Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Piton de la Fournaise (France) Eruptive episodes in February-March and June 2019; multiple fissures and lava flows

Semeru (Indonesia) Decreased activity after October 2018

Heard (Australia) Thermal hotspots continue during October 2018-March 2019 at the summit and on the upper flanks

Dukono (Indonesia) Numerous ash explosions from October 2018 through March 2019

Rincon de la Vieja (Costa Rica) Occasional weak phreatic explosions continue through February 2019

Turrialba (Costa Rica) Frequent passive ash emissions continue through February 2019

San Cristobal (Nicaragua) Weak ash explosions in January and March 2019

Semisopochnoi (United States) Minor ash explosions during September and October 2018

Asosan (Japan) Multiple brief ash emission events during April and May 2019; minor ashfall in adjacent villages

Nyamuragira (DR Congo) Lava lake reappears in central crater in April 2018; activity tapers off during April 2019

Tengger Caldera (Indonesia) New explosions with ash plumes from Bromo Cone mid-February-April 2019

Karangetang (Indonesia) Activity at two craters with the N crater producing ash plumes, avalanches, pyroclastic flows, and lava flows that reached the ocean in February 2019



Piton de la Fournaise (France) — July 2019 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Eruptive episodes in February-March and June 2019; multiple fissures and lava flows

Short pulses of intermittent eruptive activity have characterized Piton de la Fournaise, the large basaltic shield volcano on La Réunion Island in the western Indian Ocean, for several thousand years. For the last 20 years, frequent effusive basaltic eruptions have occurred on average twice per year. The activity is characterized by lava fountains and lava flows, and occasional explosive eruptions that shower blocks over the summit area and produce ash plumes. Almost all of the recent activity has occurred within the Enclos Fouqué caldera, although past eruptions in 1977, 1986, and 1998 have occurred at vents outside of the caldera. Four separate eruptive episodes were reported during 2018; from 3-4 April, 27 April-1 June, 13 July, and 15 September-1 November (BGVN 43:12, 43:09). Two episodes from 2019 during February-March and June are covered in this report, with information provided primarily by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) as well as satellite instruments.

Piton de la Fournaise experienced two eruptions during November 2018-June 2019. The first lasted from 18 February to 10 March 2019, and the second episode was 11-13 June. The episode in February-March started consisted of multiple fissures opening on the E flank of the Dolomieu crater on 18 February with lava flows that traveled several hundred meters. After a brief pause, one new fissure opened nearby on 19 February and produced up to 3 million m3 of lava in a little over four days. Although the flow rate then declined, the eruption continued until 10 March. During the last three days, 7-10 March, two new fissures opened nearby and produced large volumes of lava, bringing the total eruptive volume to about 14.5 million m3. After little activity during April and May, a small eruption occurred on the SSE outer slope of Dolomieu crater that lasted for about 48 hours on 11-13 June; multiple small flows traveled about 1,000 m down the steep flank before ceasing. The MIROVA thermal anomaly graph of log radiative power clearly showed the abruptness of the beginning and ends of the last three eruptive episodes at Piton de la Fournaise from August 2018 through June 2019 (figure 165).

Figure (see Caption) Figure 165. The MIROVA graph of thermal energy from Piton de la Fournaise from 30 July 2018 through June 2019 shows the last three eruptive episodes at the volcano. From 15 September through 1 November 2018 fissures and flows were active on the SW flank of Dolomieu crater near Rivals crater (BGVN 43:12). Fissures opened on the E flank of the crater on 18 February 2019, and after a brief pause resumed on 19 February at the foot of Piton Madoré. Lava flows remained active until 10 March 2019. A short episode of lava effusion occurred on 11-12 June 2019 on the SSE outer slope of Dolomieu crater. Courtesy of MIROVA.

Activity during November 2018-March 2019. Following the end of the 15 September-1 November 2018 eruption, seismic activity immediately below the summit remained low (with only 20 shallow and two deep earthquakes during November). The inflationary signal recorded since the beginning of September stopped, and the OVPF deformation networks did not record any significant deformation. There were 35 shallow earthquakes (0-2 km depth) below the summit crater during December, and one deep earthquake. Only 12 shallow earthquakes and one deep earthquake (greater than 2 km below the surface) were reported in January.

OVPF reported an increase in CO2 concentrations beginning in December 2018, and noted the beginning of inflation on 13 February 2019. A seismic swarm of 379 earthquakes accompanied by minor but rapid deformation (less than 1 cm) was reported on 16 February 2019. A new seismic swarm of 208 earthquakes began early on 18 February with a much larger ground deformation (10 cm of elongation of the summit zone). A volcanic tremor indicative of the arrival of magma near the surface began at 0948 that morning. Webcams indicated that eruptive fissures had opened in the NE part of the Enclos Fouqué caldera. The onset of the eruption was marked by a sudden drop in CO2 flux which then stabilized. The eruptive sites were confirmed visually around 1130. Three fissures with actively flowing lava opened on the E flank of Dolomieu Crater; the fountains of lava were less than 30 m high. The front of the longest flow had reached 1,900 m elevation after one hour. The eruption lasted a little over 12 hours and was over by 2200 that evening; it covered about 150-200 m of the hiking trail to the summit.

Seismicity remained high after the event ended, and at 1500 on 19 February 2019 another seismic swarm of 511 deep earthquakes located under the E flank at about 2.5 km depth occurred. It was not accompanied by a significant amount of deformation. At 1710 tremor signals appeared on the observatory seismographs and the first gas plumes and lava ejection were observed at 1750 and 1912, respectively. During an overflight the next day (20 February), OVPF team members observed the new eruptive site at an elevation of 1,800 m at the foot of Piton Madoré. One fissure and one fountain were active at 0620 on 20 February and the flow front was at 1,300 m elevation (figure 166). During the night of 20-21 February the flow front crossed over the "Grandes Pentes" area in the eastern half of the Enclos Fouque (figure 167).

Figure (see Caption) Figure 166. The eruption which began on 19 February 2019 on the E flank of Dolomieu crater at Piton de la Fournaise produced a lava fountain and flow which traveled down at least 500 m of elevation by the next morning when this photo was taken at 0620 local time. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du mercredi 20 février 2019 à 11h00, Heure locale).
Figure (see Caption) Figure 167. The active fissure at Piton de la Fournaise was producing lava fountains and an active flow during the evening of 20 February 2019. Overnight the flow crossed over the "Grandes Pentes" area of the caldera. Photo courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du jeudi 21 février 2019 à 14H00, Heure locale).

OVPF reported on 22 February 2019 that 22 shallow earthquakes had been reported since the eruption began on 19 February. Surface flow rates estimated from satellite data, via the HOTVOLC system (OPGC - University of Auvergne), were between 2.5 and 15 m3/s. The quantity of lava emitted between 19 and 22 February was between 1 and 3 million m3. OVPF observed the growth of an eruptive cone that was filled with a small lava lake producing ejecta during a morning overflight on 22 February. A channelized flow moved downstream from the cone and split into two lobes about 1 km from (and 200 m below) the cone (figure 168). The split in the flow occurred near the Guyanin crater. The N flowing lobe, about 50 m wide, had an actively flowing front located at 1,320 m elevation; the incandescent flow was travelling over a recent flow (likely from the previous night). The S-flowing lobe spread to 200 m wide and split into two tongues 300 m SE of Guyanin crater.

Figure (see Caption) Figure 168. During an overflight on the morning of 22 February 2019 scientists from OVPF observed a growing spatter cone with a small lava lake at Piton de la Fournaise. A channelized flow moved downstream from the fissure and split into two flows. Photo courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 22 février 2019 à 13h30, Heure locale).

Incandescent ejecta from the cone was captured in a webcam image overnight on 22-23 February 2019 (figure 169). The rate of advance of the flow slowed significantly by 24 February, but the intensity of the eruptive tremor remained relatively constant. Mapping of the lava flow on 28 February carried out by the OI2 platform (OPGC - University Clermont Auvergne) from satellite data confirmed the slow progress of the flow after 24 February (300 m in 5 days) (figure 170). The flow front was located at 1,200 m elevation, and only the N arm was active; the lava had traveled about 2.2 km from the vent by 28 February.

Figure (see Caption) Figure 169. Incandescent ejecta from the eruptive cone at Piton de la Fournaise was captured in the webcam in the early hours of 23 February 2019. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 23 février 2019 à 13h30, Heure locale).
Figure (see Caption) Figure 170. Contours of the lava flows at Piton de la Fournaise from 18-28 February 2019 were determined from satellite data by the OI2 platform (Université Clermont Auvergne), dated 18 (red) and 19 (blue) February (top image); 20 (green), 21 (red), 22 (blue), 27 (turquoise), and 28 (pink) February (bottom image). Courtesy of and copyright by OVPF/IPGP. Top: Bulletin d'activité du vendredi 22 février 2019 à 13h30 (Heure locale); bottom: Bulletin d'activité du jeudi 28 février 2019 à 16h30 (Heure locale).

Between 28 February and 1 March 2019 a third lobe of lava appeared flowing NE from the vent on the N side of the new flow area; it split into two lobes sometime on 1 March. Very little new lava was recorded on the other lobes. By 4 March the flow rate estimated by satellite data was about 7.5 m3/s. During a site visit on the morning of 5 March OVPF scientists sampled the N lobe of the flow and bombs and tephra near the cone, and acquired infrared and visible images. They noted the continued growth of the cone which still had an open vent at the summit and a base 100 m in diameter. It was 25 m high with a 50-m-wide eruptive vent at the top (figure 171). High-temperature gas emissions and strong Strombolian activity issued from the vent. Steam emissions were present around the base of the cone, suggesting the presence of lava tunnels. A single lobe of lava flowed N from the cone.

Figure (see Caption) Figure 171. The eruptive cone at Piton de la Fournaise on 5 March 2019 had a 100-m-diameter base, 25 m of vertical height, and 50-m-wide vent at the summit. Courtesy of and copyright by OVPF/IPGP, (Bulletin d'activité du mardi 5 mars 2019 à 17h30, Heure locale).

A new fissure that opened about 150 m from the main vent on the NW flank of Piton Madoré was first observed on the morning of 6 March (figure 172); OVPF concluded that it had opened late on 5 March. A small cone was forming and a new flow traveled N from the main eruptive site. At least six new emission points were noted the following morning (7 March) around the Piton Madoré. Poor weather prevented confirmation by aerial reconnaissance that day, but in a site visit on 8 March OVPF scientists determined that the new fissure from 5 March remained active; a small cone about 10 m high had two flow lobes on the W and N sides (figure 173). A fissure that opened on 7 March was located 300 m S of the 19 February vent and oriented E-W. It was very active on the morning of 8 March with two 50-m-high lava fountains (figure 174). Samples collected by OVPF indicated that the vents of 5 and 7 March produced lava of different compositions.

Figure (see Caption) Figure 172. A new fissure that opened about 150 m from the main vent on the NW flank of Piton Madoré at Piton de la Fournaise was first observed on the morning of 6 March 2019; OVPF concluded that it had opened late on 5 March. A small cone was forming on the flank of an old one and a new flow traveled N from the main eruptive site. Courtesy of OVPF/IPGP, copyright by Helicopter Coral (Bulletin d'activité du jeudi 7 mars 2019 à 15h00 Heure locale).
Figure (see Caption) Figure 173. The 5 March 2019 fissure at Piton de la Fournaise on the NW flank of Piton Madoré still had two active flow lobes emerging from it and heading N and W on 8 March 2019. Courtesy of and copyright by OVPF/IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).
Figure (see Caption) Figure 174. A fissure that opened on 7 March 2019 at Piton de la Fournaise was located 300 m S of the 19 February vent and oriented E-W. It was very active on the morning of 8 March 2019 with two 50-m-high lava fountains. Courtesy of and copyright by OVPF/IPGP (Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).

There was a strong increase in the eruptive tremor intensity on 7 March, related to the opening of the two new fissures on 5 and 7 March (figure 175). As a result, the surface flow estimates made from satellite data increased significantly to high values greater than 50 m3/s, with the average values on 7-8 March of around 20-25 m3/s. The increased flow rates resulted in the flows traveling much greater distances. By the morning of 9 March the active flow had reached 650-700 m above sea level. The flow front had traveled about 1 km in 24 hours. Strong seismicity had been increasing under the summit zone for the previous 48 hours. After a phase of very strong surface activity observed overnight on 9-10 March that included lava fountains 50-100 m high (figure 176), surface activity ceased around 0630 on 10 March, and seismic activity decreased significantly. OVPF noted that sudden increases in seismicity and flow rates near the end of an eruption have occurred at about half of the eruptions at Piton de la Fournaise in recent years. Lava volumes emitted on the surface between 18 February and 10 March 2019 were estimated at about 14.5 million m3 (figure 177).

Figure (see Caption) Figure 175. An infrared view of the eruptive site on the E flank of Dolomieu crater at Piton de la Fournaise on 8 March 2019 clearly showed the original fissure from 19 February (bottom right of center), the fissure on Piton Madore that opened on 5 March (right) and the fissures that opened on 7 March (upper, right of center). The combined activity produced significant thermal and seismic activity at the volcano. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 8 mars 2019 à 17h00, Heure locale).
Figure (see Caption) Figure 176. Lava fountains 50-100 m high were the result of very strong surface activity observed overnight on 9-10 March 2019 at Piton de la Fournaise. Surface activity ceased around 0630 on 10 March, and seismic activity decreased significantly. Photo taken on 9 March 2019 around midnight from the RN2. Courtesy of OVPF/IPGP, copyright by A. Finizola LGSR/IPGP (Bulletin d'activité du dimanche 10 mars 2019 à 19h30 Heure locale).
Figure (see Caption) Figure 177. A sudden increase in the flow rate at the end of the 18 February-10 March 2019 eruption at Piton de la Fournaise was recorded by researchers at the Université Clermont Auvergne. OVPF noted this was typical of about half of the eruptions at Piton de la Fournaise. Courtesy of OVPF/IPGP, copyright by HOTVOLC, Université Clermont Auvergne (OVPF Monthly bulletin of the Piton de la Fournaise Volcanological Observatory, March 2019).

Significant SO2 plumes were captured by the TROPOMI instrument on the Sentinel 5-P satellite throughout the 18 February-10 March eruption (figure 178). After the surface eruption ceased, shallow seismicity continued at a lower rate of about 12 earthquakes per day. The end of the eruption (7-10 March) was accompanied by a marked deflation, interpreted by OVPF as the rapid emptying of the magma reservoir. Following the end of the eruption, inflation resumed for the rest of March but then ceased. Seismicity continued at a lower level during April with an average of six shallow earthquakes per day.

Figure (see Caption) Figure 178. Multiple days of high DU value SO2 plumes were recorded by the TROPOMI instrument on the Sentinel 5-P satellite during the 18 February-10 March 2019 eruption at Piton de la Fournaise. Top row: during 18, 21, and 22 February SO2 plumes drifted SE. Middle row: during 23, 24, and 25 February the wind direction changed from SE through S to SW and left a curling trail of SO2. Bottom row: 5, 7, and 8 March showed an increase in SO2 emissions that corresponded with increased seismicity and lava flow output before the eruption ceased.

Activity during May-June 2019. OVPF reported slight inflation near the summit beginning in early May, and an increase in CO2 concentration in the soil near Plaine des Cafres and Plaine des Palmistes. Strong shallow seismicity reappeared on 27 May 2019 and recurred on 30 and 31 May. Two small seismic swarms were measured on 31 May in the early morning. A new seismic swarm beginning at 0603 on 11 June accompanied by rapid deformation suggested a new eruption was imminent. A tremor near the summit area was first noted at 0635 local time; the webcams indicated a plume of gas, but poor visibility prevented evidence of fresh lava. Around 0930 that morning OVPF confirmed that five fissures had opened on the outer SSE slope of Dolomieu crater at elevations ranging from 2480 to 2025 m (figure 179). The flow fronts were not visible due to weather. Lava fountains under 30 m in height and lava flows were present in the three lowest fissures. The flows traveled rapidly down the steep flank of the crater (figure 180).

Figure (see Caption) Figure 179. Around 0930 on the morning of 11 June 2019 OVPF confirmed that five fissures had opened on the outer SSE slope of Dolomieu crater at Piton de la Fournaise at elevations ranging from 2480 to 2025 m. Courtesy of and copyright by OVPF-IPGP and Imazpress (Bulletin d'activité du mardi 11 juin 2019 à 11h00).
Figure (see Caption) Figure 180. Thermal imaging of the 11-12 June 2019 eruptive site at Piton de la Fournaise showed multiple streams of lava traveling rapidly down the steep flank from several fissures on 11 June 2019. Courtesy of and copyright by OVPF-IPGP (Bulletin d'activité du mardi 11 juin 2019 à 11h00).

The intensity of the eruptive tremor decreased throughout the day, and by 1530 only the lowest elevation fissure was still active (figure 181). The next afternoon (12 June) images in the OVPF webcam located in Piton des Cascades indicated the flow front was at about 1,200-1,300 m elevation. Seismographs indicated that the eruption stopped around 1200 on 13 June. Poor weather obscured visibility of the flow activity. Seismic activity decreased following the eruption, but appeared to increase again beginning on 21 June, with 10 events detected on 30 June. SO2 plumes were recorded in satellite data on 11 and 12 June 2019.

Figure (see Caption) Figure 181. The intensity of the eruptive activity at Piton de la Fournaise on 11 June 2019 decreased throughout the day, and by 1530 only the lowest elevation fissure was still active. Courtesy of and copyright by OVPF-IPGP (Bulletin d'activité du mardi 11 juin 2019 à 17h45 Heure locale).

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Semeru (Indonesia) — April 2019 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Decreased activity after October 2018

The ongoing eruption at Semeru has been characterized by numerous ash explosions and thermal anomalies, but activity apparently diminished in 2018 (BGVN 43:01 and 43:09); this decreased activity continued through at least February 2019. The current report summarizes activity from 24 August 2018 to 28 February 2019.

The Indonesian volcano monitoring agency, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), reported ongoing daily seismicity, dominated by explosion earthquakes and emission-related events from late November through February (figure 35). Ash plumes resulting in aviation advisories by the Darwin Volcanic Ash Advisory Centre (VAAC) were reported on 4, 6-7, and 19 September, and 12 October 2018. The next significant ash plume reported by the VAAC wasn't until 24 February 2019 (table 23).

Figure (see Caption) Figure 35. Seismicity recorded at Semeru during 28 November 2018-26 February 2019. Plot shows explosion earthquakes ('Letusan'), emission-related events ('Hembusan'), felt earthquakes ('Gempa Terasa'), local tectonic events ('Tektonic Lokal'), and distant tectonic events ('Tektonic Jauh'). Courtesy of PVMBG and MAGMA Indonesia.

Table 23. Summary of ash plumes at Semeru during 25 August 2018 through February 2019. The summit is at 3,657 m elevation. Data courtesy of Darwin VAAC.

Date Plume altitude (km) Plume drift Remarks
04 Sep 2018 4.3 W --
06-07 Sep 2018 4.3 SW --
19 Sep 2018 4 SSW Possible ash-and-steam plume.
12 Oct 2018 4.5 W Discrete eruption.
24 Feb 2019 4.3 W Discrete volcanic ash eruption.

Thermal anomalies using MODIS satellite instruments processed by the MODVOLC algorithm were only recorded on 26, 28, and 30 August 2018, and 22 and 31 October 2018. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected numerous hotspots within 5 km of the volcano during August and early September, with a significant decrease in frequency through October (figure 36); only a few scattered hotspots were recorded from November 2018 through February 2019.

Figure (see Caption) Figure 36. MIROVA plot of thermal anomalies (Log Radiative Power) at Semeru during July 2018-February 2019. Courtesy of MIROVA.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Heard (Australia) — April 2019 Citation iconCite this Report

Heard

Australia

53.106°S, 73.513°E; summit elev. 2745 m

All times are local (unless otherwise noted)


Thermal hotspots continue during October 2018-March 2019 at the summit and on the upper flanks

Heard Island, in the Southern Indian Ocean, includes the large Big Ben stratovolcano and the smaller, apparently inactive, Mt. Dixon. Because of the island's remoteness, satellites are the primary monitoring tool. Big Ben has been active intermittently since 1910, and was active during October 2017-September 2018 (BGVN 43:10). Activity continued during October 2018-March 2019.

Satellite photos using Sentinel Hub showed hotspots every month between October 2018 and March 2019. Because the area was frequently covered by a heavy cloud layer, most of the hotspot signals were partially obscured. Though thermal anomalies are usually seen at summit vents, on 18 October 2018 an anomaly was present about 300 m down the E flank. Similarly, on 1 January 2019, a weak anomaly beginning about 200 m down the NW flank was about 300 m long (figure 40).

The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected three hotspots, two in October and one in early November 2018, all of low radiative power. There were no MODVOLC alert pixels during this period.

Figure (see Caption) Figure 40. Sentinel-2 L1C image of Heard Island's Big Ben volcano on 1 January 2019 one summit hotspot and an elongated thermal anomaly to the NW. Scale bar (bottom right) is 200 m. The photo was taken in atmospheric penetration view (bands 12, 11, and 8A), courtesy of Sentinel Hub Playground.

Geologic Background. Heard Island on the Kerguelen Plateau in the southern Indian Ocean consists primarily of the emergent portion of two volcanic structures. The large glacier-covered composite basaltic-to-trachytic cone of Big Ben comprises most of the island, and the smaller Mt. Dixon volcano lies at the NW tip of the island across a narrow isthmus. Little is known about the structure of Big Ben volcano because of its extensive ice cover. The historically active Mawson Peak forms the island's 2745-m high point and lies within a 5-6 km wide caldera breached to the SW side of Big Ben. Small satellitic scoria cones are mostly located on the northern coast. Several subglacial eruptions have been reported in historical time at this isolated volcano, but observations are infrequent and additional activity may have occurred.

Information Contacts: Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Dukono (Indonesia) — April 2019 Citation iconCite this Report

Dukono

Indonesia

1.693°N, 127.894°E; summit elev. 1229 m

All times are local (unless otherwise noted)


Numerous ash explosions from October 2018 through March 2019

The eruption at Dukono that began in 1933 has showered the area with ash from frequent explosions (BGVN 43:04, 43:12). The Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Center for Volcanology and Geological Hazard Mitigation (CVGHM), is responsible for monitoring this volcano.

This long-term pattern of intermittent ash explosions continued during October 2018-March 2019, with ash plumes rising to between 1.5 and 2.7 km altitude, or about 300-1,500 m above the summit (table 19). Although meteorological clouds often obscured views, satellite imagery captured typical ash plumes on 28 September 2018 (figure 10) and 5 February 2019 (figure 11). Instruments aboard NASA satellites (TROPOMI and OMPS) detected high levels of sulfur dioxide near or directly above the volcano on multiple days during January-March 2019. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to remain outside of the 2-km exclusion zone.

Table 19. Monthly summary of reported ash plumes from Dukono for October 2018-March 2019. The direction of drift for the ash plume through each month was highly variable. Data courtesy of the Darwin VAAC and PVMBG.

Month Plume Altitude (km) Notable Plume Drift
Oct 2018 1.5-2.1 --
Nov 2018 1.5-2.1 --
Dec 2018 1.5-2.4 --
Jan 2019 1.8-2.1 --
Feb 2019 1.8-2.7 --
Mar 2019 1.5-2.4 --
Figure (see Caption) Figure 10. Satellite image from Sentinel-2 (LC1 natural color) of an ash plume at Dukono on 28 September 2018 with the plume blowing towards the NE. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 11. Satellite image from Sentinel-2 (LC1 natural color) of an ash plume at Dukono on 5 February 2019, with the plume blowing SW. Courtesy of Sentinel Hub Playground.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Rincon de la Vieja (Costa Rica) — April 2019 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Occasional weak phreatic explosions continue through February 2019

Intermittent small phreatic explosions from the acid lake of Rincón de la Vieja's active crater has most recently occurred since 2011 (BGVN 42:08, 43:03, and 43:09). This activity continued through at least February 2019. The volcano is monitored by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), and the information below comes from its weekly bulletins between 18 August 2018 and 28 February 2019. Weather conditions often prevented webcam views and estimates of plume heights. The volcano was in Activity Level 3 throughout the reporting period (volcano erupting, steady state).

According to OVSICORI-UNA, two distinct, 2-minute-long explosions occurred on 31 August 2018 beginning at 0434 and 1305. Several hours after the eruption tremor became continuous but low-frequency long-period (LP) earthquakes ceased. OVSICORI-UNA reported a gas emission late on 7 September. An unconfirmed small phreatic explosion occurred on 11 September at 0634, and another on 17 September at 1014. The seismic record showed continuous background tremor and very sporadic LP earthquakes.

Intermittent background tremor was recorded during the first half of October, along with a few emissions and phreatic explosions. Deformation measurements during October showed a contraction between the N and S of the volcano, with subsidence. On 17 October there was another phreatic explosion, and thereafter tremor disappeared and seismicity decreased. On 23 and 27 October seismic stations signaled additional possible phreatic explosions.

OVSICORI-UNA reported that a series of explosions began at 1945 on 4 November and consisted of at least three 2-minute-long episodes. The next day at 1511 a plume of water vapor and diffuse gas, recorded by a webcam and visible to residents to the N, rose about 100 m above the crater rim and drifted W. On 9 November a 2-minute-long explosion began at 1703. Another explosion on 27 November at 0237 produced a plume of water vapor and gas that rose 600 m above the crater rim and drifted SW. A short 1-minute explosion began at 1054 on 3 December.

Based on OVSICORI-UNA weekly bulletins, activity remained stable in January 2019 with small-amplitude phreatic explosions on 11, 12, and 14 January. More energetic phreatomagmatic explosions on 17 and 20 January produced lahars. Several small-amplitude explosions were detected at the end of the month. During January, a few LPs, no VTs, and intermittent tremor were recorded.

OVSICORI-UNA reported that two small-scale explosions occurred on 1 February, along with possible events at 1906 and 1950 on 5 February and at 0120 on 6 February. An event at 0000 on 6 February was also recorded; the report noted that poor weather conditions prevented visual observations of the crater. On 16 and 17 February strong degassing was observed. No LPs were recorded, but two significant VTs were detected on 17 and 22 February near or under the crater.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/).


Turrialba (Costa Rica) — April 2019 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Frequent passive ash emissions continue through February 2019

This report summarizes activity at Turrialba during September 2018-February 2019. During this period there was similar activity as described earlier in 2018 (BGVN 43:09), with occasional ash explosions and numerous, sometimes continuous, periods of gas-and-ash emissions (table 8). Data were provided by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

Table 8. Ash emissions at Turrialba, September 2018-February 2019. Cloudy weather sometimes obscured observations. Maximum plume height is above the crater rim. Information courtesy of OVSICORI-UNA.

Date Time Max plume height Plume drift Remarks
27 Aug-05 Sep 2018 -- 100 m SW, W Continuous gas-and-ash emissions.
06 Sep 2018 -- -- -- Mostly gas, punctuated by small sporadic ash plumes.
10 Sep 2018 1210 300 m NW --
01-13 Sep 2018 -- -- -- Continuous gas-and-ash emissions.
17-18 Sep 2018 -- 300 m SW, NW --
27 Sep 2018 0915 200 m NW --
30 Sep-01 Oct 2018 -- 500 m NW, NE --
03 Oct 2018 -- -- -- Incandescence.
08 Oct 2018 0800 500 m N --
10-16 Oct 2018 -- 1,000 m Various Intermittent emissions; some explosions, including an energetic one on 14 Oct at 1712. Clouds prevented estimate of plume height.
17-23 Oct 2018 -- 200-500 m E, NW, SW Periodic gas-and-ash emissions. Frequent Strombolian events since 5 Oct.
25-30 Oct 2018 -- -- -- Periodic ash emissions when weather conditions allowed observations.
26 Oct 2018 0134 500 m NE Ashfall in neighborhoods of Coronado (San José, 35 km WSW) and San Isidro de Heredia (Heredia, 38 km W).
29 Oct 2018 0231 500 m NW --
30 Oct 2018 1406 500 m W --
24 Oct-01 Nov 2018 -- 500 m -- Continuous emissions.
01-06 Nov 2018 0530-0640 500 m SW --
02 Nov 2018 1523, 1703 500 m -- --
03 Nov 2018 0109 500 m -- Short (2-3 minutes) duration events. Ashfall reported in Coronado.
05 Nov 2018 0620 600 m NW --
06-11 Nov 2018 -- 500 m -- Low-level, continuous gas-and-ash emissions occasionally punctuated by energetic explosions that sent plumes as high as 500 m and caused ashfall in several areas downwind, including Cascajal de Coronado, Desamparados (35 km WSW), San Antonio, Guadalupe (32 km WSW), Sabanilla, San Pedro Montes de Oca, Moravia (31 km WSW), Heredia, and Coronado (San José, 35 km WSW). Weather prevented observations on 12 Nov.
13-19 Nov 2018 -- -- -- Periodic, passive ash emissions visible in webcam images or during cloudy conditions inferred from the seismic data.
22 Nov 2018 0710 100 m W --
23 Nov 2018 -- -- -- Frequent pulses of ash.
23-25 Nov 2018 -- 500 m -- Occasional Strombolian explosions ejected lava bombs deposited near the crater; residents of Cascajal de Coronado reported hearing several booming sounds.
26-27 Nov 2018 -- -- -- Passive emissions with small quantities of ash visible. Minor ashfall in San Jose (Cascajal de Coronado and Dulce Nombre), San Pedro Montes de Oca, and neighborhoods of Heredia.
28 Nov-03 Dec 2018 -- 500 m N, NW, SW Ashfall in Santo Domingo (36 km WSW) on 2 Dec.
05 Dec 2018 -- -- -- Minor emission.
06 Dec 2018 -- -- S Emission.
08 Dec 2018 0749 500 m NW --
09 Dec 2018 -- 1,000 m -- Ashfall in areas of Valle Central.
10 Dec 2018 -- -- -- Emissions periodically observed during periods of clear viewing. Ashfall in Moravia (31 km WSW) and Santa Ana, and residents of Heredia noted a sulfur odor.
11-12 Dec 2018 -- 500 m NW, SW The Tico Times stated some flights were delayed at San Jose airport, 67 km away.
13 Dec 2018 -- -- -- Pulsing ash emissions; ashfall in Guadalupe (32 km WSW) and Valle Central.
14-16 Dec 2018 -- -- W, SW Emissions with diffuse amounts of ash.
05-06 Jan 2019 0815 -- -- Increased after midnight on 6 Jan.
28 Jan-04 Feb 2019 -- -- -- Minor, sporadic ash emissions rose to low heights during most days.
01 Feb 2019 0640 1,500 m NW --
08 Feb 2019 0540 200 m -- Sporadic ash emissions for more than one hour.
11 Feb 2019 -- -- -- Very small ash emission.
13-15 Feb 2019 200-300 m NW, W, SW Almost continuous gas emissions with minor ash content.
15 Feb 2019 1330 1,000 m W --
18 Feb 2019 1310 500 m W --
21 Feb 2019 -- 300 m NW Frequent ash pulses.
22-24 Feb 2019 -- 300 m NW, SW Frequent ash emissions of variable intensity and duration. On 22 Feb ash fell in Santa Cruz (31 km WSW) and Santa Ana, and a sulfur odor was evident in Moravia.
28 Feb 2019 1050 500 m SW Ash pulses.

According to OVSICORI-UNA's annual summary for 2018, a slow decline in activity occurred after the volcano reached its highest emission rate during 2016. Activity during 2018 was consistent with an open system, generating frequent passive ash emissions. The volcano emitted ash on 58% of the days during the year. Some explosions were large enough to eject ballistics more than 400 m around the crater. Typical activity can be seen in a photo from 11 September 2018 (figure 50) and satellite imagery on 7 November 2018 (figure 51).

Figure (see Caption) Figure 50. Photo of an ash explosion at Turrialba taken on 11 September 2018. Courtesy of Red Sismologica Nacional (RSN: UCR-ICE), Universidad de Costa Rica.
Figure (see Caption) Figure 51. Sentinel-2 satellite image of an ash emission from Turrialba on 7 November 2018, taken in natural color (gamma adjusted). Courtesy of Sentinel Hub Playground.

During January into early February 2019, passive ash emissions continued irregularly and with less intensity and duration. Emissions sometimes lacked ash. In their report of 4 February 2019, OVSICORI-UNA indicated that passive ash emissions were weak and slow. For the rest of February, they characterized ash emissions as frequent, but of low intensity.

Seismic activity. On 1 November 2018 OVSICORI-UNA reported that seismicity remained high, and involved low-amplitude banded volcanic tremor along with long-period (LP) and volcano-tectonic (VT) earthquakes. In late January-early February 2019, OVSICORI-UNA reported that seismicity remained relatively stable, although a small increase was associated with the hydrothermal system. VT earthquakes were absent, and tremors had decreased in both energy and duration. The number of low-frequency LP volcanic earthquakes remained stable, although they had decreasing amplitudes. No explosions were documented, and emissions were weak and had short durations and very dilute ash content.

Thermal anomalies. No thermal anomalies were recorded during the reporting period using MODIS satellite instruments processed by MODVOLC algorithm. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected five scattered hotspots during September-October 2018, none during November-December 2018, and two during January-February 2019. All were within 2 km of the volcano and of low radiative power.

Gas measurements. Significant sulfur dioxide levels near the volcano were recorded by NASA's satellite-borne ozone instruments only on 29 September 2018 (both NPP/OMPS and Aura/OMI instruments) and on 11 February 2019 (Sentinel 5P/TROPOMI instrument). OVSICORI-UNA's gas measuring instruments were compromised in September 2018 through January 2019 due to vandalism. In early February, however, they detected hydrogen sulfide for the first time since 2016.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Red Sismologica Nacional (RSN) a collaboration between a) the Sección de Sismología, Vulcanología y Exploración Geofísica de la Escuela Centroamericana de Geología de la Universidad de Costa Rica (UCR), and b) the Área de Amenazas y Auscultación Sismológica y Volcánica del Instituto Costarricense de Electricidad (ICE), Costa Rica (URL: https://rsn.ucr.ac.cr/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://hotspot.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Costa Rica Star (URL: https://news.co.cr); The Tico Times (URL: https://ticotimes.net).


San Cristobal (Nicaragua) — April 2019 Citation iconCite this Report

San Cristobal

Nicaragua

12.702°N, 87.004°W; summit elev. 1745 m

All times are local (unless otherwise noted)


Weak ash explosions in January and March 2019

San Cristóbal has produced occasional weak explosions since 1999, with intermittent gas-and-ash emissions. The only reported explosion during the first half of 2018 was on 22 April, the first since November 2017 (BGVN 43:03). The current report covers activity between 1 August 2018 and 1 May 2019. The volcano is monitored by the Instituto Nicaragüense de Estudios Territoriales (INETER).

According to INETER, a series of explosions occurred on 9 January 2019 that lasted several hours. INETER stated that one explosion occurred at 1643; the Washington VAAC's first advisory stated that an explosion occurred at 1145 (local time). The weak explosions, which occurred after a period of heightened seismic activity, generated an ash plume that reached 200 m above the edge of the crater and drifted W. The Washington VAAC reported volcanic ash plumes on 10-11 January extending about 92 km SW, and on 24-25 January extending about 185 km WSW. A low-energy explosion was detected by the seismic network at 1550 on 4 March 2019. The event produced a gas-and-ash plume that rose 400 m above the crater rim and drifted SW.

Monitoring data reported by INETER (table 6) showed elevated levels of seismicity during October 2018 through January 2019. Sulfur dioxide was also measured at higher levels in January 2019.

Table 6. Monthly sulfur dioxide measurements and seismicity reported at San Cristóbal during August 2018-March 2019. "Most" indicates that type of seismicity was dominant that month. Data courtesy of INETER.

Month Average SO2 Total earthquakes Degassing-type earthquakes Volcano-tectonic (VT) earthquakes
Aug 2018 461 t/d 6,464 6,147 251
Sep 2018 893 t/d 9,659 9,586 73
Oct 2018 269 t/d 11,698 3,509 8,189
Nov 2018 -- 19,593 19,586 7
Dec 2018 -- 30,901 -- Most
Jan 2019 1,286 t/d 11,504 Most Very few
Feb 2019 695 t/d 3,470 Most Very few
Mar 2019 -- 3,882 Most Very few

Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://webserver2.ineter.gob.ni/vol/dep-vol.html); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Semisopochnoi (United States) — February 2019 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Minor ash explosions during September and October 2018

The remote Semisopochnoi comprises the uninhabited volcanic island of the same name, ~20 km in diameter, in the Rat Islands group of the western Aleutians (figure 1). Plumes had been reported several times in the 18th and 19th centuries, and most recently observed in April 1987 from Sugarloaf Peak (SEAN 12:04). The volcano is dominated by an 8-km diameter caldera that contains a small lake (Fenner Lake) and a number of post-caldera cones and craters. Monitoring is done by the Alaska Volcano Observatory (AVO) using an on-island seismic network along with satellite observations and lightning sensors. An infrasound array on Adak Island, about 200 km E, may detect explosive emissions with a 13 minute delay if atmospheric conditions permit.

On 16 September 2018 increased seismicity was detected at 0831, prompting AVO to raise the Aviation Color Code (ACC) to Yellow and Volcano Alert Level (VAL) to Advisory. Retrospective analysis of satellite data acquired on 10 September revealed small ash deposits on the N flank of Mount Cerberus, possibly associated with two bursts of tremor recorded on 8 September (figure 5). This new information, coupled with intensifying seismicity and a strong tremor signal recorded at 1249 on 17 September, resulted in AVO raising the ACC to Orange and the VAL to Watch. Seismicity remained elevated on 18 September with nearly constant tremor recorded by local sensors. At the same time, no ash emissions were observed in cloudy satellite images and no eruptive activity was recorded on regional pressure sensors at Adak.

Figure (see Caption) Figure 1. Minor ash deposits can be seen on the south and west flanks of the N cone of Mount Cerberus, Semisopochnoi Island, in this ESA Sentinel-2 image from 1200 on 10 September 2018. Also note probable minor steam emissions obscuring the crater of the N cone. Image courtesy of AVO.

During 19-25 September 2018 seismicity remained elevated, alternating between periods of continuous and intermittent bursts of tremor. Tremor bursts at 1319 on 21 September and at 1034 on 22 September produced airwaves detected on a regional infrasound array on Adak Island; no ash emissions were identified above the low cloud deck in satellite data, and the infrasound detections likely reflected an atmospheric change instead of volcanic activity.

Seismicity remained elevated during 3-9 October 2018, with intermittent bursts of tremor. No volcanic activity was detected in infrasound or satellite data. On 11 October satellite data indicated partial erosion of a tephra cone in the crater of Cerberus's N cone. A crater lake about 90 m in diameter filled the vent. The data also suggested that the vent had not erupted since 1 October. Seismicity remained elevated and above background levels. The next day AVO lowered the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory, noting the recent satellite data results and lack of tremor recorded during the previous week. AVO reported that unrest continued during 11-24 October.

An eruptive event began at 2047 on 25 October 2018, identified based on seismic data; strong volcanic tremor lasted about 20 minutes and was followed by 40 minutes of weak tremor pulses. A weak infrasound signal was detected by instruments on Adak Island. The Aviation Color Code was raised to Orange (the second highest level on a four-color scale) and Volcano Alert Level was raised to Watch (the second highest level on a four-level scale). A dense meteorological cloud deck prevented observations below 3 km, but a diffuse cloud was observed in satellite data rising briefly above the cloud deck, though it was unclear if it was related to eruptive activity. Tremor ended after the event, and seismicity returned to low levels.

Small explosions were detected by the seismic network at 2110 and 2246 on 26 October 2018, and 0057 and 0603 on 27 October. No ash clouds were identified in satellite data, but the volcano was obscured by high meteorological clouds. Additional small explosions were detected in seismic and infrasound data during 28-29 October; no ash clouds were observed in partly-cloudy-to-cloudy satellite images.

AVO reported on 31 October 2018 that unrest continued. Two small explosions were detected, one just before 0400 and the other around 1000. Satellite views were obscured by clouds at the time, and no ash clouds were observed. Unrest continued through 1 November, at which time the satellite link and the seismic line failed. On 21 November the ACC was lowered to Yellow and the VAL was lowered to Advisory.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Asosan (Japan) — July 2019 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Multiple brief ash emission events during April and May 2019; minor ashfall in adjacent villages

Japan's 24-km-wide Asosan caldera on the island of Kyushu has been active throughout the Holocene. Nakadake has been the most active of 17 central cones within the caldera for 2,000 years. Historical eruptions have been primarily basaltic to basaltic-andesitic ash eruptions, with periodic Strombolian activity, all from Nakadake Crater 1. The most recent major eruptive episode began in late November 2014 and continued through 1 May 2016. Another eruption, with the largest ash plume in 20 years, occurred on 8 October 2016. Asosan remained quiet until renewed activity from Crater 1 began in mid-April 2019; it is covered in this report, through the end of June 2019. The Japan Meteorological Agency (JMA) provides monthly reports of activity; the Tokyo Volcanic Ash Advisory Center (VAAC) issues aviation alerts reporting on possible ash plumes.

Asosan remained quiet during 2017 and 2018 with steam plumes rising a few hundred meters from Crater 1 and low levels of SO2 emissions; a warm acidic lake was present within the crater. Fumarolic activity from two areas on the S and SW wall of the crater rim generated occasional thermal anomalies in satellite data and incandescence at night. A brief period of increased seismicity was reported in mid-March 2019. An increase in seismic amplitude on 14 April 2019 preceded a small explosion on 16 April; it produced an ash plume which rose 200 m above the crater rim and drifted NW. It was followed by additional small explosions on 19 April. A new explosion on 3 May produced minor ashfall in adjacent communities; ash emissions were reported multiple times during May with plumes reaching 1,400 m above the crater rim. No additional ash emissions were reported in June.

Activity during 2017 and 2018. JMA reported that no eruptions occurred during 2017. Amplitudes of volcanic tremor increased somewhat during March but were generally low for the rest of the year. The earthquake hypocenters were mostly located near the active crater at around sea level. SO2 emissions were slightly less than 1,000 tons per day (t/d) from January through April; for the rest of the year they ranged from 600 to 2,500 t/d. The Alert Level had been lowered from 2 to 1 on 7 February 2017 where it remained throughout the year. Steam plumes generally rose no more than 600 m above the active crater rim (figure 42). JMA noted that from January to June they often observed crater incandescence at night with a high-sensitivity surveillance camera; Sentinel-2 satellite images also captured thermal anomalies a few times (figure 43). The green lake inside the crater persisted throughout the year with water temperatures of 50-60°C. Two fumaroles were present with high-temperature gas emissions on the SW and S crater walls. Temperatures at the S crater wall were over 600°C from February to May; they decreased to 320-560°C during the rest of the year (figure 44). Sulfur deposits were visible around the SW crater wall fumarole during July.

Figure (see Caption) Figure 42. Steam plumes that rose around 600 m above Nakadake Crater 1 at Asosan were typical activity throughout 2017. Images taken with JMA webcam on 9 June (top left), 22 August (top right), 12 November (bottom left), and 20 December (bottom right) 2017. Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 43. Sentinel-2 images captured thermal anomalies at the S rim of the green lake at Asosan's Nakadake Crater 1 on 16 February (left) and 27 May 2017 (right). JMA reported that incandescence was occasionally visible during the night from January-June from the same area. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 44. High-temperature gas and steam from fumaroles on the S wall of the Nakadake Crater 1 at Asosan on 24 August (top) and 17 November 2017 (bottom) were persistent all year, with temperatures ranging from 300 to over 600°C. The green lake inside the crater persisted throughout the year as well with water temperatures of 50-60°C. Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

The Alert Level did not change at Asosan during 2018, and no eruptions were reported. Sulfur dioxide emissions fluctuated between 400 and 1,800 t/d throughout the year. Steam plumes generally rose less than 500 m above the active crater (figure 45); incandescence was observed at night during May-October and sometimes observed in satellite imagery as thermal anomalies (figure 46). The temperature of the green lake inside the crater ranged from 58 to 75°C throughout the year. The thermal anomaly on the S wall of the crater was consistently in the 300-500°C range, and had a high temperature in April of 580°C; in December the high temperature had risen to 738°C (figure 47). A brief increase in the number of isolated tremors occurred during March, with 1,044 reported on 4 March, exceeding the previous maximum of 1,000 on 27 October 2014. Seismicity also increased briefly during June, with more than 400 events reported each day on 8, 18, and 20 June. The Minami Aso village Yoshioka fumarole zone, located about 5 km W of Nakadake Crater 1, continued to produce modest steam plumes throughout 2017 and 2018 (figure 48).

Figure (see Caption) Figure 45. Typical steam plumes at Asosan during 2018 rose around 500 m above the Nakadake Crater 1. Images are from 4 March (top left), 22 July (top right), 17 August (lower left), and 13 September 2018 (lower right). Courtesy of JMA (Aso volcano monthly activity reports, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 46. Nighttime incandescence was reported by JMA during May-October 2018 from the S rim of Nakadake Crater 1 at Asosan; Sentinel-2 satellite images (bands 12, 4, 2) captured thermal anomalies from the same area numerous times during 2018 including on 16 June (top left), 26 July and 19 September (middle row), and 18 and 23 November (bottom row). JMA photographed incandescence at night on 17 July 2018 at the S fumarole area (top right). Courtesy of Sentinel Hub Playground and JMA (Aso volcano Monthly Report for July 2018).
Figure (see Caption) Figure 47. The "Green Tea Pond" inside Nakadake Crater 1 at Asosan had temperatures that ranged from 58 to 75°C during 2018 (top row, 26 March 2018); the thermal anomaly on the S wall of the crater consistently had temperatures measured in the 300-500°C range and the SW fumarole area had somewhat lower temperatures (bottom row, 22 June 2018). Courtesy of JMA (monthly Asosan reports for March, May, and June 2018).
Figure (see Caption) Figure 48. The Minami Aso village Yoshioka fumarole zone, located about 5 km W of Nakadake Crater 1 at Asosan, continued to produce modest steam plumes throughout 2017 and 2018. It is shown here on 20 December 2017 (top) and 12 March 2018 (bottom). Courtesy of JMA (December 2017 and March 2018 monthly volcano reports).

Activity during 2019. Steam plumes rose to 800 m above the crater rim during January 2019. Overall activity increased slightly during February; SO2 emissions peaked at 2,200 t/d early in the month; they ranged from 800 to 1,800 t/d for most of the month. The amplitude of volcanic tremor also increased slightly during February. A further increase in tremor amplitude on 11 March 2019 prompted JMA to raise the Alert Level from 1 to 2 the following morning. Volcanic tremor amplitude decreased on 15 March; JMA determined that activity had decreased, and the Alert Level was lowered back to 1 on 29 March 2019. The amount of water in the crater decreased significantly between 27 February and 20 March, exposing part of the crater floor.

The surface temperature of the lake rose during the first part of 2019; it was 78°C in February and 84°C in March. Steam plumes rose to 1,200 m above the crater rim during March and April. SO2 emissions rose to 4,500 t/d on 12 March but dropped to a lower range of 1,300-2,400 for the rest of the month. Another surge in SO2 emissions on 12 April 2019 to 3,600 t/d prompted a special report from JMA the following day. SO2 emissions varied from about 1,700 to 4,100 t/d during the month; values remained high during the second half of the month. JMA noted that the color of the water in the lake inside Nakadake Crater 1 changed from green to gray after 4 April. Fountains of muddy water were periodically observed; they reached 15 m high on 9 April. The temperatures of both the lake (82°C) and around the two fumarole areas (S area about 530°C, SW area about 310°C) remained constant during April and similar to March.

A large increase in the amplitude of volcanic tremor early on 14 April 2019 prompted JMA to raise the Alert Level from 1 to 2 later in the day. The epicenters of the earthquakes were very shallow, located within 1 km beneath the crater. A small eruption occurred at 1828 on 16 April at Nakadake Crater 1; it produced a gray and white plume that rose 200 m above the crater rim and was the first eruption since 8 October 2016 (figure 49). Incandescence was observed inside the crater on 3 and 17 April. The amplitude of seismic tremors decreased on 18 April. Three very small eruptions on 19 April produced ash and steam plumes that rose 500 m above the crater rim. During a site visit that day JMA measured a high-temperature area that produced incandescence from the bottom of the crater at night (figure 50).

Figure (see Caption) Figure 49. The first eruption since October 2016 at Nakadake Crater 1 at Asosan on 16 April 2019 sent an ash plume 200 m above the crater rim (top). Incandescent gas appeared on the crater floor the next day (bottom). Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 50. Three small explosions on 19 April 2019 at Asosan's Nakadake Crater 1 produced small ash emissions that rose 500 m above the crater rim (top). A strong thermal signal also appeared from the bottom of the crater. Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

A new eruption began at 1540 on 3 May that lasted until 0620 on 5 May (figure 51). Initially the ash plume rose 600 m above the crater rim, but a few hours later the volume of ash increased, and the plume reached 2 km above the crater rim for a brief period. Incandescence was visible from the webcam. The Tokyo VAAC reported the ash plume at 3 km altitude drifting SE on 3 May. Later in the day it rose to 3.7 km altitude and drifted SW. During a field survey the following day (4 May) JMA reported a steam and ash plume rising from the center of the active crater. The infrared thermal imaging camera recorded the temperature of the plume at about 500°C (figure 52).

Figure (see Caption) Figure 51. An explosion at Asosan's Nakadake Crater 1 on 3 May 2019 produced an ash plume that reached 2 km above the crater rim (top) and incandescence visible from the webcam (bottom). Courtesy of JMA (Aso volcano monthly activity reports, April 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 52. During a site visit on 4 May 2019, staff from JMA witnessed an ash and steam plume rising from the bottom of Nakadake Crater 1 at Asosan (top). The infrared thermal imaging camera recorded the temperature of the plume at about 500°C (bottom). Courtesy of JMA (Aso volcano monthly activity reports, May 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

Ash fell on the S flank, and a small amount of ashfall on 4 May was confirmed by evidence on a car windshield in Takamori Town (6 km S), Kumamoto Prefecture (figure 53). Ashfall was also reported in Takamori-machi, Minami Aso village (9 km SW), and part of Yamato-cho (25 km SW), also in the Kumamoto Prefecture. SO2 emissions were measured as high as 4,000 t/d on 4 May. Additional explosions with ash plumes were reported from Asosan on 9, 12-16, 29, and 31 May; the plumes rose from 200 to 1,400 m above the crater rim but were not visible in satellite imagery. The TROPOMI instrument on the Sentinel-5 satellite captured SO2 plumes on 3 and 26 May 2019 (figure 54).

Figure (see Caption) Figure 53. Ashfall was reported on 4 May 2019 in Takamori Town, Kumamoto Prefecture, from the eruption at Asosan's Nakadake Crater 1 on 3 May 2019. Courtesy of JMA (Aso volcano monthly activity reports, May 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 54. Plumes of SO2 from Asosan were recorded by the TROPOMI instrument on the Sentinel-5P satellite on 3 (left) and 26 (right) May 2019. Courtesy of NASA Goddard Space Flight Center.

Steam plumes rose to 1,700 m above the crater rim during June 2019 (figure 55). During field visits on 6 and 25 June diffuse ash emissions were observed rising from the center of the active crater, but they did not extend significantly above the crater rim (figure 56). The maximum temperature of the plume was measured at about 340°C with a thermal imaging camera. Almost all of the water in the crater bottom had evaporated since early May; incandescence continued to be observed within the crater at night with the high-resolution webcam (figure 57).

Figure (see Caption) Figure 55. Steam plumes rose to 1,700 m above the crater rim at Asosan's Nakadake Crater 1 on 10 June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 56. Plumes of gas and minor ash were visible at Asosan's Nakadake Crater 1 during site visits by JMA on 6 (left) and 25 (right) June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).
Figure (see Caption) Figure 57. Incandescent gas was visible from the vent at Asosan's Nakadake Crater 1 on 18 (left) and 25 (right) June 2019. Courtesy of JMA (Aso volcano monthly activity reports, June 2019, Fukuoka District Meteorological Observatory, Regional volcano monitoring and warning center).

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Nyamuragira (DR Congo) — May 2019 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Lava lake reappears in central crater in April 2018; activity tapers off during April 2019

The Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo is part of the western branch of the East African Rift System. Nyamuragira (or Nyamulagira), a high-potassium basaltic shield volcano on the W edge of VVP, includes a lava field that covers over 1,100 km2 and contains more than 100 flank cones in addition to a large central crater (see figure 63, BGVN 42:06). A lava lake that had been active for many years emptied from the central crater in 1938. Numerous flank eruptions were observed after that time, the most recent during November 2011-March 2012 on the NE flank. This was followed by a period of degassing with unusually SO2-rich plumes from April 2012 through April 2014 (BGVN 42:06). The lava lake reappeared during July 2014-April 2016 and November 2016-May 2017, producing a strong thermal signature. After a year of quiet, a new lava lake appeared in April 2018, reported below (through May 2019) with information provided by the Observatoire Volcanologique de Goma (OVG), MONUSCO (the United Nations Organization working in the area), and satellite data and imagery from multiple sources.

Fresh lava reappeared inside the summit crater in mid-April 2018 from a lava lake and adjacent spatter cone. Satellite imagery and very limited ground-based observations suggested that intermittent pulses of activity from both sources produced significant lava flows within the summit crater through April 2019 when the strength of the thermal signal declined significantly. Images from May 2019 showed a smaller but persistent thermal anomaly within the crater.

Activity from October 2017-May 2019. Indications of thermal activity tapered off in May 2017 (BGVN 42:11). On 20 October 2017 OVG released a communication stating that a brief episode of unspecified activity occurred on 17 and 18 October, but the volcano returned to lower activity levels on 20 October. There was no evidence of thermal activity during the month. The volcano remained quiet with no reports of thermal activity until April 2018 (figure 73).

Figure (see Caption) Figure 73. Sentinel-2 satellite images (bands 12, 4, 2) indicated no thermal activity at Nyamuragira on 19 November (top left), 14 December 2017 (top right) and 18 January 2018 (bottom). However, Nyiragongo (about 13 km SE) had an active lava lake with a gas plume drifting SW on 18 January 2018 (bottom right). Courtesy of Sentinel Hub Playground.

OVG reported the new lava emissions beginning on 14 April 2018 as appearing from both the lava lake and a small adjacent spatter cone (figure 74). The first satellite image showing thermal activity at the summit appeared on 18 April 2018 (figure 75) and coincided with the abrupt beginning of strong MIROVA thermal signals (figure 76). MODVOLC thermal alerts also first appeared on 18 April 2018. An image of the active crater taken on 9 May 2018 showed the lake filled with fresh lava and two adjacent incandescent spatter cones (figure 77).

Figure (see Caption) Figure 74. Fresh lava reappeared at Nyamuragira's crater during April 2018 from the lava lake (left) and the adjacent small spatter cone (right). Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Avril 2018).
Figure (see Caption) Figure 75. The first satellite image (bands 12, 4, 2) indicating renewed thermal activity at the Nyamuragira crater appeared on 18 April 2018; the signal remained strong a few weeks later on 3 May 2018. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 76. A strong thermal signal appeared in the MIROVA graph of Log Radiative Power on 18 April 2018 for Nyamuragira, indicating a return of the lava lake at the summit crater. Courtesy of MIROVA.
Figure (see Caption) Figure 77. Fresh lava filled the lake inside the crater at Nyamuragira on 9 May 2018. Two spatter cones were incandescent with gas emissions. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Mai 2018).

Satellite images confirmed that ongoing activity from the lava lake remained strong during June -September 2018 (figure 78). A mission to Nyamuragira was carried out by helicopter provided by MONUSCO on 20 July 2018; lava lake activity was observed along with gas emissions from the small spatter cone (figure 79). OVG reported increased volcanic seismicity during 1-3 and 10-17 September 2018, and also during October, located in the crater area, mostly at depths of 0-5 km.

Figure (see Caption) Figure 78. Sentinel-2 satellite images (bands 12, 4, 2) confirmed that ongoing activity from the lava lake at Nyamuragira remained strong during June-September 2018, likely covering the crater floor with a significant amount of fresh lava. Image are from 12 June (top left), 7 July (top right), 17 July (middle left), 22 July (middle right), 11 August (bottom left), and 20 September (bottom right). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 79. The crater at Nyamuragira on 20 July 2018 had an active lava lake and adjacent incandescent spatter cone with gas emissions. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Juillet 2018).

Personnel from OVG and MONUSCO (United Nations Organization Stabilization Mission in DR Congo) made site visits on 11 October and 2 November 2018 and concluded that the level of the active lava lake had increased during that time (figure 80). On 2 November OVG measured the height from the base of the active cone to the W rim of the crater as 58 m (figure 81).

Figure (see Caption) Figure 80. OVG scientists reported a rise in the lake level between site visits to the Nyamuragira crater on 11 October (top) and 2 November 2018 (bottom). Top image courtesy of MONUSCO and Culture Vulcan, bottom image courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Octobre 2018).
Figure (see Caption) Figure 81. On 2 November 2018 scientists from OVG measured the height from the base of the active cone to the W rim of the crater as 58 m. Courtesy of OVG (Republique Democratique du Congo, Ministere de la Recherche Scientifique, Observatoire Volcanologique de Goma, Direction Generale Goma, Rapport Octobre 2018).

Seismicity remained high during November 2018 but decreased significantly during December. Instrument and access issues in January 2019 prevented accurate assessment of seismicity for the month. The lava lake remained active with periodic surges of thermal activity during November 2018-March 2019 (figure 82). Multiple images show incandescence in multiple places within the crater, suggesting significant fresh overflowing lava.

Figure (see Caption) Figure 82. The active lava lake at Nyamuragira produced strong thermal signals from November 2018 through March 2019 that were recorded in Sentinel-2 satellite images (bands 12, 4, 2). Several images suggest fresh lava cooling around the rim of the crater in addition to the active lake. A relatively cloud-free day on 19 November 2018 (top left) revealed no clear thermal signal, but a strong signal was recorded on 29 November (top right) despite significant cloud cover. Images from 13 and 28 January 2019 (second row) both showed evidence of incandescent lava in multiple places within the crater. The thermal signal was smaller and focused on the center of the crater on 12 and 27 February 2019 (third row). Images taken on 9 and 19 March 2019 clearly showed incandescent material at the center of the crater and around the rim (bottom row). Courtesy of Sentinel Hub Playground.

On 12 April 2019 a Ukrainian Aviation Unit supported by MONUSCO provided support for scientists visiting the crater for observations and seismic analysis. Satellite data confirmed ongoing thermal activity into May, although the strength of the signal appeared to decrease (figure 83). MODVOLC thermal alerts ceased after 8 April, and the MIROVA thermal data also confirmed a decrease in the strength of the thermal signal during April 2019 (figure 84).

Figure (see Caption) Figure 83. Sentinel-2 satellite data (bands 12, 4, 2) confirmed ongoing thermal activity at Nyamuragira into May 2019. The thermal anomalies on 18 April (left) and 3 May (right) 2019 were smaller than those recorded during previous months. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 84. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira from 16 July 2018 through April 2019 showed near-constant levels of high activity through April 2019 when it declined. This corresponded well with satellite and ground-based observations. Courtesy of MIROVA.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Katcho Karume, Director; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MONUSCO, United Nations Organization Stabilization Mission in the DR Congo (URL: https://monusco.unmissions.org/en/, Twitter: @MONUSCO); Cultur Volcan, Journal d'un volcanophile (URL: https://laculturevolcan.blogspot.com), Twitter: @CultureVolcan).


Tengger Caldera (Indonesia) — May 2019 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


New explosions with ash plumes from Bromo Cone mid-February-April 2019

The 16-km-wide Tengger Caldera in East Java, Indonesia is a massive volcanic complex with numerous overlapping stratovolcanos (figure 11). Mount Bromo is a pyroclastic cone that lies within the large Sandsea Caldera at the northern end of the complex (figure 12) and has erupted more than 20 times during each of the last two centuries. It is part of the Bromo Tengger Semeru National Park (also a UNESCO Biosphere Reserve) and is frequently visited by tourists. The last eruption from November 2015 to November 2016 produced hundreds of ash plumes that rose as high as 4 km altitude; some of them drifted for hundreds of kilometers before dissipating and briefly disrupted air traffic. Only steam and gas plumes were observed at Mount Bromo from December 2016 to February 2018 when a new series of explosions with ash plumes began; they are covered in this report with information provided by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) and the Darwin Volcanic Ash Advisory Centre (VAAC). Copyrighted ground and drone-based images from Øystein Lund Andersen have been used with permission of the photographer.

Figure (see Caption) Figure 11. The Tengger Caldera viewed from the north Mount Bromo issuing steam in the foreground and Semeru volcano in the background on 30 September 2018. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 12. Aerial view of the Bromo Cone in Tengger Caldera seen from the west on 30 September 2018. Courtesy of Øystein Lund Andersen, used with permission.

PVMBG lowered the Alert Level at Bromo on 21 October 2016 from III to II near the end of an eruptive episode lasting nearly a year. The last VAAC report was issued on 12 November 2016 (BGVN 41:12) noting that the last ash emission had been observed the previous day drifting NW at 3 km altitude. Throughout 2017 and 2018 Bromo remained at Alert Level II, with no unusual activity described by PVMBG. During 1-2 September 2018, a wildfire in the Bromo Tengger Semeru National Park burned 65 hectares of savannah (figure 13); the fire produced 12 MODVOLC thermal alerts around the Tengger Caldera rim. No reports of increased volcanic activity were issued by PVMBG during the period.

Figure (see Caption) Figure 13. A wall of fire in the Bromo Tengger Semeru National Park savanna during 1-2 September 2018 produced thermal alerts that were not related to volcanic activity at the Bromo Cone in Tengger Caldera. Image courtesy of the park authority, reported by Mongabay. MODVOLC thermal alerts courtesy of Hawai'i Institute of Geophysics and Planetology (HIGP).

After slightly more than two years of little activity other than gas and steam plumes, ash emissions resumed from the Bromo Cone on 18 February 2019. After a brief pause, a new explosion on 10 March marked the beginning of a series of near-daily ash emissions that lasted for the rest of March, producing ash plumes that rose to altitudes ranging from 3.0 to 5.2 km and drifted in many different directions. A new series of ash emissions began on 6 April, rising to 3 km and also drifting in multiple directions. Ash emission density decreased during the month; plumes were only rising a few hundred meters above the summit by the end of April and consisted of mostly steam and moderate amounts of ash.

Activity during February-April 2019. PVMBG reported that at 0600 on 18 February 2019 an eruption at Tengger Caldera's Bromo Cone generated a dense white-and-brown ash plume that rose 600 m and drifted WSW. The plume was not visible in satellite imagery, according to the Darwin VAAC. The Alert Level remained at 2 (on a scale of 1-4). After a few weeks of quiet a new explosion on 10 March (local time) produced a white, brown, and gray ash plume that rose 600 m above the summit; the plume was visible in satellite imagery extending SW. Increased tremor amplitude was also reported on 10 March. A new emission the next morning produced similar ash plumes that drifted S, SW, and W at 3 km altitude. On the morning of 12 March (local time) a continuous ash plume was observed in satellite imagery at 3.4 km altitude drifting SW. The plume drifted counterclockwise towards the S, E, and NE throughout the day and continued to drift NE and SE on 13 March. The altitude of the plume was reported at 4.3 km later that day based on a pilot report.

Continuous brown, gray, and black ash emissions were reported by PVMBG during 14-19 March at altitudes ranging from 3 to 3.9 km; they drifted generally NE to NW. Ashfall was noted around the crater and downwind a short distance. The Darwin VAAC reported continuous ash emissions to 5.2 km altitude drifting SE on 20 March. It was initially reported by a pilot and partially discernable in satellite imagery before dissipating. Ongoing ash emissions of variable densities and colors ranging from white to black were intermittently visible in satellite imagery and confirmed in webcam and ground reports at around 3.0 km altitude during 21-25 March (figures 14-17). Ashfall impacted the closest villages to Bromo, including Cemara Lawang (30 km NW), which was covered by a thin layer of ash. A few trees in the area were toppled over by the weight of the ash. The plume altitude increased slightly on 26 March to 3.7-3.9 km, drifting N and NE. The higher altitude plume dissipated early on 28 March, but ash emissions continued at 3.0 km for the rest of the day.

Figure (see Caption) Figure 14. Ash drifted NNE from the Bromo Cone in Tengger Caldera on 23 March 2019. Courtesy of Øystein Lund Andersen (drone image), used with permission.
Figure (see Caption) Figure 15. Ash drifted N from the Bromo Cone in Tengger Caldera on 23 March 2019. The Batok Cone is on the right, Segera Wedi is behind Bromo, and Semeru is in the far background. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 16. A few trees toppled from ashfall in the vicinity of the Bromo Cone in Tengger Caldera on 24 March 2019. Courtesy of Øystein Lund Andersen, used with permission.
Figure (see Caption) Figure 17. Ash plumes from the Bromo Cone in Tengger Caldera on 24 March 2019 caused ashfall in communities as far as 30 km away. View is from the floor of the Sandsea Caldera. Courtesy of Øystein Lund Andersen, used with permission.

After just a few days of quiet, new ash emissions rising to 3.0 km altitude and drifting SE were reported by both PVMBG (from the webcam) and the Darwin VAAC on 6 April 2019. By the next day the continuous ash emissions were drifting N, then E during 8-10 April, and S during 11 and 12 April. A new emission seen in the webcam was reported by the Darwin VAAC on 15 April (UTC) that rose to 3.0 km and drifted W. Ash plumes were intermittently visible in either webcam or satellite imagery until 17 April rising 500-1,000 m above the crater; from 19-25 April only steam plumes were reported rising 300-500 m above the summit. A minor ash emission was reported from the webcam on 26 April that rose to 3.0 km altitude and drifted NE for a few hours before dissipating. PVMBG reported medium density white to gray ash plumes that rose 400-600 m above the crater for the remainder of the month.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Mongabay, URL: https://news.mongabay.com/2018/09/fires-tear-through-east-java-park-threatening-leopard-habitat/.


Karangetang (Indonesia) — May 2019 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Activity at two craters with the N crater producing ash plumes, avalanches, pyroclastic flows, and lava flows that reached the ocean in February 2019

Karangetang (also referred to as Api Siau) is an active volcano on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia. It produces frequent small eruptions that include gas-and-steam plumes, ash plumes, avalanches, lava flows, incandescent ballistic ejecta, and pyroclastic flows. This report covers May 2018-May 2019 and summarizes reports by Indonesia's Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), and the Darwin VAAC (Volcanic Ash Advisory Center), and satellite data. During this time, increased activity resulted in a lava flow that reached the ocean and cut road access to communities.

No activity was reported during May through October 2018. During this time, Sentinel-2 thermal images showed elevated temperatures in the main active crater and gas-and-steam plumes dispersing in different directions (figure 17). On 4 July, the Darwin VAAC reported a "weak" ash plume to an altitude of 3 km that drifted NE, only based on satellite imagery. There were few thermal signatures detected by the MIROVA algorithm from May through November (figure 18).

Figure (see Caption) Figure 17. Incandescence and weak steam-and-gas plumes at the southern crater of Karangetang on 9 May and 17 August 2018. This was common in cloud-free images acquired during this time. Sentinel-2 false color (bands 12, 11, 4) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. MIROVA log radiative power plot of MODIS infrared data for June 2018 through April 2019. There was little thermal energy detected before December, after which levels remained high until they began declining in March 2019. Courtesy of MIROVA.

Steam plumes were observed from two craters during November 2018 (figures 19 and 20). There was a significant increase in seismicity on 22 to 23 November, followed by a sharp decline on the 24th. The first MODVOLC thermal alert was issued on 25 November. At 1314 on 25 November an ash plume rose to at least 500 m above the N crater and the Aviation Color Code was raised to Orange. A Sentinel-2 thermal image acquired on this day showed elevated temperatures at both south and north craters, with accompanying gas-and-steam plumes. After the increase in seismicity and detected thermal energy, activity progressed to lava flow extrusion, avalanches, and pyroclastic flows triggered from the lava flow. The lava flow originated from the north crater (Kawah Dua) and moved towards the NNW. Avalanches accompanied the flow from the crater and down the lava flow surface. The Volcano Alert level was increased from II to III on 20 December at 1800 (on a scale of I to IV).

Figure (see Caption) Figure 19. White gas-and-steam plumes emanating from two craters at Karangetang at 0630 on 16 November 2018. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.
Figure (see Caption) Figure 20. An ash plume from the N crater (left) and a gas-and-steam plume from the S crater (right) of Karangetang at 0703 on 26 November 2018. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

Throughout January 2019 activity consisted of small ash plumes up to 600 m above the N crater (figure 21) and continued lava flow activity. On 17 January Kompas TV reported that heavy ashfall impacted several villages. Lava and avalanches traveled as far as 0.7-1 km W towards the Sumpihi River and 1-2 km NE down the Kali Batuare throughout the month.

Figure (see Caption) Figure 21. A small ash plume on 31 January 2019 at Karangetang. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

Video taken on 3 February 2019 shows the lava flow covering the road and continuing down the steep slope with multi-meter-scale incandescent blocky lava fragments on the surface dislodging and triggering small avalanches. By 5 February the lava flow reached over 3.5 km down the Malebuhe River drainage on the NW flank and into the ocean where a lava delta was growing with dense steam plume rising above by the 11th (figures 22-26). Drone footage from 9 February shows the lava flow across the section of road had a width of about 160 m and a width of about 140 m at the coast. Gas-and-steam and ash plumes were noted most days, reaching up to 600 m above the crater and dominantly dispersing to the E (figure 27). By 11 February there had been 190 people evacuated.

Figure (see Caption) Figure 22. The lava flow front at Karangetang nearing the ocean on 5 February 2019. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 23. The lava flow entering the ocean at Karangetang in early February 2019. Photos posted on 11 February; courtesy of BNPB.
Figure (see Caption) Figure 24. Locations of activity observations at Karangetang in November 2018 and February 2019. 27 November 2018: the descent of lava from the Kawah Dua crater (N crater) to about 700-1000 m away, towards the Sumpihi River and Kinali Village. 2 February 2019: the descent of lava 2.5 km NW, 500 m from the highway. 5 February 2019: the lava flow reached the sea. Courtesy of BNPB.
Figure (see Caption) Figure 25. Sentinel-2 thermal satellite images of Karangetang during November 2018 through February 2019 showing elevated temperatures at two craters, gas-and-steam plumes, and a lava flow moving to the NW (bright yellow-orange). Sentinel-2 false color (bands 12, 11, 4) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 26. View of the active lava flow on Karangetang at the ocean entry in early February 2019. Photo posted on 12 February; taken by Ungke Pepotoh, courtesy of Agence France-Presse.
Figure (see Caption) Figure 27. Ashfall from Karangetang on Siau Island as seen from Pehe port on 7 February 2019. Photo courtesy of The New Indian Express, AFP / Ungke Pepotoh.

On 13 February 2019 avalanches continued from the northern crater to 700-1000 m W towards the Sumpihi River and 1-2 km NE towards Kali Batuare. KOMPAS TV reported a statement by PVMBG describing a decrease in activity, including lava avalanches, but with elevated seismicity on the 12 February. Throughout this period of elevated activity both seismicity (figure 28), along with plume heights and directions (figure 29), were variable. On 22 February the Darwin VAAC reported an ash plume, due to a pyroclastic flow, rising to an altitude of 3.7 km.

Figure (see Caption) Figure 28. Graph showing the variable seismicity at Karangetang during 1 November 2018 to 8 February 2019. Courtesy of PVMBG.
Figure (see Caption) Figure 29. Graph showing gas-and-steam plume heights in meters above the crater from 1 November 2018 to 8 February 2019, with the plume dispersal directions indicated in the box. Modified from data courtesy of PVMBG.

Throughout March 2019 PVMBG reported the continuation of a low rate of lava effusion at the north crater, avalanches, and gas-and-steam plumes rising up to 500 m above the crater. The Darwin VAAC reported an ash plume on 7 March that rose to an altitude of 2.7 km that dispersed to the SW. Minor ash emissions were reported by the Darwin VAAC on 6 April that rose to 2.1 km altitude and drifted SE. In mid-April, activity increased in the southern crater and on 15 April a pyroclastic flow traveled 2 km towards the Kahetang and Batuawang rivers. Another ash advisory was issued for an ash plume up to 2.4 km altitude on 16 April. Small gas-and-steam plumes continued through the month.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Agence France-Presse (URL: http://www.afp.com/); Kompas TV, Menara Kompas Lt. 6, Jl. Palmerah Selatan No.21, Jakarta Pusat 10270 Indonesia (URL: https://www.kompas.tv/article/39190/abu-gunung-karangetang-tutup-permukiman-warga); The New Indian Express (URL: http://www.newindianexpress.com/world/2019/feb/08/emergency-declared-on-indonesian-island-after-volcanic-eruption-1936173.html); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 30, Number 10 (October 2005)

Managing Editor: Richard Wunderman

Arenal (Costa Rica)

Frequent pyroclastic flows from crater C since August 2004

Endeavour Segment (Canada)

Intense earthquake swarm in February-March 2005

Lengai, Ol Doinyo (Tanzania)

Lava continues to spill over crater rim through much of 2005

Negra, Sierra (Ecuador)

Eruption ends 30 October; some lava on NE flank, more on E caldera floor

Northern EPR at 10.7°N (Undersea Features)

November 2003 visit finds evidence of very recent eruption

Pacaya (Guatemala)

Steam clouds and tremor in 2004; incandescence and lava flows in 2005

Santa Maria (Guatemala)

Partial dome collapses in 2004; explosions and ash columns in 2005



Arenal (Costa Rica) — October 2005 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


Frequent pyroclastic flows from crater C since August 2004

As described in the previous Arenal report (BGVN 29:08), on 6 July 2004 a series of pyroclastic flows descended the NE flank. These flows resulted from the collapse of the upper portions of a lava flow, and affected areas beyond those affected by pyroclastic flows during 1999-2003. Similar events have been common in recent years on the volcano's N and NE sides, as Crater C continued to emit gases, lava flows, and sporadic strombolian eruptions through 2004 and at least as late as November 2005. Throughout the period of this report (August 2004-September 2005) the lava flow that began to be emitted towards the NE flank in June 2004 remained active. Occasional blocks spalled off the N edge of the crater towards the NE. The NE and SE flanks continued to be affected by pyroclastic flows and acid rain. Crater D displayed fumarole activity from July 2004 through September 2005. The seismograph station VACR (2.9 km NE of the active Crater C) was out of service from 24 June 2004 until 20 August 2004. Table 24 summarizes the seismicity registered at VACR from August 2004 to September 2005.

Table 24. Seismic activity registered at Arenal's station VACR, August 2004 - September 2005. From 24 June to 20 August 2004 VACR was not operating. No data were reported for December 2004. Courtesy of OVSICORI-UNA.

Month Eruption earthquakes Daily average LP Events Tremor (hours) Comments
Aug 2004 414 35 -- 147 VACR not operating 24 Jun-20 Aug.
Sep 2004 1125 37 -- 330 --
Oct 2004 1155 37 32 293 --
Nov 2004 584 34 -- 153 --
Dec 2004 -- -- -- -- --
Jan 2005 540 22 5 357 VACR operated for 25 days.
Feb 2005 941 35 12 448 --
Mar 2005 903 29 15 458 --
Apr 2005 567 19 13 592 --
May 2005 618 20 3 600 --
Jun 2005 697 23 10 606 --
Jul 2005 827 27 23 560 --
Aug 2005 597 20 33 548 --
Sep 2005 548 18 16 576 --

During July 2004-January 2005, pyroclastic flows were produced by the collapse of the active lava flow front. In August 2004 some eruptions generated ash columns higher than 500 m above Crater C.

Through most of February 2005 Arenal was hidden by storm clouds, but late in the month it could be observed that the lava flow formerly active on the NE flank had stopped, and no other active flow was seen. The number of eruptions and the amount of ejected pyroclastic material were both reduced in February, and few eruptions produced plumes as high as 500 m. The dome in Crater C continued to grow.

At the beginning of March a SW-trending lava flow was observed, and blocks were ejected to the W. During April 2005 this flow continued, and ejected blocks caused small fires in the surrounding vegetation. A new lava flow began on the SE flank, and blocks ejected to the S and SE again caused fires. In May and June 2005 the SW flow continued. In July the SW lava flow deposited blocks towards the SW, the W and the NW. The SE lava flow released small avalanches off its front and sides. Occasional eruptions produced ash columns higher than 500 m above Crater C.

In August 2005 the SE lava flow stopped. Few eruptions produced ash columns higher than 500 m above Crater C. During September 2005 the SW lava flow was active and deposited blocks to the SW, the W and the NW. The NE and SE flanks continued to be affected by the fall of pyroclastic material and acid rain.

Observatorio Vulcanológico y Sismológico de Costa Rica -Universidad Nacional (OVSICORI-UNA) reported that around 1500 on 2 November a pyroclastic flow was observed on the SE flank of Arenal. On 3 November researchers from OVSICORI-UNA visited the affected area and, contrary to what witnesses had reported, determined that the 2 November event took place on the W flank of the volcano. The mid-size pyroclastic flow produced gas, dust, and ash that were carried by strong winds towards the SE.

Despite the rainy and hazy conditions during the fieldwork it was possible to confirm the affected area and deposits. The movement of lava flows on the SW flank had been observed for the last several months. Materials descending from the summit bifurcate, covering a wide fan that ranges from the W to the SW flank. The main pyroclastic flow affected an area from the summit down to ~ 1000 m altitude. A smooth alley was carved in the steep walls of upper W flank by the transport of incandescent material. Most of the material was deposited in a distal zone 75 m wide, at the break in the steep upper cone slope.

Samples were taken from hot loose blocks spalled from the lava flow; one block was still at 154°C, and was accompanied by several other massive blocks that were fractured by rapid cooling and rough transport. There is evidence that the fine fall material was only deposited in the upper and middle part of the edifice towards the SE.

Given the sustained deposition of material in the area, visitors were advised to follow instructions and safety measures and adhere to the advice of the Park Rangers and tour guides.

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: Eliecer Duarte, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica. (URL: http://www.ovsicori.una.ac.cr/).


Endeavour Segment (Canada) — October 2005 Citation iconCite this Report

Endeavour Segment

Canada

47.95°N, 129.1°W; summit elev. -2050 m

All times are local (unless otherwise noted)


Intense earthquake swarm in February-March 2005

At 1631 on 26 February 2005 (0031 UTC on 27 February), a hydroacoustic network detected the start of what became an intense earthquake swarm (Ridge 2000 TCS (Time Critical Studies) Oversight Committee, 2005). The source of the swarm was on the Endeavour segment of the northern Juan de Fuca Ridge (JdFR) (figure 1).

Figure (see Caption) Figure 1. Location map of the February 2005 earthquake swarm on the Juan de Fuca ridge along the Endeavour Segment. Courtesy Ridge 2000 TCS Oversight Committee, 2005.

More than 3,740 earthquakes were detected over a 5.5-day period (figure 2). Event counts were as high as 50-70 per hour, which is similar in scale to event counts associated with sea-floor-spreading events on the ridge at both the Middle Valley segment in September 2001 and at the Endeavour segment in 1999. The hydroacoustic array is the Sound Surveillance System (SOSUS) of the National Oceanic and Atmospheric Administration (NOAA).

Figure (see Caption) Figure 2. Histogram showing the number of seismic events per hour on the Endeavour segment of the Juan de Fuca ridge. The x-axis extends over Julian days 56-64, 2005 (25 February-5 March 2005). Courtesy National Oceanic and Atmospheric Agency (NOAA) Vents web site, 2005.

The preliminary location of the swarm's epicenters was 48°14.5'N, 128°57.6'W (figure 2), ~ 36 km NNE of the Main Endeavour vent field and a few kilometers E of the intersection of the Heck Seamounts with the JdFR axis. The sequence also produced three large earthquakes (mb 4.5, 4.8, and 4.9) detected by instruments of the National Earthquake Information Center (NEIC), the University of Washington, and the Pacific Northwest Seismograph Network (PNSN). The February-March 2005 seismic swarm also maintained an elevated, nearly constant rate of similar-magnitude earthquakes for several days, behavior consistent with magma intrusion and in contrast to the "mainshock-aftershock" sequence characteristic of tectonic events.

Research response personnel were on station by 6 March, just six days after notification of the seismic swarm, a task that often requires a lead time of over a year. Results from the response cruise indicate that it is unlikely that the February-March 2005 earthquake swarm (figure 3) induced any corresponding expression at the sea floor (i.e., eruption of a lava flow) or in the water column (i.e., formation of new hydrothermal venting, either chronic or event plumes).

Figure (see Caption) Figure 3. Epicenters of the 305 larger earthquakes along the Endeavour Segment. Those indicated by the larger red dots were located using 4 or more hydrophones.The epicenters indicated by the smaller black dots were smaller events located using three hydrophones, and they may not be as well constrained. Epicenters are plotted through 1 March 2005 and comprise 305 events. Courtesy National Oceanic and Atmospheric Agency (NOAA) Vents web site, 2005.

In-situ and shipboard physical and chemical data from the three long tow-yo casts and seven vertical casts revealed no water-column signal that can be clearly associated with the recent earthquake swarm, whether magmatic or tectonic. Initial calculations of methane to hydrogen ratios from the Main Endeavour Field, and from Mothra, High Rise, or Salty Dawg vent fields along the Endeavour segment are comparable to historical (2003) values from vent fluids. No evidence of any temperature or optical anomalies was seen in the near-bottom camera tow data (CTD or MAPR) overlying an axial magma chamber reflector, close to the region of the February/March swarm. Camera images of the sea floor revealed no fresh basalt; rather, the entire camera tow track documented lavas with moderate to heavy sediment cover. Finally, no bathymetric anomalies were detected as the cruise scientists searched for evidence of new lava flows in the earthquake area by comparing before and after high-resolution multibeam bathymetry data. The earthquake swarm was thus thought to reflect a magmatic intrusion that failed to generate measurable changes in the sea floor or an intrusive magmatic event that did not reach sufficiently shallow crustal depths to lead to extrusion (eruptive flows) or stimulate venting at new or existing vent fields as discernable via surface-ship sampling.

References. Ridge 2000 TCS (Time Critical Studies) Oversight Committee, 2005, Recent detected events on the Juan de Fuca Ridge, Status report on time critical studies: Ridge 2000 Events, v. 3 (Spring 2005), p. 14-15.

Davis, E.E., and Currie, R.G., 1993, Geophysical observations of the northern Juan de Fuca Ridge system: Lessons in sea-floor spreading: Canadian Journal of Earth Sciences, v. 30 (2), p. 278-300.

Geologic Background. The Endeavour Segment (or Ridge) lies near the northern end of the Juan de Fuca Ridge, west of the coast of Washington and SW of Vancouver Island. The northern end is offset to the east with respect to the West Valley Segment, which extends north to the triple junction with the Sovanco Fracture Zone and the Nootka Fault. The 90-km-long, NNE-SSW-trending segment lies at a depth of more than 2000 m and is the site of vigorous high-temperature hydrothermal vent systems that were first discovered by scientists in 1981. Five major vent fields that include sulfide chimneys and black smoker vents, first seen from the submersible vehicle Alvin in 1984, are spaced at about 2-km intervals in a 1-km-wide axial valley at the center of the ridge. Preliminary uranium-series dates of Holocene age were obtained on basaltic lava flows, and other younger "zero-age" flows were sampled. Seismic swarms were detected in 1991 and 2005.

Information Contacts: Pacific Marine Environmental Laboratory (PMEL), National Oceanic and Atmospheric Agency (NOAA), 7600 Sand Point Way NE, Building 3, Seattle, WA 98115-6349, and Hatfield Marine Science Center, 2115 SE Oregon State University Drive, Newport, OR 97365 (URL: https://www.pmel.noaa.gov/eoi/); Robert Dziak, NOAA PMEL, Hatfield Marine Science Center, 2115 SE Oregon State University Drive, Newport, OR 97365.


Ol Doinyo Lengai (Tanzania) — October 2005 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Lava continues to spill over crater rim through much of 2005

Vigorous eruptive activity was observed in July 2004, and visitors in January 2005 noted that a new crater rim overflow area had developed along the N rim (see report and map in BGVN 30:04). The mountain guide for Martin Haigh reported on 15 May that last lava flows had occurred in March.

Activity during 3-5 July 2005. During 3-5 July 2005 Bernard Marty and others visited the crater to conduct gas sampling. His report follows.

At the time of arrival (0800 on 3 July), sporadic lava flows of the aa type were emitted from a vent at the base of T56B, which was itself disrupted by an explosion, leaving an open cavity about 15 m in diameter. The lava was flowing toward the E overflow, but never reached the crater rim. At about 1130, lava was spilling violently from T58B and flowing towards the E overflow.

Sampling had to be interrupted at T46 due to the risk of a sudden lava flood in the sampling area, a real possibility if the thin W wall of T58B fractured following thermal erosion of the wall by molten lava in the lava lake. One hundred meters S of T46, close to the base of T47, a deep hole ~ 1.5 m diameter and bordered by lava splashes emitted a piercing sound. A pahoehoe lava flow was emitting high temperature gases with no visible steam.

A lava pond, not directly observed but for which bubble explosions were clearly visible, was discharging surges of lava towards the E rim while the adjacent T58C cone, now higher than T58B, was discharging high-velocity gases that occasionally splashed lava. The eruption lasted all day and the following night, with variations from steady-state outpouring with lower degassing, to bursts of large bubbles with enhanced lava emission. By the afternoon of 4 July the lava, which was then overflowing the E slope of the volcano, ignited a bush fire. The lava emission rate was estimated at about 0.3 m3/s, with a speed of ~ 2 m/s in the flat area toward the volcano's flank.

At 0500 on 5 July lava flows suddenly invaded the mountain camp's kitchen area to a depth of one meter. Fortunately no one was hurt, but the episode illustrated that there was no safe area within the N crater.

Activity during 19 July-9 August 2005. During 19 July-9 August a team of observers led by Fred Belton camped in the inactive S crater. They submitted the following report of the active N crater as viewed from the SE crater rim.

Activity during the past year was confined to the crater's central portion. Since its initial violent eruption from a hole in the crater floor on 15 July 2004, T58C has grown to a height of ~ 12 m and is at the time of this report the second highest cone in the crater, tall and narrow with large blocks scattered about the crater floor below, indicating that it has undergone some flank collapses in the preceding months. T49B has grown significantly taller since July 2004 and is the tallest feature in the crater, rising at least 15 m above its base.

T56B, which has remained open to the SE since July 2004, has grown a small cone on its SE flank. The new cone, which has not been named because it is so high on the flank of T56B, is being undermined by a large tunnel. The tunnel begins at the SE base of the small unnamed cone and extends under it to the open vent of T56B. Clearly the tunnel was a recent active feature, and the tunnel entrance appears to be the result of collapse during or after an eruption.

T58B contained a large and deep (10-12 m) open pit, which clearly indicated the presence of past lava-lake activity at two levels. The solid crust of a former lava lake about 4 m below the rim contained a hole near its center that opened into a much deeper chamber. At some point during the night of 4 August this deeper pit was filled by lava so that only the upper level remained.

T57B appeared unchanged from July 2004 until its S half was covered by a thick layer of fused spherical lapilli from a short but powerful eruption of T58C on 20-21 July (figure 85).

Figure (see Caption) Figure 85. At 0100 on 21 July a short but powerful eruption from Ol Doinyo Lengai's T58C vent produced these fresh black lava flows and a lapilli field on the flank of T57B. This view is looking NW. Courtesy of Fred Belton.

Spatter cones T40, T46, T47, T51, T45, T37, T37B, and the ash cones have continued to be gradually covered by lava flows from the active cone group in the central crater. In particular, T40, which was the primary active cone during much of 1999, is now well on its way to disappearing under the lava. Lava flows from the central cone area have continued to build up the height of the mound in the central crater so that several cones are easily visible from Engare Sero village. T53 (~ 80 m NW of T40) no longer existed. A deep hole in the crater floor, just N of T47 and surrounded by recent pahoehoe flows from T58B, is possibly all that remains of the summit vent of T39. The hole was degassing at a high temperature but did not show any evidence of recent effusive activity. An area in the E part of the crater, which is sheltered by outcroppings and sometimes used by campers, had been covered by a thick flow of slabby pahoehoe lava from T58B. A large amount of vegetation on the E flank of Lengai had also been burned by lava flowing through the E-crater-rim overflow (figure 86). Several locations on the N crater rim had become crossed by small lava flows.

Figure (see Caption) Figure 86. The light-colored stripe represents the overflow of recent lavas from Ol Doinyo Lengai down the E flank, as photographed on 7 Aug 2005 from the S crater. The blackened area represents burned vegetation from the bush fire reported by Bernard Marty on 4 July 2005. The lavas, termed natrocarbonatites, turn light colored on the surfaces upon cooling and absorbing moisture. Courtesy of Fred Belton.

Table 10 shows a multi-year set of measurements of the width of crater rim overflows. The N rim overflow was first measured on 7 August 2005.

Table 10. Measurements of the widths of lava overflowing the crater rim at Ol Doinyo Lengai. The values represent the arc length of the crater rim covered by lava flows on the various dates. Measurements were made by pacing the distance several times and averaging the results. The dashes mean that the overflow had not yet come into existence on the date indicated. The lengths of the flows beyond the crater rim are not shown on this table. Courtesy of Fred Belton and Chris Weber.

Date NW overflow width E overflow width W overflow width N overflow width
Jul 2000 60 m 38 m -- --
23 Jul 2001 106 m 38 m -- --
05 Aug 2002 135 m 39 m 12 m --
02 Aug 2003 135 m 44 m 17 m --
07 Jul 2004 135 m 44 m 17 m --
16 Jul 2004 135 m 47 m 17 m --
07 Aug 2005 135 m 72 m 20 m ~1 m at each of three locations

Although there was no activity on 19 July, an unobserved eruption may have begun around 2300 on 20 July and probably ended by 0130 on 21 July, according to reports by a camping group in the W portion of the crater floor. The activity reached its peak between 0100 and 0130 and involved strong lava fountains from a vent about halfway up the E side of T58C. The fountains deposited a deep (at least 0.5 m) bed of lapilli around the base and on the S flank and top of cone T57B, and sent pahoehoe and aa flows to the E. One of the flows traveled tens of meters down Lengai's E slopes. The lapilli consisted mostly of hollow spheroids with diameters up to 1.2 cm. Many of the lapilli were fused, and sections of the field broke apart under their own weight, leaving a blocky, fissured surface.

On 21 July at 1511 lava flowed from T58B's active vent during a 12-minute eruption. At 2100 on the same day a third eruption sent strong surges of lava from the same vent and continued throughout the night. Atmospheric clouds prevented detailed observations, but clear conditions at 0500 on 22 July revealed that a large lava channel had formed just E of T58B and had been thermally eroded to a depth of more than one meter. Maximum flow rate during the eruption was estimated to be 0.5 m3/s. The eruption continued until about 1800 and deposited pahoehoe flows over a large part of the SE crater floor.

With the exception of a very minor lava flow from T58C at 1930 on 26 July and the brief (unobserved) appearance of a lava lake in T58B on the night of 4 August, no further activity occurred through 9 August. There were frequent sounds of lava at depth near the base of T58C and inside the open vent of T58B. The lava lake that briefly occupied T58B filled up its deep inner pit and then solidified, leaving a flat surface of new lava about 4 m below the lowest place on the cone's rim. During 4-9 August lava could be heard moving near the surface somewhere inside T58B's vent, but it never became visible. Observations ended at 0800 on 9 August 2005.

Activity during September and October 2005. Kees DeJong reported the following, which was posted on Belton's website: "We climbed Oldonyo Lengai 13 September 2005, arriving at the crater rim [at 0710]. Tourists that had camped in the crater said that eruptions began at midnight (and that there were no eruptions the previous days). Lava kept flowing until about [0846]; we left the crater at [1300] that day."

Photos that Kees made indicated that lava was flowing from about halfway up the side of T48B and across the crater floor toward the W, but that it was not a particularly large eruption. Earlier, probably on 11 September, a small amount of lava flowed down the N flank of T49B and a short distance across the crater floor. Other photos indicated (by comparing specific lava flows on the crater floor with the same lava flows in 7 August photos) a high probability that there were no lava flows at all between 9 August and 11 September. On 19 September Burra Gadiye reported to Roger Mitchell that he had seen no activity that day.

Anatoly Zaytsev climbed on 30 September and reported that they did not see eruptive activity during their visit (between 1100 and 1500). They did see some natrocarbonatite lavas with estimated ages of 2-3 weeks. These were probably the flows from 13 September described above.

Following a visit during 1-3 October, Jaco de Borst reported the following. "During the first of October there was also no activity, only 'smoke' from several cones and cracks. On the second of October there were several 'small' eruptions. In daylight and at night, the cone that was erupting was the biggest and close to the overflow where the trail reaches the crater. Lava only reached the foot of the cone [Belton noted that he was describing T49B]. We left in the morning of 3 October, I think at about 1000. When we left there was no activity... [other] than some noise and 'smoke.' The night eruptions we saw... I think [occurred] about 5 o'clock in the morning [on 3 October]."

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: Christoph Weber, Volcano Expeditions International, Muehlweg 11, 74199 Untergruppenbach, Germany (URL: http://www.v-e-i.de/); Celia Nyamweru, Department of Anthropology, St. Lawrence University, Canton, NY 13617, USA (URL: http://blogs.stlawu.edu/lengai/); Frederick Belton, Developmental Studies Department, PO Box 16, Middle Tennessee State University, Murfreesboro, TN 37132, USA (URL: http://oldoinyolengai.pbworks.com/); Bernard Donth, Waldwiese 5, 66123 Saarbruecken, Germany.


Sierra Negra (Ecuador) — October 2005 Citation iconCite this Report

Sierra Negra

Ecuador

0.83°S, 91.17°W; summit elev. 1124 m

All times are local (unless otherwise noted)


Eruption ends 30 October; some lava on NE flank, more on E caldera floor

Our last report (BGVN 30:09) described the first five days of this eruption, and was taken largely from a valuable joint report of Ecuador's Instituto Geofísico and Parque Nacional Galápagos. Here we report information from several sources on these topics: (a) initial observations of the eruption, (b) caldera-floor deformation prior to the eruption, (c) observations of the eruption's progress during 26 to 30 October (when it ended), and (d) satellite infrared observations of thermal fluxes associated with the eruption.

Eruption's start and subsequent plumes. As noted previously (BGVN 30:09), the eruption began around 1730 on 22 October 2005, when an explosion was heard by many residents of the volcano's S flank. Satellite images showed no activity at 1715, but revealed a large eruption at 1745 local time (2345 UTC). The eruption cloud reached an estimated altitude of at least 15 km (50,000 ft) and was moving SW.

At about this time, passengers and crew on Lindblad Expeditions' 80 passenger vessel M/N Polaris had an excellent view of the eruptive plume (figure 5). Lucho Verdesoto, the expedition leader, reported that the ship was then at Cerro Dragon, Santa Cruz island. Sunset was at 1753. As night fell they sailed to a position ~ 18 km NE of the volcano, where they had clear views of flows descending the volcano's upper NE flank (figure 6).

Figure (see Caption) Figure 5. Early photo of the Sierra Negra plume from the cruise ship Polaris, anchored off NW Santa Cruz island around sunset on 22 October 2005. Courtesy of Lucho Verdesoto.
Figure (see Caption) Figure 6. Lava spews skyward from circumferential fissure vents near the N rim of Sierra Negra caldera as flows descend the upper N flank. The photos were taken on 22 October, during the first few hours of the eruption, from the Polaris. Courtesy of Lucho Verdesoto.

Naturalist Carman Guzman wrote, "After sunset the show was fascinating so we decided to move the Polaris to a much closer location. After dinner, we were only eleven miles from the eruption itself. What a thrill! The darkness of the night enhanced the beauty of the fiery reds and oranges that were seen at the top of the caldera. We spent several hours enjoying this rare and fantastic event. Rivers of lava were running down the slopes of the volcano and enormous flames were lighting up the sky."

According to NASA MODIS imagery and VAAC/NOAA reports, on 25 October 2005 a large plume of gases and steam was observed in GOES 12 imagery for 1545 local time (2145 UTC). The plume extended ~ 460 km W and SW of the summit at an altitude of ~ 4.6 km. Figure 7 shows the average concentration of SO2 over the Sierra Negra plume as imaged by NASA's Aura satellite for the period 23 October-1 November.

Figure (see Caption) Figure 7. The average concentration of sulfur dioxide (SO2) over Sierra Negra from 23 October-1 November measured by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. In agreement with reports from the ground, OMI stopped seeing measurable sulfur dioxide coming from the volcano on 31 October. The column abundances of SO2 appear on the associated key (in Dobson Units, DU, a product of concentration and pathlength that reflects the number of SO2 molecules in a unit area of the atmospheric column). Courtesy of NASA Earth Observatory/Natural Hazards website.

Deformation monitoring. In the early stages of this eruption, Bill Chadwick (NOAA) submitted a report on pre-eruption deformation (figure 8). The plot shows both Synthetic Aperture Radar (InSAR) and GPS data on vertical deformation of the caldera floor. Chadwick wrote that he, Dennis Geist (University of Idaho), and Dan Johnson (University of Puget Sound, recently deceased) installed a 27 station GPS network at Sierra Negra in 2000, that was reoccupied in 2001 and 2002 (Geist and others, in press). With help from UNAVCO (a consortium supporting high-precision deformation measurements), the group then added a 6-station, continuous GPS network in 2002. Since then, there occurred a change from caldera subsidence to caldera uplift in March 2003. During this uplift, an M 4.6 earthquake on 16 April 2005 marked trapdoor faulting. The continuous GPS network measured a surface displacement of 85 cm within 10 seconds. Both this event and the previous case of trapdoor faulting in 1997-8-documented by satellite measurements using Interferometric Synthetic Aperture Radar (InSAR) (Amelung and others, 2000)-were preceded by over a meter of inflation (Jónsson and others, 2005). Both the 1997-98 and 2005 trapdoor movements occurred along the caldera floor's S side.

Figure (see Caption) Figure 8. Recent history of uplift at the center of Sierra Negra's caldera. The data plotted are only through April 2005 when the trapdoor faulting event occurred. Although not plotted, GPS data since April has continued to indicate robust deformation. Courtesy Bill Chadwick, NOAA.

Aside from its immediate affects, the April 2005 earthquake left the later inflation rate unchanged. Caldera-centered uplift has continued since then without pause at about the same high rate. During the interval from March 2002 to April 2005 there was about ~ 1.2 m of uplift. Rates after the April 2005 earthquake are not plotted but were roughly the same as those during the interval March 2002-April 2005. The only other large earthquakes at Sierra Negra in the last year were an M 4.0 on 23 February 2005, which was associated with a small (2 cm) displacement near the trapdoor fault, an M 4.6 on 19 September 2005 that caused no obvious displacements, and an M 5.5, just 3 hours before the 22 October eruption started. The GPS data has not yet been processed.

Field descriptions of the eruption. The eruption began on 22 October with venting along a 2-km fissure near the caldera's N rim (figure 6). The fissure descended the caldera's inner wall at its E end. Flows were fed both northward down the outer N flank and southward onto the NE caldera floor. Although flows reached 5 km down the outer flank, flow into the caldera soon dominated, with strong channels descending inner caldera slopes before combining to form a wide aa flow banked against the caldera's E wall and moving steadily southward (see figures and discussion, BGVN 30:09).

Figure 9 is a photo taken by Greg Estes on 24 October. It highlights the vigorous venting and intracaldera flows at that point in the eruption. Figure 10, a post-eruption satellite photo, illustrates the broad pattern of still-cooling, erupted lavas (which appear as light colored areas on this 2 November thermal-infrared image). Although this may represent the best overview of the new lavas at this time, some of the thinnest flows or chilled flow features may not appear on this image.

Figure (see Caption) Figure 9. The Sierra Negra eruption setting as viewed from the E caldera rim. The fissure vent was vigorously emitting fountains, and there were several anastomosing lava flows pouring into the caldera. Photo was taken at night on 24 October 2005, day 3 of the eruption. The scattered glow in the foreground was due to ponded lava covering the caldera's E floor. Courtesy of Greg Estes (Galápagos resident and Park Guide).
Figure (see Caption) Figure 10. The Sierra Negra eruption setting as viewed from space in a false color ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) infrared image taken at night on 2 November, ~ 3 days after the eruption ended. N is towards the top. Caldera is 7 x 10.5 km across. Note the extra-caldera, N-flank lava flows, the lunate zone of ponded lavas along the E caldera. NASA image created by Jesse Allen, Earth Observatory, using data provided courtesy of Eric Fielding (NASA/JPL), the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

By 26 October, fissure activity had narrowed to one major vent very near the N rim, but at 0830 on the 27th, eyewitness Godfrey Merlin reported that a second vent opened downslope and SE of the first. This new vent did not diminish the activity of the first, meaning that the total flux of erupting lava nearly doubled.

By about 1400 on the 27th, a team including Dennis Geist (University of Idaho), Terry Naumann (University of Alaska), and Karen Harpp (Colgate University) had arrived at the E caldera rim and began sending back a series of valuable reports. Their first report noted a major vent immediately below GPS station SN12 on the rim NE of the caldera's center. This vent emitted a large intracaldera aa flow.

Some active N-flank vents stood about 300-400 m NW of a station (GV01) on the caldera's N rim . There, two major vents fed lava fountains up to 50 m high. Most lava being erupted was flowing into the caldera, although some of the scoria from the fountains was falling outside the caldera and then forming a short, sluggish flow. Lava inside the caldera was cascading from the vents down the slope on the N edge of the caldera in 3 main channels, each 30-40 m across, with lava flowing at ~10 m/s (36 km/h) and in some cases over 10 m/s, and coalescing into a major aa flow to the S. On the caldera floor these channels merged into one big aa channel about 100 m wide that flowed more slowly both to the S, clockwise along the base of the E caldera wall, and into the moat along the S edge of the caldera floor. Pahoehoe outbreaks occurred along the margins of the major aa flow. New aa lava covered an estimated one-third of the caldera floor.

The report for 28 October noted that the eruption was still going strong. There were no significant new events on this day, but it appeared that the lava flux had increased because the vents looked wider and there seemed to be a lot more gas emitted. The lava continued to feed from the vents to the caldera floor in two large streams, each ~ 20 m across with lava traveling at 5-10 m/s, adding up to probably hundreds of millions of cubic meters of lava per day. The aa field continued to grow. The group reached the caldera floor and were able to sample both lava and tephra.

By 0700 on the 29th some of the vents had shut down and the two lava channels to the W (previously fed by the upper vent) stopped moving. The lower vent still emitted lava and fed one channel E of the others. The team estimated the channel to be ~ 10 m wide and moving ~5 m/s. Assuming a 2-m depth, the lava flux was 5 to 10 million cubic meters per day, about half that seen the morning of the 29th

The emission rate continued to diminish throughout the 29th and by the evening it was only 10-20% of that seen on the 28th. In addition, the amount of gases emitted decreased such that the gas plume only rose ~ 1 km, whereas earlier plumes had risen to several kilometers. The lower vent was no longer fountaining continuously as it had on the 28th; instead the fountaining came in bursts at intervals of about 1-30 seconds. A lava lake sloshed around in the lower vent's crater; some lava escaped this crater along a breach in the crater rim. The upper vent (the one that shut off) was still incandescent with a lot of gas coming out, so it was possible that there was a lava lake there too.

The eruption appeared to end on the 30th. Glow was observed at 0200, but had ceased by 0400. The vents still emitted gas, but not fresh lava. However, it was possible that there was still N-flank activity. There were reports of lava flows there, and while it was certain that at least some of these flows were clastogenic (composed of spatter from fire fountains that accumulated and then began to flow), it was uncertain whether there were also actively erupting flank vents. The team remained separated from this area by hot lava, thwarting reconnaissance. Initial estimates of the coverage of the caldera floor were an area of ~ 14 km2. Assuming a 3-4 m average flow thickness, this was ~ 0.05 km3 (50,000,000 m3) of lava. There were obviously high error bars on this estimate, but it was clearly much less than the ~ 1 km3 extruded in the 1979 eruption.

MODVOLC Thermal Alerts. A large set of thermal hotspots in multispectral imagery was observed beginning late 22 October (local time and date) and continuing through 16 November 2005 (figure 11). Although MODVOLC data were missing for some days and reduced for others (presumably due to cloud cover screening the radiation from the satellite) these hot-spot pixels dramatically document the course of the eruption. Data on figure 11 appear consistent with in situ observations, in that by the second day, lava was at least 5 km down the outer N slope and covering much of the E caldera floor. By the 8th day (30 October), the outer slope flows had cooled significantly, but flows inside the caldera had continued their clockwise advance, filling all low points to the extreme SW corner of the caldera. Ten days later (9 November), the eruption had ended and only flows from the vents to the SE caldera floor were still emitting detectable heat. The last pixels observed, two above the original vent area on the N rim, were on 16 November.

Figure (see Caption) Figure 11. Selected images of MODVOLC thermal anomalies for Sierra Negra measured from satellite (MODIS) data at three days during and after the 2005 eruption. Part A presents an overview of the region (smaller scale than the other images) on 24 October. Parts B-D give a zoom-in on the 7 x 10.5 km caldera. Part B represents 24 October; Part C, 30 October; and part D, 9 November 2005. Since the eruption ended 30 October, the latter two images must thus portray the post-eruptive thermal inertial of the cooling lavas. Courtesy of Hawai`i Institute of Geophysics and Planetology, University of Hawai`i.

References. Amelung, F., Jónsson, S., Zebker, H., and Segall, P., 2000, Widespread uplift and 'trapdoor' faulting on Galápagos volcanoes observed with radar interferometry: Nature, v. 407, p. 993-996.

Geist, D.J., Chadwick, W.W., Jr., and Johnson, D.J., in press, Results from new GPS monitoring networks at Fernandina and Sierra Negra volcanoes, Galápagos, 2000-2002: Journal of Volcanology and Geothermal Research (in press).

Jónsson, S., H. Zebker, and F. Amelung, 2005, On trapdoor faulting at Sierra Negra volcano, Galápagos; Journal of Volcanology and Geothermal Research, v. 144, p. 59-71.

Geologic Background. The broad shield volcano of Sierra Negra at the southern end of Isabela Island contains a shallow 7 x 10.5 km caldera that is the largest in the Galápagos Islands. Flank vents abound, including cinder cones and spatter cones concentrated along an ENE-trending rift system and tuff cones along the coast and forming offshore islands. The 1124-m-high volcano is elongated in a NE direction. Although it is the largest of the five major Isabela volcanoes, it has the flattest slopes, averaging less than 5 degrees and diminishing to 2 degrees near the coast. A sinuous 14-km-long, N-S-trending ridge occupies the west part of the caldera floor, which lies only about 100 m below its rim. Volcán de Azufre, the largest fumarolic area in the Galápagos Islands, lies within a graben between this ridge and the west caldera wall. Lava flows from a major eruption in 1979 extend all the way to the north coast from circumferential fissure vents on the upper northern flank. Sierra Negra, along with Cerro Azul and Volcán Wolf, is one of the most active of Isabela Island volcanoes.

Information Contacts: Lucho Verdesoto and Carman Guzman, M/NPolaris, Galápagos Islands, Ecuador; Francisco Dousdebes, Galápagos Expedition Manager, Metropolitan Touring, Ecuador; Lindblad Expeditions (URL: http://www.expeditions.com/); U.S. National Aeronautical and Space Administration (NASA) (URL: http://earthobservatory.nasa.gov/); Bill Chadwick, Cooperative Institute for Marine Resources Studies (CIMRS), National Oceanic and Atmospheric Agency (NOAA) Pacific Marine Environmental Laboratory (PMEL), Oregon State University, 2115 SE OSU Drive, Newport, OR 97365, USA; Dennis Geist, Department of Geological Sciences, University of Idaho, Moscow, ID 83844-3022 USA; Terry Naumann, Department of Geology, University of Alaska at Anchorage, Anchorage, AK 99598, USA (URL: https://www.uaa.alaska.edu/academics/college-of-arts-and-sciences/departments/geology/); Karen Harpp, Department of Geology, Colgate University, 408 Lathrop Hall, Hamilton, NY 13346, USA (URL: http://www.colgate.edu/facultysearch/FacultyDirectory/karen-harpp); MODVOLC Alerts Team, Hawaii Institute of Geophysics and Planetology (HIGP), University of Hawaii at Manoa, 1680 East-West Road, Post 602, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Northern EPR at 10.7°N (Undersea Features) — October 2005 Citation iconCite this Report

Northern EPR at 10.7°N

Undersea Features

10.73°N, 103.58°W; summit elev. -2900 m

All times are local (unless otherwise noted)


November 2003 visit finds evidence of very recent eruption

In a recent publication, Rubin and van der Zander (2005) discuss radiometric methods for dating lavas as one means to establish eruption chronologies. Some of their techniques were applied to samples of fresh lava (erupted September-October 2003) found on the East Pacific Rise (EPR) at 10°44'N (Voight and others, 2004). This location lies ~ 1,900 km WNW of the Galápagos Islands. During a November 2003 biological sampling visit to the EPR at 10°44'N, divers in the submersible Alvin expected to be revisiting an established hydrothermal vent field. Instead, they found indicia all of which were consistent with a recent eruption, notably fresh lava, bacterial mats, and diffuse snow- blower vents issuing from lava collapses. The team acted immediately after the cruise by sending the lava samples to the University of Hawai`I for dating. Researchers there determined that an eruption had occurred within 1 to 2 months prior to the site visit. A hydrophone array (designated N-EPR) nominally monitored this part of the EPR since 1996, but not in real time. Unfortunately, the system failed to record data during the 2002-2004 interval due to a hardware problem.

Ages for lavas erupted within the past 1.5-2 years were determined with the 210Po-210Pb dating method (Rubin and others, 1994). To use this method, analyses should begin as soon as possible after samples are collected from suspected eruption locales. Radioactive disequilibrium is largest, and temporal resolution of the method is highest, immediately following eruption. According to Rubin and van der Zander (2005, p. 28) "Polonium is volatile at magmatic temperatures and degasses from magmas when they erupt. This creates an initial 210Po (half-life = 138.4 day) deficit relative to grand parental 210Pb in freshly erupted magmas. This deficit is subsequently erased with time via radioactive ingrowth toward secular equilibrium."

References. Rubin, K.H., Macdougall, J.D., and Perfit, M.R., 1994, 210Po-210Pb dating of recent volcanic eruptions on the seafloor: Nature, v. 368, p. 841-844.

Rubin, K., and van der Zander, I., 2005, Obtaining high-resolution chronologies of submarine lava eruptions: Better dating through radiochemistry: Ridge 2000 Events, v. 3 (Spring 2005), p. 28-30.

Voight, J. R., Zierenberg, R.A., McClain, J., and the Science Party: Batson, P., Beers, K., Daly, M., Dushman, B., Gollner, S., Govenar, B., Haney, T.A., Hourdez, S., Liow, L.H., Parker, C., Von Damm, K., Zekley, J., and Zelnio, K.A., 2004, FIELD cruise to the northern EPR: Discoveries made during biological investigations from 8°37'N to 12°48'N: Ridge 2000 Events, v. 2(1), p. 22-24.

Geologic Background. Divers in the submersible Alvin discovered an extremely fresh lava flow in an unexpected location at 10°44'N on the East Pacific Rise during an expedition in November 2003. The young flow was covered by bacterial mats, had large amounts of bacterial floc ("snow-blowers") issuing from diffuse vents, and was sparsely populated by small animals. Uranium-series dating indicated that the eruption had taken place within a time window only a few months to weeks prior to the observations. This segment of the East Pacific Rise, located just north of the Clipperton Transform Fault, is an area with an estimated low magma production rate.

Information Contacts: Ken Rubin, Department of Geology and Geophysics, SOEST, University of Hawai`I, 1680 East West Road, Honolulu, HI 96822, USA.


Pacaya (Guatemala) — October 2005 Citation iconCite this Report

Pacaya

Guatemala

14.382°N, 90.601°W; summit elev. 2569 m

All times are local (unless otherwise noted)


Steam clouds and tremor in 2004; incandescence and lava flows in 2005

Frequent steam plumes through 2002 and 2003 indicated that Pacaya was active, although incandescence from the long-term lava lake ended after June 2001. During the latter half of October 2003 constant steam and abundant emissions of water and gas were being blown to the NNW and W of the volcano (BGVN 28:10). All of the following information is derived from the reports of Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH).

Throughout November and December 2003 and the first half of 2004, abundant clouds and columns of white and off-white gases and steam were expelled from Pacaya, generally reaching less than 400 m above the volcano and dispersing mostly to the W and SW; these were occasionally visible from Guatemala City, 30 km to the NNE.

During June, July, and August 2004, near-continuous tremor and frequent long-period earthquakes were recorded at seismograph station PCG (~ 1.4 km to the W of Pacaya). On 14 June, weak incandescence was observed in the central crater of MacKenney Cone for the first time since August 2000. Pacaya continued to expel off-white smoke and/or steam which usually drifted to the S and SW and rose to 150-300 m above the volcano. On 19 July, ejection of small lava fragments began to form a cone in the bottom of the central crater of MacKenney Cone.

During September-November 2004, tremor increased somewhat (from ~ 2mm in June, July, and September to 4-7 mm in December), and white steam and/or gas plumes rose 300-500 m above MacKenney Cone. Incandescence was observed throughout this time and lava clasts were expelled from the MacKenney Cone on 7-9 December.

On 3 January 2005, small expulsions of incandescent lava clasts rose from the central crater, and a narrow lava flow from the S rim of the crater reached 75-100 m down the flank. Station PCG continued to register tremor, and incandescence and white plumes persisted. On 10 January, lava flowed ~ 30 m from the SW rim of the central crater of MacKenney Cone. On 12 January, two lava flows, one to the S ( ~ 125 m) and one to the SW (~ 50 m) left the central crater. Observers saw incandescent lava fragments rising <10 m above the mouth of the intra-crater cone, and "smoke" whiffs rising from the MacKenney Cone. During the last 5 days of January 2005, numerous small lava flows descended the S and SW flanks of the volcano.

During February, March, and April 2005, incandescence, tremor, and minor lava flows continued. On 2 February observers reported that avalanches from the lava flow fronts during the previous days formed a debris fan covering about 2/3 of the SW flank. On 28 February expulsion of incandescent lava fragments reached heights of 10-50 m for brief periods. On 1 March INSIVUMEH recommended that park officials prevent tourists from climbing Pacaya because of avalanches, lava expulsion, and gas emissions. In March and April explosions of lava reached 100 m in height, and smoke/gas emissions continued.

Lava emission continued during May. On 4 May, three flows were active, extending up to 100 m down the SW flank and 150 m W in the direction of Cerro Chino. On 9 May two active flows from the base of the intracrater cone reached 200 m down the W flank. Plumes from the MacKenney Cone rose as high as 800 m above the crater. Ejection of incandescent material continued throughout the month. Lava flows moving to the SW and W in the direction of Cerro Chino reached lengths of 150-250 m.

During early June, incandescent lava clasts were ejected as high as ~ 75 m above Pacaya's crater. An intra-crater lava flow extended ~ 300 m from the SW base of the central cone. On 6 June, a lava flow traveled ~ 200 m down the volcano's W flank. By 27 June a lava flow extended ~ 300 m down the SW flank. A white steam column rose ~ 150 m over the central crater and drifted SW. Incandescent lava expulsions reached heights of 15-50 m. On the night of 27 June two rivers of lava, 75 and 150 m long, were observed in front of Cerro Chino. Constant expulsions of pyroclastic material rose 20-30 m above the crater.

Lava flows in July traveled 200-300 m down the SW flank. Small plumes emitted from the volcano's central crater rose to low altitudes. Avalanches of incandescent volcanic blocks produced small ash clouds to low levels.

During 7-11 September, occasional Strombolian activity occurred. Volcanic bombs from two craters rose up to 30 m above their rims. Incandescence from lava flows on the SE flank was visible on several nights.

Geologic Background. Eruptions from Pacaya, one of Guatemala's most active volcanoes, are frequently visible from Guatemala City, the nation's capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/).


Santa Maria (Guatemala) — October 2005 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Partial dome collapses in 2004; explosions and ash columns in 2005

Prior to the period covered by this report, recent activity at Santa María was characterized by weak-to-moderate explosions producing ash, crater-rim collapses and avalanches of block lava and ash, pyroclastic flows, and an active lava flow (BGVN 28:10). Activity was similar from October 2003 to June 2004, consisting mostly of explosions from Santiaguito, a lava-dome complex that includes the Caliente vent. The explosions produced ash plumes, and there were numerous block-lava-and-ash avalanches from Caliente collapses (BGVN 29:06). From July 2004 until October 2005, these types of activity continued.

Activity during July-September 2004. During July to September 2004, weak-to-moderate explosions at Santiaguito produced plumes to a maximum height of ~ 1.5 km above the volcano. Frequent avalanches of volcanic material including blocks and ash traveled SE and SW down Caliente cone. In early September 2004, several weak-to-moderate explosions produced ash clouds to a maximum height of 2 km above the volcano. Partial collapses of the lava dome caused pyroclastic flows to travel down the volcano's NE and SW flanks. On 27 September, several avalanches of volcanic material from active lava-flow fronts traveled SW.

Activity during October 2004. During October 2004 moderate explosions produced ash-and-gas plumes that rose to a maximum altitude of 9 km. Explosions on 4 October produced small pyroclastic flows to the SW. On 11 October, a partial lava-dome collapse to the SW produced a pyroclastic flow that traveled toward the Nimá Segundo River. An ash cloud formed that rose to a height of ~ 500 m and covered most of the dome complex. The collapse was preceded by an explosion that produced an ash-and-gas cloud to ~ 1.5 km above the volcano. Small explosions on 12 October produced small lava-dome collapses to the SW that generated avalanches of lava blocks and ash.

Small lahars traveled down San Isidro ravine on 14 and 15 October. A small collapse of the SW edge of the lava dome in the Caliente crater produced a pyroclastic flow on 17 October. The flow traveled down the S flank and produced a steam-and-ash plume to a height of ~ 800 m upon contact with dammed water. Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) reported that this collapse, like those that occurred on previous days and weeks, was associated with a new cycle of magmatic injection. The Washington VAAC reported that hot spots and plumes possibly containing ash were occasionally visible on satellite imagery on 21 October; imagery on 31 October showed a possible ash-bearing plume at ~ 4.5 km altitude.

Activity during November 2004. During November, weak-to-moderate explosions produced gas-and-ash plumes to ~ 1 km above the volcano. Many explosions were accompanied by block-and-ash avalanches from the NE and SW edges of Caliente dome. The Washington VAAC reported that satellite imagery on 3 November showed a possible ash-bearing plume at a height of ~ 5 km altitude. On 12 November, the collapse of a small sector of the SW edge of the Caliente dome produced a pyroclastic flow. On 14 November at 2012, a tectonic earthquake caused a lava-flow collapse SW of the Caliente dome, triggering a pyroclastic flow that descended to the head of San Isidro ravine, an area of abundant accumulation of pyroclastic material and a known area for lahar initiation. During December, weak-to-moderate explosions produced plumes to a maximum height of 1.3 km above the crater. Frequent block-lava avalanches traveled down the SW flank of Caliente dome. A moderate explosion on 4 December caused a partial lava-dome collapse and a pyroclastic flow that traveled SW. On 22 December small collapses occurred from lava-flow fronts on the SW side of Caliente dome. According to the Washington VAAC, ash plumes were visible on satellite imagery on several days during 22-27 December.

Activity during January-October 2005.During January 2005, frequent explosions (table 2) produced columns of gray and white ash up to 2 km in height, ash fall in towns near the volcano and frequent blocky avalanches. Early in the month, avalanches of incandescent blocks were released from lava flow fronts towards the NE and SE flanks of Santiaguito.

Table 2. Explosions recorded at the Santiaguito cone of Santa María in January 2005. Missing dates were not reported. Courtesy of INSIVUMEH.

Date Number of Explosions
04 Jan 2005 93
07 Jan 2005 62
10 Jan 2005 31
11 Jan 2005 20
12 Jan 2005 14
13 Jan 2005 13
14 Jan 2005 15
24 Jan 2005 16
25 Jan 2005 56
26 Jan 2005 16
27 Jan 2005 52
28 Jan 2005 65

During February 2005, frequent explosions and avalanches continued. On 10 February 2005 the Washington VAAC reported that satellite imagery showed a plume of ash and steam moving SW from the summit and ash extending 55 km after an eruption around 0645. A continuous plume of ash and steam was emitted after an eruption around 0745 and ash extended around 230 km from the summit moving at 2-50 km/hour.

During March 2005, several weak-to-moderate explosions produced ash plumes to a maximum height of ~ 1.3 km above the dome. Avalanches of volcanic blocks traveled down the E and SW flanks of Caliente dome. On 16 March, small amounts of fine ash fell in Xepax, Xecavioc, Llanos de Pinal, Las Majadas, and Quetzaltenango. During 19-20 March, ash fell to the E in the town of Zunil.

During 21-25 April several explosions at Santiaguito produced ash plumes that rose to ~ 1.2 km above the dome. Lava avalanches occurred down the SW flank of Caliente dome. Explosions on 25 April produced pyroclastic flows that traveled S down Caliente.

Continuing explosive activity from Santiaguito during 4-9 May sent ash columns as high as 1.3 km above the vent. Small collapses at the Caliente dome generated pyroclastic flows 500-3,000 m long. Constant avalanches were reported on 10 May from the lava-flow front and the Caliente dome, along with one small ash explosion. Minor explosions on 13 May sent gray ash plumes 400-600 m high. Avalanches from the SW-flank lava flow continued. Explosions during 17-20 May produced ash clouds to ~ 1 km above the volcano; ash fell 7-10 km from Caliente dome.

During the first week of June 2005, moderate explosions produced plumes that rose to ~ 1.2 km above the volcano. On 2 June, the partial collapse of the lava dome in the crater of Caliente dome generated a pyroclastic flow that traveled ~ 4 km SW. On 22-24 June explosion columns reached ~ 900 m above the crater and extended several kilometers to the SSW and W. On 27 June, in the region of Palajunoj on the SW flank, constant avalanches of lava blocks were observed. During 6-18 July, weak-to-moderate explosions continued , with plumes rising to ~ 1.3 km above the volcano. Throughout July avalanches of volcanic material were produced at the front of an active lava flow, and from the SW edge of Caliente dome.

August and early September reports were unavailable, but during 7-11 September, small-to-moderate explosions at Santiaguito produced plumes that rose to a maximum height of ~ 1.5 km above the volcano on 8 September. On 7 September, a moderate lahar traveled down the volcano's flank. About a dozen pyroclastic flows, and avalanches of volcanic material occurred from the SW edge of the lava dome, and from the front of lava deposits on the SW flank of Caliente dome.

On 26 October 2005 a small eruption produced an ash plume that drifted SW to the Pacific and was recorded on MODIS satellite imagery (figure 33). The Washington VAAC reported a hot spot that lasted for about 6 hours with an estimated plume height of 4.5 km. On 28 October a plume rose to an altitude of ~ 4.9 km.

Figure (see Caption) Figure 33. MODIS (Moderate Resolution Imaging Spectroradiometer) image showing a Santa María eruption plume on 26 October 2005. The volcano's summit is identifiable by a small red outline indicating an area hotter than its surroundings. Wafting away from the summit is a thin, faint ash plume that heads SW toward the Pacific. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); NASA Earth Observatory (URL: http://earthobservatory.nasa.gov/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).