

A fissure opened at the base of the N flank of NSEC shortly after midnight on 30 May 2019 at an elevation of about 3,150 m (figure 265). It produced mild explosive activity and a lava flow that spread towards the W wall of the Valle del Bove. By 0800 UTC the flow had reached an elevation of 2,050 m. A second fissure opened at 0335 the same morning at the base of the SE flank of NSEC at an elevation of 3,050 m. The lava flowed along the W wall of the Valle del Bove towards Serra Giannicola Grande and had reached an elevation of 2,260 m by 0815. Strong winds dispersed ash emissions from the fissures to the NE for much of the day; ashfall occurred in Linguaglossa (figure 266). The Toulouse VAAC reported an ash plume drifting ENE at 3.9 km altitude on 30 May. Samples of the ash that were collected and analyzed were shown to be about 70% lithic clasts, 25% crystals, and about 5% juvenile material. It became clear the next day that two vents along the SE-flank fissure initially produced separate flows that coalesced into a single flow which expanded along the W wall of Valle del Bove. By 0830 on 31 May that flow had reached an elevation of 1,700 m at the base of Serra Giannicola Grande. The fissure at the base of the N flank continued to propagate along the W wall of Valle del Bove also, and had reached an elevation of 2,050 near Monte Simone by 1030 on 31 May (figure 267). When the new eruptive activity began on 29 May, inclinometers measured slight but prolonged deflation of the volcano.

Figure (see Caption) Figure 265. Two fissures opened at Etna during the early morning of 30 May 2019. One started from the base of the N flank of the NSEC/SEC complex and flowed E towards the Valle del Bove, and a second fissure with two vents opened on the SE flank of NSEC and flowed SE towards Serra Giannicola Grande. Mapping of the lava flows were done with drones, using the Sentinel 2 satellite images of 30 May and thermal images from 2 June taken at the Schiena dell'Asino. Courtesy of INGV (Report 23/2019, ETNA, Bollettino Settimanale, 27/05/2019 - 02/06/2019, data emissione 04/06/2019).
Figure (see Caption) Figure 266. Lava flows broke out at Etna on both the N and SE flanks of NSEC on 30 May 2019. Ash emissions were also produced from the fissures. The northern flank fissure is seen from the (a) Monte Cagliato thermal camera (EMCT) and (b) the Montagnola high definition camera (EMOH). The fissure on the SE flank was seen from the Montagnola thermal (c) and high definition (d) (EMOH) webcams. Ash emissions and lava flows were visible on the flank (e) and ashfall was recorded in Linguaglossa (f). Courtesy of INGV (Report 23/2019, ETNA, Bollettino Settimanale, 27/05/2019 - 02/06/2019, data emissione 04/06/2019).
Figure (see Caption) Figure 267. Images of the active lava flows at Etna on 31 May 2019 indicated the extent of the flow activity. Lava was flowing from two vents along a fissure on the SE flank (a and b, drone images courtesy of the FlyEye Team OE). The thermal image of the flow (c) is from Schiena dell'Asi, the visible photo (d) is also taken from Schiena dell'Asi by L. Lodato. The thermal (e) and visual (f) images of the active lava fields were taken from the Monte Cagliato (EMCT) thermal webcam and the Monte Cagliato (EMCH) high definition webcam. Courtesy of INGV (Report 23/2019, ETNA, Bollettino Settimanale, 27/05/2019 - 02/06/2019, data emissione 04/06/2019).

Activity during June-July 2019. The flow from the N flank of NSEC ceased advancing on 1 June 2019, but the active spattering continued from the fissure on the SE flank for a few more days. The SE-flank flow had reached 1,700 m elevation in the Valle del Bove by the afternoon of 2 June (figure 268). The intensity and frequency of the explosions decreased over the next few days, with the active flow front receding back towards the vent until it stopped moving on 6 June. The NE rim of the summit cone at NSEC appeared lowered by several meters after the eruption ceased. The lava flows and explosions of 30 May-2 June produced persistent SO2 emissions that drifted E and N for over 800 km (figure 269).

Figure (see Caption) Figure 268. During the morning of 1 June 2019 Strombolian and effusive activity at Etna continued from the fissure on the SE flank of NSEC (a and b, photos by M. Neri). By the evening of 1 June there was only one remaining arm of the flow that was active (c) as seen in the Monte Cagliato (EMCT) thermal webcam. The following evening, 2 June, another thermal image(d, photo by S. Scollo) showed the remaining active arm. Courtesy of INGV (Report 23/2019, ETNA, Bollettino Settimanale, 27/05/2019 - 02/06/2019).
Figure (see Caption) Figure 269. Active lava flows and Strombolian activity at Etna during 30 May-2 June 2019 contributed to significant SO2 plumes that drifted E and NE from the volcano during this time, extending as far as 800 km from the source. Captured by the TROPOMI instrument on the Sentinel 5P satellite, courtesy of NASA Goddard Space Flight Center.

Activity for the rest of June 2019 moved to the other craters, mainly Voragine, after the flows ceased at NSEC. On the morning of 6 June there were sporadic ash emissions from NEC that quickly dissipated. A small ash plume appeared from Bocca Nuova (BN) on 11 June. An explosive sequence that began on 13 June from the crater floor of Voragine continued intermittently through the third week of the month (figure 270) and produced several small ash plumes. A new vent opened on the crater floor and produced a small ash plume; ejecta also landed on the crater rim several times. On 22 June small, discontinuous ash emissions were produced from BN-1; they dispersed rapidly, but intermittent explosions continued during the following week. By the end of the month, only BN was exhibiting activity other than degassing; incandescence from the crater was seen during the night of 24 June and three isolated ash emissions were seen in the webcams on 26 June.

Figure (see Caption) Figure 270. An ash plume at Etna rose from the Voragine crater on 15 June 2019 during a series of intermittent explosions. Image taken from the Torre del Filosofo by M. Coltelli. Courtesy of INGV (Report 25/2019, ETNA, Bollettino Settimanale, 10/06/2019 - 16/06/2019, data emissione 18/06/2019).

Discontinuous Strombolian explosions and isolated ash emissions characterized activity during the first half of July 2019. Pulsating degassing from NEC produced ash emissions on 2 and 3 July (figure 271), and incandescence on 4 and 5 July. Intense degassing was observed at NSEC during 1-5 July, this turned into isolated ash emissions and Strombolian activity on 5 and 6 July from the E vent with explosions occurring every 1-5 minutes; the ejecta landed on the upper E flank. Dilute ash emissions were observed from Bocca Nuova on 6 July. NEC produced two major ash emissions on the evening of 8 July and the late morning of 13 July. The ash plumes quickly dispersed in the summit area. Strombolian activity at the E vent of NSEC was witnessed on 14 July. Explosive activity at Bocca Nuova remained deep within the crater during mid-July. Steam produced by the 13 June 2019 vent on the floor of Voragine occasionally contained dilute ash. During 15-17 July sporadic explosions were observed at NSEC accompanied by small puffs of ash that rapidly dispersed.

Figure (see Caption) Figure 271. Surveillance cameras at Etna captured images of explosions with ash emissions from NEC on 2 (top) and 3 (bottom) July 2019. The left images are from Montagnola and the right images are from Monte Cagliato. Courtesy of INGV (Report 28/2019, ETNA, Bollettino Settimanale, 01/07/2019 - 07/07/2019, data emissione 09/07/2019).

Beginning early on 18 July, Strombolian activity increased at NSEC from an explosion every 1-2 minutes to multiple explosions per minute in the following hours. Continuous activity during the evening decreased sharply around 2200. About an hour later visual and thermal surveillance cameras on Monte Cagliato recorded the opening of a vent on the lower NE flank of NSEC; lava slowly advanced from the vent towards Valle del Leone (figures 272 and 273). Explosive activity resumed at the NSEC summit a few hours later, accompanied by occasional ash emissions from NEC and Bocca Nuova. Explosions tapered off briefly by noon on 19 July, but a sudden increase in explosive activity during the afternoon of 19 July produced Strombolian activity and sporadic ash emissions from three vents inside the NSEC crater. Ashfall was reported that evening in communities on the S flank of Etna. The Toulouse VAAC reported significant ash above the summit at 3.7 km altitude. Activity declined again later that evening at NSEC, but abundant ash emission began at NEC that lasted until the morning of 20 July. A new phase of explosive activity began at NSEC around 0700 on 20 July with an ash plume and an increase in lava emission from the vent on the NE flank (figure 274). By the evening of 20 July only a small amount of material was feeding the lava flow; the farthest advanced fronts were at an elevation around 2,150 m, above Monte Simone. A few small ash emissions were observed at Bocca Nuova on 21 July.

Figure (see Caption) Figure 272. Map of the summit craters of Etna showing the active vents and the lava flow of 19-21 July 2019. The base is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Black hatch marks indicate the crater rims: BN = Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. Courtesy of INGV (Report 30/2019, ETNA, Bollettino Settimanale, 15/07/2019 - 21/07/2019, data emissione 23/07/2019).
Figure (see Caption) Figure 273. Activity at Etna on 18 and 19 July 2019 included a new lava flow from a vent on the NE flank of NSEC and Strombolian activity at the NSEC summit vent. (a) Start of the flow from a vent on the NE flank of NSEC seen from the high-resolution camera at Monte Cagliato (EMCH) at 2307 UTC on 18 July. (b) Strombolian activity at the NSEC and glow of the new lava flow on the right seen from Tremestieri Etneo, 2347 that evening. (c) A new advancing lava flow and brown ash emission from NEC seen from the EMCH camera, 0338 on 19 July; (d) lava flow seen from the thermal camera at Monte Cagliato, 0700 on 19 July. Courtesy of INGV (Report 30/2019, ETNA, Bollettino Settimanale, 15/07/2019 - 21/07/2019, data emissione 23/07/2019).
Figure (see Caption) Figure 274. Activity at Etna on 20 July 2019 included (a) ash emission from both NSEC and NEC craters at 0402 seen from Tremestieri Etneo, (b) ash from NSEC and the active flow on the SE flank at 0608 seen from the Monte Cagliato high-resolution camera, (c) ash emission from NSEC at 0700 seen by Tremesteieri Etneo, and (d) explosive activity at NSEC and the lava flow on the W wall of the Valle del Bove at 0700 seen from the Monte Cagliato thermal camera. Courtesy of INGV (Report 30/2019, ETNA, Bollettino Settimanale, 15/07/2019 - 21/07/2019, data emissione 23/07/2019).

Visible and thermal images taken on 24 July 2019 indicated only degassing at BN-1 and BN-2, and limited degassing from low-temperature fumaroles from the multiple vents at VOR (figure 275). After a few days of quiet, NSEC resumed discontinuous ash emissions on 25 July. A sudden increase in the amplitude of volcanic tremor was noted early on 27 July, which was followed a few hours later by the opening of a new eruptive fissure on the S flank of NSEC (figure 276). Explosive activity intensified and produced a dense ash-rich plume that dispersed to the E at an estimated altitude of 4.5-5 km. A thin layer of ash was reported in Giarre, Riposto, and Torre Archirafi. A lava flow emerged from the S portion of the fissure and expanded SW and S. By 1135 the most advanced front had reached and passed the N side of the base of the Barbagallo Mountians at an elevation of about 2,850 m. It continued to spread down into the area between Monte Frumento Supino and the pyroclastic cones of 2002-2003 (figure 277). A series of particularly strong explosions occurred from NSEC around midday, producing an ash plume that rose to 7.5 km altitude. By this time the most advanced lava fronts were located at an elevation of about 2,600 m, but they were rapidly advancing SSW towards Monte Nero, surrounding Monte Frumento Supino from the W. Explosive activity decreased significantly early in the morning on 28 July; flow activity also slowed around the same time. Occasional puffs of reddish-brown ash were noted from NEC during the morning as well. The explosions and the lava effusion ceased on the evening of 28 July. An isolated ash emission from Bocca Nuova in the early hours of 31 July was the last activity reported in July. A substantial SO2 plume (6.59 DU) from the explosions on 27 July had drifted to the E coast of the Adriatic Sea by midday on 28 July and was detected in satellite instruments.

Figure (see Caption) Figure 275. Degassing was the only activity occurring at the multiple vents at Etna's Voragine crater on 24 July 2019. The joined pit crater from the 12 January and 18 April 2019 vents is at the upper left; the newest vent formed 16 June 2019 is at lower left and appears cool in the thermal image inset a. Photo and annotations by S. Branca. Courtesy of INGV (Rep. N° 31/2019, ETNA, Bollettino Settimanale, 22/07/2019 - 28/07/2019, data emissione 30/07/2019).
Figure (see Caption) Figure 276. A new eruptive fissure at Etna opened on the S flank of NSEC on 27 July 2019 (line of red circles). The base map is modified from a 2014 DEM created by Laboratorio di Aerogeofisica-Sezione Roma 2. Black hatch marks indicate the crater rims: BN=Bocca Nuova, with NW BN-1 and SE BN-2; VOR = Voragine; NEC = North East Crater; SEC = South East Crater; NSEC = New South East Crater. Red circles indicate areas with ash emissions and/or Strombolian activity, yellow circles indicate steam and/or gas emissions only. Courtesy of INGV (Report 31/2019, ETNA, Bollettino Settimanale, 22/07/2019 - 28/07/2019, data emissione 30/07/2019).
Figure (see Caption) Figure 277. Lava flows and substantial ash emissions were reported at Etna on 27 July 2019. The lava flow at 1216 was located at about 2,600 m elevation (a). A thermal image of the S flank of NSEC showed the extent of the flow activity (b). A large ash plume formed after several explosions at NSEC at 1221 (c). Thermal images of the emissions were captured by the Montagnola (EMOT) webcam and by an INGV operator (d, e). Photos by S. Branca (a), B. Behncke (c), and E. Pecora (b, e). Courtesy of INGV (Report 31/2019, ETNA, Bollettino Settimanale, 22/07/2019 - 28/07/2019, data emissione 30/07/2019).

Activity during August-September 2019. Activity during August 2019 was focused primarily on the North East Crater (NEC), with occasional ash emissions from Bocca Nuova. The plumes were occasionally dense and dark brown from NEC. Weak emissions of dilute ash from NEC quickly dispersed on the morning of 4 August, followed by more intermittent ash emissions during 6-10 August; a few had significant concentrations of ash that drifted SE. Part of the N rim of NEC collapsed during the explosions of early August (figure 278). During a site inspection to the summit by INGV personnel on 16 August, continuous degassing at Bocca Nuova was interrupted every 10-15 minutes by explosions, but no ejecta was noted. Discontinuous emissions from NEC formed small ash plumes that rose a few hundred meters and remained in the summit area (figure 279). Thermal surveys that day indicated high temperatures of about 800°C along a 10-m-fracture zone on the northern rim of VOR. Ash emissions from NEC were persistent through 20 August when they decreased significantly; a few explosions had dilute ash emissions from Bocca Nuova that day and the next (figure 280). Sulfur dioxide emissions were notable during 19-22 August, drifting S and W hundreds of kilometers before dissipating. Isolated and dilute ash from NEC early on 28 August was interpreted by INGV as resulting from collapses along the inner crater walls. During site inspections on 27, 28, and 30 August, deep explosions from Bocca Nuova were heard, and degassing was observed at all of the summit vents.

Figure (see Caption) Figure 278. Part of the N rim of the NEC crater at Etna collapsed during explosions in early August 2019. In this image from 10 August 2019 the collapsed N wall is shown by white arrows, the old crater rim is the dashed yellow line, and the new rim is the solid yellow line. Photo by Michele Mammino, courtesy of INGV (Report 33/2019, ETNA, Bollettino Settimanale, 05/08/2019 - 11/08/2019, data emissione 13/08/2019).
Figure (see Caption) Figure 279. Discontinuous emissions at Etna on 16 August 2019 from the NEC crater formed small ash plumes that rose a few hundred meters and remained in the summit area (a). Smaller ash plumes remained within the crater (b and c). Courtesy of INGV (Report 34/2019, ETNA, Bollettino Settimanale, 12/08/2019 - 18/08/2019, data emissione 20/08/2019).
Figure (see Caption) Figure 280. In the foreground weak degassing occurs on 21 August 2019 at Etna's BN-2 vent inside Bocca Nuova while a small ash plume in the background rises from NEC. Photo by F. Ciancitto, courtesy of INGV (Report 35/2019, ETNA, Bollettino Settimanale, 19/08/2019 - 25/08/2019, data emissione 27/08/2019).

Activity during September 2019 began with discontinuous and dilute ash emissions from NEC and Bocca Nuova, as well as episodes of Strombolian activity at both vents. This was followed by increased Strombolian activity, ash emissions, and a lava flow at Voragine. Isolated ash emissions occurred at NEC and VOR on 4 and 5 September. Sporadic deep explosions were heard from BN-1 during a site inspection on 7 September. Overnight during 7-8 September the visual webcams recorded incandescence at NEC and pyroclastic ejecta observed outside the crater rim that coincided with increased tremor activity. A more intense episode of Strombolian activity began the following evening at NEC. Activity was continuous from 1800 on 9 September to 0500 on 10 September, and produced dilute ash emissions that quickly dispersed (figure 281). Slight ashfall was reported in Piedimonte Etneo, Giarre-Riposto, and Rifugio Citelli. Continuous puffs of dilute ash were observed beginning at dawn on 11 September with sporadic ejecta again landing outside the crater rim. Significant SO2 plumes were measured by satellite instruments on 10 and 11 September (figure 282).

Figure (see Caption) Figure 281. Activity at Etna overnight during 9-10 September 2019 included Strombolian activity and dilute ash emissions from NEC that were observed from webcams on the S, W, and E flanks. Courtesy of INGV (Report 38/2019, ETNA, Bollettino Settimanale, 09/09/2019 - 15/09/2019, data emissione 17/09/2019).
Figure (see Caption) Figure 282. Significant SO2 plumes from Etna were detected on 10 and 11 September 2019. Increased Strombolian activity was reported by INGV from the NEC crater during 9-11 September. Courtesy of NASA Goddard Space Center.

In addition to the Strombolian activity at NEC on 12 September, ash emissions began that morning at VOR. They increased in frequency and then transitioned to near-continuous Strombolian activity that produced ejecta which landed in the base of the adjacent Bocca Nuova crater. The explosions from the Strombolian activity were felt in Zafferana Etnea, Aci S. Antonio, Pedara, and neighboring areas. On 13 September the webcams observed multiple periods of continuous ash emissions from NEC and short, intense pulses of ash from VOR that accompanied Strombolian activity; coarse ejecta rose 20 m above and landed outside of the crater rim, producing impact craters on the W side of the summit between VOR and BN. The vent that sourced the Strombolian activity was located in the deepest part of the Voragine crater. By 15 September, continued ejecta had formed a scoria cone around the vent inside VOR (figure 283).

Figure (see Caption) Figure 283. On 13 September 2019 Strombolian activity at Etna's NEC and VOR craters increased (a). INGV personnel observed an ash emission from NEC (b), a Strombolian explosion with ejecta from VOR (c), and impact craters from the ejecta around the rim (d). The continued activity at VOR produced a scoria cone inside the crater that grew noticeably between 13 (e) and 15 (f) September. Photos (a) and (e) courtesy of L. D'Agata, photo (f) by B. Behncke. Courtesy of INGV (Report 38/2019, ETNA, Bollettino Settimanale, 09/09/2019 - 15/09/2019, data emissione 17/09/2019).

Explosive activity inside VOR increased on the afternoon of 18 September 2019. Pyroclastic ejecta and ash erupted from several vents and reached heights of several tens of meters. A lava flow emerged from the W base of the scoria cone and headed S, advancing several hundred meters (figure 284). It then flowed over the saddle that divides VOR and BN, split into two branches, and entered Bocca Nuova. One stream poured into BN-1, and another stopped near the edge of the BN-2 pit crater. By 22 September the flow was cooling, but strong Strombolian activity continued inside Voragine. NEC was characterized by large-scale ash emissions during the end of September, including one in the morning of 27 September that sent a plume over the S flank of Etna before dissipating (figure 285). Strombolian activity continued within Bocca Nuova during the last week of the month.

Figure (see Caption) Figure 284. Significant Strombolian and lava flow activity at Etna affected the Voragine crater on 18 and 19 September 2019. Visible and thermal images of the scoria cone (cono scorie) and lava flow (colata) inside Etna's large Voragine crater on 19 September 2019 (top) were taken from the southern edge of BN. Photo by F. Ciancitto. The bottom images were taken from the SW rim of BN on 18 September (left) by M. Tomasello and (right) 19 September by INGV personnel. Courtesy of INGV (Report 39/2019, ETNA, Bollettino Settimanale, 16/09/2019 - 22/09/2019, data emissione 24/09/2019).
Figure (see Caption) Figure 285. An ash emission from Etna's NEC crater early on 27 September 2019 sent a plume drifting S before dissipating. It was captured by both the high-definition webcam of Bronte (EBVH, left) and the Milo (EMV) webcam. Courtesy of INGV (Report 40/2019, ETNA, Bollettino Settimanale, 23/09/2019 - 29/09/2019, data emissione 01/10/2019).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/aeroweb/info/vaac/).


Ubinas (Peru) — September 2019 Citation iconCite this Report

Ubinas

Peru

16.355°S, 70.903°W; summit elev. 5672 m

All times are local (unless otherwise noted)


Intermittent ash explosions in June-August 2019

Prior to renewed activity in June 2019, the most recent eruptive episode at Ubinas occurred between 13 September 2016 and 2 March 2017, with ash explosions that generated plumes that rose up to 1.5-2 km above the summit crater (BGVN 42:10). The volcano remained relatively quiet between April 2017 and May 2019. This report discusses an eruption that began in June 2019 and continued through at least August 2019. Most of the Information was provided by the Instituto Geofísico del Perú (IGP), Observatoria Vulcanologico del Sur (IGP-OVS), the Observatorio Volcanológico del INGEMMET (Instituto Geológical Minero y Metalúrgico) (OVI-INGEMMET), and the Buenos Aires Volcanic Ash Advisory Center (VAAC).

Activity during June 2019. According to IGP, seismic activity increased suddenly on 18 June 2019 with signals indicating rock fracturing. During 21-24 June, signals indicating fluid movement emerged and, beginning at 0700 on 24 June, webcams recorded ash, gas, and steam plumes rising from the crater. Plumes were visible in satellite images rising to an altitude of 6.1 km and drifting N, NE, and E.

IGP and INGEMMET reported that seismic activity remained elevated during 24-30 June; volcano-tectonic (VT) events averaged 200 per day and signals indicating fluid movement averaged 38 events per day. Emissions of gas, water vapor, and ash rose from the crater and drifted N and NE, based on webcam views and corroborated with satellite data. According to a news article, a plume rose 400 m above the crater rim and drifted 10 km NE. Weather clouds often obscured views of the volcano, but an ash plume was visible in satellite imagery on 24 June 2019 (figure 49). On 27 June the Alert Level was raised to Yellow (second lowest on a 4-level scale).

Figure (see Caption) Figure 49. Sentinel-2 satellite image in natural color showing an ash plume blowing north from Ubinas on 24 June 2019. Courtesy of Sentinel Hub Playground.

Activity during July 2019. IGP reported that seismic activity remained elevated during 1-15 July; VT events averaged 279 per day and long-period (LP) events (indicating fluid movement) averaged 116 events per day. Minor bluish emissions (magmatic gas) rose from the crater. Infrared imagery obtained by Sentinel-2 first showed a hotspot in the summit crater on 4 July.

According to IGP, during 17-19 July, gas-and-ash emissions occasionally rose from Ubinas's summit crater and drifted N, E, and SE. Beginning at 0227 on 19 July, as many as three explosions (two were recorded at 0227 and 0235) generated ash plumes that rose to 5.8 km above the crater rim. The Buenos Aires VAAC reported that, based on satellite images, ash plumes rose to an altitude as high as 12 km. The Alert Level was raised to Orange and the public were warned to stay beyond a 15-km radius. Ash plumes drifted as far as 250 km E and SE, reaching Bolivia. Ashfall was reported in areas downwind, including the towns of Ubinas (6.5 km SSE), Escacha, Anascapa (11 km SE), Tonohaya (7 km SSE), Sacohaya, San Miguel (10 km SE), Huarina, and Matalaque, causing some families to evacuate. The Buenos Aires VAAC reported that during 20-23 July ash plumes rose to an altitude of 7.3-9.5 km and drifted E, ESE, and SE.

IGP reported that activity remained elevated after the 19 July explosions. A total of 1,522 earthquakes, all with magnitudes under 2.2, were recorded during 20-24 July. Explosions were detected at 0718 and 2325 on 22 July, the last ones until 3 September. The Buenos Aires VAAC reported that an ash plume rising to an altitude of 9.4 km. and drifting SE was identified in satellite data at 0040 on 22 July (figure 50). Continuous steam-and-gas emissions with sporadic pulses of ash were visible in webcam views during the rest of the day. Ash emissions near the summit crater were periodically visible on 24 July though often partially hidden by weather clouds. Ash plumes were visible in satellite images rising to an altitude of 7 km. Diffuse ash emissions near the crater were visible on 25 July, and a thermal anomaly was identified in satellite images. During 26-28 July, there were 503 people evacuated from areas affected by ashfall.

Figure (see Caption) Figure 50. Image of ash streaming from the summit of Ubinas on 22 July 2019 captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite. Courtesy of NASA's Earth Observatory (Joshua Stevens and Kathryn Hansen).

Activity during August 2019. IGP reported that during 13-19 August blue-colored gas plumes rose to heights of less than 1.5 km above the base of the crater. The number of seismic events was 1,716 (all under M 2.4), a decrease from the total recorded the previous week.

According to IGP, blue-colored gas plumes rose above the crater and eight thermal anomalies were recorded by the MIROVA system during 20-26 August. The number of seismic events was 1,736 (all under M 2.4), and there was an increase in the magnitude and number of hybrid and LP events. Around 1030 on 26 August an ash emission rose less than 2 km above the crater rim. Continuous ash emissions on 27 August were recorded by satellite and webcam images drifting S and SW.

IGP reported that during the week of 27 August, gas-and-water-vapor plumes rose to heights less than 1 km above the summit. The number of seismic events was 2,828 (all under M 2.3), with VT signals being the most numerous. There was a slight increase in the number of LP, hybrid, and VT events compared to the previous week. The Alert Level remained at Orange.

Thermal anomalies. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected a large concentration of anomalies between 19 July until almost the end of August 2019, all of which were of low radiative power (figure 51). Infrared satellite imagery (figure 52) also showed the strong thermal anomaly associated with the explosive activity on 19 July and then the continuing hot spot inside the crater through the end of August.

Figure (see Caption) Figure 51. Log radiative power MIROVA plot of MODIS thermal anomalies at Ubinas for the year ending on 4 October 2019. Thermal activity began in the second half of July. Courtesy of MIROVA.
Figure (see Caption) Figure 52. Sentinel-2 satellite images (Atmospheric penetration rendering, bands 12, 11, 8A) showing thermal anomalies during the eruption on 19 July (left) and inside the summit crater on 29 July 2019 (right). A hot spot inside the crater persisted through the end of August. Courtesy of Sentinel Hub Playground.

Geologic Background. A small, 1.4-km-wide caldera cuts the top of Ubinas, Peru's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Perú. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3700 years ago extend 10 km from the volcano. Widespread plinian pumice-fall deposits include one of Holocene age about 1000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

Information Contacts: Instituto Geofisico del Peru (IGP), Observatoria Vulcanologico del Sur (IGP-OVS), Arequipa Regional Office, Urb La Marina B-19, Cayma, Arequipa, Peru (URL: http://ovs.igp.gob.pe/); Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa (URL: http://ovi.ingemmet.gob.pe); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php?lang=es); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Instituto Nacional de Defensa Civil Perú (INDECI) (URL: https://www.indeci.gob.pe/); Gobierno Regional de Moquegua (URL: http://www.regionmoquegua.gob.pe/web13/); La Republica (URL: https://larepublica.pe/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/).


Santa Maria (Guatemala) — September 2019 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Persistent explosions with local ashfall, March-August 2019; frequent lahars during June; increased explosions in early July

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing and actively erupting since 1922. The youngest of the four vents in the complex, Caliente, has been erupting with ash explosions, pyroclastic, and lava flows for more than 40 years. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Daily explosions of steam and ash also continued during March-August 2019, the period covered in this report, with information primarily from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center).

Activity at Santa Maria continued with little variation from previous months during March-August 2019, except for a short-lived increase in the frequency and intensity of explosions during early July that produced minor pyroclastic flows. Plumes of steam with minor magmatic gases rose continuously from both the S rim of the Caliente crater and from the summit of the growing dome throughout the period. They usually rose 100-700 m above the summit, generally drifting W or SW, and occasionally SE, before dissipating. In addition, daily explosions with varying amounts of ash rose to altitudes of around 2.8-3.5 km and usually extended no more than 25 km before dissipating. Most of the plumes drifted SW or SE; minor ashfall occurred in the adjacent hills almost daily and was reported at the fincas located within 10 km in those directions several times each month. Continued growth of the Caliente lava dome resulted in daily block avalanches descending its flanks to the base of the dome. The MIROVA plot of thermal energy during this time shows a consistent level of heat from early December 2018 through April 2019, very little activity during May and June, and a short-lived spike in activity from late June through early July that coincides with the increase in explosion rate and intensity. Activity decreased later in July and into August (figure 95).

Figure (see Caption) Figure 95. Thermal activity at Santa Maria from 8 December 2018 through August 2019 was similar to previous months. A noticeable decrease in activity occurred during May and early June 2019 with a short-lived spike during late June and early July that corresponded to an increase in explosion rate and intensity during that brief interval. Courtesy of MIROVA.

Explosive activity increased slightly during March 2019 to 474 events from 409 events during February, averaging about 15 per day; the majority of explosions were weak to moderate in strength. The moderate explosions generated small block avalanches daily that sent debris 300 m down the flanks of Caliente dome; the explosions contained low levels of ash and large quantities of steam. Daily activity consisted mostly of degassing around the southern rim of the crater and within the central dome, with plumes rising about 100 m from the S rim, and pulsating between 100-400 m above the central dome, usually white and sometimes blue with gases; steam plumes drifted as far as 10 km. The weak ash emissions resulted in ashfall close to the volcano, primarily to the W and SW in the mountainous areas of El Faro, Patzulín, La Florida, and Monte Bello farms. During mid-March, residents of the villages of Las Marías and El Viejo Palmar, located S of the dome, reported the smell of sulfur. The seismic station STG3 registered 8-23 explosions daily that produced ash plumes which rose to altitudes between 2.7 and 3.3 km altitude. Explosions from the S rim were usually steam rich, while reddish oxidized ash was more common from the NE edge of the growing dome in the summit crater (figure 96). The constant block avalanches were generated by viscous lava slowly emerging from the growing summit dome, and also from the explosive activity. On the steep S flank of Santa Maria, blocks up to 3 m in diameter often produce small plumes of ash and debris as they fall.

Figure (see Caption) Figure 96. Mostly steam rose from the S rim of the Caliente dome at Santa Maria throughout March-August 2019. On 1 March 2019, oxidized reddish ash from the growing dome was also part of the emissions (left). The dome continued to grow, essentially filling the inside of the summit crater of Caliente. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA MARZO 2019, VOLCÁN SANTIAGUITO).

Late on 4 March 2019 an explosion was heard 10 km away that generated incandescence 100 m above the crater and block avalanches that descended to the base of the Caliente dome; it also resulted in ashfall around the perimeter of the volcano. Powerful block avalanches were reported in Santa María creek on 8 March. Ashfall was reported in the villages of San Marcos and Loma Linda Palajunoj on 14 March. Ash plumes on 18 March drifted W and caused ashfall in the villages of Santa María de Jesús and Calaguache. A small amount of ashfall was reported on 26 March around San Marcos Palajunoj. The Washington VAAC reported volcanic ash drifting W from the summit on 8 March at 4.6 km altitude. A small ash plume was visible in satellite imagery moving WSW on 11 March at 4.6 km altitude. On 20 March a plume was detected drifting SW at 3.9 km altitude for a short time before dissipating.

Explosion rates of 10-14 per day were typical for April 2019. Ash plumes rose to 2.7-3.2 km altitude. Block avalanches reached the base of the Caliente dome each day. Steam and gas plumes pulsated 100-400 m above the S rim of the crater (figure 97). Ashfall in the immediate vicinity of the volcano, generally on the W and SW flanks was also a daily feature. The Washington VAAC reported multiple small ash emissions on 2 April moving W and dissipating quickly at 4.9 km altitude. An ash plume from two emissions drifted WSW at 4.3 km altitude on 10 April, and on 22 April two small discrete emissions were observed in satellite images moving SE at 4.6 km altitude. Ashfall was reported on 13 and 14 April in the nearby mountains and areas around Finca San José to the SE. On 15 and 23 April, ash plumes drifted W and ashfall was reported in the area of San Marcos and Loma Lina Palajunoj.

Figure (see Caption) Figure 97. Degassing from the Caliente dome at Santa Maria on 3 April (left, infrared image) and 13 April 2019 (right) produced steam-rich plumes with minor quantities of ash. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo:, Volcán Santiaguito, Semana del 30 de marzo al 05 de abril de 2019).

Constant degassing continued from the S rim of the crater during May 2019 while pulses of steam and gas rose 100-500 m from the dome at the center of the summit crater. Weak to moderate explosions continued at a rate of 8-12 per day. White and gray plumes of steam and ash rose 300-700 m above the crater daily. A moderate-size lahar on 16 May descended the Rio San Isisdro; it was 20 m wide and carried blocks 2 m in diameter. Ashfall was reported on the W flank around the area of San Marcos and Loma Lina Palajunoj on 21 and 24 May. INSIVIUMEH reported on 29 and 30 May that seismic station STG8 recorded moderate lahars descending the Rio San Isidro (a drainage to the Rio Tambor). The thick, pasty lahars transported blocks 1-3 m in diameter, branches, and tree trunks. They were 20 m wide and 1.5-2 m deep.

Weak to moderate explosions continued during June 2019 at a rate of 9-12 per day, producing plumes of ash and steam that rose 300-700 m above the Caliente crater. On 1 June explosions produced ashfall to the E over the areas of Calaguache, Las Marías and other nearby communities. Ash plumes commonly reached 3.0-3.3 km altitude and drifted W and SW, and block avalanches constantly descended the E and SE flanks from the dome at the top of Caliente. Ashfall was reported at the Santa María de Jesús community on 7 June. Ashfall to the W in San Marcos and Loma Linda Palajunoj was reported on 10, 15, 18, 20, and 22 June. Ashfall to the SE in Fincas Monte Claro and El Patrocinio was reported on 26 June. A few of the explosions on 28 June were heard up to 10 km away. On 29 June ash dispersed to the W again over the farms of San Marcos, Monte Claro, and El Patrocinio in the area of Palajunoj; the next day, ash was reported in Loma Linda and finca Monte Bello to the SW. The Washington VAAC reported ash emissions on 29 June that rose to 4.3 km and drifted W; two ash clouds were observed, one was 35 km from Santa Maria and the second drifted 55 km before dissipating.

With the onset of the rainy season, eight lahars were reported during June. The Rio Cabello de Ángel, a tributary of Río Nimá I (which flows into Rio Samalá) on the SE flank experienced lahars on 3, 5, 11, 12, 21, and 30 June (figure 98). The lahars were 15-20 m wide, 1-2 m deep, and carried branches, tree trunks and blocks 1-3 m in diameter. On 12 and 15 June, lahars descended the Río San Isidro on the SW flank. They were 1.5 m deep, 15-20 m wide and carried tree trunks and blocks up to 2 m in diameter.

Figure (see Caption) Figure 98. Activity at Santa Maria on 12 June 2019 included explosions with abundant ash and lahars. This lahar is in the Rio Nimá I, and started in the Rio Cabello de Ángel. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito, Semana del 08 al 14 de junio de 2019).

An increase in the frequency and intensity of seismic events was noted beginning on 28 June that lasted through 6 July 2019. Explosions occurred at a rate of 5-6 per hour, reaching 40-45 events per day instead of the 12-15 typical of previous months. Ash plumes rose to 3.5-3.8 km altitude and drifted W, SW, and S as far as 10 km, and ashfall was reported in San Marcos Palajunoj, Loma Linda villages, Monte Bello farms, El Faro, La Mosqueta, La Florida, and Monte Claro. Activity decreased after 7 July back to similar levels of the previous months. As a result of the increased activity during the first week of July, several small pyroclastic flows (also known as pyroclastic density currents or PDC's) were generated that traveled up to 1 km down the S, SE, and E flanks during 2-5 and 13 July, in addition to the constant block avalanches from the dome extrusion and explosions (figure 99). As activity levels decreased after 6 July, the ash plume heights lowered to 3.3 km altitude, while pulsating degassing continued from the summit dome, rising 100-500 m.

Figure (see Caption) Figure 99. An increase in explosive activity at Santa Maria during the first week of July 2019 resulted in several small pyroclastic flows descending the flanks, including one on 3 July 2019 (left). An ash emission on 19 July 2019 rose above the nearby summit of Santa Maria (right). Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA JULIO 2019, VOLCÁN SANTIAGUITO).

The Washington VAAC reported an ash plume on 2 July from a series of emissions that rose to 3.9 km altitude and drifted W. Satellite imagery on 4 July showed a puff of ash moving W from the summit at 4.3 km altitude. The next day an ash emission was observed in satellite imagery moving W at 4.9 km altitude. A plume on 11 July drifted W at 4.3 km for several hours before dissipating. Ashfall was reported on 2 July at the San Marcos farm and in the villages of Monte Claro and El Patrocinio in the Palajunoj area. On 4 and 6 July ash fell to the SW and W in San Marcos and Loma Linda Palajunoj. On 5 July there were reports of ashfall in Monte Claro and areas around San Marcos Palajunoj and some explosions were heard 5 km away. In Monte Claro to the SW ash fell on 7 July and sounds were heard 5 km away every three minutes. Incandescence was observed in the early morning on the SE and NE flanks of the dome. During 8 and 9 July, four to eight weak explosions per hour were noted and ash dispersed SW, especially over Monte Claro; pulsating degassing noises were heard every two minutes. Monte Bello and Loma Linda reported ashfall on 12, 16, 17, 19, and 20 July. On 15, 22, 26, and 29 July ash was reported in San Marcos and Loma Linda Palajunoj; 33 explosions occurred on 25 July. Two lahars were reported on 8 July. A strong one in the Rio San Isidro was more than 2 m deep, and 20-25 m wide with blocks as large as 3 m in diameter. A more moderate lahar affected Rio Cabello de Angel and was also 2 m deep. It was 15-20 m wide and had blocks 1-2 m in diameter.

Activity declined further during August 2019. Constant degassing continued from the S rim of the crater, but only occasional pulses of steam and gas rose from the central dome. Weak to moderate explosions occurred at a rate of 15-20 per day. White and gray plumes with small amounts of ash rose 300-800 m above the summit daily. Block avalanches descended to the base of the dome and sent fine ash particles down the SE and S flanks. Ashfall was common within 5 km of the summit, generally on the SW flank, near Monte Bello farm, Loma Linda village and San Marcos Palajunoj. Explosions rates decreased to 10-11 per day during the last week of the month. Degassing and ash plumes rose to 2.9-3.2 km altitude throughout the month.

On 1 August ash plumes drifted 10-15 km SW, causing ashfall in that direction. On 3 and 27 August ashfall occurred at Monte Claro and El Patrocinio in the Palajunoj area to the SW. On 7 and 31 August ashfall was reported in Monte Claro. San Marcos and Loma Linda Palajunoj reported ash on 11, 16, 19, and 23 August. On 21 August ashfall was reported to the SE around Finca San José. The Washington VAAC reported an ash plume visible in satellite imagery on 10 August 2019 drifting W at 4.3 km altitude a few kilometers from the summit which dissipated quickly. On 27 August a plume was observed 25 km W of the summit at 3.9 km altitude, dissipating rapidly. On 3 August a moderate lahar descended the Rio Cabello de Ángel that was 1 m deep, 15 m wide and carried blocks up to 1 m in diameter along with branches and tree trunks. A large lahar on 20 August descended Río Cabello de Ángel; it was 2-3 m high, 15 m wide and carried blocks 1-2 m diameter, causing erosion along the flanks of the drainage (figure 100).

Figure (see Caption) Figure 100. A substantial lahar at Santa Maria on 20 August 2019 sent debris down the Río Cabello de Ángel in the vicinity of El Viejo Palmar (left), the spectrogram of the seismic signal lasted for 2 hours and 16 minutes (top right), and the seismograph was saturated with the lahar signal in red (bottom right). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito, Semana del 17 al 23 de agosto de 2019).

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Stromboli (Italy) — September 2019 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Major explosions on 3 July and 28 August 2019; hiker killed by ejecta

Near-constant fountains of lava at Stromboli have served as a natural beacon in the Tyrrhenian Sea for at least 2,000 years. Eruptive activity at the summit consistently occurs from multiple vents at both a north crater area (N area) and a southern crater group (CS area) on the Terrazza Craterica at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island. Periodic lava flows emerge from the vents and flow down the scarp, sometimes reaching the sea; occasional large explosions produce ash plumes and pyroclastic flows. Thermal and visual cameras that monitor activity at the vents are located on the nearby Pizzo Sopra La Fossa, above the Terrazza Craterica, and at multiple locations on the flanks of the volcano. Detailed information for Stromboli is provided by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) as well as other satellite sources of data; March-August 2019 is covered in this report.

Typical eruptive activity recorded at Stromboli by INGV during March-June 2019 was similar to activity of the past few years (table 6); two major explosions occurred in July and August with a fatality during the 3 July event. In the north crater area, both vents N1 and N2 emitted fine (ash) ejecta, occasionally mixed with coarser lapilli and bombs; most explosions rose less than 80 m above the vents, some reached 150 m. Average explosion rates ranged from 1 to 12 per hour. In the CS crater area continuous degassing and occasional intense spattering were typical at vent C, vent S1 was a low-intensity incandescent jet throughout the period. Explosions from vent S2 produced 80-150 m high ejecta of ash, lapilli, and bombs at average rates of 2-17 per hour.

After a high-energy explosion and lava flow on 25 June, a major explosion with an ash plume and pyroclastic flow occurred on 3 July 2019; ejecta was responsible for the death of a hiker lower down on the flank and destroyed monitoring equipment near the summit. After the explosion on 3 July, coarse ejecta and multiple lava flows and spatter cones emerged from the N area, and explosion rates increased to 4-19 per hour. At the CS area, lava flows emerged from all the vents and spatter cones formed. Explosion intensity ranged from low to very high with the finer ash ejecta rising over 250 m from the vents and causing ashfall in multiple places on the island. This was followed by about 7 weeks of heightened unrest and lava flows from multiple vents. A second major explosion with an ash plume and pyroclastic flow on 28 August reshaped the summit area yet again and scattered pyroclastic debris over the communities on the SW flank near the ocean.

Table 6. Summary of activity levels at Stromboli, March-August 2019. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month North (N) Area Activity Central-South (CS) Area Activity
Mar 2019 Low- to medium-intensity explosions at both N1 and N2. Coarse-grained ejecta (lapilli and bombs) from N1, fine-grained ash mixed with coarse material from N2. Explosion rates of 3-12 per hour. Medium-intensity explosions from both S area vents, lapilli and bombs mixed with ash, 2-9 explosions per hour.
Apr 2019 Low- to medium-intensity explosions at both N1 and N2. Coarse-grained ejecta (lapilli and bombs) from N1, fine-grained ash from N2. Explosion rates of 5-12 per hour. Continuous degassing from C, low-intensity incandescent jets form S1, up to 4 emission points from S2, mostly fine-grained ejecta, 4-15 explosions per hour.
May 2019 Low- to medium-intensity explosions at both N1 and N2. Mostly fine-grained ejecta, occasionally mixed with coarser material. Explosion rates of 2-8 per hour. Continuous degassing from C, low-intensity incandescent jets form S1, low- to medium-intensity explosions from C, S1, and S2. Mostly fine-grained ejecta, occasionally mixed with coarser material. Explosion rates of 5-16 per hour.
June 2019 Low- to medium-intensity explosions at both N1 and N2. Mostly fine-grained ejecta, occasionally mixed with coarser material. Explosion rates of 1-12 per hour. Continuous degassing at C and sporadic short duration spattering events, low- to medium-intensity incandescent jets at S1, multiple emission points from S2. Ejecta of larger lapilli and bombs mixed with ash. Explosion rates of 2-17 per hour. High-energy explosion on 25 June.
Jul 2019 Low- to medium-intensity explosions at both N1 and N2. Coarse ejecta after major explosion on 3 July. Intermittent intense spattering. Explosions rates of 4-19 per hour. Lava flows from all vents. Major explosion and pyroclastic flow, 3 July, with fatality from falling ejecta. Lava flows from all vents. Continuous degassing and variable intensity explosions from low to very high (over 200 m). Coarse ejecta until 20 July; followed by mostly ash.
Aug 2019 Low- to medium-intensity explosions from the N area, coarse ejecta and occasional intense spattering. Explosion rates of 7-17 per hour. Lava flows. Low- to high-intensity explosions; ash ejecta over 200 m; ashfall during week 1 in S. Bartolo area, Scari, and Piscità. Major explosion on 28 August, with 4-km-high ash plume and pyroclastic flow; lava flows. Explosion rates of 4-16 per hour.

Thermal activity was low from March through early June 2019 as recorded in the MIROVA Log Radiative Power data from MODIS infrared satellite information. A sharp increase in thermal energy coincided with a large explosion and the emergence of numerous lava flows from the summit beginning in late June (figure 144). High heat-flow continued through the end of August and dropped back down at the beginning of September 2019 after the major 28 August explosion.

Figure (see Caption) Figure 144. Thermal activity at Stromboli was low and intermittent from 12 November 2018 through early June 2019, based on this MIROVA plot of thermal activity through August 2019. A spike in thermal energy in late June coincided with a major explosion on 3 July and the emergence of lava from the summit area. Heightened activity continued from 3 July through 28 August with multiple lava flows emerging from both crater areas. Courtesy of MIROVA.

Activity during March-June 2019. Activity was low during March 2019. Low- to medium-intensity explosions occurred at both vents N1 and N2 in the north area. Ejecta was mostly coarse grained (lapilli and bombs) from N1 and fine-grained ash mixed with some coarse material from N2. Intense spattering activity was reported from N2 on 29 March. Explosion rates were reported at 5-12 per hour. At the CS area, medium-intensity explosions from both south area vents produced lapilli and bombs mixed with ash at a rate of 2-9 explosions per hour.

During a visit to the Terrazza Craterica on 2 April 2019, degassing was visible from vents N1, N2, C, and S2; activity continued at similar levels to March throughout the month. Low- and medium-intensity explosions with coarse ejecta, averaging 3-12 per hour, were typical at vent N1 while low-intensity explosions with fine-grained (ash) ejecta occurred at a similar rate from N2. Continuous degassing was observed at the C vent, and low-intensity incandescent jets were present at S1 throughout the month. Multiple emission points from S2 (as many as 4) produced low- to medium-intensity explosions at rates of 4-14 explosions per hour; the ejecta was mostly fine-grained mixed with some coarse material. Frequent explosions on 19 April produced abundant pyroclastic material in the summit area.

Low to medium levels of explosive activity at all of the vents continued during May 2019. Emissions consisted mostly of ash occasionally mixed with coarser material (lapilli and bombs). Rates of explosion were 2-8 per hour in the north area, and 5-16 per hour in the CS Area. Explosions of low-intensity continued from all the vents during the first part of June at rates averaging 2-12 per hour, although brief periods of high-frequency explosions (more than 21 events per hour) were reported during the week of 10 June. Strong degassing was observed from crater C during an inspection on 12 June (figure 145); by the third week, continuous degassing was interrupted at C by sporadic short-duration spattering events.

Figure (see Caption) Figure 145. The Terrazza Craterica as seen from the Pizzo sopra la Fossa (above, near the summit) at Stromboli on 12 June 2019. In red are the two craters (N1 and N2) of the N crater area, in green is the CS crater area with 2 vents (C1 and C2) in the central crater and S2, the largest and deepest crater in the CS area, also with at least two vents. S1 is hidden by the degassing of crater C. Photograph by Giuseppe Salerno, courtesy of INGV (Report 25/2019, Stromboli, Bollettino Settimanale, 10/06/2019-16/06/2019).

Late on 25 June 2019, a high-energy explosion that lasted for 28 seconds affected vent C in the CS area. The ejecta covered a large part of the Terrazza Craterica, with abundant material landing in the Valle della Luna. An ash plume rose over 250 m after the explosion and drifted S. After that, explosion frequency varied from medium-high (17/hour) on 25 June to high (25/hour) on 28 June. On 29 June researchers inspected the summit and noted changes from the explosive events. Thermal imagery indicated that the magma level at N1 was almost at the crater rim. The magma level at N2 was lower and explosive activity was less intense. At vent C, near-constant Strombolian activity with sporadic, more intense explosions produced black ash around the enlarged vent. At vent S2, a pyroclastic cone at the center of the crater produced vertical jets of gas, lapilli, and bombs that exceeded 100 m in height (figure 146).

Figure (see Caption) Figure 146. A high-energy explosion at Stromboli late on 25 June 2019 affected vent C in the CS Area (top row). The ejecta covered a large part of the Terrazza Craterica. An ash plume rose over 250 m after the explosion and drifted S. On 29 June (bottom row) thermal imagery indicated that the magma level at N1 was almost at the crater rim. At vent C, near-constant Strombolian activity was interrupted with sporadic, more intense explosions. At vent S2, a pyroclastic cone at the center of the crater produced vertical jets of gas, lapilli, and bombs that exceeded 100 m in height. Photo 2f by L. Lodato, courtesy of INGV (Rep 27/2019, Stromboli, Bollettino Settimanale, 24/06/2019-30/06/2019).

Activity during July 2019. A large explosion accompanied by lava and pyroclastic flows affected the summit and western flank of Stromboli on 3 July 2019. Around 1400 local time an explosion from the CS area generated a lava flow that spilled onto the upper part of the Sciara del Fuoco. Just under an hour later several events took place: lava flows emerged from the C vent and headed E, from the N1 and N2 vents and flowed N towards Bastimento, and from vent S2 (figure 147). The emergence of the flows was followed a minute later by two lateral blasts from the CS area, and a major explosion that involved the entire Terrazza Craterica lasted for about one minute (figure 148). Within seconds, the pyroclastic debris had engulfed and destroyed the thermal camera located above the Terrazza Craterica on the Pizzo Sopra La Fossa and sent a plume of debris across the W flank of the island (figure 149). Two seismic stations were also destroyed in the event. The Toulouse VAAC reported a plume composed mostly of SO2 at 9.1 km altitude shortly after the explosion. They noted that ash was present in the vicinity of the volcano, but no significant ashfall was expected. INGV scientists observed the ash plume at 4 km above the summit.

Figure (see Caption) Figure 147. A major eruptive event at Stromboli on 3 July 2019 began with an explosion from the CS area that generated a lava flow at 1359 (left). About 45 minutes later (at 1443:40), lava flows emerged from all of the summit vents (right), followed closely by a major explosion. Courtesy of INGV (Eruzione Stromboli. Comunicato straordinario del 4 luglio 2019).
Figure (see Caption) Figure 148. A major explosion at Stromboli beginning at 1445 on 3 July 2019 was preceded by lava flows from all the summit vents in the previous 60 seconds (top row). This thermal camera (SPT) and other monitoring equipment on the Pizzo Sopra La Fossa above the vents were destroyed in the explosion (bottom row). Courtesy of INGV (Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019).
Figure (see Caption) Figure 149. The monitoring equipment at Stromboli on the Pizzo Sopra La Fossa above the summit was destroyed in the major explosion of 3 July 2019 (left, photo by F. Ciancitto). Most of the W half of the island was affected by pyroclastic debris after the explosion, including the town of Ginostra (right). Courtesy of INGV (Report 28/2019, Stromboli, Bollettino Settimanale, 01/07/2019 - 07/07/2019).

Two pyroclastic flows were produced as a result of the explosions; they traveled down the Sciara and across the water for about 1 km before collapsing into the sea (figure 150). A hiker from Sicily was killed in the eruption and a Brazilian friend who was with him was badly injured, according to a Sicilian news source, ANSA, and the New York Post. They were hit by flying ejecta while hiking in the Punta dei Corvi area, due W of the summit and slightly N of Ginostra, about 100 m above sea level according to INGV. Most of the ejecta from the explosion dispersed to the WSW of the summit. Fallout also ignited vegetation on the slopes which narrowly missed destroying structures in the town. Ejecta blocks and bombs tens of centimeters to meters in diameter were scattered over a large area around the Pizzo Sopra La Fossa and the Valle della Luna in the direction of Ginostra. Smaller material landed in Ginostra and was composed largely of blonde pumice, that floated in the bay (figure 151). The breccia front of the lava flows produced incandescent blocks that reached the coastline. High on the SE flank, the abundant spatter of hot pyroclastic ejecta coalesced into a flow that moved 200-300 m down the flank before cooling, crossing the path normally used by visitors to the summit (figure 152).

Figure (see Caption) Figure 150. At the time of the major explosion of Stromboli on 3 July 2019 people on a German ship located about 2 km off the northern coast captured several images of the event. (a) Two pyroclastic flows traveled down the Sciara del Fuoco and spread over the sea up to about 1 km from the coast. (b) The eruption column was observed rising several kilometers above the summit as debris descended the Sciara del Fuoco. (c) Fires on the NW flank were started by incandescent pyroclastic debris. The photos were taken by Egon Karcher and used with permission of the author by INGV. Courtesy of INGV (Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019).
Figure (see Caption) Figure 151. Pumice filled the harbor on 4 July 2019 (left) and was still on roofs (right) on 7 July 2019 in the small port of Ginostra on the SW flank of Stromboli after the large explosion on 3 July 2019. Photos by Gianfilippo De Astis, courtesy of INGV (Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019).
Figure (see Caption) Figure 152. A small lava flow high on the SE flank of Stromboli formed during the 3 July 2019 event from abundant spatter of hot pyroclastic ejecta that coalesced into a flow and moved 200-300 m down the flank before cooling, crossing the path normally used by visitors to the summit. Photo by Boris Behncke taken on 9 July 2019, courtesy of INGV (Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019).

INGV scientists inspected the summit on 4 and 5 July 2019 and noted that the rim of the Terrazza Craterica facing the Sciara del Fuoco in both the S and N areas had been destroyed, but the crater edge near the central area was not affected. In addition, the N area appeared significantly enlarged and deepened, forming a single crater where the former N1 and N2 vents had been located; an incandescent jet was active in the CS area (figure 153). Explosive activity declined significantly after the major explosions, although moderate overflows of lava continued from multiple vents, especially the CS area where the flows traveled about halfway down the southern part of the Sciara del Fuoco; lava also flowed E towards Rina Grande (about 0.5 km E of the summit). The main lava flows active between 3 and 4 July produced a small lava field along the Sciara del Fuoco which flowed down to an elevation of 210 m in four flows along the S edge of the scarp (figure 154). Additional block avalanches rolled to the coastline.

Figure (see Caption) Figure 153. The summit craters of Stromboli were significantly altered during the explosive event of 3 July 2019. The rim of the Terrazza Craterica facing the Sciara del Fuoco in both the CS and N areas was destroyed, but the crater edge near the CS area was not affected. In addition, the N area was significantly enlarged and deepened, forming a single crater where the former N1 and N2 vents had been located; an incandescent jet was active in the CS area. Courtesy of INGV (Report 28/2019, Stromboli, Bollettino Settimanale, 01/07/2019 - 07/07/2019).
Figure (see Caption) Figure 154. The main lava flows active between 3 and 4 July at Stromboli after the major explosion on 3 July 2019 produced a small lava field along the Sciara del Fuoco. Left: Aerial photo taken by Stefano Branca (INGV-OE) on 5 July; the yellow arrow shows a small overflow from the N crater area, the red arrow shows the largest overflow from the CS crater area. Right: Flows from the CS area traveled down to an elevation of 210 m in four flows along the S edge of the scarp. Additional block avalanches rolled to the coastline. Right photo by Francesco Ciancitto taken on 5 July 2019. Courtesy of INGV (Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019).

During the second week of July lava flows continued; on 8 July volcanologists reported two small lava flows from the CS area flowing towards the Sciara del Fuoco. A third flow was noted the following day. The farthest flow front was at about 500 m elevation on 10 July, and the flow at the center of the Sciara del Fuoco was at about 680 m. An overflow from the N area during the evening of 12 July produced two small flows that remained high on the N side of the scarp; lava continued flowing from the CS area into the next day. A new flow from the N area late on 14 July traveled down the N part of the scarp (figure 155).

Figure (see Caption) Figure 155. During the second week of July 2019 lava flows at Stromboli continued from both crater areas. Top left: Lava flows from the CS area flowed down the Sciara on 9 July while Strombolian activity continued at the summit, photo by P. Anghemo, mountain guide. Bottom left: A lava flow from the CS area at Stromboli is viewed from Punta dei Corvi during the night of 12-13 July 2019. Photo by Francesco Ciancitto. Right: The active flows on 10 July (in red) were much closer to the summit crater than they had been during 3-4 July (in yellow). Courtesy of INGV, top left and right photos published in Report 29/2019, Stromboli, Bollettino Settimanale, 08/07/2019 - 14/07/2019; bottom left photo published in 'Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019'.

A new video station with a thermal camera was installed at Punta dei Corvi, a short distance N of Ginostra on the SW coast, during 17-20 July 2019. During the third week of July lava continued to flow from the CS crater area onto the southern part of the Sciara del Fuoco, but the active flow area remained on the upper part of the scarp; block avalanches continuously rolled down to the coastline (figure 156). During visits to the summit area on 26 July and 1 August activity at the Terrazza Craterica was observed by INGV scientists. There were at least six active vents in the N area, including a scoria cone and an intensely spattering hornito; the other vents were ejecting coarse material in jets of Strombolian activity. In the CS area, a large scoria cone was clearly visible from the Pizzo, with two active vents generating medium- to high-intensity explosions rich in volcanic ash mixed with coarse ejecta (figures 157 and 158). Some of the finer-grained material in the jets reached 200 m above the vents. A second smaller cone in the CS area faced the southernmost part of the Sciara del Fuoco and produced sporadic low-intensity "bubble explosions." Effusive activity decreased during the last week of July; the active lava front was located at about 600 m elevation. Blocks continued to roll down the scarp, mostly from the explosive activity, and were visible from Punta dei Corvi.

Figure (see Caption) Figure 156. Lava continued to flow from the CS area at Stromboli during the third week of July 2019, although the active flow area remained near the top of the scarp. Block avalanches continued to travel down the scarp. Image taken by di Francesco Ciancitto from Punta dei Corvi on 19 July 2019. Courtesy of INGV (Report 30/2019, Stromboli, Bollettino Settimanale, 15/07/2019 - 21/07/2019).
Figure (see Caption) Figure 157. Thermal and visible images of Terrazza Craterica at the summit of Stromboli from the Pizzo Sopra La Fossa on 1 August 2019 showed significant changes since the major explosion on 3 July 2019. A large scoria cone was present in the CS area (left) and at least six vents from multiple cones were active in the N area (right). The active lava flow 'Trabocco Lavico' emerged from the southernmost part of the CS area (far left). Courtesy if INGV (Report 32/2019, Stromboli, Bollettino Settimanale, 29/07/2019 - 04/08/2019.
Figure (see Caption) Figure 158. At the summit of Stromboli on 1 August 2019 two active vents inside a large cone in the CS area generated medium- to high-intensity explosions rich in volcanic ash mixed with coarse ejecta (left). There were at least six active vents in the N area (right), including a scoria cone and an intensely spattering hornito; the other vents were ejecting coarse material in jets of Strombolian activity. Courtesy of INGV (Report 32/2019, Stromboli, Bollettino Settimanale, 29/07/2019 - 04/08/2019).

Activity during August 2019. A small overflow of lava on 4 August 2019 from the N area lasted for about 20 minutes and formed a flow that went a few hundred meters down the Sciara del Fuoco. Observations made at the summit on 7 and 8 August 2019 indicated that nine vents were active in the N crater area, three of which had scoria cones built around them (figure 159). They all produced low- to medium-intensity Strombolian activity. In the CS area, a large scoria cone was visible from the summit that generated medium- to high-intensity explosions rich in volcanic ash, which sometimes rose more than 200 m above the vent. Lava overflowing from the CS area on 8 August was confined to the upper part of the Sciara del Fuoco, at an elevation between 500 and 600 m (figure 160). Occasional block avalanches from the active lava fronts traveled down the scarp. Ashfall was reported in the S. Bartolo area, Scari, and Piscità during the first week of August.

Figure (see Caption) Figure 159. Nine vents were active in the N crater area of Stromboli on 7 August 2019, three of which had scoria cones built around them. They all produced low- to medium-intensity Strombolian activity (top). In the CS area (bottom), a large scoria cone was visible from the summit that generated medium- to high-intensity explosions rich in volcanic ash, which sometimes rose more than 200 m above the vent. Visible images taken by S. Consoli, thermal images taken by S. Branca. Courtesy of INGV (Report 33/2019, Stromboli, Bollettino Settimanale, 05/08/2019 - 11/08/2019).
Figure (see Caption) Figure 160. Multiple Lava flows were still active on the Sciara del Fuoco at Stromboli on 7 August 2019. Top images by INGV personnel S Branca and S. Consoli, lower images by A. Di Pietro volcanological guide. Courtesy of INGV (Report 33/2019, Stromboli, Bollettino Settimanale, 05/08/2019 - 11/08/2019).

Drone surveys on 13 and 14 August 2019 confirmed that sustained Strombolian activity continued both in the N area and the CS area. Lava flows continued from two vents in the CS area; they ceased briefly on 16 and 17 August but resumed on the 18th, with the lava fronts reaching 500-600 m elevation (figure 161). A fracture field located in the southern part of the Sciara del Fuoco was first identified in drone imagery on 9 July. Repeated surveys through mid-August indicated that about ten fractures were identifiable trending approximately N-S and ranged in length from 2.5 to 21 m; they did not change significantly during the period. An overflight on 23 August identified the main areas of activity at the summit. A NE-SW alignment of 13 vents within the N area was located along the crater edge that overlooks the Sciara del Fuoco. At the CS area, the large scoria cone had two active vents, there was a pit crater, and two smaller scoria cones. A 50-m-long lava tube emerged from one of the smaller lava cones and fed two small flows that emerged at the top of the Sciara del Fuoco (figure 162).

Figure (see Caption) Figure 161. Detail of a vent at Stromboli on 14 August 2019 located in the SW part of the Sciara del Fuoco at an elevation of 730 m. Flow is tens of meters long. Courtesy of INGV (COMUNICATO DI DETTAGLIO STROMBOLI del 20190816 ORE 17:05 LT).
Figure (see Caption) Figure 162. Thermal and visual imagery of the summit of Stromboli on 23 August 2019 revealed a NE-SW alignment of 13 vents within the N area located along the crater edge that overlooks the Sciara del Fuoco. At the CS area, the large scoria cone had two active vents (1 and 2), there was a pit crater (3), and two smaller scoria cones (4). A 50-m-long lava tube formed from one of the smaller lava cones (5) and fed two small flows that emerged at the top of the Sciara del Fuoco. Photos by L. Lodato and S. Branca, courtesy of INGV (Report 35/2019, Stromboli, Bollettino Settimanale, 19/08/2019 - 25/08/2019).

INGV reported a strong explosion from the CS area at 1217 (local time) on 28 August 2019. Ejecta covered the Terrazza Craterica and sent debris rolling down the Sciara del Fuoco to the coastline. A strong seismic signal was recorded, and a large ash plume rose more than 2 km above the summit (figure 163). The Toulouse VAAC reported the ash plume at 3.7-4.6 km altitude, moving E and rapidly dissipating, shortly after the event. Once again, a pyroclastic flow traveled down the Sciara and several hundred meters out to sea (figures 164). The entire summit was covered with debris. The complex of small scoria cones within the N area that had formed since the 3 July explosion was destroyed; part of the N area crater rim was also destroyed allowing lava to flow down the Sciara where it reached the coastline by early evening.

Figure (see Caption) Figure 163. A major explosion at Stromboli on 28 August 2019 produced a high ash plume and a pyroclastic flow. The seismic trace from the STR4 station (top left) indicated a major event. The ash plume from the explosion was reported to be more than 2 km high (right). The thermal camera located at Stromboli's Punta dei Corvi on the southern edge of the Sciara del Fuoco captured both the pyroclastic flow and the ash plume produced in the explosion (bottom left). Seismogram and thermal image courtesy of INGV (INGVvulcani blog, 30 AGOSTO 2019INGVVULCANI, Nuovo parossismo a Stromboli, 28 agosto 2019). Photo by Teresa Grillo (University of Rome) Courtesy of AIV - Associazione Italiana di Vulcanologia.
Figure (see Caption) Figure 164. A pyroclastic flow at Stromboli traveled across the sea off the W flank for several hundred meters on 28 August 2019 after a major explosion at the summit. Photo by Alberto Lunardi, courtesy of INGV (5 SETTEMBRE 2019INGVVULCANI, Quando un flusso piroclastico scorre sul mare: esempi a Stromboli e altri vulcani).

At 1923 UTC on 29 August a lava flow was reported emerging from the N area onto the upper part of the Sciara del Fuoco; it stopped at mid-elevation on the slope. About 90 minutes later, an explosive sequence from the CS area resulted in the fallout of pyroclastic debris around Ginostra. Shortly after midnight, a lava flow from the CS area traveled down the scarp and reached the coast by dawn, but the lava entry into the sea only lasted for a short time (figure 165).

Figure (see Caption) Figure 165. Lava flows continued for a few days after the major explosion of 28 August 2019 at Stromboli. Left: A lava flow emerged from the N crater area on 29 August 2019 and traveled a short distance down the Sciara del Fuoco. Incandescent blocks from the flow front reached the ocean. Photo by A. DiPietro. Right: A lava flow that emerged from the CS crater area around midnight on 30 August 2019 made it to the ocean around dawn, as seen from the N ridge of the Sciara del Fuoco at an altitude of 400 m. Photo by Alessandro La Spina. Both courtesy of INGV. Left image from 'COMUNICATO DI ATTIVITA' VULCANICA del 2019-08-29 22:20:06(UTC) – STROMBOLI', right image from INGVvulcani blog, 30 AGOSTO 2019 INGVVULCANI, 'Nuovo parossismo a Stromboli, 28 agosto 2019'.

An overflight on 30 August 2019 revealed that after the explosions of 28-29 August the N area had collapsed and now contained an explosive vent producing Strombolian activity and two smaller vents with low-intensity explosive activity. In the CS area, Strombolian activity occurred at a single large crater (figure 166). INGV reported an explosion frequency of about 32 events per hour during 31 August-1 September. The TROPOMI instrument on the Sentinel-5P satellite captured small but distinct SO2 plumes from Stromboli during 28 August-1 September, even though they were challenging to distinguish from the larger signal originating at Etna (figure 167).

Figure (see Caption) Figure 166. A 30 August 2019 overflight of Stromboli revealed that after the explosions of 28-29 August the N area had collapsed and now contained a single explosive vent producing Strombolian activity and two smaller vents with low intensity explosive activity. In the CS area, a single large crater remained with moderate Strombolian activity. No new lava flows appeared on the Sciara del Fuoco, only cooling from the existing flows was evident. Courtesy of INGV (Report 35.6/2019, Stromboli, Daily Bulletin of 08/31/2019).
Figure (see Caption) Figure 167. Small but distinct SO2 signals were recorded from Stromboli during 28 August through 1 September 2019; they were sometimes difficult to discern from the larger signal originating at nearby Etna. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/aeroweb/info/vaac/); AIV, Associazione Italiana di Vulcanologia (URL: https://www.facebook.com/aivulc/photos/a.459897477519939/1267357436773935; ANSA.it, (URL: http://www.ansa.it/sicilia/notizie/2019/07/03/-stromboli-esplosioni-da-cratere-turisti-in-mare); The New York Post, (URL: https://nypost.com/2019/07/03/dozens-of-people-dive-into-sea-to-escape-stromboli-volcano-eruption-in-italy/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 24, Number 02 (February 1999)

Managing Editor: Richard Wunderman

Ambrym (Vanuatu)

Benbow lava lake disappears in avalanche

Bezymianny (Russia)

Explosions on 25 February send gas-and-ash plume 5 km above the summit

Colima (Mexico)

Details of the 10 February explosion and fires lit by volcanic bombs

Etna (Italy)

Extensive lava flows discharging from a 4 February fissure on the SE flank

Galeras (Colombia)

Low seismicity; fumarole and tilt measurements

Guagua Pichincha (Ecuador)

Moderate seismicity and phreatic eruptions during January-February

Ibu (Indonesia)

Eruptions that began on 18 December 1998 continued in January 1999

Izalco (El Salvador)

Strong fumarolic activity around the summit crater

Krakatau (Indonesia)

Sporadic ash eruptions in February and March 1999

Lengai, Ol Doinyo (Tanzania)

Lava flows spilling over the crater rim in November 1998

Lopevi (Vanuatu)

Strombolian explosions beginning November 1998

Pacaya (Guatemala)

Explosive activity resumes; summary of activity 1987-98

Sheveluch (Russia)

Low-level seismicity and fumarolic plumes

Shishaldin (United States)

Steam plumes and thermal activity seen at summit

Soufriere Hills (United Kingdom)

Ash venting and numerous pyroclastic flows in December 1998 and January 1999

Tolbachik (Russia)

Gas-and-steam explosion; minor seismicity

White Island (New Zealand)

Minor ash-and-steam emissions continue



Ambrym (Vanuatu) — February 1999 Citation iconCite this Report

Ambrym

Vanuatu

16.25°S, 168.12°E; summit elev. 1334 m

All times are local (unless otherwise noted)


Benbow lava lake disappears in avalanche

Ambrym Island was investigated by John Seach and Perry Judd during a climb into the caldera 1-8 January 1999. A lava lake in Benbow cone was present during 1-3 January but was covered by deposits from an avalanche that occurred overnight 4-5 January. Fumarolic and Strombolian activity was observed at other craters.

Activity at Benbow. Benbow crater was climbed from the S, after which observers lowered themselves using ropes 200 m down from the crater rim to a point where they could observe the crater interior. In the center of the crater, an active lava lake was seen 220 m below the observation point. The lava lake was ~40 m in diameter and constantly in motion. Large explosions caused lava fountains that reached 100 m high. Bombs glowed for up to one minute in daylight and radiated great heat. Bombs could be heard landing on the side of the pit where they caused glowing avalanches. At night a strong glow from the lava lake was visible in the sky over Benbow.

Elsewhere inside Benbow crater, Pele's hair covered the ground and fumaroles were active on the NE crater wall. Acid rain burned eyes and skin. Heavy rainfall caused many waterfalls to form inside the crater rim and a shallow brown pond formed on the floor of the first level.

During 4-5 January violent Strombolian explosions could be heard almost hourly. Each series of explosions lasted 5-10 minutes and produced dark ash columns above the crater. At some time during these explosions an avalanche on the W side of the lava lake crater completely covered the lava lake. No night glow was visible above the crater after the night of 5 January.

On 6 January Benbow crater was entered again. The wall collapse that covered the lava lake was confirmed visually. In the location of the former lava lake was a depression of rubble with two small, glowing vents nearby. The entire crater was clear of magmatic gases. Three violent Strombolian eruptions were viewed from the crater rim in the afternoon. Bombs were thrown 300 m into the air and dark ash clouds were emitted.

Activity at Niri Mbwelesu Taten. This small collapse pit continuously emitted white, brown, and blue vapors. Red deposits covered the crater walls. A small amount of yellow deposits covered the S wall. Fumarole temperatures were 66 to 69°C at a point 40 m SE of the pit. On 6-7 January numerous deep, loud degassings were heard from a distance of 4 km.

Activity at Niri Mbwelesu. Pungent, sulfurous-smelling white vapor was emitted from this crater. Periods of good visibility enabled views 200 m down from the crater rim, but the bottom could not be seen. Rockfalls were heard inside the crater.

Activity at Mbwelesu. Excellent visibility to the bottom of this crater enabled detailed observations of the lava lake. Night observations were also obtained. The lava lake was in constant motion and splashing lava out over the sides of the pit. The lake was at a lower level than during observations made three months earlier (BGVN 23:09). Large explosions sent lava fountains up to 100 m in height and threw lava onto the sides of the pit causing glowing avalanches. During one night observation a 20 x 5 m section of the crater wall broke off and fell into the lava lake. The 60-m-wide lake radiated heat that could be felt from the viewing area 380 m away. North of the lava lake was a circular vent 20 m in diameter that glowed brilliantly from magma inside and huffed out burning gasses every 20 seconds. Foul gas, smelling of rotten fish, was emitted from the crater. South of the lava lake was an elongated vent (40 x 10 m) that spattered lava every 5-10 seconds and sent showers of glowing orange lava spray 150 m high.

On the S side of Mbwelesu, fumarole temperatures averaged 43°C at 10 m from the crater edge. On the SE side, 40 m from the crater edge, fumaroles measured 57°C. On 4 January ashfall occurred on the S side of the caldera.

Geologic Background. Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides arc. A thick, almost exclusively pyroclastic sequence, initially dacitic, then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major plinian eruption with dacitic pyroclastic flows about 1900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the caldera floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.

Information Contacts: John Seach, P.O. Box 16, Chatsworth Island, NSW, 2469, Australia.


Bezymianny (Russia) — February 1999 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Explosions on 25 February send gas-and-ash plume 5 km above the summit

During February, seismic and volcanic activity at Bezymianny increased in intensity, causing the hazard status to be raised from Green to Yellow on 16 February and then to Orange on 25 February. The activity decreased on the 26th and the "Level of Concern Color Code" was reduced to Yellow. In the first two weeks of the month, numerous weak earthquakes were registered under the volcano, and fumarolic plumes rising up to a few hundred meters above the summit occurred frequently.

Starting on 15 February and continuing the following week, seismicity rose above background levels and 20-40 shallow earthquakes were registered every day. The hazard status was raised to Yellow. Fumarolic plumes continued to rise to a few hundred meters above the summit, and could be seen when not obscured by clouds. Satellite images during the week indicated a persistent thermal anomaly possibly caused by rock avalanches from the summit dome.

The hazard status was raised to Orange on 25 February after volcanic tremor began under the volcano and continued for ~6 hours. Two large explosions during that period each lasted several minutes and a gas-and-ash plume rose 5 km above the summit. Satellite images that morning showed an ash-rich plume heading SE. Over the next few days, using satellite imagery, the ash cloud was tracked for 1,500 km to the SE, but by early on the 27th the cloud had dissipated. Activity declined after the 25th and the hazard status was reduced to Yellow.

On 27-28 February the seismicity was above background levels. Low-level spasmodic tremor continued to be recorded. On the morning of 28 February a steam-and-gas plume rose 300 m. The volcano was obscured by clouds after 28 February.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Colima (Mexico) — February 1999 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Details of the 10 February explosion and fires lit by volcanic bombs

The unusually large 10 February explosion was followed by collateral reports by (a) F. Núñez-Cornú, G. Réyes-Davila, and C. Suárez-Plascenia and (b) John B. Murray. In addition, this summary of the interval 26 February to 16 March benefitted from press releases from the Colima Volcano Observatory. These three sources are discussed in separate sections below.

Geophysical signature of the 10 February explosion. F. Núñez-Cornú, G. Réyes-Davila, and C. Suárez-Plascencia provided the following report.

"On 10 February at 0145 an explosive event occurred at Colima's summit dome; this generated a shock wave that broke windows and opened gates in the small town of Juan Barragan, 8.75 km SE of the summit. The sonic wave was also heard in the towns of Tonila, Quesería, San Marcos, Atenquique, El Fresnito, Ejido de Atenquique, and up to 28 km NE of the volcano at Ciudad Guzman.

"This was the biggest explosion reported for the volcano in the last 80 years; the resulting exhalation emitted both ash and lava blocks (bombs made up of both fresh and altered components). A substantial amount of incandescent tephra fell and started fires on both the volcano's upper slopes and on Nevado de Colima's S slopes; most of the fires were extinguished by snow and rain storms during the subsequent 48 hours.

"As summarized in table 8, a seismic event took place hours before the explosion, at 2231 of 9 February; it was followed by other volcanic and tremor signals at about 0100; some of these precursory events saturated the amplitude response of analog instruments at stations EZV4 (Somma) and EZV7 (Volcancito). Four additional large, post-eruptive seismic events also occurred. These strong events were observed clearly at farther stations EZV3 (Nevado, 5.8 km from the summit), and EZV2 (Cerro Grande, 25 km from the summit)."

Table 8. Noteworthy seismic events around the time of the 10 February 1999 explosion at two Colima seismic stations (EZV3 and EZV2); the earliest reading (on the top line) took place the night before the explosion. See text for station locations. Courtesy of F. Nunez-Cornu, G. Reyes-Davila, and C. Suarez-Plascencia.

Date Time EZV3 coda (sec) EZV3 amp max (mm) EZV2 coda (sec) EZV2 amp max (mm)
10 Feb 1999 2231 175 saturated 120 8
10 Feb 1999 0157 -- saturated 300 saturated
10 Feb 1999 0359 160 16 65 3
10 Feb 1999 0552 110 saturated 25 2
10 Feb 1999 0730 140 30 70 3
10 Feb 1999 1318 140 34 75 3

"Currently the Jalisco civil defense operates an observational base called Nevado located 900 m NW from the summit of Nevado de Colima.

"Since the end of November 1998, three seismic instruments (MarsLite with LE3d (1 Hz) sensors) were deployed to complement the RESCO network at the volcano. To improve spatial resolution the authors moved one of these instruments to El Playon on 11 February. On the way to El Playon we observed fires on the southern slopes of Nevado out to a maximum distance of 4.5 km from the volcano's summit.

"On the road at a spot 2.9 km NE of the summit and at 3,120 m elevation we found several impact craters. The first one contained an andesite block with dimensions of 0.37 x 0.44 x 0.43 m. Several small impacts occurred nearby. We found another impact pit near the road, 100 m away from the first site but at similar distance and direction from the summit. This pit measured 1.94 x 0.70 m on the surface and had a depth of 0.60 m. It contained a partially buried andesite block (identified as R3) that measured 0.60 x 0.41 x 0.70 m. The block's temperature was 40°C. The pit sat in a spot surrounded by 10- to 15-m-tall trees; their lack of visible damage suggested a near vertical angle of impact, which we estimated as 80-85°.

"At 70 m away from block R3 we found a volcanic bomb that struck the middle of the road. The bomb consisted of hydrothermally altered volcanic breccia (identified as R4, figure 34), which had shattered on the road over an area 1.73 x 1.64 m; the bomb failed to excavate a crater.

Figure (see Caption) Figure 34. Impact crater R4, created by Colima's 10 February 1999 explosion. Courtesy of F. Nunez-Cornu, G. Reyes-Davila, and C. Suarez-Plascencia.

"In traveling across El Playon we observed dozens of impacts, but elected to stay the minimum time possible in order to reduce exposure to hazards. Most of the bombs seen and sampled consisted of either andesite resembling the new dome or hydrothermally altered andesite, perhaps from the 1987 crater wall. When visiting the same area on 26 February, we found the small and medium impact craters difficult to identify; most of the impacts below trees were covered by newly fallen leaves."

Leveling survey and field examination of the 10 February bombs. On 28 February, John B. Murray, assisted by members of the Colima fire department (Mitchell Ventura, Filiberto de la Mora, and Juan Carlos Martinez) measured two branches of a N-flank leveling traverse last surveyed in January 1997. The first branch, which was 740 m long, left the Playon vehicle track and followed the path up Volcancito passing through stations Porte de Colima (1.3 km from the volcano's summit) and Albergue (1.9 km from the summit). The movement measured since 1997 showed subsidence at stations nearest the volcano totaling 13 mm for the entire section. This was nearly double the subsidence measured during 1995-97, an interval without any lava emission. There was also 13 mm of subsidence seen during 1990-92, an interval which included lava emission (in 1991).

The second branch of the leveling traverse began at Albergue station and ended at Voltaire station, a spot 2.3 km from the summit. Compared to 1997, the Albergue station had subsided just over 8 mm relative to the Voltaire station. Little significant change occurred here during 1995-97 (1 mm rise) and 1990-92 (0.4 mm rise). During a 15-year interval (1982-97) these two stations subsided a total of only 6 mm, and thus looks like a small though significant change in movement. Most of the change (5.6 mm) was measured between two stations 160 m apart at a distance of 2 km from the summit. The possibility of a small error cannot be ruled out, although the movement does follow the same sense throughout this section of the leveling traverse.

The total subsidence between the farthest (2.3 km) and the nearest (1.3 km) station to the summit was 22 mm. This is rather larger than during the 1991 crisis, when the subsidence between the same two stations was 13 mm. Viewing this movement as deflation of a magma chamber (Murray, 1993), this may simply be a reflection of the rather larger output of the volcano in 1998-99 compared to 1991. However, equally tenable is the hypothesis that the movement is due to volcano spreading, or even to Colima's slow slipping down the southern flanks of the larger Nevado volcano, on whose southern slopes Colima is situated. Increases in the rate of subsidence were also observed following the Mexican earthquake of 1985, as well as during the 1991 crisis described above. Although the subsidence during 1997-99 is greater than previously measured, there is nothing in the measurements to suggest that the volcano is building up to a bigger eruption, or to distinguish between the Mogi deflation or downslope slipping models.

The distribution of volcanic bombs from the 10 February explosion was noted at sites along the leveling traverse. Table 9 lists the estimated average distance between impact craters at the various sites where measurements were made. Murray and co-worker identified fragments that varied in size between 10 and 70 cm in diameter, there being no noticeable trend in size between bombs found in the region 1.3 to 2.8 km from the summit. The largest bomb crater found had taken away one third of the road on the north edge of the 1869 lava flow near station Hector, a spot 2.1 km from the summit. This crater was at least 2 m in diameter. However, the numbers of impacts per unit area decreased as distance from the volcano increased.

There is also some evidence of directed blast in table 9, there being distinctly higher concentrations of bombs NNE of the volcano (station Esteban) than at similar distances NE (station C15). Bombs appeared to be of two distinct types: 1) solid, dark, fresh-looking andesitic rocks with high density and no sign of vesiculation, and 2) crumbly, light-colored, altered, vesicular, pumice-like ejecta with low density (guessed at around 1,000 kg/m3) There did not appear to be any predominance of one type or the other with distance from the volcano.

Table 9. Average spacing of N-flank bomb strikes that were found after Colima's 10 February 1999 explosion. Courtesy of John B. Murray.

Site Distance from summit Distance between impacts
Volcancito foot 1.4 km 3 m
Playon (Campsite) 1.7 km 5 m
Playon (Esteban station) 2.0 km 45 m
1869 flow edge (Fire Station) 2.1 km 20 m
Caldera Wall (C15 station) 2.1 km 45 m

A bomb found near the campsite, 1.75 km from the summit, left evidence of its trajectory as it had smashed a 10 cm branch of a tree just before landing. The bomb itself was of solid andesite, and had fractured into several pieces on landing, but it appeared to have had an original diameter of about 40 cm. It had made an impact crater ~1 m in diameter and 50 cm deep. Using the level as a horizontal marker, three measurements of the angle between the broken branch and the crater bottom gave 44 ± 3° from the horizontal.

Six fire sites were inspected and described; usually these were associated with a bomb, but not always. At first, these fire sites went unnoticed because they chiefly consumed low-growing vegetation, and in no case was a completely burned tree to be found. The view towards the volcano from the Playon was unaffected, as green bushes and trees were seen as usual.

For example, at fire site 3, located 2 km NNE of the summit (N side of road, just past bend near station Esteban) we found an isolated pumice bomb 20 cm across, but without burnt vegetation in contact. However, the bomb ignited grass clumps 2 and 3.5 m away; none of the grass between the bomb and the clumps had been affected.

Most fire sites were close to bombs, usually burning on the side away from the volcano. However, most were not in direct contact with the bomb in question, but centered around dry vegetation, particularly tall grass clumps, succulents, small bushes, and (occasionally) trees. The grass and succulents were not dead, but had fresh green shoots sprouting from the top. Presumably because of the high water content, only the dry, dead leaves at the base of the succulents were burned, but there were large areas where succulents were affected in this way, the adjacent vegetation being quite unaffected. There was often no obvious associated bomb in the vicinity. Similarly with grass clumps, there would be gaps of 2 or 3 m between burned clumps, from which the fire had apparently spread radially for a short distance before going out, with no sign of burning of the dry, low grass cover in between. However, not all bombs in the same area had the same effect. In some cases, the only sign of burning was directly beneath the bomb itself, where the grass was singed black but still fairly intact. Yet in places nearby, the landscape had clearly been very slowly burned over an extensive area 10 to 30 m wide, and in one case discussed below, it was still burning.

Murray goes on to comment: "The odd characteristics of these fire sites suggests the possibility of an abnormal ignition mechanism. It seems that ignition depended in many cases not on the proximity to the source of heat (bombs) but rather on the characteristics of the ignited vegetation. It was as if in certain (sometimes quite extensive) areas those low-growing plants below a certain water content, or containing appropriate oils would ignite, and the rest would not. This implies a very high air temperature close to the ground over areas in some cases tens of meters across. The most obvious source of these high temperatures would seem to be hot gas, usually emanating from bombs but not always so. Where associated with bombs, the isolated fire sites would always be on the side facing away from the summit. In other words, there is evidence that extensive degassing took place from bombs upon impact; and that there might also have been some local associated ground-hugging nuees of a weak and intermittent type."

Explosion on 28 February 1999. Murray also noted that "At 1715 on 28 February, while examining the distant bombs and impact craters 2.8 km NE of the summit on the forest road outside the caldera, we heard a distant, faint rushing sound coming from the summit, resembling a large rockfall or an aircraft. On looking up, a large whitish-grey convective cloud, like a cumulus cloud, could be seen rising from the summit and blowing in our direction. It had clearly started some time previously and was already stretching some distance towards us. A heavy rain of ash began nine minutes later, at 1724, ceasing at ~1731. The ashfall, which was sampled, sounded like large raindrops hitting the leaves in the nearby forest but on spreading out a sheet of paper on the ground, only sand-sized ash particles could be seen accumulating on it. At the end of the shower, there was one particle every centimeter approximately, the largest particle being ~ 2 mm across, and the smallest just under 0.5 mm. From the sound of the particles falling in the trees round about, it sounded as if much larger particles were involved in the shower, but none of these fell on the spread-out paper."

Official press releases. A 26 February update by the Colima Volcano Observatory stated that chemical analysis of Colima's water and ash had indicated insignificant risk to human health. At this time the established security limit was set at 10-10.5 km from the summit. Evacuated settlements included Yerbabuena, Causenta, Atenguillo, El Fresnal, La Cofradía, Juan Barragán, El Agostadero, Los Machos, El Alpizahue, El Saucillo, and El Borbollón. The local populations were advised to avoid a long list of drainages, as well as to hand-carry important documents, and to advise authorities of those requiring help in order to secure transport in case of more extensive evacuations. Meanwhile, during the previous 24 hours the monitored parameters indicated relative quiet, suggesting possible voluntary return to evacuated areas at noon on 2 March if these conditions persisted. The 5 March update noted degassing events during the previous 24 hours, the majority of these around 1400 on 5 March. The 16 March update mentioned the recent occurrence of both degassing and minor ash emissions.

Reference. Murray, J.B., 1993, Ground deformation at Colima Volcano, Mexico, 1982 to 1991: Geofisica Internacional, v. 32, no. 4, p. 659-669.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: F. Nunez-Cornu1,4, G. Reyes-Davila2, and C. Suarez-Plascencia3,4; 1) Laboratoria Sismologia, University of Guadelajara, Guadelajara, Mexico; 2) RESCO, University of Colima, Colima, Mexico; 3) Department of Geology, University of Guadelajara, Guadelajara, Mexico; 4) U. Est. Proteccion Civil Jalisco; Colima Volcano Observatory, Universidad de Colima, Av. Gonzalo de Sandoval 444, Colima, Colima 28045, Mexico (URL: https://portal.ucol.mx/cueiv/); J.B. Murray, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, England.


Etna (Italy) — February 1999 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Extensive lava flows discharging from a 4 February fissure on the SE flank

The following report summarizes activity observed at Etna from January through February 1999. Bocca Nuova exhibited minor explosive activity through early February, but Northeast Crater and Voragine were quiet. Southeast Crater had seven distinct eruptive episodes between 5 January and 4 February; the latest was accompanied by the opening of a new eruptive fissure at its southeastern base. The information for this report was compiled by Boris Behncke at the Istituto di Geologia e Geofisica, University of Catania (IGGUC), and posted on his internet web site. The compilation was based on personal summit visits, observations from Catania, and other sources cited in the text.

Activity at Southeast Crater (SEC) until 23 January. After one week of relative quiet, the sixteenth eruptive episode of SEC since 15 September occurred shortly before noon on 5 January; this was preceded by weak Strombolian activity that started around midnight. The paroxysmal phase was characterized by vigorous fountaining, and lava flowed towards the northeast while tephra was driven southwest by the strong wind. Loud detonations were audible in towns on the flanks of Etna.

Episode 17, during the night of 9-10 January, was preceded by mild Strombolian activity; the paroxysmal phase occurred shortly after midnight. Lava presumably flowed NE again and tephra fell NE; Fiumefreddo, ~8 km SW of Taormina, received a light showering of ash. Loud detonations during the final phase were audible over a wide area, and clear weather conditions permitted many in the Catania area to watch the spectacular display.

After the shortest repose interval observed since early in the current eruptive sequence in September, episode 18 took place on the morning of 13 January, between about 0630 and 0930. Visibiliby was hampered by clouds, but loud detonations were audible in a wide area around the volcano. Ash fell as far as Giarre, ~15 km E.

The next eruptive episode occurred on 18 January, shortly after 0800, and lasted ~ 45 minutes. Minor Strombolian and effusive activity had occurred earlier during the night. As in preceding episodes, the culminating phase was characterized by initial strong lava fountaining which gradually became more ash-rich, generating a dense eruption column. Due to calm conditions, the column rose several kilometers above the summit (3 km as estimated from Catania) and attained a spectacular mushroom shape visible in the morning sky from all around the volcano. At the SEC cone itself, the heavy fallout and rapid accumulation of pyroclastics led to frequent avalanches, especially on the steep eastern side. After 0830, dull explosion sounds were audible to as far as Catania, accompanying the rhythmic uprush of dark ash. The activity declined rapidly at 0845, but ash emissions became again more forceful after 0900 and continued sporadically for several hours, accompanied by sliding of hot pyroclastics from the steep E side of the cone. No information was available about lava flows although it is likely that they occurred, possibly on the NE side of SEC.

SEC erupted again after only two days and four hours of inactivity, shortly after noon on 20 January. Increased gas emission began at ~ 1215, and by 1240 a lava fountain appeared at the vent of the SE Crater cone. This fountain rapidly rose to a height of several hundred meters, and the column which rose above it became more and more ash-rich. Less than 15 minutes after the onset of the eruption there occurred the first slides of hot pyroclastics from the upper part of the cone, and five minutes later the whole cone and part of Etna's main summit cone were veiled by a black curtain of falling bombs and scoriae. By 1300, the vertical eruption column had risen several kilometers above Etna's summit. Ten minutes later the activity began to decline rapidly, and by 1315 the eruptive episode was essentially over, with only a few ash puffs being emitted during the following 30 minutes.

During a summit visit by Boris Behncke and Giovanni Sturiale (IGGUC) on 21 January, the crater was completely quiet, and only a few weak fumaroles played on the SW and E crater rims. The cone at SEC had grown higher than 3,250 m, about as high as the rim of the former Central Crater (filled by lavas and pyroclastics in the 1950's and 60's). While its flanks were steep and regular on most sides, obliterating any trace of the pre-1998 crater rim, a deep V-shaped notch was present in the northern crater rim through which lava had spilled onto the cone's flanks during recent eruptive episodes. These lavas had formed a fan-shaped lava field on the northeastern base of the cone, extending to the rim of Valle del Bove.

Behncke and Sturiale also investigated the pyroclastic deposits of the recent eruptive episodes which extended in relatively narrow fans from SEC in various directions. During the 18 and 20 January epidsodes, most fallout had occurred in a radius of <1 km from the cone, mainly on the SE side of the former Central Crater where 0.5-1 m of pyroclastics had accumulated since late 1998. Meter-sized bombs had fallen up to 500 m from SEC, creating spectacular impact craters. Among the most peculiar features of the recent eruptive products was a small lahar on the southwestern side of SEC which extended ~300 m from the base of its cone; this was probably produced during the 5 January episode. Records of lahars are relatively rare in the recent history of Etna, the most notable occurring in 1755.

On the morning of 23 January, SEC was the site of yet another eruptive episode that began at about 0630 and probably lasted less than one hour. Due to the absence of wind, an eruption column rose several kilometers above the summit then drifted slowly SE. In Catania, the ashfall was not dense, but people in the streets felt particles entering in the eyes; these particles were less than 1 mm in diameter and left a thin, discontinuous film on the ground. More serious effects were caused by the fallout in the upper southern parts of the mountain where skiing was rendered impossible by scoria on the snow. The repose period between this and the previous eruptive episode was two days and 18 hours.

There appears to have been no significant seismic or eruptive activity between 23 January and 4 February; the few clear views during that period revealed no morphological changes.

The January eruptive episodes continued to build the SEC cone, which has changed beyond recognition from its mid-1998 appearance. The large crater formed in 1990 at the summit of the SEC cone was completely filled, and a new, tall summit grew over it, burying any trace of the 1990 crater and much of the lava flows erupted from mid-1997 to late July 1998. After the 23 January episode the cone's new summit was at ~ 3,270 m elevation, almost 90 m higher than the highest point of the 1990 crater rim in 1997.

New eruptive fissure opens on 4 February. A new eruptive episode from SEC began at 1600, producing a spectacular eruption column visible from Catania and all around the mountain. Like previous episodes, this event was characterized by vigorous fire-fountaining, tephra emission, and lava, and was preceded by a gradual increase in gas emissions and then mild Strombolian activity. The activity began to culminate at around 1600 when a tall fountain jetted from the summit crater of the cone, and lava spilled through the breach in the N crater rim.

Sometime around 1630, the SE side of the cone fractured, and a new vent opened about halfway down the cone's flank, producing a tall lava fountain 250-350 m high and feeding a dense, ash-laden eruption column. An eruption column rose ~ 2-3 km above the summit before being driven SE, dropping fine ash on the flanks. Lava soon began to flow SE from this vent (figure 75). At about 1640, a row of incandescent spots appeared below the newly formed vent, indicating that a fissure had begun to propagate downslope from the base of the SEC cone. Vigorous lava fountaining and tephra emission from the new vent on the SE flank of SEC diminished rapidly shortly after 1700, but activity continued at the smaller vents on the fissure below that vent, at ~ 2,950 m elevation, and lava advanced rapidly towards the rim of Valle del Bove. At nightfall, both this lava flow and the lava erupted at the beginning of the episode onto the northern side of SEC were brightly incandescent and well visible from towns on the eastern side of the volcano, causing rumors of the opening of fractures on both sides of the cone. However, the northern flow soon stagnated and cooled, and no further lava emission occurred on that side for the remainder of February.

Figure (see Caption) Figure 75. Sketch map showing Etna's summit craters SEC, Voragine (V), and Bocca Nuova (BN). The approximate extent of lava flows emitted during the 4 February eruption are in medium gray and those following the 4 February eruption are in black. Flows erupted from 1971 to 1993 are shown in light gray. Courtesy of Boris Behncke.

On 5 February, lava had begun to spill into Valle del Bove, forming a cascade on its steep western wall. The flow advanced very slowly, and had not yet reached the valley floor (at ~2,000 m elevation) on the next day when the new eruptive fissure was visited by Behncke and Giuseppe Scarpinati (L'Association Volcanologique Européenne, LAVE). Mild explosive activity was building several hornitos in the upper part of the ~100-m-long, SE-trending fissure at the base of the SEC cone while lava was issuing from numerous vents along the whole length of the fissure, feeding several channellized flows and some minor a`a flows. The effusion rate was estimated at 5 m3/s or more, significantly higher than during previous mainly effusive eruptions near Etna's summit craters (mainly at NE Crater in the 1970's) and similar to the effusion rates of some of Etna's flank eruptions. Pahoehoe lava was abundant around the effusive vents. The cone of SEC was found to be fractured from its summit down to its base, but only the main 4 February vent appeared to have produced significant eruptive activity while only minor spatter and scoriae were found in the part of the fracture between that vent and the still-active fissure.

On 15 February, Behncke and Scarpinati again visited the eruptive fissure and observed its activity for about 4 hours. By that day the lava spilling into the Valle del Bove had reached ~ 2,000 m elevation. There was no sign that the activity was diminishing, and the effusion rate remained perhaps as high as 5 m3/s.

Lava continued to issue from a number of effusive vents on the active fissure, forming at least two main rivers and several smaller and short-lived flows. In the course of a few hours Behncke and Scarpinati saw some of the lesser flows cease and others reactivate, forming blocky a`a while the more vigorous and long-lived flows moved in well-defined channels and showed no significant flux variations. Numerous short lava tubes, well-developed flow channels, and secondary vents had formed. Most effusive activity occurred ~50-100 m downslope from the upper end of the fissure, but several vents were also higher upslope. In the uppermost part of the fissure, numerous hornitos had formed, most of them concentrated in three clusters, and this area had countless incandescent vents producing high-pressure gas emission accompanied by a persistent hissing noise. The largest hornitos formed thin, vertical spires up to 3 m high while others were small humps a few tens of centimeters high. There was little explosive activity; only one vent in the uppermost hornito cluster rarely ejected incandescent pyroclastics.

Similar activity continued through the end of February. Lava flowed into the Valle del Bove, forming numerous lobes that moved on top or adjacent to earlier flows, and the farthest flow fronts did not extend much beyond 2,000 m elevation, remaining above the Monti Centenari, a cluster of cones formed during the 1852-53 eruption on the floor of Valle del Bove. The flow field gradually widened to ~500 m on the rim, and flows were issuing from numerous ephemeral vents on the W slope of the Valle.

Activity at Bocca Nuova (BN), Voragine, and Northeast Crater (NEC). Little significant activity occurred at these craters during January-February 1999 except for a brief resurgence of activity at BN during the week preceding the 4 February SEC events. During the 21 January visit by Behncke and Sturiale, spattering and Strombolian activity occurred deep within the large crater in the southeastern part of BN, accompanied by dense gas emission.

The cone in the northwestern part of BN produced violent noisy explosions every few minutes which ejected fountains of bombs high above the crater rim; ejecta frequently fell outside the crater, mostly to the W but in a few cases also SW and S. Between the explosions, deep-seated minor activity occurred within the 50-80-m-wide crater of the cone. No effusive activity had taken place in BN since it was invaded by lava from Voragine on 22 July 1998.

Bright crater glow was visible above BN in the first nights of February, the first time in about five months. This glow persisted during the night of 3-4 February but was much weaker on the evening of 4 February, indicating a drop of the magma level, probably related to the opening of the eruptive fissure on the SE base of SEC earlier that day. During the following week, only infrequent weak glows were visible above BN and then vanished altogether.

Very little activity except profuse steaming was observed within the Voragine during the 21 January visit by Behncke and Sturiale, who were able to descend into this crater and arrived at the "diaframma," the septum that separates the Voragine from Bocca Nuova. The floor of the crater was very flat in its eastern part, while a cluster of four craters with low cones occupied its central-western portion. The central crater, ~50 m wide and 30 m deep, was completely quiet; on its W side a much shallower, ~20-m-wide crater contained a 2-m-wide degassing hole with overhanging walls on whose floor numerous incandescent spots could be seen. A small crater with a diameter of less than 20 m, and ~ 10 m deep, lay on the SE side of the central crater. The largest crater in the Voragine was in the SW part of the Voragine and was between 70 and 100 m wide and more than 50 m deep with very steep and unstable walls, so that its floor could not be seen. Eruptive activity occurred at depth; as could be judged from the noises this was similar to the activity observed in the southeastern BN vents on the same day. A fifth vent that was active in August and early September 1998 on the crest of the "diaframma" appeared to have collapsed into the large SW vent, and only a part of its cone remained standing.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Boris Behncke, Istituto di Geologia e Geofisica (IGGUC), Palazzo delle Scienze, Università di Catania, Corso Italia 55, 95129 Catania, Italy.


Galeras (Colombia) — February 1999 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Low seismicity; fumarole and tilt measurements

Seismicity remained low during January and February 1999. Volcano-tectonic (VT) earthquakes were common from two sources at depths of 0.2-18.8 km and had a coda magnitude range between -0.6 and 3. The first area was below the active cone, and the second was NNE of Galeras. The most significant VT event registered on 3 January at 0714 with a coda magnitude of 3, an epicenter ~14 km NNE of the volcano, and felt earthquakes in Pasto. Other types of VT events located toward the E flank have been called "trenes" (trains) because they are recorded consecutively, to make up packets of 2-5 events. They were small events, recorded at only four of the nine stations in the Galeras network. Those events had a depth range of 3.3-7.3 km and a coda magnitude range between -0.6 and 0.9.

Previous VT events at times have preceded seismic sequences, such as those during November-December 1993 and March 1995, as well as a small seismic sequence in July 1997. However, events have also been recorded in periods of no seismic sequences.

Quasi-monochromatic volcanic tremor episodes were recorded during 4-6 January. The maximum amplitudes were obtained on the E-W components of the broadband stations whereas the minimal amplitudes were recorded on the vertical components of those stations. The spectral frequencies show stable values with small variations of 0.5 Hz. Analysis of the tremor episodes suggested that the source directions of these events were toward the active cone of the volcano.

The electronic tiltmeter Peladitos, on the E flank of Galeras, showed stable behavior with small variations (<1 µrad) in both radial and tangential components. The Chorrillo and Huairatola portable tiltmeters showed stable behavior in the tangential components whereas the radial components continued a descending trend that began at the end of September 1998. Through 26 January, the cumulative decline in the Chorrillo radial component was ~35 µrad, and the Huairatola radial component decline was ~600 µrad.

Most of the radon stations showed stable behavior of the Rn-222 gas emission with changes <200 pCi/l. In contrast, the Meneses-1 station showed variations of ~ 3,300 pCi/l on an ascending trend; the Meneses-3 stations, ~2,700 pCi/l on a descending trend.

When the Alfa Deformes fumarole was measured in December 1998, it had a pH of 0.6. The next measurement, in May 1998, revealed a pH of 2.3, followed by a gradual decline to a value of 0.3 on 25 February. Measured fumarole temperatures generally remained stable, although the La Joya fumarole had increased to 181°C on 6 March from 148°C on 25 February. Scientists observed numerous fissures emitting gas during a summit visit, as well as cracks that could generate small landslides on the main cone.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: Observatorio Vulcanológico y Sismológico de Pasto (OVSP), Carrera 31, 18-07 Parque Infantil, PO Box 1795, Pasto, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Guagua Pichincha (Ecuador) — February 1999 Citation iconCite this Report

Guagua Pichincha

Ecuador

0.171°S, 78.598°W; summit elev. 4784 m

All times are local (unless otherwise noted)


Moderate seismicity and phreatic eruptions during January-February

The Instituto Geofísico (IG-EPN) monitors seismic events, crustal deformation, geochemistry, and records visual observations at Guagua Pichincha. This volcano consists of a 2-km-wide caldera, breached to the west, on whose floor lies a dome complex and the present explosion craters. The following report summarizes their daily observations from 1 January to 31 March 1999. During this period, a Yellow alert status persisted.

Bad weather often prevented or hindered visual observations. Guards at the refuge station and visiting scientists frequently reported noises and the strong smell of sulfur from the fumaroles. COSPEC data from 16 January and 13 March showed only background concentrations of SO2 from the fumaroles, following the maximum concentrations yet recorded (170 t/day) on 10 December. Ash-and-steam plumes from dome fumaroles, when visible, ranged from 100 to 800 m in height, while explosion plumes reached 3 km. The 1981 explosion crater had increased in diameter and almost absorbed the September 1998 crater.

People living along the Cristal river (W flank) confirmed the seismic detection of small debris flows and floods that were generated on 7 and 27 January, 2, 16, and 21 February, and 1 March, all related to intense rainfalls; these traveled down the Rio Cristal at least 10-15 km. Estimated volumes are between 0.3 and 1 x 10-6 m3 with estimated peak discharges of 100-250 m3/s.

Phreatic explosions covered the dome and the interior of the caldera with ash and rocks. A guard at the refuge station and Civil Defense personnel found 2-5 mm of new ash and new impact craters in the Terraza area following the explosions of 21 and 23 January. Analysis of the ash showed no juvenile material, suggesting that magma had not ascended. Ballistically ejected rock fragments up to 30 cm in diameter were found 1-1.5 km S and SE of the dome, the result of phreatic explosions in this time period.

Volcano-tectonic (VT), long-period (LP), and hybrid earthquakes, sometimes in multiples, occurred almost daily throughout January, February, and March. Phreatic explosions were frequent during that period, occurring on average once per day in February and March. Daily LP event counts varied between 1 and 40, but many days had few VT or LP events. Still, 24 VT events occurred on 28 February and 1 March. .High-frequency tremor episodes of a few minutes to as much as four hours (9 February) duration were recorded, but possible associated effects in at the caldera summit could not be confirmed due to bad weather. Some rockfalls in the caldera were heard by the refuge guards while tremor episodes were occurring.

On 9 February and 14 March instruments detected 16 and 70 tectonic earthquakes along the N part of the Quito fault. The largest events had magnitudes of 3.7 and 4.0, respectively. It had been speculated that these events represented sympathetic responses to stresses produced by the volcano's magma chamber. This idea came from an earlier observation of an "on-off scenario" where the presence earthquakes in the N Quito area correlated with little seismicity registering under the caldera, and vice versa.

Reduced displacement measurements (RDs) of phreatic explosions ranged from those too small to measure to several that were 20 cm2 or greater. Some of these larger RDs, such as those on 18 and 28 January, and 13, 19, and 28 February, were the largest since October 1998. The one on 28 February was the largest yet recorded. A summary of seismic events since August 1998 is presented in table 2.

Table 2. Monthly summaries of explosions and seismic events at Guagua Pichincha, August 1998-March 1999. Courtesy IG-EPN.

Month Phreatic Explosions Volcano-tectonic Long-period Hybrid
Aug 1998 8 23 18 29
Sep 1998 24 73 165 1,626
Oct 1998 25 49 191 1,448
Nov 1998 18 52 234 419
Dec 1998 7 59 94 166
Jan 1999 18 41 218 1,163
Feb 1999 28 60 190 2,099
Mar 1999 21 115 73 940

Geologic Background. Guagua Pichincha and the older Pleistocene Rucu Pichincha stratovolcanoes form a broad volcanic massif that rises immediately to the W of Ecuador's capital city, Quito. A lava dome is located at the head of a 6-km-wide breached caldera that formed during a late-Pleistocene slope failure ~50,000 years ago. Subsequent late-Pleistocene and Holocene eruptions from the central vent in the breached caldera consisted of explosive activity with pyroclastic flows accompanied by periodic growth and destruction of the central lava dome. One of Ecuador's most active volcanoes, it is the site of many minor eruptions since the beginning of the Spanish era. The largest historical eruption took place in 1660, when ash fell over a 1000 km radius, accumulating to 30 cm depth in Quito. Pyroclastic flows and surges also occurred, primarily to then W, and affected agricultural activity, causing great economic losses.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador.


Ibu (Indonesia) — February 1999 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Eruptions that began on 18 December 1998 continued in January 1999

Local residents first noticed thick gray ash emissions from the summit on 18 December 1998 (corrected from BGVN 24:01); this information reached the Volcanological Survey of Indonesia (VSI) Gamkonora volcano observatory on the 31st. On 2 January personnel from VSI who went to the island to take COSPEC measurements of the SO2 release observed a loud eruption that caused up to 3 mm of ashfall in and around Tugure Batu Village. The eruption lasted 35 minutes and generated a plume 1,000 m high. Another eruption observed on 5 January 1999 lasted for 60 minutes. Thunderclaps from the summit were heard on 16 January and a night glow from ejecta was evident above the summit area. Residents also reportedly saw lava at the crater rim. The seismometer from Gamkonora (an RTS PS-2) was installed ~2 km from the summit of Ibu on 3 February along with an ARGOS satellite system tiltmeter.

Field observations on 11 March revealed continuing eruptions and rumbling noises, but the larger eruptions (accompanied by booming and thick ash ejection) had decreased to a rate of one every 15-20 minutes. When observed on 2 February larger eruptions occurred every 5 minutes. Seismograph records are still dominated by explosion events; during 9-15 March there were 779 events, increased from 673 events the previous week.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: R. Sukhyar and Dali Ahmad, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Izalco (El Salvador) — February 1999 Citation iconCite this Report

Izalco

El Salvador

13.813°N, 89.633°W; summit elev. 1950 m

All times are local (unless otherwise noted)


Strong fumarolic activity around the summit crater

During fieldwork on Santa Ana volcano in February, increased steaming was observed at the summit of Izalco relative to levels of previous years. Strong fumarolic activity occurred along the entire circumference of the 250-m-wide summit crater, with the exception of the NE side facing Cerro Verde. Activity was most vigorous at a vent on the N side of the crater floor, but was also strong along much of the inner rim of the crater and along its outer flanks. Steaming was observed over broad areas on the outer southern flanks to ~50 m below the rim, and on the W flank immediately N of a shoulder of the cone at ~1,800 m elevation, roughly 150 m below the summit. Activity had earlier been noticed to have increased in November 1998 following Hurricane Mitch. Most of the steaming was water vapor, and the increased activity was attributed to saturation of the still-warm cone by heavy rains accompanying the hurricane.

Geologic Background. Volcán de Izalco, El Salvador's youngest volcano, was born in in 1770 CE on the southern flank of Santa Ana volcano. Frequent strombolian eruptions from Izalco provided a night-time beacon for ships, causing the volcano to be known as El Faro, the "Lighthouse of the Pacific." During the two centuries prior to the cessation of activity in 1966, Izalco built a steep-sided, 650-m-high stratovolcano truncated by a 250-m-wide summit crater. Izalco has been one of the most frequently active volcanoes in North America, and its sparsely vegetated slopes contrast dramatically with neighboring forested volcanoes. Izalco's dominantly basaltic-andesite pyroclasts and lava flows are geochemically distinct from those of both Santa Ana and its fissure-controlled flank vents. Lava flows were mostly erupted from flank vents and deflected southward by the slopes of Santa Ana, traveling as far as about 7 km from the summit of Izalco.

Information Contacts: Carlos Pullinger, Calle Padres Aguilar 448, Colonia Escalon, San Salvador, El Salvador; Demetrio Escobar, Centro de Investigaciones Geotecnicas (CIG), Final Blvd. Venezuela y calle a La Chacra, Apdo. Postal 109, San Salvador, El Salvador; Lee Siebert and Paul Kimberly, Global Volcanism Program, Smithsonian Institution.


Krakatau (Indonesia) — February 1999 Citation iconCite this Report

Krakatau

Indonesia

6.102°S, 105.423°E; summit elev. 155 m

All times are local (unless otherwise noted)


Sporadic ash eruptions in February and March 1999

Krakatau erupted on 5 February 1999 accompanied by thunderclaps and an ash plume that reached a height of ~1,000 m above the summit. The activity continued until 10 February with ash plumes reaching ~100-300 m above the summit. The continuing sporadic eruptions deposited small amounts of ash over most of the island; a deposit of ~0.3 mm was measured near the observatory. On 11 February, the glow of ejecta was observed reaching ~25 m above the summit and continued during the night.

Activity decreased early during the week of 9-15 March. Weak booming noises were heard twice on 9 and 10 March, but plumes were not observed. At the end of the week booming noises were rare, and a white-gray ash plume was seen on 14 March that rose 100-300 m above the summit. The current activity is a continuation of eruptions that began in 1992.

Geologic Background. The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: R. Sukhyar and Dali Ahmad, Volcanological Survey of Indonesia (VSI), Jalan Diponegoro No. 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Ol Doinyo Lengai (Tanzania) — February 1999 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Lava flows spilling over the crater rim in November 1998

The following report is based on photos taken between September and November 1998. Most of the photos were taken by local mountain guide Burra Ami Gadiye. Sketches and descriptions of the photos were provided by Celia Nyamweru of St. Lawrence University.

Lava from within the crater breached the rim, causing small lava flows down the outer crater wall; the breach on the NW probably occurred in late October, and the breach on the E began in early November. Small, narrow tongues of pahoehoe lava erupted continuously from vents around the upper slopes of cones T37S, T37N, and T40 (figure 55). Most of these flows moved E or NE, although a few moved W. The tops of T37S and T37N were built up into broad cones with jagged crowns. Some growth also occurred at T40. Little change was apparent on any of the other cones that were in existence in August (BGVN 23:10). In mid-November a new cone, which has been numbered T50, formed at the base of the SE wall.

Figure (see Caption) Figure 55. View of Ol Doinyo Lengai looking N from the summit on 29 September 1998. Traced by Celia Nyamweru from a photo by B.A. Gadiye.

Activity during September and October. Narrow flows of pahoehoe lava emerged in late September from vents close to the summit of T37S and flowed E and W. The westward-flowing lava reached the center of the crater; the eastward-flowing lava reached the rim of T24 and the base of the crater wall. These flows were very dark in color suggesting they were still fluid or only very recently formed. The summit of T37S had a jagged profile (figure 56), replacing the broad dome seen in August.

Figure (see Caption) Figure 56. View of Ol Doinyo Lengai looking NW from SE crater rim as seen on 29 September 1998. Traced by C. Nyamweru from photographs by B. A. Gadiye.

Small, narrow, very dark colored pahoehoe flows emerged in early October from vents close to the summits of T37S and T40 (figure 57). Behind T40 and to the right of T45, the T37 cluster showed some dark lava extending westwards from its summit past T47, the very tall narrow cone in front of the south wall. Cone T40 had fresh lava extending from the summit onto its lower slopes.

Figure (see Caption) Figure 57. Photograph of Ol Doinyo Lengai taken on 3 October 1998 of the view S from the N crater rim. Courtesy B.A. Gadiye.

In another photo on 7 October (figure 58), the top of T37S was dark brown, in striking contrast with the very pale brown lower slopes. Surrounding cones were pale brown. A large dark brown flow from a source between T45 and T37 extended around the eastern slope of T45. The flow showed no sign of whitening along the edges of the slabs, unlike the flow in front of it, and, therefore, might have been only a few hours old. The E crater wall was estimated to be 5 m high based on the appearance of a person in one photo. This was not an estimate of the lowest point on the crater wall.

Figure (see Caption) Figure 58. Photograph of Ol Doinyo Lengai taken on 7 October 1998 of the view SW from the E crater rim. Courtesy B.A. Gadiye.

Activity during November. In early November fresh, black, shiny, pahoehoe lava flowed from a vent between T45 and T37S. Gadiye noted the source of the flow as the cone T5T9. Only the very top of T5T9 remained visible, since the remainder was covered by 20 m of lava. Another lava flow originated from a vent on the S slope of T40 and flowed around the E side of this cone. According to Gadiye the crater had filled and lava was pouring over the NW rim. A few weeks later he took two photographs, noting that the lava was spilling over the crater rim on the E and had burned the grass on the slope. The lava in one of these photos (taken just outside the rim) consisted of brown and gray smooth pahoehoe flows that did not seem to be more than 10 to 20 cm thick. Judging from the pale color, it had probably undergone weathering during the weeks since it flowed.

Aerial photographs taken late in November showed several narrow tongues of very dark lava over an older surface of white and pale brown lava. These dark flows originated from the slopes of T37S and from the cluster of cones around T37N1. A narrow white streak that overflowed the rim on the NW side was probably recent lava. A few days later fresh pahoehoe flows effused from T37S and T37N and flowed E toward the crater wall and the remains of the rim of T24 (figure 59). In this area was a new cone near the base of the S wall: a low circular feature, just out of view in figure 59, which Gadiye described as "a new cone near the SE rim that is boiling and giving out a lot of steam." This has been designated T50. Lava was seen to be overflowing the NW rim. T37S had a very jagged appearance and there also seemed to have been considerable growth at T37N1, between T37S and T45. Some fresh pahoehoe, very dark over the white older flows, was also visible farther west on the crater floor, near the T44/T48/T49 cone cluster.

Figure (see Caption) Figure 59. Photograph of Ol Doinyo Lengai taken on 24 November 1998 looking SW from the crater floor. Courtesy of B.A. Gadiye.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: Celia Nyamweru, Department of Anthropology, St. Lawrence University, Canton, NY 13617 USA (URL: http://blogs.stlawu.edu/lengai/).


Lopevi (Vanuatu) — February 1999 Citation iconCite this Report

Lopevi

Vanuatu

16.507°S, 168.346°E; summit elev. 1413 m

All times are local (unless otherwise noted)


Strombolian explosions beginning November 1998

During 1963-82 ash emissions, lava flows, lava fountains, and Strombolian explosions occurred intermittently at Lopevi. In 1968-69 activity mainly affected the SE flank (figure 1), where two lava flows from the summit reached the sea. The twenty-year pattern of activity ended with emission of a major plume that rose to 6,000 m on 24 October 1982 (SEAN 07:010).

Figure (see Caption) Figure 1. View of the SE flank of Lopevi volcano, looking toward the NW in May 1995. Paama Island, from which recent observations were made, and Ambrym Island, a currently active volcano, are in the background (to the N). Courtesy IRD; photo by P. Evin, IRD.

Since then, activity had been generally fumarolic. Eruptive activity resumed in July 1998. A series of Strombolian explosions in the main 1963 crater (just NW of the central crater) was observed during November 1998. On 29, 30, and 31 December 1998, Strombolian explosions and Vulcanian emissions were observed from the island of Paama every 4-5 minutes.

Sporadic eruptive activity observed between the end of December 1998 and March 1999 was confined to the 1963 crater on the NW flank (figure 2). The appearance of this large crater, at ~900 m elevation, ruined the perfect conic profile of Lopevi, a rare volcano of the archipelago without a caldera.

Figure (see Caption) Figure 2. View of the active crater on Lopevi's NW flank as seen in January 1999. Courtesy IRD; photo by J-M. Bore, IRD.

Lopevi, an island ~6 km in diameter, 1,450 m high, and 3,500 m above the seafloor, is one of the most active of the Vanuatu archipelago. The first written description came from Captain Cook, who in 1774 entered in his ship's log that the volcano was "seemingly without activity." Volcanic crises reported since 1863 appear to have occurred in cycles of ~15-20 years. In 1960, following a significant Plinian eruption from the NW flank, a series of pyroclastic flows, lava flows, Strombolian activity, and fumarolic emissions were observed during one month. In 1963, over a period of several months, large quantities of flowing lava and ash spread through ~ 1,000 ha in the NW part of the island.

Geologic Background. The small 7-km-wide conical island of Lopevi, known locally as Vanei Vollohulu, is one of Vanuatu's most active volcanoes. A small summit crater containing a cinder cone is breached to the NW and tops an older cone that is rimmed by the remnant of a larger crater. The basaltic-to-andesitic volcano has been active during historical time at both summit and flank vents, primarily along a NW-SE-trending fissure that cuts across the island, producing moderate explosive eruptions and lava flows that reached the coast. Historical eruptions at the 1413-m-high volcano date back to the mid-19th century. The island was evacuated following major eruptions in 1939 and 1960. The latter eruption, from a NW-flank fissure vent, produced a pyroclastic flow that swept to the sea and a lava flow that formed a new peninsula on the western coast.

Information Contacts: Michel Lardy, Institut de recherche pour le développement (IRD), B.P. 76, Port Vila, Vanuatu; Douglas Charley and Roland Priam, Department of Geology, Mines and Water Resources, PMB 01, Port Vila, Vanuatu.


Pacaya (Guatemala) — February 1999 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Explosive activity resumes; summary of activity 1987-98

Explosive activity resumed on 2 January 1999 at Pacaya for the first time since the end of a major eruptive episode on 19 September 1998. Current activity has consisted of small explosions that ejected ash without incandescent material. Beginning on 8 January, the number of explosions increased from 100-200/day to more than 400/day, reaching a peak of ~ 550 on 21 January (figure 19). Explosion counts declined to ~200/day by the end of the month. Volcanologists from INSIVUMEH and the Smithsonian Institution observed frequent small ash eruptions during a 1 February visit. The explosions were not accompanied by detonations, and produced billowing gray-to-brown ash columns that rose ~100 m above the vent. They observed that two vents produced explosions; the largest explosions originated from the westernmost and lower of two vents in the breached crater. Intense fumarolic activity occurred from the inclined floor of the summit crater, its rim, and the outer flanks.

Figure (see Caption) Figure 19. Daily explosion counts at Pacaya during January 1999. Courtesy of INSIVUMEH.

Significant changes to the morphology of MacKenney cone had occurred since a strong explosive eruption on 18-19 September 1998. That eruption left a major breach 20-25 m wide that extended SW. By the time of the 1 February visit, erosion had widened the breach to 70-80 m. At its head, the breach had nearly vertical walls more than 50 m deep, and formed a gully that extended more than 1 km down to ~1,800 m elevation. The NE side of the crater was also notched, but not nearly as deeply. Fractures and down-dropped blocks of summit agglutinate material along the crater rim also showed this SW-NE orientation in line with the location of two flank vents active during September 1998. The breach gives MacKenney cone a twin-peaked appearance when viewed from the W flank (figure 20). The present form of the crater increases the possibility of future eruptive or collapse events being directed toward the W-flank village of El Patrocinio (figure 21).

Figure (see Caption) Figure 20. A prominent gully extends more than 1 km down the SW flank of Pacaya from the twin-peaked summit of MacKenney cone, 1 February 1999. The dark lava flow at the lower right was one of two emplaced from flank vents at the end of the 18-19 September 1998 eruption. Photograph courtesy of Lee Siebert.
Figure (see Caption) Figure 21. Sketch map of Pacaya and nearby towns. Hachured arcuate line indicates the caldera rim. Contour interval 100 m; contour intervals around MacKenney crater are approximate. Courtesy of INSIVUMEH.

The accumulation of spatter and ejecta from the September 1998 explosions had built MacKenney cone to a height about 30-35 m above an older cone immediately SE of MacKenney crater. The older cone, the previous vantage point for observing explosive activity from Pacaya, had itself grown about 10 m in the past decade from the accumulation of ejecta from MacKenney crater. The height of MacKenney cone now exceeds that of Cerro Grande, a vegetated ~2,560-m-high prehistorical cone of Pacaya located 2 km NE of MacKenney.

September 1998 eruption. A major explosive and effusive eruption took place on 18-19 September (table 3). During the first 17 hours of the eruption, a 1.2-km-long lava flow descended WNW into the caldera moat and down the flank of the volcano to the Montanas las Granadillas area SW of Cerro Chino. From 1700-2200 an explosive eruption ejected ash columns to 5 km above the crater, producing ashfall to the SW and NNW. Fine ashfall caused the closing of the international airport in Guatemala City for 35 hours. About 1 m of volcanic bombs were deposited on the caldera rim. Pyroclastic avalanches of incandescent ejecta mantled the upper half of the cone. One 3-m-wide impact crater was formed at the base of the lava flow near El Patrocinio, and 1-m-wide impact craters were found as far as 5 km from the vent. During the final explosive phase, the SW rim of MacKenney crater collapsed, forming a debris avalanche that traveled 2 km down the SW flank to ~1,500 m elevation. Coarse blocks littered the surface of the deposit, whose light color contrasted with that of adjacent dark-colored lava flows.

Table 3. Summary of major eruptive events at Pacaya volcano from January 1987 to September 1998.

Date Description of Volcanic Activity
21 Jan 1987 Ash fell over areas of the villages of Amatitlan and Santa Elena Barillas. The villages of El Caracol and El Patrocinio were evacuated.
25 Jan 1987 10-15 cm of ash fell over El Caracol, El Rodeo, and in part over El Patrocinio.
14 Jun 1987 Lava flow reached 2.5 km SW; 600 people evacuated.
7-11 Mar 1989 Two lava flows threatened to reach El Patrocinio and El Rodeo. A third lava flow traveled 3 km on the W flank.
02 Apr 1990 A 4-hour-long eruption deposited 10 cm of ash in El Patrocinio and El Caracol.
15 Sep 1990 Moderate intensity eruption caused a moderate ash fall over El Patrocinio.
05 Mar 1991 Minor ashfall in El Caracol and El Patrocinio.
06, 14, 16 Jun 1991 Continuing eruptive activity destroyed the active crater (MacKenney).
08, 12, 14, 15 Jul 1991 Moderate intensity eruption; minor ashfall over El Caracol (3 km from the crater).
27 Jul 1991 An eruption caused a 26-cm-thick ash layer to be deposited over El Caracol and El Patrocinio, 1.5 cm in Escuintla, and a thin layer in Santa Lucia Cotzumalguapa.
01 Aug 1991 A 3,000-m-high column caused ashfall over Barbarena and Cuilapa.
10 Jan 1993 Collapse in the active crater sent a glowing avalanche to the side of El Caracol. The post-collapse eruption column drifted toward Santa Lucia Barillas. The acidity of the ash damaged vegetation in the region.
21 Sep 1993 4-hour eruption caused a minor ashfall over El Caracol.
16 Mar 1994 Eruption lasted until midnight and had an incandescent lava fountain 300 m high. Most of the ash fell on the volcano's flanks.
15 Oct 1994 Phreatomagmatic explosion; acid ashfall damaged vegetation in Santa Elena Barillas and Los Llanos. Population was affected by pulmonary and respiratory problems.
07 Apr 1995 A lahar completely covered a house and killed a little girl in Los Rios. The inhabitants were evacuated as 25-35-cm-thick volcanic sand was deposited over the village. As a result of a hazard study, many villagers had been previously evacuated.
01-07 Jun 1995 A debris avalanche caused by collapse of the W crater rim destroyed a radio station and partially burned the vegetation of Cerro Chino in a 4-km2 area.
07 Jun 1995 Lahars moving as a dense, dough-like mass, cut roads and wiped away a bridge. Consequently many families in El Patrocinio and Los Rios were evacuated and later part of the population was relocated in La Colima.
17 Sep 1995 A 1-km-high column from a phreatomagmatic explosion deposited 3 cm of fine ash in Santa Elena Barillas and a fine veil of volcanic dust in Barbarena and near Cuilapa.
11 Oct 1996 At dawn the eruption produced a sustained lava fountain 500-700 m high and lava flows as long as 1.5 km on the SE flank. The 35 km/h wind with blasts at 45 km/h caused a fine ash fall as far as Puerto San Jose, 60 km to the S on the Pacific Ocean.
11 Nov 1996 A 9-hour-long eruption produced a 2-km long lava flow and deposited 7-12 cm of ash near El Caracol and Finca El Rabon. El Rodeo received a 2-3 cm thick blanket of ash. It was necessary to evacuate the population of El Caracol, El Rodeo, and some women and children of El Patrocinio.
20 May 1998 A 5-hour eruption produced a 4-km-high ash column. S wind caused ashfall in the capital City, Ciudad de Guatemala (2 mm in the N and 4 mm in the S areas of the city). La Aurora International airport was closed for three days. Incandescent bombs and hot blocks ignited trees in the mountainous areas of Cerro Grande, 2 km NNE of MacKenney crater. 254 people were evacuated from San Francisco de Sales, El Cedro, and El Pepinal. Two people were injured by falling scoriaceous bombs in S.F. de Sales.
14 Jun 1998 A moderate eruption began at 0600 and lasted until 1900. An incandescent lava fountain was oscillating between 150 and 400 m high. A large ash column (600-800 m high) was blown to the S and produced scoriaceous ashfall in El Caracol. There was no need to evacuate. Condensation of atmospheric humidity due to the heat fed a cloud that reached 1,500-1,700 m in height. The Unidad Coordinadora Deptal de Escuintla del Ministerio de Agricoltura, Ganaderia y Alimentacion reported the loss of Q70,000 (US $10,000) from partial destruction of coffee, corn, and bean crops, and for purchase of food for livestock. Aircraft reported ash at 5,500 m.
18 Jun 1998 A 10-minute explosion at 1045 caused the ejection of semi-incandescent blocks (>= 35 cm) over all the volcano flanks. Then, 20 minutes later, fine ash lightly fell over the city of San Vincente Pacaya.
18 Sep 1998 The main eruption had one effusive and one explosive phase. The first lasted 17 hours, producing a 1,200-m-long tongue of lava that emerged from the WNW rim of the active crater and then deviated to the Montanas las Granadillas area SW of Cerro Chino. The second phase occurred from 1700 to 2200 hours. It expelled an ash column that reached 5,000 m altitude and produced ash and lapilli fall to the SW and NNW.A very thin film of fine ash (~ 1 mm) caused the La Aurora International airport to be closed again for 35 hours, after which it reopened with restrictions. Three lava flows accompanied the explosive phase; the first one, 400 m long, went WNW and reached the base of the cone. There it joined the second flow (from the N flank). The third lava flow departed from the second flow and went to the S toward El Caracol. During the proximal explosive phase the SW rim of the MacKenney crater collapsed, causing a debris avalanche 2 km long, and a cloud of hot ash and gases that burned vegetation in the distal reaches.

Several lava flows accompanied the explosive activity (figure 22). The longest of these traveled ~4 km from a notch in the NE crater rim. The flow initially descended northward into the caldera moat where it was deflected by the caldera wall, flowed across the moat, and then down the SW flank to 1,760 m elevation before diverging around a small kipuka and scorching trees at its northern margin below Cerro Chino. Much of the caldera moat was covered by lava flows of the September eruption, and the prominent 1984 spatter cone low on the N flank was nearly buried.

Figure (see Caption) Figure 22. Photograph of the lava flow (foreground) that descended from Pacaya's caldera moat down the W flank. This flow and the two dark lobes above it originated from MacKenney cone during the 18-19 September 1998 eruption. Light-colored tephra deposits between the flows mantle previous lava flows. Photograph taken on 1 February 1999. Courtesy of Paul Kimberly, SI.

At the end of the eruption, two small lava flows took place from flank vents on opposite sides of the cone. A vent on the upper NE flank at ~2,450 m elevation produced a short lava flow that reached the caldera moat. A vent on the lower SW flank at ~1,800 m elevation (figure 22) produced a short lava flow that divided into two lobes, one traveling to the SW and the other to the south.

Summary of 1987-1998 activity. Routine explosive activity characteristic of Pacaya occurred through much of the period from 1987 to the present but is not listed in table 3. Strong explosive eruptions in January 1987 and June 1991 destroyed the upper part of MacKenney cone, deepening and widening the crater, after which renewed eruptions reconstructed the cone. Major eruptions on 7 and 14 June 1995 destroyed the WNW side of the crater, leaving two notches at the summit. Debris from the 7 June collapse slammed into the caldera wall at Cerro Chino, 1 km NW of the summit, and produced a secondary hot cloud that swept over Cerro Chino, destroyed a radio antenna, and affected houses within 2 km of the active vent. The shockwave threw INSIVUMEH observer Pastor Alfaro down a slope, fracturing his leg. The 7 June event produced a 2.5-km-high plume. The second collapse on 14 June produced an avalanche that traveled SW toward El Rodeo and was accompanied by a 4-km-high plume. Lava flows subsequently traveled 2 km. Figure 23 shows RSAM plots for 1995-98.

Figure (see Caption) Figure 23. Plot of seismic activity at Pacaya as represented by Real-time Seismic Amplitude Measurement (RSAM) counts during January 1995-December 1998. Courtesy of INSIVUMEH.

A strong explosive eruption on 20 May 1998 produced a 4-km-high ash column. Incandescent bombs burned trees on the SSW flank of Cerro Grande, 2 km N of the crater, and scoria fall damaged vegetation and crops. Two persons in the settlement of San Francisco de Sales, 2.5 km NE of the crater, were injured by falling scoria blocks. The ash plume was primarily blown to the NE, with a lesser plume to the SW (figure 24). Ash fell from 1300-1600 in the villages and towns within 5 km of the volcano. During 1400-1830 ash fell in the capital city of Guatemala, causing closure of the international airport. Ashfall covered an area of 800 km2, and had an estimated volume of ~2.3 x 106 m3. The eruption caused the evacuation of 254 residents from surrounding villages to the town of San Vicente de Pacaya. Lava flows during the 20 May eruption traveled down the N, W, and SW flanks and had a volume of 6.3 x 105 m3.

Figure (see Caption) Figure 24. Isopachs of the 20 May 1998 explosive eruption from Pacaya volcano. Courtesy of Otoniel Matias, INSIVUMEH.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Otoniel Matias, Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Ministerio de Communicaciones, Transporte y Obras Publicas, 7A Avenida 14-57, Zona 13, Guatemala City, Guatemala; Lee Siebert and Paul Kimberly, Global Volcanism Program, National Museum of Natural History, Room E-442, Smithsonian Institution, Washington DC 20560-0119.


Sheveluch (Russia) — February 1999 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Low-level seismicity and fumarolic plumes

Seismicity under the volcano was about at background levels from December 1998 through February 1999. On 2 February a M 2 earthquake was located at 23 km depth. Weak volcanic tremor and small earthquakes were registered during the first half of February, and on 21 February a 6-minutes series of shallow earthquakes was detected. The Level of Concern Color Code remained Green.

The volcano was frequently obscured by clouds, making observations only intermittently possible. Fumarolic plumes rising 50-400 m were noted on 10 December, 8, 13-14, and 20 January, 6-7, 13, 16-18, and 22 February. Higher plumes, in the range of 700-800 m above the summit, were observed on 21 and 23 January, and 5 February. On 10 and 15 February fumarolic plumes rose 1,000 m.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Shishaldin (United States) — February 1999 Citation iconCite this Report

Shishaldin

United States

54.756°N, 163.97°W; summit elev. 2857 m

All times are local (unless otherwise noted)


Steam plumes and thermal activity seen at summit

During the first week of February, National Weather Service personnel in Cold Bay, 93 km ENE of Shishaldin, observed anomalous steaming. On 9 February a vigorous steam plume rose as high as 1,830 m above the vent and a long plume drifted downwind. Satellite imagery taken that day showed a thermal anomaly at the vent in addition to the steam plume. The steam activity decreased during the week, becoming only light puffs rising a few meters above the vent; however, the thermal anomaly at the vent persisted. A newly installed seismic net recorded slightly elevated seismicity beginning at the end of January.

The hazard status was raised to Yellow on 18 February due to the persistence of the thermal anomaly and the identification of low-level seismic tremor. Pilots and ground observers reported a large steam plume rising to 5,800 m on 18 February. No ash was detected on satellite imagery. Cloudy weather precluded ground observations for most of the following week.

Shishaldin volcano, located near the center of Unimak Island in the eastern Aleutian Islands, is a spectacular symmetrical cone with a basal diameter of approximately 16 km. A small summit crater typically emits a noticeable steam plume with occasional small amounts of ash. Shishaldin is one of the most active volcanoes in the Aleutian volcanic arc, situated near that part of the arc where the maximum rate of subduction occurs. It has erupted at least 27 times since 1775. Major explosive eruptions occurred in 1830 and 1932, and eight historical eruptions have produced lava flows. Steam and minor ash emission began in March 1986 and continued intermittently through mid-February, 1987. A poorly documented short-lived eruption of steam and ash, perhaps as high as 10 km, occurred in December 1995 (BGVN 21:01). Fresh ash was noted on the upper flanks and crater rim but no specific eruptive event was identified for the deposits.

Geologic Background. The beautifully symmetrical volcano of Shishaldin is the highest and one of the most active volcanoes of the Aleutian Islands. The 2857-m-high, glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steady steam plume rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is Holocene in age and largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the west and NE sides at 1500-1800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century.

Information Contacts: Alaska Volcano Observatory, a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Soufriere Hills (United Kingdom) — February 1999 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Ash venting and numerous pyroclastic flows in December 1998 and January 1999

Several small dome collapses, some that were initially explosive, generated pyroclastic flows in December. Episodes of ash venting occurred almost daily and seismicity was dominated by volcano-tectonic earthquakes and rockfalls. The number of volcano-tectonic earthquakes declined toward the end of December but the number of long-period signals, corresponding to ash venting, increased slightly. Some explosive eruptions during early- to mid-January generated substantial ash clouds. Brief episodes of ash venting, correlating with seismic tremor, became shorter and weaker toward the end of January. Small-volume pyroclastic flows were generated by dome collapse, but some flows may have been generated by fountain collapse during small explosive eruptions. The average SO2 flux was elevated throughout December and January. Eastward movement of the Long Ground and Tar River GPS sites continued.

Visual observations.Daily periods of volcanic tremor during December coincided with steam-and-ash venting. On 8 December mudflows occurred all around the volcano.

A pyroclastic flow generated by dome collapse on 14 December reached the sea at the Tar River delta. Deposits were fluidized, fine-grained material with very few blocks. A large ash cloud was generated that rose rapidly to ~6,100 m. Ash fell W and NW of the volcano, attaining a thickness of 2 mm in Salem and containing accretionary lapilli up to 2 mm in diameter. On 19 December a pyroclastic flow reached the Tar River delta in less than five minutes. Powerful black jets of ash and rock burst from the dome at the onset of the event but it is unclear if this explosive activity preceded or followed the dome collapse. The small deposit was almost entirely confined to the incised channel in the Tar River valley on top of the 14 December deposits. On 21 December, at the onset of a sudden large seismic signal, dense black jets of ash and vigorously convecting ash clouds escaped from the main vent in the 3 July scar. Ballistic blocks rose 80 m above the vent. Very vigorous ash venting continued for more than 30 minutes after the initial explosion. A minor dome collapse on 27 December resulted in a small-volume pyroclastic flow reaching the Tar River delta. Poor visibility hampered observations, but a significant ash cloud was generated.

Minor ash venting took place on 1 and 5 January. At 0358 on 7 January, a large long-period seismic signal immediately preceded a 30-minute episode of tremor (usually associated with vigorous ash venting). Later the same day, a small dome collapse generated a pyroclastic flow that traveled half-way down the Tar River valley and a low-level ash cloud that moved W over Plymouth. On 13 January an explosive event generated an ash cloud to 6,100 m and a pyroclastic flow. The onset of the seismic signal had a long-period component, and a pressure wave was recorded at Long Ground. A booming sound was reported by many. The pyroclastic-flow deposit in the Tar River valley was small in volume but its extent suggested that the flow had been very mobile. Narrow small-volume pyroclastic-flow deposits were observed S of the dome as far as the former position of Galway's Soufriere. Two small dome-collapse pyroclastic flows occurred on 14 January. At 0827 on 15 January a small explosive event generated an ash cloud that rose to 4,600 m. The cloud moved NW and light ashfall affected Salem and Old Towne. Ash venting continued in pulses for 15 minutes. Another small explosion on 16 January generated an ash cloud to 3,000 m. Rockfalls were triggered on the inner walls of the 3 July scar and on the outer SE and NE flanks of the dome. A minor dome-collapse pyroclastic flow on 20 January almost reached the sea at the Tar River delta. The resulting steam-rich plume dissipated rapidly. Several brief (20 minute) episodes of tremor preceded by a rockfall corresponded to weak ash venting on 24 January. Further short episodes of ash venting occurred on 25 and 27 January.

Clear conditions on 26 and 27 January enabled MVO staff to survey the dome (figure 44). The canyon, which had been incised through the dome, was clearly visible. It bisected the dome in a NW-SE direction from the top of Tar River Valley to the top of Gages Valley. The inner walls of the canyon were vertical and surfaces looked fresh because of repeated small rockfalls.

Figure (see Caption) Figure 44. Photograph of the dome area at Soufriere Hills taken in late January 1999. This was used to calculate the dome volume and shows an exceptionally clear view of the gully running through the dome. Courtesy MVO; photograph by Richard Herd and Chloe Harford.

Seismicity. Seismicity in December consisted chiefly of volcano-tectonic earthquakes and rockfall signals. Many of the latter were associated with small pyroclastic flows or venting. Small clusters of earthquakes were located under George's Hill to the NW of the dome, under Roaches Yard to the SE, and under Hermitage Estate to the NE.

Overall, January was quiet seismically. Pyroclastic-flow signals had low-frequency precursors. These events were associated with booming noises and were followed by periods of vigorous ash venting, suggesting the collapses were caused by violent degassing of the dome.

Ground deformation. The only area where significant deformation took place in December was on the E flank. The vectors for Long Ground showed eastward movement of these two sites amounting to 5 cm since lava stopped erupting. Most of this movement occurred during the last three months (a time of increased surface activity). The differential movement between Whites and Long Ground since June 1996 is more than 10 cm. The two sites are 733 m apart and the movement between them cannot be fit elastically. A ground inspection on 30 December revealed a possible fault between the two sites. The only surface expression is a linear break in the road and it is not currently known whether this is related to volcanic deformation or to surficial movements. The Tar River GPS pin has followed a similar movement to Long Ground throughout the eruption. The Perches site, until it was destroyed in July, followed a similar path. One possible interpretation is that a sector of the volcano including Long Ground, Perches, and Tar River is moving as a block along faults in a NE direction.

Eastward movement of Long Ground and Tar River continued in January but at a reduced rate. A local EDM network of five pins was set up on 27 January to learn whether the surface feature is a fault.

Environmental monitoring. The miniCOSPEC was used several times in December. The SO2 flux was elevated and on 22 December and reached a peak average flux of 1,700 metric tons per day (figure 45). Sulfur-dioxide flux decreased throughout January, but generally remained elevated. Concentrations were also measured at ground level by using diffusion tubes around the island.

Figure (see Caption) Figure 45. Average daily SO2 fluxes at Soufriere Hills measured by miniCOSPEC, December 1998-January 1999. The lines connecting measured points are guidelines only; the actual measured levels varied. The measurements made on 19 January showed a very low flux: observations suggested that at least part of the plume was at a very low altitude and may have been found partly below the elevation of the traversing helicopter. Data courtesy of MVO.

Ash and rainwater collection continued throughout January. Ash samples from the small explosive events tended to very coarse, with lithic and crystal fragments up to 6 mm in size in the Richmond Hill-St. Georges area. In contrast, ash generated by dome-collapse pyroclastic flows was very fine-grained.

Volume measurements. A detailed photographic and theodolite survey was conducted from twelve sites around the volcano at the end of January. A photographic survey was also conducted from the helicopter with the GPS onboard. The information has been processed to produce a detailed dome map and volume measurement. The dome had a volume of 76.8 x 106 m3 and its highest point was 977 m at the top of the White River Valley. The dome was split deeply by the collapse on 3 July 1998 and by subsequent events. The N part of the dome, which comprises three main buttresses above Gages, the N flank, and Tar River, contains two-thirds of the total dome volume. The scar cuts up to 100 m into the pre-1995 crater floor and has removed a minimum of 5.4 x 106 m3 of old rock from this area.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Mongo Hill, Montserrat, West Indies (URL: http://www.mvo.ms/).


Tolbachik (Russia) — February 1999 Citation iconCite this Report

Tolbachik

Russia

55.832°N, 160.326°E; summit elev. 3611 m

All times are local (unless otherwise noted)


Gas-and-steam explosion; minor seismicity

On 18 February, a gas-and-steam explosion generated a plume to 600 m above the volcano. Small (magnitudes near zero) shallow earthquakes were registered under the volcano and continued through the month, coincident with M 1.5 events at 15-30 km depth. No further unusual seismicity was reported as of mid-March.

The massive Tolbachik basaltic volcano is located at the southern end of the dominantly andesitic Kliuchevskaya volcano group. The Tolbachik massif is composed of two overlapping, but morphologically dissimilar volcanoes. The flat-topped Plosky Tolbachik shield volcano with its nested Holocene Hawaiian-type calderas up to 3 km in diameter is located east of the older and higher sharp-topped Ostry Tolbachik stratovolcano. Lengthy rift zones extending NE and SSW of the volcano have erupted voluminous basaltic lava flows during the Holocene, with activity during the past two thousand years being confined to the narrow axial zone of the rifts. The last eruptive activity, in 1975-76, vented from both the summit and SSW-flank fissures; it was the largest historical basaltic eruption in Kamchatka.

Geologic Background. The massive Tolbachik basaltic volcano is located at the southern end of the dominantly andesitic Kliuchevskaya volcano group. The massif is composed of two overlapping, but morphologically dissimilar volcanoes. The flat-topped Plosky Tolbachik shield volcano with its nested Holocene Hawaiian-type calderas up to 3 km in diameter is located east of the older and higher sharp-topped Ostry Tolbachik stratovolcano. The summit caldera at Plosky Tolbachik was formed in association with major lava effusion about 6500 years ago and simultaneously with a major southward-directed sector collapse of Ostry Tolbachik volcano. Lengthy rift zones extending NE and SSW of the volcano have erupted voluminous basaltic lava flows during the Holocene, with activity during the past two thousand years being confined to the narrow axial zone of the rifts. The 1975-76 eruption originating from the SSW-flank fissure system and the summit was the largest historical basaltic eruption in Kamchatka.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


White Island (New Zealand) — February 1999 Citation iconCite this Report

White Island

New Zealand

37.52°S, 177.18°E; summit elev. 294 m

All times are local (unless otherwise noted)


Minor ash-and-steam emissions continue

Volcanic-tremor levels on White Island (BGVN 23:10-23:12 and 24:01) have remained low since 22 January and low-level eruptive activity continued through mid-March. On 12 February, the low-energy hydrothermal activity within Metra Crater was dominated by gas-and-steam emissions from small fumaroles on the N and W sides of the crater. Four small ponds had formed on the crater floor. A weak gas (SO2) and steam plume from PeeJay Vent rose 400-500 m, forming haze visible 40-50 km away.

During a visit by C.P. Wood on 13 March activity was generally constant with the ash-and-steam column rising to ~ 1,060 m and drifting many kilometers downwind, with sea discoloration from fall-out evident to 1 km from the island. PeeJay Vent was continuously emitting ash-charged gray-brown steam, but with varying intensity. During peak discharges, observers standing on the 1978/90 Crater Complex edge noted a rumbling noise from PeeJay, but no block ejection was seen. The vent diameter appeared to have increased and was an obvious funnel shape lined with whitish sublimate deposits. Ash could not be collected because of the wind direction. Metra Crater was occupied by a lurid lime-green lake, which largely filled the original crater and peripheral scallops to ~ 1 m below the rim (the old lake floor). There was no sign of thermal disturbance in the Metra lakelet. The ash surface throughout Main Crater was rain-washed and smooth (except for the route used by tourist operators), with no sign of recent impact craters near the 1978/90 Crater Complex edge.

Geologic Background. The uninhabited White Island, also known as Whakaari in the Maori language, is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The summit crater appears to be breached to the SE, because the shoreline corresponds to the level of several notches in the SE crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of eruptions since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. Formation of many new vents during the 19th and 20th centuries has produced rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities.

Information Contacts: Brad Scott, Wairakei Research Centre, Institute of Geological and Nuclear Sciences (IGNS) Limited, Private Bag 2000, Wairakei, New Zealand (URL: http://www.gns.cri.nz/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).