Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Sabancaya (Peru) Explosions, gas-and-ash plumes, and thermal activity persist during November 2022-April 2023

Sheveluch (Russia) Significant explosions destroyed part of the lava-dome complex during April 2023

Bezymianny (Russia) Explosions, ash plumes, lava flows, and avalanches during November 2022-April 2023

Chikurachki (Russia) New explosive eruption during late January-early February 2023

Marapi (Indonesia) New explosive eruption with ash emissions during January-March 2023

Kikai (Japan) Intermittent white gas-and-steam plumes, discolored water, and seismicity during May 2021-April 2023

Lewotolok (Indonesia) Strombolian eruption continues through April 2023 with intermittent ash plumes

Barren Island (India) Thermal activity during December 2022-March 2023

Villarrica (Chile) Nighttime crater incandescence, ash emissions, and seismicity during October 2022-March 2023

Fuego (Guatemala) Daily explosions, gas-and-ash plumes, avalanches, and ashfall during December 2022-March 2023

Santa Maria (Guatemala) Active lava flows, explosions, ash plumes, and ashfall during December 2022-March 2023

Reventador (Ecuador) Daily explosions, gas-and-ash emissions, crater incandescence, and block avalanches during December 2022-March 2023



Sabancaya (Peru) — May 2023 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, gas-and-ash plumes, and thermal activity persist during November 2022-April 2023

Sabancaya is located in Peru, NE of Ampato and SE of Hualca Hualca. Eruptions date back to 1750 and have been characterized by explosions, phreatic activity, ash plumes, and ashfall. The current eruption period began in November 2016 and has more recently consisted of daily explosions, gas-and-ash plumes, and thermal activity (BGVN 47:11). This report updates activity during November 2022 through April 2023 using information from Instituto Geophysico del Peru (IGP) that use weekly activity reports and various satellite data.

Intermittent low-to-moderate power thermal anomalies were reported by the MIROVA project during November 2022 through April 2023 (figure 119). There were few short gaps in thermal activity during mid-December 2022, late December-to-early January 2023, late January to mid-February, and late February. According to data recorded by the MODVOLC thermal algorithm, there were a total of eight thermal hotspots: three in November 2022, three in February 2023, one in March, and one in April. On clear weather days, some of this thermal anomaly was visible in infrared satellite imagery showing the active lava dome in the summit crater (figure 120). Almost daily moderate-to-strong sulfur dioxide plumes were recorded during the reporting period by the TROPOMI instrument on the Sentinel-5P satellite (figure 121). Many of these plumes exceeded 2 Dobson Units (DU) and drifted in multiple directions.

Figure (see Caption) Figure 119. Intermittent low-to-moderate thermal anomalies were detected during November 2022 through April 2023 at Sabancaya, as shown in this MIROVA graph (Log Radiative Power). There were brief gaps in thermal activity during mid-December 2022, late December-to-early January 2023, late January to mid-February, and late February. Courtesy of MIROVA.
Figure (see Caption) Figure 120. Infrared (bands 12, 11, 8A) satellite images showed a constant thermal anomaly in the summit crater of Sabancaya on 14 January 2023 (top left), 28 February 2023 (top right), 5 March 2023 (bottom left), and 19 April 2023 (bottom right), represented by the active lava dome. Sometimes gas-and-steam and ash emissions also accompanied this activity. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 121. Moderate-to-strong sulfur dioxide plumes were detected almost every day, rising from Sabancaya by the TROPOMI instrument on the Sentinel-5P satellite throughout the reporting period; the DU (Dobson Unit) density values were often greater than 2. Plumes from 23 November 2022 (top left), 26 December 2022 (top middle), 10 January 2023 (top right), 15 February 2023 (bottom left), 13 March 2023 (bottom middle), and 21 April 2023 (bottom right) that drifted SW, SW, W, SE, W, and SW, respectively. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.

IGP reported that moderate activity during November and December 2022 continued; during November, an average number of explosions were reported each week: 30, 33, 36, and 35, and during December, it was 32, 40, 47, 52, and 67. Gas-and-ash plumes in November rose 3-3.5 km above the summit and drifted E, NE, SE, S, N, W, and SW. During December the gas-and-ash plumes rose 2-4 km above the summit and drifted in different directions. There were 1,259 volcanic earthquakes recorded during November and 1,693 during December. Seismicity also included volcano-tectonic-type events that indicate rock fracturing events. Slight inflation was observed in the N part of the volcano near Hualca Hualca (4 km N). Thermal activity was frequently reported in the crater at the active lava dome (figure 120).

Explosive activity continued during January and February 2023. The average number of explosions were reported each week during January (51, 50, 60, and 59) and February (43, 54, 51, and 50). Gas-and-ash plumes rose 1.6-2.9 km above the summit and drifted NW, SW, and W during January and rose 1.4-2.8 above the summit and drifted W, SW, E, SE, N, S, NW, and NE during February. IGP also detected 1,881 volcanic earthquakes during January and 1,661 during February. VT-type earthquakes were also reported. Minor inflation persisted near Hualca Hualca. Satellite imagery showed continuous thermal activity in the crater at the lava dome (figure 120).

During March, the average number of explosions each week was 46, 48, 31, 35, and 22 and during April, it was 29, 41, 31, and 27. Accompanying gas-and-ash plumes rose 1.7-2.6 km above the summit crater and drifted W, SW, NW, S, and SE during March. According to a Buenos Aires Volcano Ash Advisory Center (VAAC) notice, on 22 March at 1800 through 23 March an ash plume rose to 7 km altitude and drifted NW. By 0430 an ash plume rose to 7.6 km altitude and drifted W. On 24 and 26 March continuous ash emissions rose to 7.3 km altitude and drifted SW and on 28 March ash emissions rose to 7.6 km altitude. During April, gas-and-ash plumes rose 1.6-2.5 km above the summit and drifted W, SW, S, NW, NE, and E. Frequent volcanic earthquakes were recorded, with 1,828 in March and 1,077 in April, in addition to VT-type events. Thermal activity continued to be reported in the summit crater at the lava dome (figure 120).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Centro Vulcanológico Nacional (CENVUL), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.igp.gob.pe/servicios/centro-vulcanologico-nacional/inicio); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Sheveluch (Russia) — May 2023 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Significant explosions destroyed part of the lava-dome complex during April 2023

Sheveluch (also spelled Shiveluch) in Kamchatka, has had at least 60 large eruptions during the last 10,000 years. The summit is truncated by a broad 9-km-wide caldera that is breached to the S, and many lava domes occur on the outer flanks. The lava dome complex was constructed within the large open caldera. Frequent collapses of the dome complex have produced debris avalanches; the resulting deposits cover much of the caldera floor. A major south-flank collapse during a 1964 Plinian explosion produced a scarp in which a “Young Sheveluch” dome began to form in 1980. Repeated episodes of dome formation and destruction since then have produced major and minor ash plumes, pyroclastic flows, block-and-ash flows, and “whaleback domes” of spine-like extrusions in 1993 and 2020 (BGVN 45:11). The current eruption period began in August 1999 and has more recently consisted of lava dome growth, explosions, ash plumes, and avalanches (BGVN 48:01). This report covers a significant explosive eruption during early-to-mid-April 2023 that generated a 20 km altitude ash plume, produced a strong sulfur dioxide plume, and destroyed part of the lava-dome complex; activity described during January through April 2023 use information primarily from the Kamchatka Volcanic Eruptions Response Team (KVERT) and various satellite data.

Satellite data. Activity during the majority of this reporting period was characterized by continued lava dome growth, strong fumarole activity, explosions, and hot avalanches. According to the MODVOLC Thermal Alerts System, 140 hotspots were detected through the reporting period, with 33 recorded in January 2023, 29 in February, 44 in March, and 34 in April. Frequent strong thermal activity was recorded during January 2023 through April, according to the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph and resulted from the continuously growing lava dome (figure 94). A slightly stronger pulse in thermal activity was detected in early-to-mid-April, which represented the significant eruption that destroyed part of the lava-dome complex. Thermal anomalies were also visible in infrared satellite imagery at the summit crater (figure 95).

Figure (see Caption) Figure 94. Strong and frequent thermal activity was detected at Sheveluch during January through April 2023, according to this MIROVA graph (Log Radiative Power). These thermal anomalies represented the continuously growing lava dome and frequent hot avalanches that affected the flanks. During early-to-mid-April a slightly stronger pulse represented the notable explosive eruption. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Infrared (bands B12, B11, B4) satellite imagery showed persistent thermal anomalies at the lava dome of Sheveluch on 14 January 2023 (top left), 26 February 2023 (top right), and 15 March 2023 (bottom left). The true color image on 12 April 2023 (bottom right) showed a strong ash plume that drifted SW; this activity was a result of the strong explosive eruption during 11-12 April 2023. Courtesy of Copernicus Browser.

During January 2023 KVERT reported continued growth of the lava dome, accompanied by strong fumarolic activity, incandescence from the lava dome, explosions, ash plumes, and avalanches. Satellite data showed a daily thermal anomaly over the volcano. Video data showed ash plumes associated with collapses at the dome that generated avalanches that in turn produced ash plumes rising to 3.5 km altitude and drifting 40 km W on 4 January and rising to 7-7.5 km altitude and drifting 15 km SW on 5 January. A gas-and-steam plume containing some ash that was associated with avalanches rose to 5-6 km altitude and extended 52-92 km W on 7 January. Explosions that same day produced ash plumes that rose to 7-7.5 km altitude and drifted 10 km W. According to a Volcano Observatory Notice for Aviation (VONA) issued at 1344 on 19 January, explosions produced an ash cloud that was 15 x 25 km in size and rose to 9.6-10 km altitude, drifting 21-25 km W; as a result, the Aviation Color Code (ACC) was raised to Red (the highest level on a four-color scale). Another VONA issued at 1635 reported that no more ash plumes were observed, and the ACC was lowered to Orange (the second highest level on a four-color scale). On 22 January an ash plume from collapses and avalanches rose to 5 km altitude and drifted 25 km NE and SW; ash plumes associated with collapses extended 70 km NE on 27 and 31 January.

Lava dome growth, fumarolic activity, dome incandescence, and occasional explosions and avalanches continued during February and March. A daily thermal anomaly was visible in satellite data. Explosions on 1 February generated ash plumes that rose to 6.3-6.5 km altitude and extended 15 km NE. Video data showed an ash cloud from avalanches rising to 5.5 km altitude and drifting 5 km SE on 2 February. Satellite data showed gas-and-steam plumes containing some ash rose to 5-5.5 km altitude and drifted 68-110 km ENE and NE on 6 February, to 4.5-5 km altitude and drifted 35 km WNW on 22 February, and to 3.7-4 km altitude and drifted 47 km NE on 28 February. Scientists from the Kamchatka Volcanological Station (KVS) went on a field excursion on 25 February to document the growing lava dome, and although it was cloudy most of the day, nighttime incandescence was visible. Satellite data showed an ash plume extending up to 118 km E during 4-5 March. Video data from 1150 showed an ash cloud from avalanches rose to 3.7-5.5 km altitude and drifted 5-10 km ENE and E on 5 March. On 11 March an ash plume drifted 62 km E. On 27 March ash plumes rose to 3.5 km altitude and drifted 100 km E. Avalanches and constant incandescence at the lava dome was focused on the E and NE slopes on 28 March. A gas-and-steam plume containing some ash rose to 3.5 km altitude and moved 40 km E on 29 March. Ash plumes on 30 March rose to 3.5-3.7 km altitude and drifted 70 km NE.

Similar activity continued during April, with lava dome growth, strong fumarolic activity, incandescence in the dome, occasional explosions, and avalanches. A thermal anomaly persisted throughout the month. During 1-4 April weak ash plumes rose to 2.5-3 km altitude and extended 13-65 km SE and E.

Activity during 11 April 2023. The Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS) reported a significant increase in seismicity around 0054 on 11 April, as reported by strong explosions detected on 11 April beginning at 0110 that sent ash plumes up to 7-10 km altitude and extended 100-435 km W, WNW, NNW, WSW, and SW. According to a Tokyo VAAC report the ash plume rose to 15.8 km altitude. By 0158 the plume extended over a 75 x 100 km area. According to an IVS FEB RAS report, the eruptive column was not vertical: the initial plume at 0120 on 11 April deviated to the NNE, at 0000 on 12 April, it drifted NW, and by 1900 it drifted SW. KVS reported that significant pulses of activity occurred at around 0200, 0320, and then a stronger phase around 0600. Levin Dmitry took a video from near Békés (3 km away) at around 0600 showing a rising plume; he also reported that a pyroclastic flow traveled across the road behind him as he left the area. According to IVS FEB RAS, the pyroclastic flow traveled several kilometers SSE, stopping a few hundred meters from a bridge on the road between Klyuchi and Petropavlovsk-Kamchatsky.

Ashfall was first observed in Klyuchi (45 km SW) at 0630, and a large, black ash plume blocked light by 0700. At 0729 KVERT issued a Volcano Observatory Notice for Aviation (VONA) raising the Aviation Color Code to Red (the highest level on a four-color scale). It also stated that a large ash plume had risen to 10 km altitude and drifted 100 km W. Near-constant lightning strikes were reported in the plume and sounds like thunderclaps were heard until about 1000. According to IVS FEB RAS the cloud was 200 km long and 76 km wide by 0830, and was spreading W at altitudes of 6-12 km. In the Klyuchi Village, the layer of both ash and snow reached 8.5 cm (figure 96); ashfall was also reported in Kozyrevsk (112 km SW) at 0930, Mayskoye, Anavgay, Atlasovo, Lazo, and Esso. Residents in Klyuchi reported continued darkness and ashfall at 1100. In some areas, ashfall was 6 cm deep and some residents reported dirty water coming from their plumbing. According to IVS FEB RAS, an ash cloud at 1150 rose to 5-20 km altitude and was 400 km long and 250 km wide, extending W. A VONA issued at 1155 reported that ash had risen to 10 km and drifted 340 km NNW and 240 km WSW. According to Simon Carn (Michigan Technological University), about 0.2 Tg of sulfur dioxide in the plume was measured in a satellite image from the TROPOMI instrument on the Sentinel-5P satellite acquired at 1343 that covered an area of about 189,000 km2 (figure 97). Satellite data at 1748 showed an ash plume that rose to 8 km altitude and drifted 430 km WSW and S, according to a VONA.

Figure (see Caption) Figure 96. Photo of ash deposited in Klyuchi village on 11 April 2023 by the eruption of Sheveluch. About 8.5 cm of ash was measured. Courtesy of Kam 24 News Agency.
Figure (see Caption) Figure 97. A strong sulfur dioxide plume from the 11 April 2023 eruption at Sheveluch was visible in satellite data from the TROPOMI instrument on the Sentinel-5P satellite. Courtesy of Simon Carn, MTU.

Activity during 12-15 April 2023. On 12 April at 0730 satellite images showed ash plumes rose to 7-8 km altitude and extended 600 km SW, 1,050 km ESE, and 1,300-3,000 km E. By 1710 that day, the explosions weakened. According to news sources, the ash-and-gas plumes drifted E toward the Aleutian Islands and reached the Gulf of Alaska by 13 April, causing flight disruptions. More than 100 flights involving Alaska airspace were cancelled due to the plume. Satellite data showed ash plumes rising to 4-5.5 km altitude and drifted 400-415 km SE and ESE on 13 April. KVS volcanologists observed the pyroclastic flow deposits and noted that steam rose from downed, smoldering trees. They also noted that the deposits were thin with very few large fragments, which differed from previous flows. The ash clouds traveled across the Pacific Ocean. Flight cancellations were also reported in NW Canada (British Columbia) during 13-14 April. During 14-15 April ash plumes rose to 6 km altitude and drifted 700 km NW.

Alaskan flight schedules were mostly back to normal by 15 April, with only minor delays and far less cancellations; a few cancellations continued to be reported in Canada. Clear weather on 15 April showed that most of the previous lava-dome complex was gone and a new crater roughly 1 km in diameter was observed (figure 98); gas-and-steam emissions were rising from this crater. Evidence suggested that there had been a directed blast to the SE, and pyroclastic flows traveled more than 20 km. An ash plume rose to 4.5-5.2 km altitude and drifted 93-870 km NW on 15 April.

Figure (see Caption) Figure 98. A comparison of the crater at Sheveluch showing the previous lava dome (top) taken on 29 November 2022 and a large crater in place of the dome (bottom) due to strong explosions during 10-13 April 2023, accompanied by gas-and-ash plumes. The bottom photo was taken on 15 April 2023. Photos has been color corrected. Both photos are courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Activity during 16-30 April 2023. Resuspended ash was lifted by the wind from the slopes and rose to 4 km altitude and drifted 224 km NW on 17 April. KVERT reported a plume of resuspended ash from the activity during 10-13 April on 19 April that rose to 3.5-4 km altitude and drifted 146-204 km WNW. During 21-22 April a plume stretched over the Scandinavian Peninsula. A gas-and-steam plume containing some ash rose to 3-3.5 km altitude and drifted 60 km SE on 30 April. A possible new lava dome was visible on the W slope of the volcano on 29-30 April (figure 99); satellite data showed two thermal anomalies, a bright one over the existing lava dome and a weaker one over the possible new one.

Figure (see Caption) Figure 99. Photo showing new lava dome growth at Sheveluch after a previous explosion destroyed much of the complex, accompanied by a white gas-and-steam plume. Photo has been color corrected. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

References. Girina, O., Loupian, E., Horvath, A., Melnikov, D., Manevich, A., Nuzhdaev, A., Bril, A., Ozerov, A., Kramareva, L., Sorokin, A., 2023, Analysis of the development of the paroxysmal eruption of Sheveluch volcano on April 10–13, 2023, based on data from various satellite systems, ??????????? ???????? ??? ?? ???????, 20(2).

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1,300 km3 andesitic volcano is one of Kamchatka's largest and most active volcanic structures, with at least 60 large eruptions during the Holocene. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes occur on its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large open caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Kam 24 News Agency, 683032, Kamchatka Territory, Petropavlovsk-Kamchatsky, Vysotnaya St., 2A (URL: https://kam24.ru/news/main/20230411/96657.html#.Cj5Jrky6.dpuf); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn).


Bezymianny (Russia) — May 2023 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Explosions, ash plumes, lava flows, and avalanches during November 2022-April 2023

Bezymianny is located on the Kamchatka Peninsula of Russia as part of the Klyuchevskoy volcano group. Historic eruptions began in 1955 and have been characterized by dome growth, explosions, pyroclastic flows, ash plumes, and ashfall. During the 1955-56 eruption a large open crater was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater. The current eruption period began in December 2016 and more recent activity has consisted of strong explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers activity during November 2022 through April 2023, based on weekly and daily reports from the Kamchatka Volcano Eruptions Response Team (KVERT) and satellite data.

Activity during November and March 2023 was relatively low and mostly consisted of gas-and-steam emissions, occasional small collapses that generated avalanches along the lava dome slopes, and a persistent thermal anomaly over the volcano that was observed in satellite data on clear weather days. According to the Tokyo VAAC and KVERT, an explosion produced an ash plume that rose to 6 km altitude and drifted 25 km NE at 1825 on 29 March.

Gas-and-steam emissions, collapses generating avalanches, and thermal activity continued during April. According to two Volcano Observatory Notice for Aviation (VONA) issued on 2 and 6 April (local time) ash plumes rose to 3 km and 3.5-3.8 km altitude and drifted 35 km E and 140 km E, respectively. Satellite data from KVERT showed weak ash plumes extending up to 550 km E on 2 and 5-6 April.

A VONA issued at 0843 on 7 April described an ash plume that rose to 4.5-5 km altitude and drifted 250 km ESE. Later that day at 1326 satellite data showed an ash plume that rose to 5.5-6 km altitude and drifted 150 km ESE. A satellite image from 1600 showed an ash plume extending as far as 230 km ESE; KVERT noted that ash emissions were intensifying, likely due to avalanches from the growing lava dome. The Aviation Color Code (ACC) was raised to Red (the highest level on a four-color scale). At 1520 satellite data showed an ash plume rising to 5-5.5 km altitude and drifting 230 km ESE. That same day, Kamchatka Volcanological Station (KVS) volcanologists traveled to Ambon to collect ash; they reported that a notable eruption began at 1730, and within 20 minutes a large ash plume rose to 10 km altitude and drifted NW. KVERT reported that the strong explosive phase began at 1738. Video and satellite data taken at 1738 showed an ash plume that rose to 10-12 km altitude and drifted up to 2,800 km SE and E. Explosions were clearly audible 20 km away for 90 minutes, according to KVS. Significant amounts of ash fell at the Apakhonchich station, which turned the snow gray; ash continued to fall until the morning of 8 April. In a VONA issued at 0906 on 8 April, KVERT stated that the explosive eruption had ended; ash plumes had drifted 2,000 km E. The ACC was lowered to Orange (the third highest level on a four-color scale). The KVS team saw a lava flow on the active dome once the conditions were clear that same day (figure 53). On 20 April lava dome extrusion was reported; lava flows were noted on the flanks of the dome, and according to KVERT satellite data, a thermal anomaly was observed in the area. The ACC was lowered to Yellow (the second lowest on a four-color scale).

Figure (see Caption) Figure 53. Photo showing an active lava flow descending the SE flank of Bezymianny from the lava dome on 8 April 2023. Courtesy of Yu. Demyanchuk, IVS FEB RAS, KVERT.

Satellite data showed an increase in thermal activity beginning in early April 2023. A total of 31 thermal hotspots were detected by the MODVOLC thermal algorithm on 4, 5, 7, and 12 April 2023. The elevated thermal activity resulted from an increase in explosive activity and the start of an active lava flow. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system based on the analysis of MODIS data also showed a pulse in thermal activity during the same time (figure 54). Infrared satellite imagery captured a continuous thermal anomaly at the summit crater, often accompanied by white gas-and-steam emissions (figure 55). On 4 April 2023 an active lava flow was observed descending the SE flank.

Figure (see Caption) Figure 54. Intermittent and low-power thermal anomalies were detected at Bezymianny during December 2022 through mid-March 2023, according to this MIROVA graph (Log Radiative Power). In early April 2023, an increase in explosive activity and eruption of a lava flow resulted in a marked increase in thermal activity. Courtesy of MIROVA.
Figure (see Caption) Figure 55. Infrared satellite images of Bezymianny showed a persistent thermal anomaly over the lava dome on 18 November 2022 (top left), 28 December 2022 (top right), 15 March 2023 (bottom left), and 4 April 2023 (bottom right), often accompanied by white gas-and-steam plumes. On 4 April a lava flow was active and descending the SE flank. Images using infrared (bands 12, 11, 8a). Courtesy of Copernicus Browser.

Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Chikurachki (Russia) — May 2023 Citation iconCite this Report

Chikurachki

Russia

50.324°N, 155.461°E; summit elev. 1781 m

All times are local (unless otherwise noted)


New explosive eruption during late January-early February 2023

Chikurachki, located on Paramushir Island in the northern Kuriles, has had Plinian eruptions during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. Reported eruptions date back to 1690, with the most recent eruption period occurring during January through October 2022, characterized by occasional explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers a new eruptive period during January through February 2023 that consisted of ash explosions and ash plumes, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

According to reports from KVERT, an explosive eruption began around 0630 on 29 January. Explosions generated ash plumes that rose to 3-3.5 km altitude and drifted 6-75 km SE and E, based on satellite data. As a result, the Aviation Color Code (ACC) was raised to Orange (the second highest level on a four-color scale). At 1406 and 1720 ash plumes were identified in satellite images that rose to 4.3 km altitude and extended 70 km E. By 2320 the ash plume had dissipated. A thermal anomaly was visible at the volcano on 31 January, according to a satellite image, and an ash plume was observed drifting 66 km NE.

Occasional explosions and ash plumes continued during early February. At 0850 on 1 February an ash plume rose to 3.5 km altitude and drifted 35 km NE. Satellite data showed an ash plume that rose to 3.2-3.5 km altitude and drifted 50 km NE at 1222 later that day (figure 22). A thermal anomaly was detected over the volcano during 5-6 February and ash plumes drifted as far as 125 km SE, E, and NE. Explosive events were reported at 0330 on 6 February that produced ash plumes rising to 4-4.5 km altitude and drifting 72-90 km N, NE, and ENE. KVERT noted that the last gas-and steam plume that contained some ash was observed on 8 February and drifted 55 km NE before the explosive eruption ended. The ACC was lowered to Yellow and then Green (the lowest level on a four-color scale) on 18 February.

Figure (see Caption) Figure 22. Satellite image showing a true color view of a strong ash plume rising above Chikurachki on 1 February 2023. The plume drifted NE and ash deposits (dark brown-to-gray) are visible on the NE flank due to explosive activity. Courtesy of Copernicus Browser.

Geologic Background. Chikurachki, the highest volcano on Paramushir Island in the northern Kuriles, is a relatively small cone constructed on a high Pleistocene edifice. Oxidized basaltic-to-andesitic scoria deposits covering the upper part of the young cone give it a distinctive red color. Frequent basaltic Plinian eruptions have occurred during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. The Tatarinov group of six volcanic centers is located immediately to the south, and the Lomonosov cinder cone group, the source of an early Holocene lava flow that reached the saddle between it and Fuss Peak to the west, lies at the southern end of the N-S-trending Chikurachki-Tatarinov complex. In contrast to the frequently active Chikurachki, the Tatarinov centers are extensively modified by erosion and have a more complex structure. Tephrochronology gives evidence of an eruption around 1690 CE from Tatarinov, although its southern cone contains a sulfur-encrusted crater with fumaroles that were active along the margin of a crater lake until 1959.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Marapi (Indonesia) — May 2023 Citation iconCite this Report

Marapi

Indonesia

0.38°S, 100.474°E; summit elev. 2885 m

All times are local (unless otherwise noted)


New explosive eruption with ash emissions during January-March 2023

Marapi in Sumatra, Indonesia, is a massive stratovolcano that rises 2 km above the Bukittinggi Plain in the Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera and trending ENE-WSW, with volcanism migrating to the west. Since the end of the 18th century, more than 50 eruptions, typically characterized by small-to-moderate explosive activity, have been recorded. The previous eruption consisted of two explosions during April-May 2018, which caused ashfall to the SE (BGVN 43:06). This report covers a new eruption during January-March 2023, which included explosive events and ash emissions, as reported by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM) and MAGMA Indonesia.

According to a press release issued by PVMBG and MAGMA Indonesia on 26 December, primary volcanic activity at Marapi consisted of white gas-and-steam puffs that rose 500-100 m above the summit during April-December 2022. On 25 December 2022 there was an increase in the number of deep volcanic earthquakes and summit inflation. White gas-and-steam emissions rose 80-158 m above the summit on 5 January. An explosive eruption began at 0611 on 7 January 2023, which generated white gas-and-steam emissions and gray ash emissions mixed with ejecta that rose 300 m above the summit and drifted SE (figure 10). According to ground observations, white-to-gray ash clouds during 0944-1034 rose 200-250 m above the summit and drifted SE and around 1451 emissions rose 200 m above the summit. Seismic signals indicated that eruptive events also occurred at 1135, 1144, 1230, 1715, and 1821, but no ash emissions were visually observed. On 8 January white-and-gray emissions rose 150-250 m above the summit that drifted E and SE. Seismic signals indicated eruptive events at 0447, 1038, and 1145, but again no ash emissions were visually observed on 8 January. White-to-gray ash plumes continued to be observed on clear weather days during 9-15, 18-21, 25, and 29-30 January, rising 100-1,000 m above the summit and drifted generally NE, SE, N, and E, based on ground observations (figure 11).

Figure (see Caption) Figure 10. Webcam image of the start of the explosive eruption at Marapi at 0651 on 7 January 2023. White gas-and-steam emissions are visible to the left and gray ash emissions are visible on the right, drifting SE. Distinct ejecta was also visible mixed within the ash cloud. Courtesy of PVMBG and MAGMA Indonesia.
Figure (see Caption) Figure 11. Webcam image showing thick, gray ash emissions rising 500 m above the summit of Marapi and drifting N and NE at 0953 on 11 January 2023. Courtesy of PVMBG and MAGMA Indonesia.

White-and-gray and brown emissions persisted in February, rising 50-500 m above the summit and drifting E, S, SW, N, NE, and W, though weather sometimes prevented clear views of the summit. An eruption at 1827 on 10 February produced a black ash plume that rose 400 m above the summit and drifted NE and E (figure 12). Similar activity was reported on clear weather days, with white gas-and-steam emissions rising 50 m above the summit on 9, 11-12, 20, and 27 March and drifted E, SE, SW, NE, E, and N. On 17 March white-and-gray emissions rose 400 m above the summit and drifted N and E.

Figure (see Caption) Figure 12. Webcam image showing an eruptive event at 1829 on 10 February 2023 with an ash plume rising 400 m above the summit and drifting NE and E. Courtesy of PVMBG and MAGMA Indonesia.

Geologic Background. Gunung Marapi, not to be confused with the better-known Merapi volcano on Java, is Sumatra's most active volcano. This massive complex stratovolcano rises 2,000 m above the Bukittinggi Plain in the Padang Highlands. A broad summit contains multiple partially overlapping summit craters constructed within the small 1.4-km-wide Bancah caldera. The summit craters are located along an ENE-WSW line, with volcanism migrating to the west. More than 50 eruptions, typically consisting of small-to-moderate explosive activity, have been recorded since the end of the 18th century; no lava flows outside the summit craters have been reported in historical time.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1).


Kikai (Japan) — May 2023 Citation iconCite this Report

Kikai

Japan

30.793°N, 130.305°E; summit elev. 704 m

All times are local (unless otherwise noted)


Intermittent white gas-and-steam plumes, discolored water, and seismicity during May 2021-April 2023

Kikai, located just S of the Ryukyu islands of Japan, contains a 19-km-wide mostly submarine caldera. The island of Satsuma Iwo Jima (also known as Satsuma-Iwo Jima and Tokara Iojima) is located at the NW caldera rim, as well as the island’s highest peak, Iodake. Its previous eruption period occurred on 6 October 2020 and was characterized by an explosion and thermal anomalies in the crater (BGVN 45:11). More recent activity has consisted of intermittent thermal activity and gas-and-steam plumes (BGVN 46:06). This report covers similar low-level activity including white gas-and-steam plumes, nighttime incandescence, seismicity, and discolored water during May 2021 through April 2023, using information from the Japan Meteorological Agency (JMA) and various satellite data. During this time, the Alert Level remained at a 2 (on a 5-level scale), according to JMA.

Activity was relatively low throughout the reporting period and has consisted of intermittent white gas-and-steam emissions that rose 200-1,400 m above the Iodake crater and nighttime incandescence was observed at the Iodake crater using a high-sensitivity surveillance camera. Each month, frequent volcanic earthquakes were detected, and sulfur dioxide masses were measured by the University of Tokyo Graduate School of Science, Kyoto University Disaster Prevention Research Institute, Mishima Village, and JMA (table 6).

Table 6. Summary of gas-and-steam plume heights, number of volcanic earthquakes detected, and amount of sulfur dioxide emissions in tons per day (t/d). Courtesy of JMA monthly reports.

Month Max plume height (m) Volcanic earthquakes Sulfur dioxide emissions (t/d)
May 2021 400 162 900-1,300
Jun 2021 800 117 500
Jul 2021 1,400 324 800-1,500
Aug 2021 1,000 235 700-1,000
Sep 2021 800 194 500-1,100
Oct 2021 800 223 600-800
Nov 2021 900 200 400-900
Dec 2021 1,000 161 500-1,800
Jan 2022 1,000 164 600-1,100
Feb 2022 1,000 146 500-1,600
Mar 2022 1,200 171 500-1,200
Apr 2022 1,000 144 600-1,000
May 2022 1,200 126 300-500
Jun 2022 1,000 154 400
Jul 2022 1,300 153 600-1,100
Aug 2022 1,100 109 600-1,500
Sep 2022 1,000 170 900
Oct 2022 800 249 700-1,200
Nov 2022 800 198 800-1,200
Dec 2022 700 116 600-1,500
Jan 2023 800 146 500-1,400
Feb 2023 800 135 600-800
Mar 2023 1,100 94 500-600
Apr 2023 800 82 500-700

Sentinel-2 satellite images show weak thermal anomalies at the Iodake crater on clear weather days, accompanied by white gas-and-steam emissions and occasional discolored water (figure 24). On 17 January 2022 JMA conducted an aerial overflight in cooperation with the Japan Maritime Self-Defense Force’s 1st Air Group, which confirmed a white gas-and-steam plume rising from the Iodake crater (figure 25). They also observed plumes from fumaroles rising from around the crater and on the E, SW, and N slopes. In addition, discolored water was reported near the coast around Iodake, which JMA stated was likely related to volcanic activity (figure 25). Similarly, an overflight taken on 11 January 2023 showed white gas-and-steam emissions rising from the Iodake crater, as well as discolored water that spread E from the coast around the island. On 14 February 2023 white fumaroles and discolored water were also captured during an overflight (figure 26).

Figure (see Caption) Figure 24. Sentinel-2 satellite images of Satsuma Iwo Jima (Kikai) showing sets of visual (true color) and infrared (bands 12, 11, 8a) views on 7 December 2021 (top), 23 October 2022 (middle), and 11 January 2023 (bottom). Courtesy of Copernicus Browser.
Figure (see Caption) Figure 25. Aerial image of Satsuma Iwo Jima (Kikai) showing a white gas-and-steam plume rising above the Iodake crater at 1119 on 17 January 2022. There was also green-yellow discolored water surrounding the coast of Mt. Iodake. Courtesy of JMSDF via JMA.
Figure (see Caption) Figure 26. Aerial image of Satsuma Iwo Jima (Kikai) showing white gas-and-steam plumes rising above the Iodake crater on 14 February 2023. Green-yellow discolored water surrounded Mt. Iodake. Courtesy of JCG.

Geologic Background. Multiple eruption centers have exhibited recent activity at Kikai, a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world's largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake (or Iwo-dake) lava dome and Inamuradake scoria cone, as well as submarine lava domes. Recorded eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Satsuma-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Satsuma-Iojima.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Japan Coast Guard (JCG) Volcano Database, Hydrographic and Oceanographic Department, 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8932, Japan (URL: https://www1.kaiho.mlit.go.jp/kaiikiDB/kaiyo30-2.htm); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Lewotolok (Indonesia) — May 2023 Citation iconCite this Report

Lewotolok

Indonesia

8.274°S, 123.508°E; summit elev. 1431 m

All times are local (unless otherwise noted)


Strombolian eruption continues through April 2023 with intermittent ash plumes

The current eruption at Lewotolok, in Indonesian’s Lesser Sunda Islands, began in late November 2020 and has included Strombolian explosions, occasional ash plumes, incandescent ejecta, intermittent thermal anomalies, and persistent white and white-and-gray emissions (BGVN 47:10). Similar activity continued during October 2022-April 2023, as described in this report based on information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and satellite data.

During most days in October 2022 white and white-gray emissions rose as high as 200-600 m above the summit. Webcam images often showed incandescence above the crater rim. At 0351 on 14 October, an explosion produced a dense ash plume that rose about 1.2 km above the summit and drifted SW (figure 43). After this event, activity subsided and remained low through the rest of the year, but with almost daily white emissions.

Figure (see Caption) Figure 43. Webcam image of Lewotolok on 14 October 2022 showing a dense ash plume and incandescence above the crater. Courtesy of MAGMA Indonesia.

After more than two months of relative quiet, PVMBG reported that explosions at 0747 on 14 January 2023 and at 2055 on 16 January produced white-and-gray ash plumes that rose around 400 m above the summit and drifted E and SE (figure 44). During the latter half of January through April, almost daily white or white-and-gray emissions were observed rising 25-800 m above the summit, and nighttime webcam images often showed incandescent material being ejected above the summit crater. Strombolian activity was visible in webcam images at 2140 on 11 February, 0210 on 18 February, and during 22-28 March. Frequent hotspots were recorded by the MIROVA detection system starting in approximately the second week of March 2023 that progressively increased into April (figure 45).

Figure (see Caption) Figure 44. Webcam image of an explosion at Lewotolok on 14 January 2023 ejecting a small ash plume along with white emissions. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 45. MIROVA Log Radiative Power graph of thermal anomalies detected by the VIIRS satellite instrument at Lewotolok’s summit crater for the year beginning 24 July 2022. Clusters of mostly low-power hotspots occurred during August-October 2022, followed by a gap of more than four months before persistent and progressively stronger anomalies began in early March 2023. Courtesy of MIROVA.

Explosions that produced dense ash plumes as high as 750 m above the summit were described in Volcano Observatory Notices for Aviation (VONA) at 0517, 1623, and 2016 on 22 March, at 1744 on 24 March, at 0103 on 26 March, at 0845 and 1604 on 27 March (figure 46), and at 0538 on 28 March. According to the Darwin VAAC, on 6 April another ash plume rose to 1.8 km altitude (about 370 m above the summit) and drifted N.

Figure (see Caption) Figure 46. Webcam image of Lewotolok at 0847 on 27 March 2023 showing a dense ash plume from an explosion along with clouds and white emissions. Courtesy of MAGMA-Indonesia.

Sentinel-2 images over the previous year recorded thermal anomalies as well as the development of a lava flow that descended the NE flank beginning in June 2022 (figure 47). The volcano was often obscured by weather clouds, which also often hampered ground observations. Ash emissions were reported in March 2022 (BGVN 47:10), and clear imagery from 4 March 2022 showed recent lava flows confined to the crater, two thermal anomaly spots in the eastern part of the crater, and mainly white emissions from the SE. Thermal anomalies became stronger and more frequent in mid-May 2022, followed by strong Strombolian activity through June and July (BGVN 47:10); Sentinel-2 images on 2 June 2022 showed active lava flows within the crater and overflowing onto the NE flank. Clear images from 23 April 2023 (figure 47) show the extent of the cooled NE-flank lava flow, more extensive intra-crater flows, and two hotspots in slightly different locations compared to the previous March.

Figure (see Caption) Figure 47. Sentinel-2 satellite images of Lewotolok showing sets of visual (true color) and infrared (bands 12, 11, 8a) views on 4 March 2022, 2 June 2022, and 23 April 2023. Courtesy of Copernicus Browser.

Geologic Background. The Lewotolok (or Lewotolo) stratovolcano occupies the eastern end of an elongated peninsula extending north into the Flores Sea, connected to Lembata (formerly Lomblen) Island by a narrow isthmus. It is symmetrical when viewed from the north and east. A small cone with a 130-m-wide crater constructed at the SE side of a larger crater forms the volcano's high point. Many lava flows have reached the coastline. Eruptions recorded since 1660 have consisted of explosive activity from the summit crater.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Barren Island (India) — April 2023 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Thermal activity during December 2022-March 2023

Barren Island is part of a N-S-trending volcanic arc extending between Sumatra and Burma (Myanmar). The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic flow and surge deposits. Eruptions dating back to 1787, have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast. Previous activity was detected during mid-May 2022, consisting of intermittent thermal activity. This report covers June 2022 through March 2023, which included strong thermal activity beginning in late December 2022, based on various satellite data.

Activity was relatively quiet during June through late December 2022 and mostly consisted of low-power thermal anomalies, based on the MIROVA (Middle InfraRed Observation of Volcanic Activity) graph. During late December, a spike in both power and frequency of thermal anomalies was detected (figure 58). There was another pulse in thermal activity in mid-March, which consisted of more frequent and relatively strong anomalies.

Figure (see Caption) Figure 58. Occasional thermal anomalies were detected during June through late December 2022 at Barren Island, but by late December through early January 2023, there was a marked increase in thermal activity, both in power and frequency, according to this MIROVA graph (Log Radiative Power). After this spike in activity, anomalies occurred at a more frequent rate. In late March, another pulse in activity was detected, although the power was not as strong as that initial spike during December-January. Courtesy of MIROVA.

The Suomi NPP/VIIRS sensor data showed five thermal alerts on 29 December 2022. The number of alerts increased to 19 on 30 December. According to the Darwin VAAC, ash plumes identified in satellite images captured at 2340 on 30 December and at 0050 on 31 December rose to 1.5 km altitude and drifted SW. The ash emissions dissipated by 0940. On 31 December, a large thermal anomaly was detected; based on a Sentinel-2 infrared satellite image, the anomaly was relatively strong and extended to the N (figure 59).

Figure (see Caption) Figure 59. Thermal anomalies of varying intensities were visible in the crater of Barren Island on 31 December 2022 (top left), 15 January 2023 (top right), 24 February 2023 (bottom left), and 31 March 2023 (bottom right), as seen in these Sentinel-2 infrared satellite images. The anomalies on 31 December and 31 March were notably strong and extended to the N and N-S, respectively. Images using “Atmospheric penetration” rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Thermal activity continued during January through March. Sentinel-2 infrared satellite data showed some thermal anomalies of varying intensity on clear weather days on 5, 10, 15, 20, and 30 January 2023, 9, 14, 19, and 24 February 2023, and 21, 26, and 31 March (figure 59). According to Suomi NPP/VIIRS sensor data, a total of 30 thermal anomalies were detected over 18 days on 2-3, 7, 9-14, 16-17, 20, 23, 25, and 28-31 January. The sensor data showed a total of six hotspots detected over six days on 1, 4-5, and 10-12 February. During March, a total of 33 hotspots were visible over 11 days on 20-31 March. Four MODVOLC thermal alerts were issued on 25, 27, and 29 March.

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NASA Worldview (URL: https://worldview.earthdata.nasa.gov/).


Villarrica (Chile) — April 2023 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Nighttime crater incandescence, ash emissions, and seismicity during October 2022-March 2023

Villarrica, located in central Chile, consists of a 2-km-wide caldera that formed about 3,500 years ago, located at the base of the presently active cone. Historical eruptions date back to 1558 and have been characterized by mild-to-moderate explosive activity with occasional lava effusions. The current eruption period began in December 2014 and has recently consisted of ongoing seismicity, gas-and-steam emissions, and thermal activity (BGVN 47:10). This report covers activity during October 2022 through March 2023 and describes Strombolian explosions, ash emissions, and crater incandescence. Information for this report primarily comes from the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN) and satellite data.

Seismicity during October consisted of discrete long-period (LP)-type events, tremor (TR), and volcano-tectonic (VT)-type events. Webcam images showed eruption plumes rising as high as 460 m above the crater rim; plumes deposited tephra on the E, S, and SW flanks within 500 m of the crater on 2, 18, 23, and 31 October. White gas-and-steam emissions rose 80-300 m above the crater accompanied by crater incandescence during 2-3 October. There was a total of 5 VT-type events, 10,625 LP-type events, and 2,232 TR-type events detected throughout the month. Sulfur dioxide data was obtained by the Differential Absorption Optical Spectroscopy Equipment (DOAS) installed 6 km in an ESE direction. The average value of the sulfur dioxide emissions was 535 ± 115 tons per day (t/d); the highest daily maximum was 1,273 t/d on 13 October. These values were within normal levels and were lower compared to September. During the night of 3-4 October Strombolian activity ejected blocks as far as 40 m toward the NW flank. Small, gray-brown ash pulses rose 60 m above the crater accompanied white gas-and-steam emissions that rose 40-300 m high during 4-5 October. In addition, crater incandescence and Strombolian explosions that ejected blocks were reported during 4-5 and 9-11 October. Based on satellite images from 12 October, ballistic ejecta traveled as far as 400 m and the resulting ash was deposited 3.2 km to the E and SE and 900 m to the NW.

Satellite images from 14 October showed an active lava lake that covered an area of 36 square meters in the E part of the crater floor. There was also evidence of a partial collapse (less than 300 square meters) at the inner SSW crater rim. POVI posted an 18 October photo that showed incandescence above the crater rim, noting that crater incandescence was visible during clear weather nights. In addition, webcam images at 1917 showed lava fountaining and Strombolian explosions; tourists also described seeing splashes of lava ejected from a depth of 80 m and hearing loud degassing sounds. Tephra deposits were visible around the crater rim and on the upper flanks on 24 October. On 25 October SERNAGEOMIN reported that both the number and amplitude of LP earthquakes had increased, and continuous tremor also increased; intense crater incandescence was visible in satellite images. On 31 October Strombolian explosions intensified and ejected material onto the upper flanks.

Activity during November consisted of above-baseline seismicity, including intensifying continuous tremor and an increase in the number of LP earthquakes. On 1 November a lava fountain was visible rising above the crater rim. Nighttime crater incandescence was captured in webcam images on clear weather days. Strombolian explosions ejected incandescent material on the NW and SW flanks during 1, 2, and 6-7 November. POVI reported that the width of the lava fountains that rose above the crater rim on 2 November suggested that the vent on the crater floor was roughly 6 m in diameter. Based on reports from observers and analyses of satellite imagery, material that was deposited on the upper flanks, primarily to the NW, consisted of clasts up to 20 cm in diameter. During an overflight on 19 November SERNAGEOMIN scientists observed a cone on the crater floor with an incandescent vent at its center that contained a lava lake. Deposits of ejecta were also visible on the flanks. That same day a 75-minute-long series of volcano-tectonic earthquakes was detected at 1940; a total of 21 events occurred 7.8 km ESE of the crater. Another overflight on 25 November showed the small cone on the crater floor with an incandescent lava lake at the center; the temperature of the lava lake was 1,043 °C, based data gathered during the overflight.

Similar seismicity, crater incandescence, and gas-and-steam emissions continued during December. On 1 December incandescent material was ejected 80-220 m above the crater rim. During an overflight on 6 December, intense gas-and-steam emissions from the lava lake was reported, in addition to tephra deposits on the S and SE flanks as far as 500 m from the crater. During 7-12 December seismicity increased slightly and white, low-altitude gas-and-steam emissions and crater incandescence were occasionally visible. On 24 December at 0845 SERNAGEOMIN reported an increase in Strombolian activity; explosions ejected material that generally rose 100 m above the crater, although one explosion ejected incandescent tephra as far as 400 m from the crater onto the SW flank. According to POVI, 11 explosions ejected incandescent material that affected the upper SW flank between 2225 on 25 December to 0519 on 26 December. POVI recorded 21 Strombolian explosions that ejected incandescent material onto the upper SW flank from 2200 on 28 December to 0540 on 29 December. More than 100 Strombolian explosions ejected material onto the upper W and NW flanks during 30-31 December. On 30 December at 2250 an explosion was detected that generated an eruptive column rising 120 m above the crater and ejecting incandescent material 300 m on the NW flank (figure 120). Explosions detected at 2356 on 31 December ejected material 480 m from the crater rim onto the NW flank and at 0219 material was deposited on the same flank as far as 150 m. Both explosions ejected material as high as 120 m above the crater rim.

Figure (see Caption) Figure 120. Webcam image of a Strombolian explosion at Villarrica on 30 December 2022 (local time) that ejected incandescent material 300 m onto the NW flank, accompanied by emissions and crater incandescence. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 30 de diciembre de 2022, 23:55 Hora local).

During January 2023, Strombolian explosions and lava fountaining continued mainly in the crater, ejecting material 100 m above the crater. Gas-and-steam emissions rose 40-260 m above the crater and drifted in different directions, and LP-type events continued. Emissions during the night of 11 January including some ash rose 80 m above the crater and as far as 250 m NE flank. POVI scientists reported about 70 lava fountaining events from 2130 on 14 January to 0600 on 15 January. At 2211 on 15 January there was an increase in frequency of Strombolian explosions that ejected incandescent material 60-150 m above the crater. Some ashfall was detected around the crater. POVI noted that on 19 January lava was ejected as high as 140 m above the crater rim and onto the W and SW flanks. Explosion noises were heard on 19 and 22 January in areas within a radius of 10 km. During 22-23 January Strombolian explosions ejected incandescent material 60-100 m above the crater that drifted SE. A seismic event at 1204 on 27 January was accompanied by an ash plume that rose 220 m above the crater and drifted E (figure 121); later that same day at 2102 an ash plume rose 180 m above the crater and drifted E.

Figure (see Caption) Figure 121. Webcam image of an ash plume at Villarrica on 27 January rising 220 m above the crater and drifting E. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 27 de enero de 2023, 12:35 Hora local).

Seismicity, primarily characterized by LP-type events, and Strombolian explosions persisted during February and March. POVI reported that three explosions were heard during 1940-1942 on 6 February, and spatter was seen rising 30 m above the crater rim hours later. On 9 February lava fountains were visible rising 50 m above the crater rim. On 17 February Strombolian explosions ejected material 100 m above the crater rim and onto the upper SW flank. Webcam images from 20 February showed two separate fountains of incandescent material, which suggested that a second vent had opened to the E of the first vent. Spatter was ejected as high as 80 m above the crater rim and onto the upper NE flank. A sequence of Strombolian explosions was visible from 2030 on 20 February to 0630 on 21 February. Material was ejected as high as 80 m above the crater rim and onto the upper E flank. LP-type earthquakes recorded 1056 and at 1301 on 27 February were associated with ash plumes that rose 300 m above the crater and drifted NE (figure 122). Crater incandescence above the crater rim was observed in webcam images on 13 March, which indicated Strombolian activity. POVI posted a webcam image from 2227 on 18 March showing Strombolian explosions that ejected material as high as 100 m above the crater rim. Explosions were heard up to 8 km away. On 19 March at 1921 an ash emission rose 340 m above the crater and drifted NE. On 21 and 26 March Strombolian explosions ejected material 100 and 110 m above the crater rim, respectively. On 21 March Strombolian explosions ejected material 100 m above the crater rim. Low-intensity nighttime crater incandescence was detected by surveillance cameras on 24 March.

Figure (see Caption) Figure 122. Photo of an ash plume rising 300 m above the crater of Villarrica and drifting NE on 27 February 2023. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 27 de febrero de 2023, 11:10 Hora local).

Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) detected an increase in thermal activity during mid-November, which corresponds to sustained Strombolian explosions, lava fountaining, and crater incandescence (figure 123). This activity was also consistently captured on clear weather days throughout the reporting period in Sentinel-2 infrared satellite images (figure 124).

Figure (see Caption) Figure 123. Low-power thermal anomalies were detected during August through October 2022 at Villarrica, based on this MIROVA graph (Log Radiative Power). During mid-November, the power and frequency of the anomalies increased and remained at a consistent level through March 2023. Thermal activity consisted of Strombolian explosions, lava fountains, and crater incandescence. Courtesy of MIROVA.
Figure (see Caption) Figure 124. Consistent bright thermal anomalies were visible at the summit crater of Villarrica in Sentinel-2 infrared satellite images throughout the reporting period, as shown here on 19 December 2022 (left) and 9 February 2023 (right). Occasional gas-and-steam emissions also accompanied the thermal activity. Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Geologic Background. The glacier-covered Villarrica stratovolcano, in the northern Lakes District of central Chile, is ~15 km south of the city of Pucon. A 2-km-wide caldera that formed about 3,500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesite cone at the NW margin of a 6-km-wide Pleistocene caldera. More than 30 scoria cones and fissure vents are present on the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Eruptions documented since 1558 CE have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Fuego (Guatemala) — April 2023 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Daily explosions, gas-and-ash plumes, avalanches, and ashfall during December 2022-March 2023

Fuego, one of three large stratovolcanoes overlooking the city of Antigua, Guatemala, has been vigorously erupting since January 2002, with recorded eruptions dating back to 1531 CE. Eruptive activity has included major ashfalls, pyroclastic flows, lava flows, and lahars. Frequent explosions with ash emissions, block avalanches, and lava flows have persisted since 2018. More recently, activity remained relatively consistent with daily explosions, ash plumes, ashfall, avalanches, and lahars (BGVN 48:03). This report covers similar activity during December 2022 through March 2023, based on information from the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH) daily reports, Coordinadora Nacional para la Reducción de Desastres (CONRED) newsletters, and various satellite data.

Daily explosions reported throughout December 2022-March 2023 generated ash plumes to 6 km altitude that drifted as far as 60 km in multiple directions. The explosions also caused rumbling sounds of varying intensities, with shock waves that vibrated the roofs and windows of homes near the volcano. Incandescent pulses of material rose 100-500 m above the crater, which caused block avalanches around the crater and toward the Santa Teresa, Taniluyá (SW), Ceniza (SSW), El Jute, Honda, Las Lajas (SE), Seca (W), and Trinidad (S) drainages. Fine ashfall was also frequently reported in nearby communities (table 27). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent, moderate thermal activity throughout the reporting period; however, there was a brief decline in both power and frequency during late-to-mid-January 2023 (figure 166). A total of 79 MODVOLC thermal alerts were issued: 16 during December 2022, 17 during January 2023, 23 during February, and 23 during March. Some of these thermal evets were also visible in Sentinel-2 infrared satellite imagery at the summit crater, which also showed occasional incandescent block avalanches descending the S, W, and NW flanks, and accompanying ash plumes that drifted W (figure 167).

Table 27. Activity at Fuego during December 2022 through March 2023 included multiple explosions every hour. Ash emissions rose as high as 6 km altitude and drifted generally W and SW as far as 60 km, causing ashfall in many communities around the volcano. Data from daily INSIVUMEH reports and CONRED newsletters.

Month Explosions per hour Ash plume altitude (max) Ash plume distance (km) and direction Drainages affected by block avalanches Communities reporting ashfall
Dec 2022 1-12 6 km WSW, W, SW, NW, S, SE, NE, and E, 10-30 km Santa Teresa, Taniluyá, Ceniza, El Jute, Honda, Las Lajas, Seca, and Trinidad Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Finca Palo Verde, Yepocapa, Yucales, Sangre de Cristo, La Rochela, Ceilán, San Andrés Osuna, and Aldea La Cruz
Jan 2023 1-12 5 km W, SW, NW, S, N, NE, E, and SE, 7-60 km Ceniza, Las Lajas, Santa Teresa, Taniluyá, Trinidad, Seca, Honda, and El Jute Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Palo Verde, Yucales, Yepocapa, Sangre de Cristo, La Rochela, Ceylon, Alotenango, and San Andrés Osuna
Feb 2023 1-12 4.9 km SW, W, NW, and N, 10-30 km Santa Teresa, Taniluyá, Ceniza, Las Lajas, Seca, Trinidad, El Jute, and Honda Panimaché I and II, Morelia, Santa Sofía, Palo Verde, San Pedro Yepocapa, El Porvenir, Sangre de Cristo, La Soledad, Acatenango, El Campamento, and La Asunción
Mar 2023 3-11 5 km W, SW, NW, NE, N, S, SE, and E, 10-30 km Seca, Ceniza, Taniluyá, Las Lajas, Honda, Trinidad, El Jute, and Santa Teresa Yepocapa, Sangre de Cristo, Panimaché I and II, Morelia, Santa Sofía, El Porvenir, La Asunción, Palo Verde, La Rochela, San Andrés Osuna, Ceilán, and Aldeas
Figure (see Caption) Figure 166. Thermal activity at Fuego shown in the MIROVA graph (Log Radiative Power) was at moderate levels during a majority of December 2022 through March 2023, with a brief decline in both power and frequency during late-to-mid-January 2023. Courtesy of MIROVA.
Figure (see Caption) Figure 167. Frequent incandescent block avalanches descended multiple drainages at Fuego during December 2022 through March 2023, as shown in these Sentinel-2 infrared satellite images on 10 December 2022 (top left), 4 January 2023 (top right), 18 February 2023 (bottom left), and 30 March 2023 (bottom right). Gray ash plumes were also occasionally visible rising above the summit crater and drifting W, as seen on 4 January and 30 March. Avalanches affected the NW and S flanks on 10 December, the SW and W flanks on 18 February, and the NW, W, and SW flanks on 30 March. Images use Atmospheric penetration rendering (bands 12, 11, 8a). Courtesy of Sentinel Hub Playground.

Daily explosions ranged between 1 and 12 per hour during December 2022, generating ash plumes that rose to 4.5-6 km altitude and drifted 10-30 km in multiple directions. These explosions created rumbling sounds with a shock wave that vibrated the roofs and windows of homes near the volcano. Frequent white gas-and-steam plumes rose to 4.6 km altitude. Strombolian activity resulted in incandescent pulses that generally rose 100-500 m above the crater, which generated weak-to-moderate avalanches around the crater and toward the Santa Teresa, Taniluyá, Ceniza, El Jute, Honda, Las Lajas, Seca, and Trinidad drainages, where material sometimes reached vegetation. Fine ashfall was recorded in Panimaché I and II (8 km SW), Morelia (9 km SW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), Finca Palo Verde, Yepocapa (8 km NW), Yucales (12 km SW), Sangre de Cristo (8 km WSW), La Rochela, Ceilán, San Andrés Osuna, and Aldea La Cruz. INSIVUMEH reported that on 10 December a lava flow formed in the Ceniza drainage and measured 800 m long; it remained active at least through 12 December and block avalanches were reported at the front of the flow. A pyroclastic flow was reported at 1100 on 10 December, descending the Las Lajas drainage for several kilometers and reaching the base of the volcano. Pyroclastic flows were also observed in the Ceniza drainage for several kilometers, reaching the base of the volcano on 11 December. Ash plumes rose as high as 6 km altitude, according to a special bulletin from INSIVUMEH. On 31 December explosions produced incandescent pulses that rose 300 m above the crater, which covered the upper part of the cone.

Activity during January 2023 consisted of 1-12 daily explosions, which produced ash plumes that rose to 4.2-5 km altitude and drifted 7-60 km in multiple directions (figure 168). Incandescent pulses of material were observed 100-350 m above the crater, which generated avalanches around the crater and down the Ceniza, Las Lajas, Santa Teresa, Taniluyá, Trinidad, Seca, Honda, and El Jute drainages. Sometimes, the avalanches resuspended older fine material 100-500 m above the surface that drifted W and SW. Ashfall was recorded in Panimaché I and II, Morelia, Santa Sofía, El Porvenir, Palo Verde, Yucales, Yepocapa, Sangre de Cristo, La Rochela, Ceylon, Alotenango, and San Andrés Osuna. Intermittent white gas-and-steam plumes rose to 4.5 km altitude and drifted W and NW.

Figure (see Caption) Figure 168. Webcam image showing an ash plume rising above Fuego on 15 January 2023. Courtesy of INSIVUMEH.

There were 1-12 daily explosions recorded through February, which generated ash plumes that rose to 4.2-4.9 km altitude and drifted 10-30 km SW, W, NW, and N. Intermittent white gas-and-steam emissions rose 4.5 km altitude and drifted W and SW. During the nights and early mornings, incandescent pulses were observed 100-400 m above the crater. Weak-to-moderate avalanches were also observed down the Santa Teresa, Taniluyá, Ceniza, Las Lajas, Seca, Trinidad, El Jute, and Honda drainages, sometimes reaching the edge of vegetated areas. Occasional ashfall was reported in Panimaché I and II, Morelia, Santa Sofía, Palo Verde, San Pedro Yepocapa, El Porvenir, Sangre de Cristo, La Soledad, Acatenango, El Campamento, and La Asunción. On 18 February strong winds resuspended previous ash deposits as high as 1 km above the surface that blew 12 km SW and S.

During March, daily explosions ranged from 3-11 per hour, producing ash plumes that rose to 4-5 km altitude and drifted 10-30 km W, SW, NW, NE, N, S, SE, and E. During the night and early morning, crater incandescence (figure 169) and incandescent pulses of material were observed 50-400 m above the crater. Weak-to-moderate avalanches affected the Seca, Ceniza, Taniluyá, Las Lajas, Honda, Trinidad, El Jute, and Santa Teresa drainages, sometimes reaching the edge of vegetation. Frequent ashfall was detected in Yepocapa, Sangre de Cristo, Panimaché I and II, Morelia, Santa Sofía, El Porvenir, La Asunción, Palo Verde, La Rochela, San Andrés Osuna, Ceilán, and Aldeas. Weak ashfall was recorded in San Andrés Osuna, La Rochela, Ceylon during 8-9 March. A lahar was reported in the Ceniza drainage on 15 March, carrying fine, hot volcanic material, tree branches, trunks, and blocks from 30 cm to 1.5 m in diameter. On 18 March lahars were observed in the Las Lajas and El Jute drainages, carrying fine volcanic material, tree branches and trunks, and blocks from 30 cm to 1.5 m in diameter. As a result, there was also damage to the road infrastructure between El Rodeo and El Zapote.

Figure (see Caption) Figure 169. Sentinel-2 infrared satellite image showing Fuego’s crater incandescence accompanied by a gas-and-ash plume that drifted SW on 25 March 2023. Images use bands 12, 11, 5. Courtesy of INSIVUMEH.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Santa Maria (Guatemala) — April 2023 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Active lava flows, explosions, ash plumes, and ashfall during December 2022-March 2023

The Santiaguito lava-dome complex of Guatemala's Santa María volcano has been actively erupting since 1922. The lava dome-complex formed within a large crater on the SW flank of Santa Maria that formed during the 1902 eruption. Ash explosions, pyroclastic flows, and lava flows have emerged from Caliente, the youngest of the four vents in the complex, for more than 40 years. The Caliente vent has an elevation of about 2.5 km, and the summit of Santa Maria is at about 3.7 km elevation. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Recent activity has included frequent explosions, ash plumes, and ashfall (BGVN 48:03) has persisted for this reporting period of December 2022 through March 2023, using information from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and satellite data.

Activity during December 2022 consisted of weak-to-moderate explosions and white-to-gray and blue gas-and-steam emissions that rose 200-800 m above the crater and drifted up to 15 km SW, NW, S, W, SSW, E, SE, and N. Explosions generated ash plumes that drifted as far as 6 km W and SW. Nighttime crater incandescence was often visible above the Caliente dome, accompanied by active lava flows that mainly traveled down the W, SW, and WSW flanks each day during December, also affecting the San Isidro (W) and El Tambor (SW) drainages. Frequent block-and-ash avalanches were detected on the W, WSW, S, and SE flanks, which sometimes resulted in ash plumes that drifted up to 10 km downwind. Ashfall was reported in Finca la Mosqueta and Santa Marta (5-6 km SW) on 2 December and in Las Marías (10 km S), Viejo Palmar, and the Palajunoj area on 9 December. On 11 December the active lava flow in the San Isidro and El Tambor drainages generated some block collapses, which resulted in ash clouds that rose several hundred meters high and drifted toward the Zanjón Seco drainage (SW flank). On 13, 18, 27, and 31 December block collapses from the lava flow generated ash clouds that rose several hundred meters high and drifted toward the San Isidro drainage. The smell of sulfur was reported on 13 December to the SE of the Caliente dome and on 14 December in the Las Marías area. Ashfall was recorded in Lotación Las Marías, Santa Marta, La Florida (6 km S), and El Faro (7 km S) on 22 December, which was accompanied by the smell of sulfur. Explosions on 27 and 31 December resulted in weak ashfall in El Faro, La Florida, Santa Marta, El Viejo (11 km S), El Palmar (12 km SSW), and Lotación Las Marías.

Daily white-to-gray gas-and-steam emissions continued during January 2023, rising 300-900 m above the crater, and drifting 3.5-8 km SW, W, S, SE, and E. Weak-to-moderate explosions persisted throughout the month, generating ash plumes that rose up to 900 m and drifted E, NE, and SW. Crater incandescence in the Caliente dome, on the S flank, and at the front of the lava flow on the W and SW flanks was visible. Lava flows were often observed on the W, SW, and WSW flanks in the San Isidro and El Tambor drainages; on 19 and 23 January the active lava flow was noted in the Zanjón Seco and San Isidro drainages and the longest part of the lava flow was 4.4 km on 15 January. Weak-to-moderate block collapses and block-and-ash avalanches were recorded at the middle and front of the lava flow on the W, SW, and WSW flanks of the Caliente dome, and on the S and SE flanks, which sometimes caused ash to rise as high as 1 km altitude and disperse 3 km to the W and S (figure 135). On 7 January explosions generated ash plumes that rose to 3 km altitude and drifted SW. On 9 January ashfall was recorded over Las Marías and El Viejo Palmar. The active lava flow in the San Isidro and El Tambor drainages generated some block collapses on 11 January, which produced ash plumes that rose several hundred meters high and caused weak ashfall in El Faro, La Florida, Santa Marta, El Viejo Palmar, and Las Marías. Ashfall was recorded at Monte Carlo on 13 January, weak ashfall was reported in El Faro, La Florida, Santa Marta, El Viejo Palmar, and Las Marías on 19 January, and weak ashfall was again reported on 23 January in Monte Claro, El Faro, La Florida, Santa Marta, and El Viejo Palmar.

Figure (see Caption) Figure 135. Image of gas-and-steam emissions rising above the Caliente dome at Santa María on 13 January 2023, accompanied by block avalanches descending the flanks. Photo has been color corrected. Courtesy of INSIVUMEH (BOLETÍN VULCANOLÓGICO ESPECIAL BESAN #001-2023, Guatemala 15 de enero de 2023, 18:30 horas (Hora Local)).

Similar activity persisted during February with frequent explosions that produced white gas-and-steam and ash emissions that rose 200-700 m above the crater and drifted SW, W, SE, E, and NW. During the night and early morning, constant crater incandescence at Caliente dome was observed, in addition to incandescence from the active lava flow on the W, SW, and WSW flanks. Weak-and-moderate avalanches were visible on the S, SW, W, SE, WSW, and E flanks and in the middle and front of the lava flow, sometimes generating ash clouds that rose several hundred meters high. Explosions on 3 February expelled gas-and-ash plumes that rose to 3.2 km altitude and drifted W. On 4 February explosions were accompanied by audible rumbles heard in El Palmar; gas-and-ash plumes rose several hundred meters above the lava dome and incandescent avalanches traveled W, S, and SE on the flanks. That same day, the lava flow was reported in the Zanjón Seco and San Isidro drainages; block collapses generated ash clouds that rose several hundred meters high. Weak ashfall was reported in Monte Claro, El Faro, La Florida, Santa Marta, and El Viejo Palmar. Seismic stations registered weak-to-moderate explosions that produced gray plumes that rose to 3.3 km altitude on 8, 11, and 19 February, which generally drifted W and SW. On 9 February ash plumes that rose 800 m above the crater and extended E. Explosions and block collapses on 12 February caused ashfall in Monte Claro, El Faro, La Florida, Santa Marta, and El Viejo Palmar. During the early morning of 15 February, four explosions were detected that generated gray plumes that rose to 2.9 km altitude. Nine explosions were recorded on 16 February, which produced gray plumes and generated weak avalanches on all flanks. On 20 February weak ashfalls from explosions and block collapses were reported in Monte Claro, El Faro, La Florida, Santa Marta, and El Viejo Palmar. Measurements taken on 23 February showed that the length of the lava flow was 4.3 km long.

During March, degassing 400-800 m above the crater dispersed W, SW, S, and SE, and nighttime crater and lava flow incandescence to the WSW continued. Weak-to-moderate avalanches were reported on the S, W, SE, E, and N flanks and from the middle and front of the lava flow. The lava flow remained active on the SW, W, and WSW flanks and in the Zanjón Seco and San Isidro drainages, occasionally accompanied by block collapses that generated ash clouds up to several hundreds of meters high. Weak-to-moderate explosions persisted throughout the month, producing gas-and-ash emissions rising 500-1,000 m above the crater and drifting SW. On 19 March a gas-and-ash plume rose to 3.2 km altitude and drifted S and SE; the lava flow remained at 4.3 km long on the SW flank, according to INSIVUMEH. Additionally, strong rains in the upper part of the volcanic complex caused a lahar to descend the Cabello de Ángel drainage on the SE flank, consisting of a cement-like mixture of volcanic material and transporting tree branches of varying sizes. Small pyroclastic flows were reported during 22-23 March. Explosions on 23 March generated an ash plume that rose to 3.5 km altitude and drifted W and on 24 March ash plumes rose to 4.3 km altitude and drifted W. On 31 March explosions produced ash plumes that rose to 3.5 km altitude and drifted W, accompanied by constant avalanches on the S, SW, E, and N flanks of the Caliente dome and small pyroclastic flows.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph showed moderate-power thermal anomalies during the reporting period; the intensity gradually increased over January through March, and the frequency remained relatively high (figure 136). A total of 75 MODVOLC thermal alerts were issued on 40 days during December-March. Incandescent avalanches and active lava flows were also occasionally visible over the Caliente dome in Sentinel-2 infrared satellite imagery on clear weather days (figure 137).

Figure (see Caption) Figure 136. Moderate-power thermal anomalies were frequently detected at Santa María during 20 November 2022 through March 2023, as shown on this MIROVA graph (Log Radiative Power). Anomalies gradually increased in intensity beginning in January through March. Courtesy of MIROVA.
Figure (see Caption) Figure 137. Sentinel-2 infrared satellite imagery showing strong thermal activity at the Caliente dome of Santa María and incandescent avalanches and lava flows primarily on the SW and W flanks on 23 December 2022 (top left), 27 January 2023 (top right), 11 February 2023 (bottom left), and 3 March 2023 (bottom right). Clouds often covered the summit. Images rendered using bands 12, 11, 8a. Courtesy of Copernicus Browser.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing E towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Reventador (Ecuador) — April 2023 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Daily explosions, gas-and-ash emissions, crater incandescence, and block avalanches during December 2022-March 2023

Volcán El Reventador, located in Ecuador, includes a 4-km-wide avalanche scarp open to the E. Recorded eruptions date back to the 16th century and have been characterized by explosive events, lava flows, ash plumes, and lahars. Frequent lahars in this region of heavy rainfall have built deposits on the scarp slope. The largest recorded eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents. The current eruption began in July 2008 and more recently has consisted of daily explosions, ash plumes, lava flows, and block avalanches (BGVN 48:02). This report covers similar activity during December 2022 through March 2023 using daily reports from Ecuador's Instituto Geofisico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and satellite data.

During December 2022 through March 2023, IG-EPN reported daily explosions, gas-and-steam and ash plumes rising as high as 1,100 m above the crater, and frequent crater incandescence, often accompanied by incandescent block avalanches and lava flows that traveled down each of the flanks and lava flows that generally affected the NE and E flanks. On average, there were more daily explosions detected during December 2022 compared to January through March 2023, with 57 per day (table 17).

Table 17. Monthly summary of explosions and plume heights recorded at Reventador from December 2022 through March 2023. Data courtesy of IG-EPN (December 2022-March 2023 daily reports).

Month Average number of explosions per day Max plume height above the crater rim (m)
Dec 2022 57 1,000
Jan 2023 43 1,000
Feb 2023 30 1,000
Mar 2023 33 1,100

Activity during December 2022 consisted of daily explosions, ash plumes, crater incandescence, a lava flow, and occasional block avalanches, though cloudy weather often obscured clear views of the summit. There were 0-114 explosions recorded each day, in addition to long-period (LP) events and tremor emissions (TREMI). The Washington VAAC reported ash emissions that rose as high as 1.9 km above the crater during 5-6 and 12-13 December and drifted in different directions. IG-EPN also noted that gas-and-ash emissions rose 400-1,000 m above the summit and drifted S, W, NW, W, N, SW (figure 169). A lava flow was observed on the NE flank during 2-6 December and on the E flank during 9-11 December. There were six volcano-tectonic (VT) events detected during 7-8 December. Block avalanches frequently affected one, or multiple flanks, traveling 400-700 m below the crater. During 11-12 December a lava flow was reported on the NE flank.

Figure (see Caption) Figure 169. Webcam image of an ash plume rising 800 m above the crater of Reventador on 17 December 2022, accompanied by block avalanches on the flanks. Courtesy of IG-EPN (INFORME DIARIO DEL VOLCAN REVENTADOR No. 2022-351, 17 de diciembre de 2022).

Daily explosions and ash plumes continued during January 2023, with 12-96 explosions recorded each day. LP and TREMI-type events and crater incandescence were also frequently recorded on clear weather days, cloudy weather often obscured views of the summit. Gas-and-ash emissions rose 500-1,000 m above the crater and drifted W, NW, SW, N, and S. According to the Washington VAAC, ash emissions rose 688-3,750 m above the crater and drifted in multiple directions. During 31 December 2022 through 1 January 2023 nighttime crater incandescence was accompanied by block avalanches 500 m below the crater on all flanks. The lava flow continued to be observed on the NE flank during 31 December 2022 as well as during 1, 5-6, 7-9, 10-11, 16-17, 18-20, and 23-26 January. Block avalanches traveled 500-700 m from the crater throughout the month, affecting one or multiple flanks (figure 170). An ash plume was reported on 15 January that drifted S. A pyroclastic flow occurred during the morning of 29 January on the N flank.

Figure (see Caption) Figure 170. Thermal camera image showing the incandescent block avalanches (bright yellow) descending multiple flanks of Reventador on 22 January 2023. Courtesy of IG-EPN (INFORME DIARIO DEL VOLCAN REVENTADOR No. 2023-022, 22 de enero de 2023).

During February there were 12-100 daily explosions detected, along with LP and TREMI-type events. Crater incandescence persisted, in addition to block avalanches. Gas-and-ash emissions rose 200-1,000 m above the crater and drifted W, NW, NE, and N (figure 171). The Washington VAAC reported that ash emissions rose 400-2,200 m above the crater and drifted NE, NW, W, SW, SE, and N. During 1-6, 13-17, and 21-26 February incandescent block avalanches descended all the flanks 600-900 m below the crater. An active lava flow continued down the NE flank during 8-10, 14-15, 18-19, and 20-21 February. Block avalanches descended the E flank 900 m below the crater during 10-11 February. There were three VT-type events that were detected on 24 February.

Figure (see Caption) Figure 171. Webcam image of a gas-and-ash plume rising 1,000 m above the crater of Reventador on 25 February 2023. Photo has been color corrected. Courtesy of IG-EPN (INFORME DIARIO DEL VOLCAN REVENTADOR No. 2023-056, 25 de febrero de 2023).

Daily explosions, LP and TREMI-type events, crater incandescence, and block avalanches continued during March. There were 20-52 daily explosions recorded during the month. Cloudy weather often prevented clear views of the summit. Gas-and-ash emissions rose 600-1,100 m above the crater and drifted NW, W, N, NE, E, S, and SE. According to the Washington VAAC, ash emissions rose 688-1,300 m above the crater and drifted NW, W, NE, E, and SE. Block avalanches traveled down all the flanks 400-700 m below the crater during 2-3, 5-6, 8-12, 14-17, 23-24, and 30-31 March. During 6-7 March block avalanches descended all the flanks as far as 900 m below the crater, accompanied by ash emissions that rose 1,000 m above the summit that drifted W. IG-EPN reported that a lahar was detected on 6 March. During the nights of 12 and 15 March incandescent blocks moved down the S flank 400-500 m below the crater. During 20-21 March ash emissions rose 1 km above the crater and drifted S and SE (figure 172); reports from the Secretaría de Gestión de Riesgos (SGR) reported that light ashfall was observed in San Carlos and San Luis.

Figure (see Caption) Figure 172. Webcam image of a gas-and-ash plume rising Reventador on 20 March 2023. Courtesy of IG-EPN (INFORME DIARIO DEL VOLCAN REVENTADOR No. 2023-079, 20 de marzo de 2023).

Additional satellite data. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed frequent thermal anomalies of moderate power during December 2022 through mid-January 2023, followed by a break in detected activity through late February (figure 173). During March, eight anomalies were detected intermittently throughout the month. The MODVOLC system identified a total of two thermal hotspots on 6 December 2022 and 20 March 2023. Although the summit was often obscured by weather clouds, Sentinel-2 infrared satellite images sometimes showed thermal activity at the summit crater (figure 174).

Figure (see Caption) Figure 173. Thermal activity at Reventador was more frequent during December 2022 through mid-January 2023, based on this MIROVA graph (Log Radiative Power). There was a short pause in detected activity during mid-January through late February. There were three anomalies detected during late February and eight during March. Courtesy of MIROVA.
Figure (see Caption) Figure 174. Sentinel-2 infrared satellite images of Reventador showed small thermal anomalies at the summit crater on 2 December 2022 (top left), 27 December 2022 (top right), 31 January 2023 (bottom left), and 25 February 2023 (bottom right). Though weather clouds often prevented clear views of the summit, gray ash emissions were sometimes visible above the clouds, as shown on 27 December and 25 February. Images with “Atmospheric penetration” (bands 12, 11, 8A) rendering. Courtesy of Sentinel Hub Playground.

Geologic Background. Volcán El Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic stratovolcano has 4-km-wide avalanche scarp open to the E formed by edifice collapse. A young, unvegetated, cone rises from the amphitheater floor to a height comparable to the rim. It has been the source of numerous lava flows as well as explosive eruptions visible from Quito, about 90 km ESE. Frequent lahars in this region of heavy rainfall have left extensive deposits on the scarp slope. The largest recorded eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 37, Number 05 (May 2012)

Managing Editor: Richard Wunderman

Aira (Japan)

Explosions during November 2011-July 2012; ash and health

Karymsky (Russia)

Many ash plumes to 4 km during September 2009-September 2010

Lokon-Empung (Indonesia)

Small plumes in 2012; activity increase in April-May

Mauna Loa (United States)

2004-2010 deformation trends; intrusive bodies modeled

Popocatepetl (Mexico)

Numerous ash plumes and escalated activity in mid-April 2012



Aira (Japan) — May 2012 Citation iconCite this Report

Aira

Japan

31.5772°N, 130.6589°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions during November 2011-July 2012; ash and health

This report provides highlights of activity at Sakura-jima during November 2011-July 2012 (following the previous report in BGVN 36:10). Over this interval, activity was characterized by consistent explosive eruptions that generated many plumes. Inflation of the edifice occurred over the first few months of the reporting period. Information was provided by the Japan Meteorological Agency (JMA) and the Tokyo Volcanic Ash Advisory Center (VAAC), unless otherwise noted. This report concludes with recently published research on the health consequences of exposure to ash erupted from Sakura-jima.

November 2011-July 2012. The reporting interval of the previous Bulletin report ended in a period of deflation of Sakura-jima's edifice (BGVN 36:10, covering through October 2011). Coincidentally, JMA reported that Sakura-jima entered a period of inflation around the beginning of November 2011 (figure 39). That same episode of inflation continued through late January 2012, after which tilt measurements indicated little change through July.

Figure (see Caption) Figure 39. Explosions (number per month, top) and tilt measurements (microradians - ?rad, bottom) at Sakura-jima during January 2009-July 2012. During November 2011-July 2012, explosions occurred more than 50 times per month, and the volcano was inflating until late January 2012 (pale orange area), after which little deformation was measured on tiltmeters (pale green area). Courtesy of JMA.

JMA reported that explosive eruptions occurred on average at a rate of more than two explosions per day (figure 39) during November 2011-July 2012. Explosions from Showa Crater commonly ejected tephra and/or ballistics up to 1.3 km from the crater. Plumes were reported to have risen 1-3 km above sea level (a.s.l.) by JMA and Tokyo VAAC more often than weekly; occasional plumes rose to 4 km a.s.l, and on 22 and 24 June, plumes rose 6.1 km a.s.l. Many plumes may have been ash-bearing, but Tokyo VAAC does not report ash content unless citing a pilot report (usually about once a week at Sakura-jima during the reporting interval). Noted exceptions from the common eruptive behavior over this reporting interval are explosions which ejected tephra up to 2 and 1.8 km from Showa Crater on 12 March and during 18-21 May 2012, respectively, and an explosion from Minami-dake Crater on 24 July that ejected ash up to 1.7 km from the crater. Pyroclastic flows traveled 200-300 m down the flanks of Showa Crater on 21 May and between 4 and 8 June.

Richard Roscoe, a visitor to the volcano, photographed Showa Crater in April 2012, and noted that it was ~20% wider in the N-S direction as compared with early 2010 (figure 40).

Figure (see Caption) Figure 40. A photograph of Sakura-jima's Showa Crater taken in early April 2012, looking W. Richard Roscoe, the photographer, noted that the crater was ~20 % wider in the N-S direction than it was in early 2010. Courtesy of Richard Roscoe, Photo Volcanica.

Health effects of Sakura-jima ash. Hillman and others (2012) characterized ash from Sakura-jima and possible health concerns due to exposure to the ash; they primarily sampled recently erupted ash, but also sampled older units up to ~500 years old (from 1914 and 1471-1476 A.D.) to assess possible health concerns in the event that Sakura-jima returns to previous eruptive styles, including Plinian explosive eruptions. Their analyses aimed to, among others, measure the amount of cristobalite (a silica polymorph known to cause respiratory diseases) in the ash, characterize the grain morphology of ash particles, assess the surface reactivity of the particles, and test the potential of ash particles to cause hemolysis ? the rupturing of red blood cell membranes.

From their work, Hillman and others (2012) reported that all analyzed samples contained low concentrations of cristobalite compared to explosively generated ash at other volcanoes, and other silica polymorphs (quartz and tridymite) were not found. While a greater percentage of respirable ash is often generated during Plinian eruptions, the authors reported the lowest concentrations of cristobalite in ash from Plinian eruptive phases at Sakura-jima.

Morphologically, the authors found many respirable grains adhered to other particles. They also found nano-scale fibers, but reported that they were not related to asbestos in composition or morphology, and were of too low concentration to pose a respiratory hazard.

The surface reactivity of ash particles was reported to be low compared to other volcanoes, and Hillman and others (2012) concluded that "iron related reactivity, as a mechanism for disease, is unlikely at Sakura-jima volcano." They also reported that ash particles had a low-to-mild potential of causing hemolysis. They concluded that ash from Sakura-jima does not have a high potential of causing respiratory disease via the mechanisms studied, but stated that other potential sources of toxicity needed to be analyzed.

Reference. Hillman, S.E., Horwell, C.J., Densmore, A.L., Damby, D.E., Fubini, B., Ishimine, Y., and Tomatis, M. (2012) Sakurajima volcano: a physico-chemical study of the health consequences of long-term exposure to volcanic ash, Bulletin of Volcanology, 74:913-930 (DOI: 10.1007/s00445-012-0575-3).

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim and built an island that was joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4,850 years ago, after which eruptions took place at Minamidake. Frequent eruptions since the 8th century have deposited ash on the city of Kagoshima, located across Kagoshima Bay only 8 km from the summit. The largest recorded eruption took place during 1471-76.

Information Contacts: Japanese Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/); Tokyo Volcanic Ash Advisory Center (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Richard Roscoe, Photo Volcanica (URL: http://www.photovolcanica.com/).


Karymsky (Russia) — May 2012 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Many ash plumes to 4 km during September 2009-September 2010

This report on Karymsky covers September 2009 to September 2010, an interval with consistent thermal anomalies, seismic activity, and ash plumes. This report was written primarily by Jason Kaiser as part of a graduate student writing assignment in a volcanology class at Oregon State University under the guidance of professor Shan de Silva.

Activity during September 2009-September 2010 was similar to reported activity during January to September 2009 (BGVN 34:08), characterized by nearly consistent thermal anomalies (when cloud cover allowed satellite observations) and above-background seismic activity (figure 23). Ash plume altitudes averaged between 3.5 and 4 km, occurring at least once a week for large portions of this time period. These plumes typically drifted between 100 and 200 km E over the N Pacific Ocean. Ash plume altitudes reported by Kamchatka Volcanic Eruptions Response Team (KVERT) were mostly based on seismic data interpretation, rather than direct observation. Information on thermal anomalies, seismic activity, and ash plume dispersal was reported by KVERT and Tokyo Volcanic Ash Advisory Center (VAAC); first-hand observations by scientists in the area were rare. Plume altitudes and maximum dispersals during the reporting period are shown in figure 24.

Figure (see Caption) Figure 23. Plots of thermal anomalies (number of pixels per day, top) and seismic events (number per day, bottom) during 9 September 2009-30 September 2010. Courtesy of the Kamchatka Branch of the Geophysical Service of the Russian Academy of Sciences (KB GS RAS).
Figure (see Caption) Figure 24. a) Altitudes of ash plumes from Karymsky during September 2009-September 2010, reported by KVERT and Tokyo VAAC. b) Dispersal directions and distances for plumes in (a) with reported dispersals, plotted in corresponding colors. Yelizovo airport is also shown to the SW of Karymsky. Plot and map view created by Jason Kaiser.

After being lowered to Green in August 2009, the Aviation Color Code was again raised to Yellow on 22 September 2009, then to Orange on 23 September, both times because of increased seismicity and possible ash explosions. Scientists flying near Karymsky in a helicopter on 22 September observed ash plumes that rose to altitudes of 1.7 km and drifted E.

The Aviation Color Code remained at Orange for the rest of 2009. Thermal anomalies and above-background seismicity were common, occurring consistently each week during October-November 2009. Few direct observations were made, but scientists did note fumarolic activity on 1 October and a small ash plume reaching 3.5 km altitude and drifting SSE on 7 October. On 12 October, volcanologists doing fieldwork in the area observed and photographed an ash plume that later rose to an altitude of 3.5 km (figure 25).

Figure (see Caption) Figure 25. KVERT photo of an ash plume emitted by Karymsky on 12 October 2009. The plume later reached an altitude of 3.5 km. Courtesy of A. Manevich (KVERT).

KVERT reported that ash deposits observed in satellite imagery extended 45 km SE on 6 December. No seismic or thermal data were available for 8 December 2009, yet a new lava flow on the S flank was observed on that day. Based on information from Yelizovo Airport, the Tokyo VAAC reported that on 25 December an ash plume rose to an altitude of 6.7 km. That same day, KVERT noted three linear ash deposits in satellite imagery that extended nearly 10 km SE from the vent. Smaller gas-and-steam bursts were observed by scientists in the area three days later.

Thermal anomalies were observed in satellite imagery nearly every day during January-March 2010. Above background seismicity was also common during this period. Ash explosions were assumed to be consistent with the seismic activity during this time frame, and were weak during February. The Aviation Color Code remained at Orange for much of this period, but was lowered to Yellow at the end of February.

KVERT reported that seismicity increased on 25 March 2010. On 27 March an intense thermal anomaly over the volcano was apparent in satellite imagery and ash plumes were observed in the area of the volcano during 28-29 March, drifting 250 km SSE (the longest reaching ash plume during this reporting interval, table 6). The Aviation Color Code was again raised to Orange on 29 March.

Table 6. Reported characteristics of eruptive plumes at Karymsky during September 2009-September 2010. Included are plume-top altitude (km), drift direction, and drift distance (when available). Data are courtesy of KVERT or Tokyo VAAC; '--' indicates data not reported.

Date Plume altitude (km) Drift distance and direction Source
22 Sep 2009 2 -- KVERT
23 Sep 2009 4.5 E KVERT
07 Oct 2009 3.5 SSE KVERT
09 Oct 2009 3 -- VAAC
12 Oct 2009 3.5 -- KVERT
20 Oct 2009 3.3 -- VAAC
23 Oct 2009 3.9 120 km E KVERT
24 Oct 2009 3.4 -- VAAC
25 Oct 2009 3.7 -- VAAC
31 Oct 2009 3.7 180 km E KVERT
05 Nov 2009 3.7 180 km E KVERT
08 Nov 2009 3 -- VAAC
10 Nov 2009 3.4 190 km E VAAC
14 Nov 2009 3.7 E VAAC
17 Nov 2009 3 130 km E KVERT
23 Nov 2009 4 120 km E VAAC
25 Nov 2009 3.8 120 km E KVERT
25 Dec 2009 6.7 SE VAAC
12 Jan 2010 3 113 km SE KVERT
15 Jan 2010 3 -- KVERT
12 Mar 2010 5.8 -- VAAC
26 Mar 2010 4.1 -- KVERT
29 Mar 2010 4.1 250 km E KVERT
17 Apr 2010 2 130 km SE KVERT
20 Apr 2010 3 -- KVERT
28 Apr 2010 3 -- KVERT
07 May 2010 2 -- KVERT
13 May 2010 4.6 -- KVERT
17 May 2010 2.5 18 km NE KVERT
25 May 2010 4.3 SW, NW KVERT
28 May 2010 3 63 km S, W KVERT
01 Jun 2010 4 30 km S KVERT
06 Jun 2010 2.5 -- KVERT
11 Jun 2010 6.1 195 km E VAAC
12 Jun 2010 5.2 -- KVERT
16 Jun 2010 3.9 22 km E KVERT
29 Jun 2010 7 -- VAAC
07 Jul 2010 2 20 km S KVERT
13 Jul 2010 2.7 W VAAC
14 Jul 2010 3.3 -- KVERT
19 Jul 2010 1.5 SW KVERT
23 Jul 2010 3 85 km SE KVERT
28 Jul 2010 2 15 km SE KVERT
30 Jul 2010 2 -- KVERT
13 Aug 2010 2.5 -- KVERT
16 Aug 2010 3 100 km E VAAC
20 Aug 2010 3.8 -- KVERT
27 Aug 2010 3.8 23 km KVERT
03 Sep 2010 3.7 -- KVERT
10 Sep 2010 3.2 -- KVERT
15 Sep 2010 3.2 -- KVERT

Thermal anomalies and above-background seismicity were noted consistently throughout April 2010. KVERT reported ash plumes drifting 40-130 km SE on 17 and 21 April. Volcanologists working in the area on 20 and 21 April observed ash bearing gas-and-steam plumes that rose to an altitude of 3 km. Strombolian activity was occasionally observed at night (figure 26).

Figure (see Caption) Figure 26. Strombolian activity at Karymsky observed during the night of 18 April 2010. Courtesy of S. Ushakov (KVERT).

During May-August 2010 ash plumes were common, occurring fairly consistently each week, and sometimes confirmed by satellite imagery. Based on information from Yelizovo Airport and KVERT, Tokyo VAAC reported that ash plumes rose to an altitude of 4.3 km a.s.l. and drifted SW and W on 22 and 25 May. During 25 June-2 July seismicity at Karymsky was above background levels and suggested that possible ash plumes rose to altitudes up to 7 km a.s.l. Strong thermal anomalies were detected on 27 June. Ash plume altitudes over this period are plotted in figure 24a.

The Aviation Color Code remained at Orange through September 2010 due to consistent thermal and seismic anomalies. Seismic data suggested some intervals where ash plumes rose from the volcano almost daily. September ash plumes were repeatedly calculated or observed in satellite imagery to reach maximum altitudes of 4 km. Dispersal estimates were rare during September 2010 due to limited visibility, but were not reported to be greater than 100 km to the SSE (figure 24b, table 6).

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences (KB GS RAS), Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.emsd.ru/~ssl/monitoring/main.htm); Tokyo Volcanic Ash Advisory Center (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/).


Lokon-Empung (Indonesia) — May 2012 Citation iconCite this Report

Lokon-Empung

Indonesia

1.358°N, 124.792°E; summit elev. 1580 m

All times are local (unless otherwise noted)


Small plumes in 2012; activity increase in April-May

Our previous report on Lokon-Empung volcano noted activity to late-October 2011 (BGVN 36:11). The present report adds subsequent information through May 2012. Most of the following information was based on summaries of activity by the Center of Volcanology and Geological Hazard Mitigation (CVGHM; also known as Pusat Vulkanologi dan Mitigosi Bencana Geologi-PVMBG) and the Volcano Disaster Assistance Program (VDAP). A map of Indonesia showing the location of Lokon-Empung volcano is presented in figure 9, and figure 10 shows a hazard map of the area around the volcano.

Figure (see Caption) Figure 9. Map of Indonesia showing the location of Lokon-Empung volcano on the N tip of Sulawesi. Courtesy of CVGHM and VDAP.
Figure (see Caption) Figure 10. A sketch map showing the location of Lokon-Empung volcano and various nearby hazard zones and populated areas. Courtesy of the CVGHM and VDAP.

Following the 26 October 2011 explosion from Tompaluan crater (the most active vent, located in the saddle between the peaks of Lokon to the S, and Empung to the N; see fig 10) that sent incandescent blocks up to 800 m away from the crater (BGVN 36:11), a small eruption was reported on 7 November. The Alert Level remained at 3 (on a scale of 1-4) since 24 July 2011.

Three explosions from Tompaluan crater were recorded by CVGHM on 27 December 2011, along with 23 deep volcanic earthquakes and 40 shallow volcanic earthquakes. Explosions from the crater produced ash plumes on 9-12 and 21 February 2012 (figure 11).

Figure (see Caption) Figure 11. PALAKAT news agency eruption photo from 9 February 2012, taken from the outskirts of the city of Tomohon (~5.3 km SW on Tokon volcano), looking NW. Lokon volcano is to the left, and Empung volcano is the flat-topped edifice to the right. The eruptive column is issuing from the Tompaluan crater. Courtesy of CVGHM and VDAP.

Lokon-Empung's activity increased during 23 April 2012, when there were 180 volcanic earthquakes. On 24 April an eruption was accompanied by loud "thumping" noises heard at local observation posts, though fog prevented views of the crater. Satellite observations on 25 April showed ash and block deposits from this eruption scattered to the N and E of Tompaluan crater out to a distance of ~400 m from the crater rim.

The Darwin Volcanic Ash Advisory Centre (VAAC) reported on 1 May 2012 that ash plumes were detected in satellite imagery and reported by ground-based observers. The Jakarta Post reported that Lokon-Empung erupted on 2 May 2012 at 1155. This eruption was larger in magnitude than the one on 24-25 April 2012. The 2 May eruption was preceded by a number of mild earthquakes that occurred over a span of 2 min. A report noted that "smoke" plumes reached an altitude of 2.5 km. Table 10 gives a chronological listing of activity at Lokon-Empung from 1 November 2011 to 1 May 2012.

Table 10. Darwin VAAC plume observations at Lokon-Empung volcano for November 2011-2 May 2012 (with times in UTC). Note that meteorological clouds often obscured satellite observations. 'VA' denotes volcanic ash plume; '--' denotes data not reported. 'Remarks in VAAC reports' includes CVGHM observations typically made from the ground, as well as some media sources. Courtesy of Darwin VAAC, CVGHM, and VDAP.

Observation Date Time Plume observations (altitude, drift distance, direction) Remarks in VAAC reports
27-28 Dec 2011 -- VA: 1.5 km Low level eruption reported by media.
29 Dec 2011 0415 -- VA reported by CVGHM, altitude 3.7 km.
06 Jan 2012 -- -- VA, altitude 1.5 km.
09 Feb 2012 0020 VA: 2 km Explosion preceded by 16 hrs of increasing seismicity.
10 Feb 2012 0145-0315 -- VA reported from ground, altitude 2.4-3.4 km.
11 Feb 2012 0330 -- VA reported from ground, altitude 3 km, preceded by 16 hr of increasing seismicity.
21 Feb 2012 0352, 0356 -- Two moderate-intensity explosions.
24 Apr 2012 -- -- Minor-intensity, explosive eruption; diffuse white plumes rose 25-50 m above Tompalaun crater, scattered ash and block deposits N and E of crater out to distance of ~400 m from crater rim.
01 May 2012 0532 Low level VA, 2.3-3.7 km VA and low level eruption reported 74 km to N from ground.

Geologic Background. The Lokong-Empung volcanic complex, rising above the plain of Tondano in North Sulawesi, includes four peaks and an active crater. Lokon, the highest peak, has a flat craterless top. The morphologically younger Empung cone 2 km NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century. A ridge extending 3 km WNW from Lokon includes the Tatawiran and Tetempangan peaks. All eruptions since 1829 have originated from Tompaluan, a 150 x 250 m crater in the saddle between Lokon and Empung. These eruptions have primarily produced small-to-moderate ash plumes that sometimes damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Volcano Disaster Assistance Program (VDAP), US Geological Survey (USGS), 1300 SE Cardinal Court, Bldg. 10, Suite 100, Vancouver, WA 98683; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); The Jakarta Post (URL: http://www.thejakartapost.com/); Kompas.com (URL: http://www.kompas.com/); Straits Times (URL: http://www.straitstimes.com); Antara News (URL: http://www.antaranews.com/en/); Daijiworld News (URL: http://www.daijiworld.com/).


Mauna Loa (United States) — May 2012 Citation iconCite this Report

Mauna Loa

United States

19.475°N, 155.608°W; summit elev. 4170 m

All times are local (unless otherwise noted)


2004-2010 deformation trends; intrusive bodies modeled

Mauna Loa has remained non-eruptive since April 1984. We previously reported on an April-October 2004, deep, long-period (LP) earthquake swarm and associated brief period of contraction (BGVN 29:09). After that and through 2010, deformation continued at variable rates and with brief pauses. During 2004-2010, HVO reported little variation in gas emissions at Mauna Loa.

The material in this report is drawn from monitoring data collected by the USGS Hawaiian Volcano Observatory (HVO) and, in particular, Interferometric Synthetic Aperture Radar (InSAR) data provided by HVO's Mike Poland. A subsection below discusses the use of deformation data as a basis for modeling inferred magma bodies in the subsurface at Mauna Loa (Amelung and others, 2007).

Slowed edifice inflation. Increased rates of inflation following the April-October 2004 deep LP earthquake swarm continued through 2007, when HVO reported that GPS and InSAR-based inflation rates had slowed substantially. Comparison of radar interferograms covering two intervals (11 October 2003-19 November 2005 and 24 March 2007-17 April 2010) highlights the slowed deformation rates during the latter interval (figure 24). To better understand the technique used to observe the slowed rate of deformation at Mauna Loa, see the next section.

Figure (see Caption) Figure 24. Radar interferograms of Mauna Loa covering the time intervals of (a) 11 October 2003-19 November 2005 and (b) 24 March 2007-17 April 2010. These interferograms highlight the slowing of inflation during the latter interval. The large number of color bands ('fringes') in (a) indicates an increased rate of inflation compared to the fewer number of fringes in (b). As depicted in the scale bar (bottom center), concentric and cyclical sets of fringes indicate a ground movement of 2.83 cm towards the satellite's line-of-sight during the time interval shown in each image. The images were produced from data acquired by the European Space Agency's Environmental Satellite (ENVISAT), with an incidence angle of 25° from the ground, looking W to E. Courtesy of Michael Poland, USGS-HVO.

InSAR technique to monitor deformation. A technique has emerged that enables scientists to create an image of where and how much displacement occurred over a ground or glacial (ice) surface (e.g., Rosen and others, 2000). The technique's spatial coverage is variable from hundreds of square meters to hundreds of square kilometers. Measurements of the component of deformation along the instrument's line-of-sight typically have centimeter-scale precision. While the precision may be less than some other deformation techniques (i.e., GPS monitoring or tilt measurements), the broad coverage can pinpoint particularly interesting patterns and help define areas for collateral studies, including further modeling of the causes of deformation (see next section).

The image, which is called a radar interferogram, compares two separate 'snapshots' acquired at distinct points in time. The snapshots are radar images of the topography of the ground surface in the area of interest (figure 25) acquired by an instrument mounted on an airplane or satellite. The images are generated by transmitting radar waves to the earth's surface; the radar waves then reflect (backscatter) and are measured upon their return to the instrument. To make one interferogram, two such images taken at different times are compared. Variations in the phase of the coherent radar signal in the two snapshots disclose areas where displacement occurred along the instrument's line-of-sight (example radar waves A-E, figure 25). In some cases scientists collect and process enough data to enable them to make a time series of interferograms, for example, annual interferograms that enable yearly comparisons of the ground surface over a decade of time.

Figure (see Caption) Figure 25. A cartoon representation of the basic principles of radar interferometry. As the satellite makes its first pass over a ground surface ('Initial ground surface'), it collects radar waves reflected off of the ground surface (solid wave, 'pass 1'). During a subsequent orbit (often months to years later), when the satellite again passes over the same ground surface, another collection is made from very nearly the same orbital location (dashed wave, 'pass 2'). If the ground surface deformed during the time between data collections (e.g., 'Subsided ground surface'), then the collected radar waves of the second pass will be out of phase compared to those collected during the first pass (example waves A-E, at right). The phase difference of the waves is then converted into the component of ground motion along the line-of-sight of the satellite (either towards or away from the satellite), and is represented by a color as part of a full color cycle. Since the technique is based on the phase difference of multiple waves, the accuracy is constrained by detectable fractions of the radar wave's wavelength. In figure 24, C-band radar (wavelength = 5.6 cm) was used. Image not drawn to scale. Image created by GVP staff.

On the interferograms, interference patterns appear as full color cycles, or 'fringes', indicating how far out of phase the radar waves are when they return to the satellite (figure 25); one fringe indicates a line-of-sight ground offset equivalent to one half of the radar waves' wavelength. An increased number of fringes at a specific area within an image thus indicates increased deformation during the time between images, allowing estimation of deformation rates over the time period analyzed. Our discussion of this technique has omitted various assumptions, sources of error, and corrections used to process and interpret the data.

Magma chamber and dike modeling. Amelung and others (2007) assessed measured ground deformation at Mauna Loa from InSAR data. They modeled the size, location, and geometry of inferred intrusive bodies beneath Mauna Loa that led to the observed surface deformation. Their modeling suggested a spherical magma chamber of 1.1 km radius, centered under the SE caldera margin at 4.7 km depth below the summit (0.5 km below sea level), and a vertical dike with most of its inflation occurring along an 8-km-long zone at depths of 4-8 km (Figure 26). The dike's direction of opening was normal to its inferred planar orientation. An HVO model, fit to ground-based GPS measurements, agrees with the model of Amelung and others (2007).

Figure (see Caption) Figure 26. (a) Vertical and (b) East components of ground-velocity measured at Mauna Loa during 2002-2005, determined from RADARSAT-1 InSAR data, and (c) the resultant model of the subsurface along a vertical cross-section oriented NE-SW. The satellite looked towards the E ('look direction') and had an incidence angle of ~45° from the ground. The white lines indicate the NE and SW rift zones (NERZ and SWRZ, respectively) that branch off of the caldera. The black line and circle in (a) and (b) indicate the map location of the modeled dike and magma chamber, respectively, also shown in cross-section view in (c). The location and span of Mauna Loa's summit caldera is indicated at the top of (c). The modeled spherical magma chamber and dike beneath the summit are shown in (c), indicating modeled opening rates of the dike (shown by the colored squares, with scale at bottom right). The dike opening rates are based on a uniform excess-magma pressure model of 1.8 Mpa/year, and are modeled to fit the measured ground-velocities shown in (a) and (b). Modified from Amelung and others (2007).

References. Amelung, F., Yun, S.H., Walter, T.R., Segall, P., and Kim, S.W. (2007) Stress Control of Deep Rift Intrusion at Mauna Loa Volcano, Hawaii. Science, 316 (5827), pg. 1026-1030 (DOI: 10.1126/science.1140035).

Rosen, P.A., Hensley, S., Joughin, I.R., Li, F.K., Madsen, S.N., Rodriguez, E., and Goldstein, R.M. (2000) Synthetic aperture radar interferometry, Proc. IEEE, 88, 333- 382.

Geologic Background. Massive Mauna Loa is a basaltic shield volcano that rises almost 9 km from the ocean floor to form the world's largest Holocene volcano. Flank eruptions typically occur from the lengthy NE and SW rift zones, and from the Moku'aweoweo summit is caldera, which is within an older and larger 6 x 8 km caldera. Two of the youngest large debris avalanches documented in Hawaii traveled nearly 100 km from Mauna Loa; the second of the Alika avalanches was emplaced about 105,000 years ago (Moore et al., 1989). Almost 90% of the surface of the volcano is covered by lavas less than 4,000 years old (Lockwood and Lipman, 1987). Beginning about 1,500 years ago, a series of voluminous overflows from a summit lava lake covered about 25% of the volcano's surface. Over the last 750 years, from shortly after the formation of Moku'aweoweo caldera until the present, an additional 25% of the volcano has been covered with lava flows, mainly from summit and NW rift zone vents.

Information Contacts: Michael Poland, Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: https://volcanoes.usgs.gov/observatories/hvo/); Christelle Wauthier, Department of Terrestrial Magnetism, Carnegie Institute of Washington, Washington, DC.


Popocatepetl (Mexico) — May 2012 Citation iconCite this Report

Popocatepetl

Mexico

19.023°N, 98.622°W; summit elev. 5393 m

All times are local (unless otherwise noted)


Numerous ash plumes and escalated activity in mid-April 2012

Small but frequent ash and explosive events have continued from Popocatépetl since our last report in November 2011 (BGVN 36:11). Here we tabulate and briefly discuss the numerous explosions from 14 December 2011 to 26 June 2012, highlighting the events that led authorities to elevate the Alert Level to Yellow Phase 3 on 16 April 2012. We present regular observations from the Centro Nacional de Prevención de Desastres (CENAPRED, based in Mexico City) as well as results from remote sensing efforts (thermal and ash cloud detection methods). Few ash plumes rose over 2 km above the ~5.4 km summit but ash fell as far as 70 km from the summit.

Ash detection. The Washington Volcanic Ash Advisory Center (VAAC) reported ash plumes every month from December 2011 through June 2012 except for February (figure 61). Specifically, although seven notices were released in January 2012, no alerts regarding potential or observed ash were issued again until 30 March 2012, when ash was reported drifting NE. The alerts, Volcanic Ash Advisories (VAAs), often described "exhalations" and "discrete" plumes based on reports from CENAPRED and detection by the GOES-13 weather satellite. Ash was detected at altitudes ranging from 4.5 to 11.5 km with various drift directions.

Figure (see Caption) Figure 61. On 25 January 2012, the Washington VAAC released the mapped area and text details of observed airborne ash from Popocatépetl. A "short exhalation of ash" had reached an altitude of ~11 km. VAAC reports with graphics showing polygons that enclose inferred ash drift have been available for years, but those on Google Earth backgrounds are relatively new. Courtesy of the Washington VAAC.

Activity escalated and peaked in April 2012. This report continues the table in the previous report (BGVN 36:11) that tallies ash emissions, and includes events such as incandescence and elevated seismic activity (table 22). Incandescence and numerous plumes of gas and ash were reported from December 2011 to April 2012. Events escalated later, on 13 April, when seismicity increased and explosions occurred at the summit. Blocks and incandescent ejecta exploded from the crater and fine ash from these events was reported in nearby towns. On 16 April CENAPRED announced that hazardous conditions had escalated and increased the Alert Level at the volcano from Yellow Phase 2 to Yellow Phase 3. Local news reported that the governor of Puebla, Rafael Moreno Valle, had announced that schools located within 12 km of Popocatépetl were closed. Significant ash emissions continued from April through June. On 18 April an explosion sent incandescent fragments over 800 m from the crater; that material covered snowy areas near the summit and formed small lahars (table 22). On 8, 10, and 12 May local news reported that the Puebla airport was closed due to volcanic ashfall.

Figure (see Caption) Table 22. Emissions and activity from Popocatépetl's summit crater between 14 December 2011 and 26 June 2012. Data provided by the Centro Nacional de Prevención de Desastres (CENAPRED).
Figure (see Caption) Figure 62. (top) Night glow and ejecta on the N flank of Popocatépetl on 14 May 2012; image taken at 0508 by the Tlamacas camera, which is located ~5 km N of the edifice. (bottom) A persistent gas-and-steam plume taken by the Altzomoni camera, located ~10 km to the NNW of Popocatépetl, at 1053. Courtesy of CENAPRED.

MODVOLC Thermal Alerts. Elevated temperatures from the summit area of Popocatépetl have been detected regularly by satellite remote sensing, in particular, using the Geostationary Operational Environmental Satellite (GOES) and Earth Observing System (EOS) satellites (Wright and others, 2002; Wright and others, 2004). The ability to detect elevated temperatures varies significantly based on meteorological changes, cloud cover, and solar irradiance; volcanic explosions, however, have produced distinctive radiance signatures and have been reliably documented (Wright and others, 2002).

A study focused on 1998 thermal data from Popocatépetl highlighted the challenges unique to the remote sensing of lava domes (Wright and others, 2002). Investigators correlated the irregular appearance of thermal anomalies with physical changes at the dome. Seismic and SO2 gas flux data supported the conclusion that high thermal emissions followed explosions, "which served to disrupt the cool dome carapace and expose the much hotter interior to the orbiting sensor. Thus, it was not the presence of the dome itself that produced elevated levels of radiance but rather transient processes affecting its surface temperature."

A primary tool for monitoring volcano thermal emissions is the MODVOLC algorithm which was developed by the Hawaii Institute of Geophysics and Planetology (HIGP), in operation since 2002. The algorithm flags thermal anomalies that appear in data captured by the MODIS sensor (on EOS satellites Terra and Aqua) (Wright and others, 2004). The online archive of graphic and text results was designed to be updated, typically within 12 hours of each MODIS overpass. Since local fires, meteorological conditions, and eruption clouds influence the detection of thermal anomalies and cannot be quantified, investigators emphasize caution and awareness of local conditions when interpreting short-term (for example, day-to-day) thermal anomaly data at individual volcanoes.

From June 2011 through June 2012, ~230 thermal alert pixels were detected near the summit area of Popocatépetl with the MODVOLC system (figure 63). From October 2010 to June 2012, thermal anomalies were reported every month except for August 2011 (table 23). Generally 1-2 anomalies were detected in each report; on rare occasions 3-4 anomalies were detected. While CENAPRED has reported numerous ash and explosive events at the summit during this time period, meteorological conditions may have reduced thermal data acquisition during the rainy seasons (May through September).

Figure (see Caption) Figure 63. A) Locations of the Trans-Mexican Volcanic Belt (TMVB) including the location of Popocatépetl with relation to surrounding populated areas (Cross and others, 2012). B) Hotspots detected at Popocatépetl with the MODVOLC method from June 2011 through June 2012. Grid lines are 10 km between intersections. Each thermal pixel is one square kilometer. Pixels were concentrated around the summit region with one anomalous hotspot of clear non-volcanic origin located ~20 km SW. Courtesy of HIGP.

Table 23. Monthly summary of thermal anomalies detected at Popocatépetl from October 2010 through June 2012. The number of reports for each month is based on the daily summaries available on the MODVOLC website and the number of pixels was counted from each report. Only pixels within a 10 km radius of the summit were included in this table. Courtesy of HIGP.

Month Number of reports Total number of pixels
Oct 2010 15 16
Nov 2010 13 13
Dec 2010 27 37
Jan 2011 22 34
Feb 2011 14 20
Mar 2011 15 18
Apr 2011 13 17
May 2011 11 13
Jun 2011 3 3
Jul 2011 1 1
Aug 2011 0 0
Sep 2011 6 6
Oct 2011 12 13
Nov 2011 14 20
Dec 2011 23 39
Jan 2012 21 32
Feb 2012 9 13
Mar 2012 21 41
Apr 2012 15 26
May 2012 16 28
Jun 2012 6 8

References. Cross, J.K., Roberge, J., and Jerram, D.A., 2012. Constraining the degassing processes of Popocatépetl Volcano, Mexico: A vesicle size distribution and glass geochemistry study, Journal of Volcanology and Geothermal Research, 225?226: 81?95.

Wright, R., De La Cruz-Reyna, S., Flynn, L., Harris, A.J.L., and Gomez-Palacios, J.J., 2002. Infrared satellite monitoring of Popocatépetl: explosions, exhalations and cycles of dome growth, Journal of Geophysical Research, 107, B8, 2153.

Wright, R., Flynn, L.P., Garbeil, H., Harris, A.J.L., and Pilger, E., 2004. MODVOLC: near-real-time thermal monitoring of global volcanism. Journal of Volcanology and Geothermal Research, 135: 29-49.

Geologic Background. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time.

Information Contacts: Centro Nacional de Prevención de Desastres (CENAPRED), Av. Delfín Madrigal No.665. Coyoacan, México D.F. 04360, México (URL: https://www.gob.mx/cenapred/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); MODVOLC, Hawai`i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai`i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); La Gran Epoca.com (URL: http://www.lagranepoca.com); Reuters (URL: http://www.reuters.com/resources/archive/us/2012.html).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports