Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Cleveland (United States) Intermittent dome growth and explosions with small ash plumes, July 2018-January 2019

Planchon-Peteroa (Chile) New eruption begins in September 2018; continuous ash emissions and intermittent explosions December 2018-February 2019

Copahue (Chile-Argentina) Frequent emissions and small ash plumes continue from July through 7 December 2018

Kilauea (United States) Fissure 8 lava flow continues vigorously until 4 August, ocean entry ends in late August, last activity at fissure 8 cone on 5 September 2018

Piton de la Fournaise (France) Eruption from 15 September to 1 November produced a lava flow to the E

Veniaminof (United States) Eruption with lava flows and ash plumes during September-December 2018

Poas (Costa Rica) Frequent changes at the crater lake throughout 2018

Nevados de Chillan (Chile) Dome growth and destruction with several explosive events, June-November 2018

Sabancaya (Peru) Frequent ash plumes continued during June-November 2018

Stromboli (Italy) Explosive activity produced ash, lapilli, and bombs, with occasional spattering during July-October 2018

Santa Maria (Guatemala) Ash plumes, degassing, and avalanches continue during May-October 2018 with occasional lahars

Kilauea (United States) Lava fountains on the Lower East Rift Zone build 50-m-high pyroclastic cone and 13-km-long lava flow that engulfs Kapoho Bay during June 2018; 533 homes destroyed since 1 May



Cleveland (United States) — February 2019 Citation iconCite this Report

Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


Intermittent dome growth and explosions with small ash plumes, July 2018-January 2019

Dome growth and destruction accompanied by small ash explosions have been typical behavior at Alaska's Cleveland volcano in recent years. Located on Chuginadak Island in the Aleutians, slightly over 1,500 km SW of Anchorage, it has historical activity, including three large (VEI 3) eruptions, recorded back to 1893. The Alaska Volcano Observatory (AVO) and the Anchorage Volcanic Ash Advisory Center (VAAC) are responsible for monitoring activity and notifying air traffic of aviation hazards associated with Cleveland. Its remoteness makes satellite imagery an important source of information for interpreting activity. This report covers continuing thermal and minor explosive activity during July 2018 through January 2019.

After evidence of a small lava dome on the floor of the summit crater appeared in late June 2018, weakly elevated surface temperatures were observed intermittently during July. A small deposit of fresh ejecta was observed in satellite data at the end of July. Weak and moderately elevated surface temperatures were observed during August and into September. A clear satellite image in mid-September confirmed the presence of a growing dome in the summit crater. No seismic or infrasound activity was reported in October or November, and persistent clouds mostly obscured satellite images. Four small explosions were reported during December 2018, two of them produced small ash plumes. A single explosion in early January produced a tephra deposit visible in satellite images, and a new dome was visible growing inside the crater during the middle of the month. Intermittent elevated surface temperatures were observed during the rest of January 2019, but no additional explosions were reported.

Low levels of unrest continued at Cleveland during July 2018. Elevated surface temperatures were detected through 3 July following the observation of a small lava dome on the floor of the summit crater on 25 June (BGVN 43:07). Weakly elevated surface temperatures were observed in high resolution satellite data on 11 July, and several times during the second half of the month when weather conditions were clear. Field crews working on Chuginadak Island on 19 July 2018 repaired the Cleveland web camera. Steaming at the summit was visible in both web camera and satellite images at times during the last week of July (figure 26). On 24 July, a small deposit of ballistic blocks was observed in satellite imagery within the summit crater and just below the eastern crater rim. These blocks suggested to AVO that minor explosive activity occurred at the summit that was below the detection threshold of the seismic and pressure sensors.

Figure (see Caption) Figure 26. The Cleveland webcam captured a brief clear view of the often-cloudy summit, exhibiting minor steaming, on 24 July 2018. Image courtesy of AVO/USGS.

No eruptive activity was detected during August. Moderately elevated surface temperatures were observed on 7 August and most days during the second week of the month. Occasional clear web camera views of the summit showed slight steam emissions. The Aviation Color Code was reduced from Orange to Yellow and the Volcano Alert Level to Advisory on 22 August 2018 after several weeks of only elevated surface temperatures in the summit area. Minor explosive activity had last been observed in late July and since that time there had been no evidence of lava extrusion in the summit crater. Elevated surface temperatures continued to be observed, however, during the last two weeks of the month.

Weakly elevated surface temperatures in the summit crater continued to be observed in satellite data during periods of clear weather in the first week of September. A few moderately elevated surface temperatures appeared in the second week, and continued during the third week of September. An unobscured satellite view on 10 September (figure 27) showed the first evidence of an emplaced lava dome within the crater. Temperatures were moderate to weakly elevated throughout the last week of the month. Satellite observations from 20 September suggested that the small collapse crater in the center of the summit dome emplaced over the summer was beginning to inflate, but clear evidence of new lava emplacement was not detected.

Figure (see Caption) Figure 27. Cleveland volcano on 10 September 2018 showed evidence of an emplaced dome within the summit crater with both a natural color (bands 4,3,2) image of the summit (upper) and an atmospheric penetration image (bands 12, 11 and 8A) that shows the thermal anomaly from the summit dome. Courtesy of Sentinel Hub.

No significant activity was detected in seismic or infrasound (pressure) sensor data during October or November 2018. Satellite views of the volcano were obscured by clouds for most of the time; elevated surface temperatures were observed in satellite data a few times in the last few days of October and during the first half of November; there were no observations of activity in mostly cloudy satellite images at the end of November.

Although a few satellite observations of elevated surface temperatures at the summit were made during the first week of December 2018, two small explosions occurred during the second week. The first happened on 8 December at 2355 AKST (0855 UTC on 9 December). The second, which had a higher peak seismic amplitude, occurred on 12 December at 1153 AKST (2053 UTC). No ash cloud was observed after either event, though satellite views were largely obscured by clouds at the time. The color code and Alert Level were raised to Orange/Watch after the second explosion. Elevated surface temperatures continued to be observed in satellite imagery at the volcano's summit during the second week. Another short-lived explosion occurred on 16 December at 0737 AKST (1637 UTC). A small ash cloud drifting NE was observed afterwards in satellite imagery. Elevated surface temperatures appeared following this explosion. Conditions were mostly cloudy for the remainder of December; occasional clear satellite views showed no further temperature anomalies. Local seismic sensors recorded a short-lived explosion at 1817 AKST on 28 December (0317 UTC 29 December). A pilot report indicated an ash plume from the event at 5.2 km altitude moving E.

Satellite images through 2 January 2019 showed that the explosion on 29 December enlarged the diameter of the summit crater by about 25 m and large ballistic blocks impacted the upper edifice N and E of the crater. After 10 days of diminished activity following the sequence of explosions in December, AVO reduced the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory on 7 January 2019. On 9 January at 1015 AKST (1915 UTC) the single local seismic sensor recorded a small, short-lived explosion. A satellite image captured three hours after the event revealed a tephra deposit, a steam plume, and elevated temperature at the summit (figure 28). The explosion was not detected on regional infrasound arrays, nor was a volcanic cloud observed above the meteorological clouds at 3 km altitude.

Figure (see Caption) Figure 28. A Landsat 8 image acquired three hours after the explosion at Cleveland on 9 January 2019 revealed a small steam plume and tephra deposit in visible imagery (left), and heat at the crater in the short-wave infrared (SWIR) bands (right, pan-sharpened false color). The small deposit is consistent with the geophysical evidence for the small size of the explosion. Image created by Hannah Dietterich, courtesy of AVO/USGS and Landsat 8.

Satellite data showed that starting around 12 January, a new and growing lava dome was present in the summit crater. It continued to grow slowly through 16 January. This prompted AVO to increase the Color Code to ORANGE and the Alert Level to WATCH on 17 January. Strongly elevated surface temperatures were observed in satellite imagery on 19 and 20 January, reflecting growth of a lava dome. The local infrasound array and a second seismic station near Cleveland that had been offline since 23 September 2018, returned data again briefly on 25 January. Weakly elevated surface temperatures were observed in satellite images during the last week of January. A steam plume was observed at the volcano during clear weather on 27 January. Satellite observations collected after 16 January showed the center of the newly emplaced lava dome slowly subsiding. No explosive activity was detected in regional seismic or infrasound data during the last week of the month.

The physically remote location of Cleveland in the Aleutians, and the often-unfavorable meteorological conditions that limit visible satellite observations make the thermal infrared data a valuable component of interpretations of activity. During July 2018 through January 2019 intermittent thermal signals were reported in the MIROVA graph (figure 29). A few of these signals (in September 2018 and January 2019) could be correlated to visual satellite images that confirmed growth of a summit lava dome.

Figure (see Caption) Figure 29. MIROVA data for the year ending on 31 January 2019 shows intermittent thermal anomalies at Cleveland volcano. Courtesy of MIROVA.

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey (USGS), 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys (ADGGS), 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Planchon-Peteroa (Chile) — January 2019 Citation iconCite this Report

Planchon-Peteroa

Chile

35.223°S, 70.568°W; summit elev. 3977 m

All times are local (unless otherwise noted)


New eruption begins in September 2018; continuous ash emissions and intermittent explosions December 2018-February 2019

Planchón-Peteroa, a large basaltic to dacitic volcanic complex, lies on the remote Chile-Argentina border roughly 200 km S of Santiago, Chile. Its intermittent eruptive history has been characterized by short-lived explosive events with gas and ash plumes from active craters around the Volcán Peteroa area (figure 10). The most recent eruption, from February-June 2011, was a series of sporadic ash and gas plumes which rose as high as 5.5 km altitude and produced ashfall as far as 70 km away (BGVN 38:11). After seven years of little surface activity, a new series of ash emissions and explosive activity began in September 2018; a major seismic swarm in 2016 did not result in surface activity. Information for this report, covering through February 2019, was provided primarily by Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS) and the Buenos Aires Volcanic Ash Advisory Center (VAAC).

Figure (see Caption) Figure 10. The Planchón-Peteroa volcanic complex was last active from February to June 2011, as seen in this image taken on 23 April 2011 from Santa Cruz de Colchagua, located 100 km NW. Image copyright by Andres Figueroa Z (HBOC), courtesy of Cumbres y Montañas de O'Higgins and used with permission from the photographer.

Planchón-Peteroa remained quiet during 2014 and 2015. A significant seismic swarm during 2016 led SERNAGEOMIN to raise the alert level for nearly the entire year, although no surface eruptive activity took place. A smaller seismic event in 2017 also did not include surface activity. Increased emissions that included particulate material were first reported in September 2018; the first explosions with ash took place in early November 2018. Persistent emissions with dense plumes of ash began in mid-December and continued through February 2019; intermittent pulses and explosions during that time coincided with increased seismic and thermal activity.

Activity during 2014-2015. Background levels of volcano-tectonic (VT) and long-period (LP) earthquakes were reported by SERNAGEOMIN throughout 2014 and 2015. A single seismic event greater than M 3.0 was reported on 11 May 2014, located within 1 km of the crater. Inclinometer, SO2, and thermal data all indicated no significant changes during the period. During March-July 2015 sporadic fumaroles were observed rising less than 200 m from the active crater.

Activity during 2016. An increase in LP seismic events from a few to several hundred per month was noted by SERNAGEOMIN beginning in January 2016. As a result, they increased the Alert Level of the volcano from Green to Yellow on 22 January. The webcam revealed degassing of mainly water vapor reaching close to 200 m above the active crater. During the first two weeks of February 2016 the number of LP events increased ten-fold from 328 in January to 3,634; all the events were smaller than M 1.1. The rate of LP seismicity increased further during the last two weeks of February to 7,301 events, and the steam plumes reached 400 m above the crater. LP seismicity remained high during March with 9,627 measured events; similar numbers of events were sustained through May 2016 (figure 11).

Figure (see Caption) Figure 11. Seismicity at Planchón-Peteroa from October 2015 through February 2019. Two periods of increased seismicity were detected prior to 2018, although the only observed changes in surface activity were slight increases in the height and intensity of the steam plumes. The first event, from January 2016-January 2017 included periods with very high numbers of both VT and LP events at different times during the year. The second period of increased seismicity was from July to December 2017; the numbers of VT events were elevated briefly in July, but the LP event numbers remained elevated through December. The number of LP seismic events began increasing again in July 2018; the first particulate emissions were noted in September, and significant explosions with ash began in November 2018. Note two vertical axes on graph, the left represents numbers of LP seismic events in orange, the right represents the number of VT seismic events in blue. Data courtesy of SERNAGEOMIN.

LP seismicity decreased substantially to only 470 events during the first two weeks of June 2016, leading SERNAGEOMIN to reduce the Alert Level to Green. However, during the second half of June a spike in the VT events from 8 during the first half of the month to 944 caused authorities to raise the Alert Level back to Yellow. This increase in VT seismic events was also accompanied by an increase in the number and spectral frequency of the LP events. They changed from having dominant frequencies between 1.9 and 2 Hz to 4-5 Hz, with a location that moved closer to the crater zone than before, and occurred at depths of around 1.5 km. On 28 June a M 3.4 VT event occurred 4.3 km NNE of the crater at a depth of 4.8 km. LP events numbered between 2,100 and 4,100 events monthly during June-September.

VT seismic events increased to their highest levels of 2016 during July (4,609 events) before beginning a gradual decline through the end of the year, ending with about 700 events in December (figure 11). A strong steam plume rose 550 m above the crater on 4 July 2016 and was accompanied by 400 VT events. The number of LP events increased significantly for the second time during the year beginning in October and remained over 14,000 events through January 2017. Three seismic events with local magnitude (ML) greater than M 3.0 were recorded on 7, 12, and 16 October; the locations of the events were approximately 3 km NNW at an average depth of 5 km. A M 3.4 event was recorded on 19 November. Low-level steam plumes did not rise more than 200 m above the crater for the remainder of the year. SERNAGEOMIN installed two new seismic stations, on 29 November and 15 December 2016.

Activity during 2017. Levels of both VT and LP seismic events declined during January-May 2017. A M 3.5 VT earthquake on 19 February was located 3.7 km NNW of the crater and 4.5 km deep. On 28 March, a M 3.6 event occurred in a similar location. Steam plumes occasionally rose as high as 200 m during the period. SERNAGEOMIN lowered the Alert Level to Green on 17 May 2017 based on the gradual decrease in seismicity to baseline levels accompanied by little to no surface activity.

A seismic swarm of 39 events on 15 June was located 14 km SE and 8-10 km deep. VT seismic events during the first half of July 2017 were located 4-7 km deep under the summit craters and included a M 4.0 event on 8 July. An increase in both VT and LP seismicity in early July led SERNAGEOMIN to raise the Alert Level to Yellow on 10 July (figure 11). The monthly number of VT events dropped below 100 in August and remained low for the rest of the year. A M 3.5 VT event was reported on 5 November, located 6.5 km E and 6 km deep. On 14 November seismometers recorded a 30-minute tremor event. A brief increase in degassing began on 23 November; steam plumes reached 600 m the next day but returned to less than 150 m by the end of the month. SERNAGEOMIN lowered the Alert Level to Green in mid-December 2017 as a result of decreased surface and seismic activity.

Activity during 2018. Low levels of surface and seismic activity persisted into early June 2018. Steam plumes rose no more than 500 m above the crater, numbers of VT events remained low, and the numbers of LP events decreased steadily. In mid-May the amplitude of continuous tremor events began to increase. The frequency of the tremor events had been around 1-2 Hz earlier in the year, but beginning on 21 June they increased to around 5 Hz; this was accompanied by an oscillating amplitude seismic signal referred to as "banded tremor." SERNAGEOMIN interpreted the increase in amplitude and the banded tremor as an indication of increased heat in the system, and as a result raised the Alert Level to Yellow on 6 July 2018. The number of LP seismic events increased steadily beginning in June, along with the amplitude of the seismic events, although there were no apparent changes in surface activity (figure 12). Weak thermal anomalies were first detected in satellite data in mid-August. SERNAGEOMIN noted that the locations of the seismic events were migrating closer to the crater, and the depths were shallowing from June to August 2018.

Figure (see Caption) Figure 12. No surface activity was seen at Planchón-Peteroa on 11 July 2018; SERNAGEOMIN had raised the Alert Level to Yellow from Green a few days earlier due to increased seismicity. Photo from SERNAGEOMIN webcam located about 10 km W. Courtesy of SERNAGEOMIN.

SERNAGEOMIN first reported the presence of particulate material in the persistent degassing from the active crater on 21 September 2018, noting that the degassing steam turned "slightly gray" but plumes did not rise more than 600 m above the crater. Mostly-white emissions continued during October, although they specifically mentioned emissions of low-intensity particulate material observed during 13-15 October, rising 600 m above the crater. Three MIROVA thermal alerts appeared on 14 October, the first over 1 MW to be recorded (figure 13). During the second half of October, SERNAGEOMIN noted persistent mostly-white degassing in the webcam that rose up to 700 m above the crater. They also reported webcam images in the second half of October that showed ash emissions rising a short distance above the crater, generally drifting SE, although they did not specify certain dates

Figure (see Caption) Figure 13. A graph of satellite thermal data by the MIROVA project from 8 April 2018 through February 2019 indicates that thermal anomalies were first reported in mid-October 2018; this corresponds with SERNAGEOMIN's observations of emissions containing significant quantities of particular material. Increased thermal activity during December 2018 and February 2019 corresponded with reports of increased explosive activity and ash emissions. Courtesy of MIROVA.

SERNAGEOMIN reported an explosion with an ash emission visible in the webcam on 7 November 2018; they reported the plume height at about 1,000 m above the crater (figure 14). The Buenos Aires VAAC reported the ash plume drifting SE visible in satellite imagery at 4.3 km altitude. Low-altitude ash emissions were observed in the webcam multiple additional times during November. In a special report issued on 7 December, SERNAGEOMIN reported a 1,300-m-high ash emission that dispersed ESE. The Buenos Aires VAAC reported continuous ash emissions beginning on 14 December that lasted through the rest of the month (figure 15).

Figure (see Caption) Figure 14. A webcam located a few kilometers W of Peteroa captured these images of the ash plume released on 7 November 2018. Courtesy of SERNAGEOMIN.
Figure (see Caption) Figure 15. An ash cloud from Planchón-Peteroa was photographed from Paso Vergara on the Chile/Argentina border 5 km NE on 14 December 2018; the ash dispersed to the SE. Courtesy of Volcanes de Chile and SEGEMAR (Servicio Geológico Minero Argentino), copyright by Gendarmeria Nacional Argentina.

Plumes generally drifted SE at 4.6-4.9 km altitude during December, with occasional stronger puffs that were reported as high as 5.8 km altitude (figure 16). On 16 December the webcam recorded high-intensity pulsating ash emissions that drifted 20 km SE. Incandescence was visible around the crater that night. Webcam images showed dark gray plumes during the second half of December, suggesting a high concentration of ash; the pulsating nature of the emissions was observed in the webcam again during 24-27 December, reaching 1,600 m above the crater. Multiple thermal alerts were reported during the second half of the month.

Figure (see Caption) Figure 16. Volcanes de Chile annotated this 15 December 2018 Sentinel-2 satellite image showing the ash plume from Planchón-Peteroa drifting SE into Argentina. Courtesy of Sentinel Hub and Volcanes de Chile.

Activity during January-February 2019. Dense ash plumes were reported daily during January and February 2019 by both SERNAGEOMIN and the Buenos Aires VAAC; plumes heights were generally between 400 m and 1 km above the active crater (figure 17). Higher plumes that reached 2 km above the crater and drifted E were reported on 1 and 3 February (figure 18). SERNAGEOMIN noted that the first of these events was accompanied by an increase in very low frequency seismic activity (VLP).

Figure (see Caption) Figure 17. Dense ash plumes drifted SE from Planchón-Peteroa on 4 January 2019 as seen in this false-color Sentinel-2B satellite image. Courtesy of Sentinel Hub and Volcanes de Chile.
Figure (see Caption) Figure 18. Volcanes de Chile captured this image of a dense ash plume drifting SE over Argentina from the SERNAGEOMIN webcam located about 10 km W of Planchón-Peteroa on 3 February 2018. Courtesy of Volcanes de Chile and SERNAGEOMIN.

Satellite-based SO2 instruments also detected a significant gas plume on 3 February (figure 19). SERNAGEOMIN reported a tremor signal on 14 February 2019 associated with a dense ash plume that rose to 2 km above the summit and drifted NE. Webcam images during the second half of February showed constant degassing; gray plumes drifted mostly SE about 2 km above the summit (figure 20).

Figure (see Caption) Figure 19. The TROPOMI instrument on the Sentinel-5P satellite recorded significant SO2 plumes drifting both E and W of Planchón-Peteroa on 3 February 2019; SERNAGEOMIN reported dense ash emissions the same day. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 20. Explosive activity at Planchón-Peteroa was recorded in Paso Vergara on the Chile/Argentina border 5 km NE on 20 February 2019 at the SEGEMAR CNEA webcam. Courtesy of SEGEMAR (Servicio Geológico Minero Argentino) and Felipe Aguilera Volcanes.

Geologic Background. Planchón-Peteroa is an elongated complex volcano along the Chile-Argentina border with several overlapping calderas. Activity began in the Pleistocene with construction of the basaltic-andesite to dacitic Volcán Azufre, followed by formation of basaltic and basaltic-andesite Volcán Planchón, 6 km to the north. About 11,500 years ago, much of Azufre and part of Planchón collapsed, forming the massive Río Teno debris avalanche, which traveled 95 km to reach Chile's Central Valley. Subsequently, Volcán Planchón II was formed. The youngest volcano, andesitic and basaltic-andesite Volcán Peteroa, consists of scattered vents between Azufre and Planchón. Peteroa has been active into historical time and contains a small steaming crater lake. Historical eruptions from the complex have been dominantly explosive, although lava flows were erupted in 1837 and 1937.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Servicio Geológico Minero Argentino (SEGEMAR), Av. General Paz 5445 (colectora), Parque Tecnológico Miguelete, Edificio 14 y Edificio 25, San Martín (B1650 WAB) (URL: http://www.segemar.gov.ar/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Cumbres y Montañas de O'Higgins (URL: https://www.facebook.com/cymohiggins/); Volcanes de Chile (URL: https://www.volcanesdechile.net/, Twitter: @volcanesdechile); Felipe Aguilera Volcanes (Twitter: @FelipeVolcanes, URL: https://twitter.com/FelipeVolcanes).


Copahue (Chile-Argentina) — January 2019 Citation iconCite this Report

Copahue

Chile-Argentina

37.856°S, 71.183°W; summit elev. 2953 m

All times are local (unless otherwise noted)


Frequent emissions and small ash plumes continue from July through 7 December 2018

Copahue, on the border of Chile and Argentina, has frequent small ash eruptions and gas-and-steam plumes. The volcano alert was raised from Green to Yellow (on a scale going from green, yellow, orange, to red) on 24 March 2018 due to an increase in seismic activity and a phreatic explosion. Copahue has a dozen craters with recent activity focused at the Agrio crater, which contains a persistent fumarole field and a crater lake. This report summarizes activity from July through December 2018 and is based on reports issued by Servicio Nacional de Geología y Minería (SERNAGEOMIN) Observatorio Volcanológico de Los Andes del Sur, (OVDAS), Oficina Nacional de Emergencia - Ministerio del Interior (ONEMI), Buenos Aires Volcanic Ash Advisory Center (VAAC), and satellite data.

Throughout July, Copahue produced gas-and-steam and ash plumes that deposited ash on and away from the slopes of the volcano (figure 19). From 1 to 15 July degassing was continuous with a maximum plume height of 300 m above the crater. A more energetic gas-and-steam plume was produced on 18 July (figure 20). Persistent gas and ash plumes during 16-31 July rose up to 1,500 m above the crater. Nighttime incandescence was present throughout the month.

Figure (see Caption) Figure 19. Sentinel-2 natural color satellite images of Copahue that show plumes and dark ash deposition throughout July 2018. The location of the active Agrio crater is indicated by the black arrow in the upper left image. Sentinel-2 Natural Color images (bands 12, 11, 14) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 20. Energetic degassing at Copahue related to hydrothermal activity on 18 July 2018. Webcam image courtesy of SERNAGEOMIN-OVDAS.

Throughout August intermittent gas-and-steam and ash plumes continued due to the interaction of the hydrothermal and magmatic system within the volcano (figure 21). Notices were issued by the Buenos Aires VAAC on 14 and 15 August for diffuse steam plumes possibly containing ash up to an altitude on 3.6 km. Constant degassing, intermittent ash plumes, and nighttime incandescence continued through September (figure 22).

Figure (see Caption) Figure 21. Low-level ash-and-gas emission at Copahue on 11, 24, and 28 of August 2018, and a plume and incandescence on 15 August. Webcam images courtesy of SERNAGEOMIN-OVDAS via CultureVolcan and Roberto Impaglione.
Figure (see Caption) Figure 22. A plume from Copahue on 1 September 2018. Webcam image courtesy of SERNAGEOMIN-OVDAS via Roberto Impaglione.

During September, October, and November, variable gas-and-steam and ash plumes were accompanied by visible incandescence at night. Continuous ash emission was observed from 16 to 30 November (figure 23); similar activity with plume heights up to 800 m from 1 to 6 December. On 2 December a Buenos Aires VAAC notice was issued for a narrow ash plume that drifted ESE. During 6-7 December an ash plume that rose up to 3 km altitude and drifted towards the SW was accompanied by a seismic swarm. No further ash emissions were noted through the end of the year.

Figure (see Caption) Figure 23. A low-lying plume at Copahue on the morning of 23 November 2018. Courtesy of Valentina.

MIROVA (Middle InfraRed Observation of Volcanic Activity) data showed intermittent minor thermal activity at the summit from July through December. There were no thermal anomalies detected by the MODVOLC algorithm for this time period. Twenty cloud-free Sentinel-2 satellite images revealed elevated thermal activity (hotspots) within Agrio crater throughout the reporting period (figure 24).

Figure (see Caption) Figure 24. Thermal activity in the Copahue crater during 2018 seen in Sentinel-2 infrared images. The orange-yellow areas indicate high temperatures within the active Agrio crater. Courtesy of Sentinel Hub Playground.

Geologic Background. Volcán Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Río Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Oficina Nacional de Emergencia - Ministerio del Interior (ONEMI), Beaucheff 1637/1671, Santiago, Chile (URL: http://www.onemi.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Valentina (URL: https://twitter.com/valecaviahue, Twitter: @valecaviahue); Roberto Impaglione (URL: https://twitter.com/robimpaglione, Twitter: @robimpaglione); CultureVolcan (URL: https://twitter.com/CultureVolcan, Twitter: @CultureVolcan).


Kilauea (United States) — January 2019 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Fissure 8 lava flow continues vigorously until 4 August, ocean entry ends in late August, last activity at fissure 8 cone on 5 September 2018

Kilauea's East Rift Zone (ERZ) has been intermittently active for at least two thousand years. Since the current eruptive period began in 1983 there have been open lava lakes and flows from the summit caldera and the East Rift Zone. A marked increase in seismicity and ground deformation at Pu'u 'O'o Cone on the upper East Rift Zone on 30 April 2018, and the subsequent collapse of its crater floor, marked the beginning of the largest lower East Rift Zone eruptive episode in at least 200 years; the ending of this episode in early September 2018 marked the end of 36 years of continuous activity.

During May 2018, lava moving into the Lower East Rift Zone opened 24 fissures along a 6-km-long NE-trending fracture zone, sending lava flows in multiple directions. As lava emerged from the fissures, the lava lake at Halema'uma'u drained and explosions sent ash plumes to several kilometer's altitude (BGVN 43:10). At the end of May, eruptive activity focused on 60-m-high fountains of lava from fissure 8 that created a rapidly moving flow that progressed 13 km in just five days, entering the ocean at Kapoho Bay and destroying over 500 homes. Throughout June vigorous effusion from fissure 8 created a 50-m-tall cone and a massive lava channel that carried lava to a growing 3-km-wide delta area which spread out into the ocean along the coast (BGVN 43:12). At Halema'uma'u crater, regular collapse explosion events were the response of the crater to the subsidence caused by the magma withdrawal on the lower East Rift Zone. The deepest part of the crater had reached 400 m below the caldera floor by late June. The eruptive events of July-September 2018 (figure 424), the last three months of this episode, are described in this report with information provided primarily from the US Geological Survey's (USGS) Hawaii Volcano Observatory (HVO) in the form of daily reports, volcanic activity notices, and abundant photo, map, and video data.

Figure (see Caption) Figure 424. Timeline of Activity at Kilauea, 1 July through 14 September 2018. Blue shaded region denotes activity at Halema'uma'u crater at the summit. Green shaded area describes activity on the lower East Rift Zone (LERZ). HST is Hawaii Standard Time. Black summit symbols indicate earthquakes; red LERZ symbols indicate lava fountains (stars), lava flows (triangles) and lava ocean entry.

Summary of activity, July-September 2018. The lava flow emerging from the fissure 8 cone on the Lower East Rift Zone continued unabated throughout July 2018. Overflows from the open channel were common, and often occurred a few hours after summit collapse events. There were multiple active ocean entry areas along the north, central, and southern portions of the coastal flow front of the fissure 8 flow at various times throughout the month. As the flow approached the delta area, lava spread out over the flow field and was no longer flowing on the surface but continued on the interior of the delta; numerous ocean entry points spanned the growing delta. In mid-July, an overflow diverted the channel W of Kapoho Crater, causing a new channel to the S of the delta that destroyed a park and a school, and increased the width of the delta to 6 km. The near-daily collapse events at Halema'uma'u crater continued until 2 August, transforming the geomorphology of the summit caldera.

Lower lava levels at the fissure 8 channel flow were first reported in early August; a reduced output from the cone was reported on 4 August and the lava level in the cone fell below the spillway the next day, shutting off the lava supply to the channel. The lava channel drained and crusted over during the next few days, but lava continued to enter the ocean at a decreasing rate for the rest of the month; the last ocean entry point had ceased by 29 August. A minor burst of spatter from gas jets inside the cone was noted on 20 August. The last activity was a small flow that covered the floor of the fissure 8 cone and created a small spatter cone during 1-5 September. Incandescence at the crater subsided during the next week until only steam activity was reported on the Lower East Rift Zone by the second half of September 2018.

Activity on the Lower East Rift Zone during 1-12 July 2018. The lava flow emerging from the fissure 8 cone on the Lower East Rift Zone continued unabated during July 2018 (figure 425). Overflows from the open channel were common, sending multiple short streams of lava down the built-up flanks of the channel (figure 426). The fissure 8 lava flow was the most significant activity at the Lower East Rift Zone during July 2018, but it was not the only activity observed by HVO scientists. Fissure 22 was also spattering tephra 50-80 m above a small spatter cone and feeding a short lava flow that was moving slowly NE along the edge of earlier flows during 1-11 July (figures 427 and 428). There were multiple active ocean entry areas along the north, central, and southern portions of the coastal flow front of the fissure 8 flow at various times throughout the month.

Figure (see Caption) Figure 425. The lava flow emerging from the fissure 8 cone on Kilauea's Lower East Rift Zone continued unabated on 3 July 2018, as viewed from the early morning HVO helicopter overflight. Recent heavy rains had soaked into the still-warm tephra causing the moisture to rise as steam around the channel. Note house and road in lower right for scale. Courtesy of HVO.
Figure (see Caption) Figure 426. Numerous overflows were visible from Kilauea's LERZ fissure 8 lava channel during the HVO morning overflight on 2 July 2018. They appear as lighter gray to silver areas on the margins of the channel. Note road and Puna Geothermal Venture (PGV) for scale on top. Courtesy of HVO.
Figure (see Caption) Figure 427. Ocean entries were active on the northern and central parts of the ocean entry delta of Kilauea's LERZ fissure 8 flow on 2 July 2018. Flows and overflows were also active along the W side of the delta area. Dark red areas are active flow zones, shaded purple areas indicate lava flows erupted in 1840, 1955, 1960, and 2014-2015. Courtesy of HVO.
Figure (see Caption) Figure 428. This thermal map shows the fissure system and lava flows as of 0600 HST on 2 July 2018. The fountain at fissure 8 remained active, with the lava flow entering the ocean at Kapoho, although the active channel on the surface ended about 0.8 km from the coast. Fissure 22 was also spattering tephra 50-80 m above a small spatter cone and feeding a short lava flow that was moving slowly NE along the edge of earlier flows. The black and white area is the extent of the thermal map. Temperature in the image is displayed as gray-scale values, with the brightest pixels indicating the hottest areas. The map was constructed by stitching many overlapping oblique images collected by a handheld thermal camera during a helicopter overflight of the flow field. The base is a copyrighted color satellite image (used with permission) provided by Digital Globe. Courtesy of HVO.

The lava channel had begun crusting over near the coast late in June, and the lava was streaming from the flow's molten interior into the ocean at many points along its broad front during the first half of July. The crusted-over area was 0.8 km from the coast on 2 July and had increased to 2 km from the coast on 6 July (figure 429). Temporary channel blockages of the flow caused minor overflows north of Kapoho Crater during 4-6 July. Multiple breakouts fed flows on the N and the SW edge of the main `a`a flow. HVO captured images during an overflight on 8 July of the area where the open channel ended and turned into the broad flow area of the delta (figure 430).

Figure (see Caption) Figure 429. This thermal map shows the fissure system and lava flows as of 0600 on 6 July 2018. The fountain at fissure 8 remained active, with the lava flow entering the ocean in several places at Kapoho; the northern delta area was especially active. The crusted over area had increased to 2 km from the coast (compare with figure 428). Small flows were still observed near fissure 22. The black and white area is the extent of the thermal map. Temperature in the image is displayed as gray-scale values, with the brightest pixels indicating the hottest areas. The map was constructed by stitching many overlapping oblique images collected by a handheld thermal camera during a helicopter overflight of the flow field. The base is a copyrighted color satellite image (used with permission) provided by Digital Globe. Courtesy of HVO.
Figure (see Caption) Figure 430. The end of the surface channel in Kilauea's LERZ fissure 8 was near Kapoho Crater on 8 July 2018. Top: The partially filled Kapoho Crater (center) is next to the open lava channel where it makes a 90-degree turn around the crater. Lava flows freely through the channel only to the southern edge of the crater (left side of image). Lava then moves into and through the molten core of the thick 'a'a flow across a broad area. Bottom: Close up view of the "end" of the open lava channel where lava moves beneath the crusted 'a'a flow. Courtesy of HVO.

By 9 July the main lava channel had reorganized and was nearly continuous to the ocean on the S side of the flow, expanding the south margin by several hundred meters (figure 431). Lava was also entering the ocean along a 4-km-long line of small entry points across the delta. Early that afternoon observers reported multiple overflows along both sides of the main lava channel in an area just W of Kapoho Crater; small brushfires were reported along the margins. Another flow lobe farther down the channel was moving NE from the main channel. The channel near Four Corners was mostly crusted over, and plumes from the ocean entry were significantly reduced. The dramatic difference in landscapes on the northern and southern sides of the fissure 8 lava channel was readily apparent during a 10 July overflight (figure 432). With dominant trade winds blowing heat and volcanic gases to the SW, the N side of the lava channel remained verdant, while vegetation on the S side was severely impacted and appeared brown and yellow.

Figure (see Caption) Figure 431. By 9 July 2018 the lower part of Kilauea's LERZ fissure 8 flow had reorganized and was nearly continuous to the ocean on the south side of the flow, expanding the south margin by several hundred meters. Dark red areas denote active flow expansion and shaded purple areas indicate lava flows erupted in 1840, 1955, 1960, and 2014-2015. Courtesy of HVO.
Figure (see Caption) Figure 432. During HVO's morning overflight on 10 July 2018, the dramatic difference in landscapes on the northern and southern sides of Kilauea's LERZ fissure 8 lava channel was readily apparent. With dominant trade winds blowing heat and volcanic gases to the SW, the N side of the lava channel remains verdant, while vegetation on the S side has been severely impacted and appears brown and yellow. The fissure 8 cone is obscured by a cloud of steam (top center), but a small speck of incandescence rises at the center. The width of the channel and levee in the narrowest place at lower left is about 500 m. Note houses and trees for scale. Courtesy of HVO.

A channel blockage just W of Kapoho Crater overnight on 10-11 July sent most of the channel S along the W edge of previous flows on the W side of the crater. By mid-morning this channelized ?a?a flow had advanced to within 0.5 km of the coast at Ahalanui Beach Park. A few houses were also threatened by overflows along the upper channel on 11 July (figure 433). The broad ocean entry area widened as a result and covered nearly 6 km by 12 July (figure 434).

Figure (see Caption) Figure 433. A pahoehoe flow fed by overflows from Kilauea's LERZ fissure 8 lava channel was active and threatening homes along Nohea Street in the Leilani Estates subdivision on 11 July 2018. Courtesy of HVO.
Figure (see Caption) Figure 434. An aerial view to the SW of the ocean entry at Kapoho from Kilauea's LERZ fissure 8 on 11 July 2018 shows Cape Kumukahi (with lighthouse) in the foreground surrounded by lava flows that formed in 1960. The northern edge of the new fissure 8 flow is close to the steam plume closest to the lighthouse. Kapoho Crater in the upper right is surrounded by new lava from fissure 8. See figure 431 for additional location details. Courtesy of HVO.

HVO first mentioned a connection between the lava levels in the upper channel of the fissure 8 flow and the collapse-explosion events at the summit on 12 July. They observed a rise in the lava level shortly after each collapse event at the summit for most of the rest of July. Overnight into 12 July, the diverted channelized ?a?a flow W of Kapoho Crater advanced to the ocean destroying the Kua O Ka La Charter School and Ahalanui Count Beach Park and established a robust ocean entry area (figure 435). Despite no visible surface connection to the fissure 8 channel, lava continued to stream out at several points on the 6-km-wide flow front into the ocean. A small island of lava also appeared offshore of the northernmost part of the ocean entry on 12 July (figure 436).

Figure (see Caption) Figure 435. The channel overflow during 9-10 July from Kilauea's LERZ fissure 8 flow created a new lobe that reached the ocean on 12 July 2018 destroying Ahalanui Park and the nearby charter school. The lava flow was also still entering the ocean at numerous points along the coast. The black and white area is the extent of the thermal map. Temperature in the image is displayed as gray-scale values, with the brightest pixels indicating the hottest areas. The map was constructed by stitching many overlapping oblique thermal images collected by a handheld camera during a helicopter overflight of the flow field. The base is a copyrighted color satellite image (used with permission) provided by Digital Globe. Courtesy of HVO.
Figure (see Caption) Figure 436. A small new island of lava from Kilauea's LERZ fissure 8 flow formed on the northernmost part of the ocean entry; it was visible during the morning overflight on 13 July 2018. HVO's field crew noticed the island was effusing lava similar to the lava streaming from the broad flow front along the coastline. The freshest lava in the delta has a silvery sheen and is adjacent to older flows. Courtesy of HVO.

Activity on the LERZ during 13-31 July 2018. As the southern margin of the flow continued to advance slowly south, it reached to within 1 km of the Isaac Hale Park on 14 July and within 750 m on 17 July. An increase in lava supply overnight into 18 July produced several channel overflows threatening homes on Nohea street and also additional overflows downstream on both sides of the channel. The overflows had stalled by mid-morning. South of Kapoho Crater, the surge produced an ?a?a flow that rode over the active southern flow that was still entering the ocean. The southern margin was 500 m from the boat ramp at Isaac Hale Park on 19 July (figure 437).

Figure (see Caption) Figure 437. The southern margin of Kilauea's LERZ fissure 8 flow was 500 m N of Isaac Hale Park on 19 July 2018. Active flow expansion is shown in dark red, shaded purple areas indicate lava flows erupted in 1840, 1955, 1960, and 2014-2015. Courtesy of HVO.

During the HVO morning overflight on 20 July scientists noted that the channel was incandescent along its entire length from the vent to the ocean entry (figure 438, top). The most vigorous ocean entry was located a few hundred meters NE of the southern flow boundary; a few small pahoehoe flows were also entering the ocean on either side of the channel's main entry point (figure 438, bottom). On 23 July there were overflows just NW of Kapoho Crater following a collapse event at the summit the previous evening. During the day, small breakouts along the edge of the lava flow in the Ahalanui area caused the flow to expand westward. The flow margin was about 175 m from the Pohoiki boat ramp in Isaac Hale Park by the end of 24 July, and the active ocean entry was still a few hundred meters to the E of the lava flow margin. The numerous ocean entry points were concentrated along the southern half of the 6-km-long delta (figure 439).

Figure (see Caption) Figure 438. HVO scientists noted that Kilauea's LERZ fissure 8 flow was incandescent all the way from the vent to the ocean the day before these 21 July 2018 images of the flow. Top: Fissure 8, source of the white gas plume in the distance, continued to erupt lava into the channel heading NE from the vent. Near Kapoho Crater (lower left), the channel turned S on the W side of the crater, sending lava toward the coast, where it entered the ocean in the Ahalanui area (bottom image). Channel overflows are visible in the lower right. Bottom: The most vigorous ocean entry of the fissure 8 flow was located a few hundred meters NE of the southern flow margin in the Ahalanui area. Courtesy of HVO.
Figure (see Caption) Figure 439. Kilauea's LERZ fissure 8 flow at 0600 on 24 July 2018. The dominant ocean entry points were on the section of coastline near Ahalanui and Pohoiki. The flow margin was about 175 m from the Pohoiki boat ramp in Isaac Hale Park by the end of 24 July. The black and white area is the extent of the thermal map. Temperature in the image is displayed as gray-scale values, with the brightest pixels indicating the hottest areas. The map was constructed by stitching many overlapping oblique images collected by a handheld thermal camera during a helicopter overflight of the flow field. The base is a copyrighted color satellite image (used with permission) provided by Digital Globe. Courtesy of HVO.

On 26 July, lava movement in the channel appeared sluggish and levels had dropped in the lower part of the channel compared to previous days. Pulses of lava were recorded every few minutes at the fissure 8 vent (figure 440). HVO suggested that overflows on 28 July may have resulted from a channel surge following a summit collapse event in the morning (figures 441 and 442). Lava was actively entering the ocean along a broad 2 km flow front centered near the former Ahalanui Beach Park, but the edge of the flow remained about 175 m from the Pohoiki boat ramp at Isaac Hale park for the rest of the month. There were a few breakouts to the W that were distant from the coast and not directly threatening Pohoiki. A more minor entry was building a pointed delta near the south edge of the flow. At 2202 on 29 July an earthquake on Kilauea's south flank was felt as far north as Hilo by a few people. The M 4.1 (NEIC) earthquake was weaker than recent summit earthquakes but it was felt more widely, possibly due to its greater depth of 7 km (compared with 2 km for summit earthquakes).

Figure (see Caption) Figure 440. Pulses of lava from Kilauea's LERZ fissure 8 vent occurred intermittently every few minutes on 26 July 2018. These photographs, taken over a period of about 4 minutes, showed the changes that occurred during these pulses. Initially, lava within the channel was almost out of sight. A pulse in the system then created a banked lava flow that threw spatter (fragments of molten lava) onto the channel margin. After the bottom photo was taken, the lava level again dropped nearly out of sight. Courtesy of HVO.
Figure (see Caption) Figure 441. Incandescent lava covering the 'a'a flow between Kilauea's LERZ fissure 8 lava channel and Kapoho Crater (lower left) is from an overflow that may have resulted from a channel surge following the morning summit collapse event on 28 July 2018. The active ocean entry can be seen in the far distance (upper left). Courtesy of HVO.
Figure (see Caption) Figure 442. Overflows from Kilauea's LERZ fissure 8 lava channel on 28 July 2018 may have ignited this fire (producing dark brown smoke) on Halekamahina, an older cinder-and-spatter cone to the west of Kapoho Crater. Courtesy of HVO.

Activity at Halema'uma'u during July and August 2018. Periodic collapse explosion events with energy equivalents to a M 5.2 or 5.3 earthquake continued on a near daily basis throughout July at Halema'uma'u, enlarging the crater floor inside the Kilauea caldera and creating large down-dropped blocks and fractures across the caldera (figure 443). Ash-poor plumes occasionally rose a few hundred meters above the caldera floor. Summit seismicity would drop dramatically after each explosion and then gradually increase to 25-35 earthquakes (mostly in the M 2-3 range) prior to the next collapse explosion. The periodicity of the explosion events was consistent until 24 July when a gap of 53 hours occurred until the next event on 26 July, the longest break since early June.

Figure (see Caption) Figure 443. The WorldView-3 satellite acquired this view of Kilauea's summit on 3 July 2018. Despite a few clouds, the area of heaviest fractures in the caldera is clear. Views into the expanding Halema'uma'u crater revealed a pit floored by rubble. The now-evacuated Jaggar Museum and Hawaii Volcano Observatory (HVO) is labelled on the NW caldera rim. Remains of the Crater Rim Drive are visible along the bottom of the image; the overlook parking lot was completely removed by the growing S rim of the crater. Courtesy of HVO.

Images of the caldera on 13 July and 1 August demonstrated the unprecedented magnitude of change that affected Kilauea during the month (figures 444 and 445). The last collapse explosion event, at 1155 HST on 2 August, was reported as a M 5.4 seismic event (figure 446). Seismicity increased after the event as it had after previous events, but after reaching about 30 earthquakes per hour on 4 August, seismicity decreased without a collapse-explosion event occurring. The rate of deformation at the summit as measured by tiltmeter and GPS was also much reduced after 4 August.

Figure (see Caption) Figure 444. USGS scientists acquired this aerial photo of Halema'uma'u and part of the Kilauea caldera floor during a helicopter overflight of the summit on 13 July 2018. In the lower third of the image are the buildings that housed the USGS Hawaiian Volcano Observatory and Hawai'i Volcanoes National Park's Jaggar Museum, the museum parking area, and a section of the Park's Crater Rim Drive. Although recent summit explosions had produced little ash, the gray landscape was a result of multiple thin layers of ash that blanketed the summit area during the ongoing explosions. Courtesy of HVO.
Figure (see Caption) Figure 445. This aerial view of Kilauea's summit taken on 1 August 2018 shows the continued growth of the crater. Compare with the previous image (figure 444) taken a few weeks earlier; a section of Hawai'i Volcanoes National Park's Crater Rim Drive and the road leading to the Kilauea Overlook parking area are visible at lower right. HVO, Jaggar Museum, and the museum parking area are visible at far middle right. On the far rim of the caldera, layers that are downdropped significantly more than on 13 July are clearly exposed. On the caldera rim (upper right) light-colored ash deposits from explosions in May were stirred up by brisk winds, creating a dust cloud dispersing downwind. Courtesy of HVO.
Figure (see Caption) Figure 446. Rockfalls along Kilauea's caldera walls were common during summit collapse events. This image, taken just after the 1155 HST collapse on 2 August 2018, shows dust rising from rockfalls along Uekahuna Bluff. This was the last collapse explosion event at Halema'uma'u during the current eruption.

Activity on the Lower East Rift Zone during August 2018. Activity continued essentially unchanged on the fissure 8 flow during 1-4 August, although there were reports of somewhat lower lava levels in the channel. Multiple overflows were reported late on 2 August, one of which started a small fire near Noni Farms Road. Other overflows were concentrated in the wide lava field W and SSW of Kapoho Crater, also igniting small fires in adjacent vegetation (figure 447). The south edge of the flow did not advance any closer to the boat ramp in Isaac Hale Park (figure 448). The channel was incandescent at its surface to approximately 4.5 km from the vent (figure 449); lava was still flowing farther beneath the crust to the vicinity of Kapoho Crater where it was seeping out of both sides of the channel. The lower lava channel adjacent to Kapoho Crater shifted W about 0.25 km early on 4 August and was feeding lava into the SW sector of the lower flow field.

Figure (see Caption) Figure 447. Overflows formed a pool of lava at the channel bend just west of Kapoho Crater (vegetated cone at left) on 1 and 2 August 2018 as seen in this view toward the SE on 1 August 2018 at Kilauea's LERZ fissure 8 flow. Courtesy of HVO.
Figure (see Caption) Figure 448. During the morning overflight on 2 August 2018, HVO geologists observed the ocean entry laze plume was being blown offshore, allowing this fairly clear view (looking NE) of the Pohoiki boat ramp at Isaac Hale Beach Park (structure, lower left). Incandescent spots of lava can be seen within the flow field beyond the boat ramp. HVO geologists also observed some lava escaping on or near the western flow margin. The southern margin of the flow front was still more than 100 m from the boat ramp. Courtesy of HVO.
Figure (see Caption) Figure 449. Kilauea's LERZ fissure 8 channel was incandescent for about 4.5 km from the vent in the early morning on 2 August 2018. Downstream of the vent, the channel split to form a "braided" section in the lava channel, and the north (right) arm of the braided section appeared to be partially abandoned. Lava was still visible in part of the northern braid, but the lower section was only weakly incandescent. The lava within the channel generally appeared to be at a lower level than in previous days. Courtesy of HVO.

The NE half of the flow's ocean-front was inactive with no evidence of effusion into the ocean by 4 August. Field observations and UAS overflight images indicated a reduced output of lava from fissure 8 during the day on 4 August. During the morning helicopter overflight on 5 August geologists confirmed a significant reduction in lava output from fissure 8 that began the previous day. HVO field geologists observed low levels of fountaining within the fissure 8 spatter cone and largely crusted lava in the spillway and channel system downstream (figure 450). The lava level in the channel near Kapoho Crater had dropped substantially on 5 August. (figure 451).

Figure (see Caption) Figure 450. HVO field geologists observed low levels of fountaining within Kilauea's LERZ fissure 8 spatter cone and largely crusted lava in the spillway and channel system downstream (left) during the morning overflight on 5 August 2018. The inner walls of the cone and lava surface were exposed and a dark crust had formed on the lava with the spillway. Courtesy of HVO.
Figure (see Caption) Figure 451. Incandescent lava remained visible in a section of Kilauea's LERZ fissure 8 channel W of Kapoho Crater (just visible at far left) on 5 August 2018 after a large drop in the flow rate during the previous day. This view is looking S toward the ocean; the laze plume rising from the ocean entry can be seen in the far distance. Courtesy of HVO.

Lava continued to slowly enter the ocean along a broad flow front generally near Pohoiki, but remained about 70 m SE of the boat ramp on 5 August. The next morning's overflight crew saw a weak to moderately active bubbling lava lake within the fissure 8 cone, a weak gas plume, and a completely crusted lava channel. Later in the morning ground crews found the upper channel largely devoid of lava, confirming that the channel was empty to at least the vicinity of Kapoho Crater where a short section of spiny active lava in a channel was present. There were small active breakouts near the coast on the Kapoho Bay and Ahalanui lobes, but the laze plume was greatly diminished. Active lava was close to the Pohoiki boat ramp but had not advanced significantly toward it. A major change in the heat flow recorded by satellite instruments was apparent by the end of the first week in August (figure 452). The MIROVA signal, which had shown a persistent high-intensity thermal signal for several years, recorded an abrupt drop in activity early in May that coincided with the opening of the fissures on the LERZ, and the dropping of the lava lake at Halema'uma'u. The lower levels of heat flow fluctuated from May through early August, and then ended abruptly after the first week of August.

Figure (see Caption) Figure 452. The MIROVA plot of thermal activity at Kilauea changed abruptly after the first week of August 2018 after many years of registering high heat flow from numerous sources at Kilauea. Compare with figure 310 (BGVN 43:03) and figure 290 (BGVN 42:11). Courtesy of MIROVA.

On 7 August the surface of the lava lake was about 5-10 m below the spillway entrance (figure 453) and the upper part of the channel was crusted over (figure 454). There were a diminishing number of small active flow points near the coast on the Kapoho Bay and Ahalanui lobes. By 9 August the overflight crew observed a crusted lava pond deep inside the steaming cone at a level significantly below that seen on 7 August. Up-rift of fissure 8, fissures 9, 10, and 24, and down-rift fissures 13, 23, 3, 21 and 7, continued to steam, but no new activity was observed. Lava was streaming at several points along the Kapoho Bay and Ahalanui coastline, causing wispy laze plumes on 10 August, and only minor areas of incandescence were visible in the lava pond inside the fissure 8 cone (figure 455). The next day the overflight crew noted two small ponds of lava inside the cone; one was crusted over and stagnant, and the other was incandescent and sluggishly convecting. A gas plumed billowed up from fissure 8 and low-level steaming was intermittent from a few of the otherwise inactive fissures.

Figure (see Caption) Figure 453. On 7 August 2018 Hawaii County's Civil Air Patrol got a closer view of Kilauea's LERZ fissure 8 cone and the small pond of lava within the vent. The lava was below the level of the spillway that fed the fissure 8 channel from May 27 to August 4, 2018. Courtesy of HVO.
Figure (see Caption) Figure 454. Lava in Kilauea's LERZ fissure 8 channel near the vent was crusted over by 7 August 2018. Fissure 8 and other inactive fissures were steaming in the background. Courtesy of HVO.
Figure (see Caption) Figure 455. The Unmanned Aircraft Systems (UAS) team flew over Kilauea's LERZ fissure 8 on 10 August 2018 and provided this aerial view into the cinder cone. The pond of lava within the vent had receded significantly from a few days earlier (see figure 453), and was about 40 m below the highest point on the cone's rim. Courtesy of HVO.

By 12 August the only incandescent lava visible on the flow field was that entering the ocean between Kapoho Bay and the Ahalanui area. Fresh black sand, created as molten lava is chilled and shattered by the surf, was being transported SW by longshore currents and accumulating in the Pohoiki small boat harbor (figure 456). A sandbar blocked the entrance to the harbor the following day. The westernmost ocean entry of lava was about 1 km from the harbor on 13 August.

Figure (see Caption) Figure 456. The Pohoiki boat ramp at Isaac Hale Park at Kilauea on 11 August 2018 was blocked in by a black sand bar forming from the longshore currents carrying material SW from the edge of the fissure 8 flow delta even though the southern-most flow margin had not advanced significantly toward the Pohoiki boat ramp. Geologists observed several small lava streams trickling into the sea along the southern portion of the lava delta, producing weak laze plumes. Courtesy of HVO.

By 14 August only a small, crusted over pond of lava deep inside the fissure 8 cone and a few scattered ocean entries were active; there had been no new lava actively flowing in the lower East Rift Zone since 6 August. No collapse events had occurred at the summit since 2 August. Earthquake and deformation data showed no net changes suggesting movement of subsurface magma or pressurization. Sulfur dioxide emission rates at both the summit and LERZ were drastically reduced; the combined rate was lower than at any time since late 2007. As a result of the reduced activity, HVO lowered the Alert Level for ground-based hazards from WARNING to WATCH on 17 August. By 18 August, the only incandescence visible was at the coast near Ahalanui, where there were a few ocean entries and minor laze plumes (figure 457).

Figure (see Caption) Figure 457. Lava was still entering the ocean at scattered entry points, mainly near Ahalanui (shown here), but also at Kapoho from Kilauea's LERZ fissure 8 flow on 17 August 2018 even though no new lava had entered the system since 6 August. Courtesy of HVO.

Gas jets were throwing spatter, fragments of glassy lava, from small incandescent areas deep within the fissure 8 cone on 20 August (figure 458). The last day that the small lava pond deep within the fissure 8 cone was visible during an overflight was on 25 August; a few ocean entries were still active. A single small lava stream from the Kapoho Bay lobe was the only moving lava noted during an HVO overflight on 27 August (figure 459). Two days later, on 29 August, no lava was entering the ocean.

Figure (see Caption) Figure 458. Gas jets were throwing spatter (fragments of glassy lava) from small incandescent areas deep within Kilauea's LERZ fissure 8 cone on 20 August 2018. The spatter is the light gray material around the two incandescent points at the center. Courtesy of HVO.
Figure (see Caption) Figure 459. Only one small ocean entry near Ahalanui was visible on 27 August 2018 at Kilauea's LERZ fissure 8 flow delta. Courtesy of HVO.

The fissure 8 lava flow entering the ocean had built a lava delta over 354 hectares (875 acres) in size by the end of August 2018 (figure 460). A sand bar, comprised of black sand and lava fragments carried by longshore currents from the lava delta, completely blocked the boat ramp at Isaac Hale Beach Park on 31 August 2018 (figure 461).

Figure (see Caption) Figure 460. Kilauea's LERZ fissure 8 lava flows had built a lava delta over 354 hectares (875 acres) in size, but no active ocean entries were observed by HVO geologists on 30 August 2018. View is to the SW. Courtesy of HVO.
Figure (see Caption) Figure 461. A sand bar, comprised of black sand and lava fragments carried by longshore currents from Kilauea's LERZ fissure 8 lava delta, blocked access to the boat ramp at Isaac Hale Beach Park on 31 August 2018. The white cement ramp leads down to a small pool of brackish water surrounded by black sand. The S edge of the ocean-entry delta is at lower left. Courtesy of HVO.

Activity during September 2018. A brief resurgence of minor activity during the first few days of September was the last observed from LERZ fissure 8. Incandescence was noted in the fissure 8 cone on 1 September. There was a persistent spot of spattering, and lava slowly covered the 15 x 65 m crater floor by evening (figure 462). Webcam views showed weak incandescence occasionally reflected on the eastern spillway wall from the crater overnight, suggesting that the lava in the crater remained active. A UAS oblique image the next afternoon showed that the new lava was mostly confined to the crater floor within the cone, although a small amount extended a short distance into the spillway (figure 463). Weak lava activity continued inside the fissure 8 cone for several days; lava filled the small footprint-shaped crater inside the cone as sluggish pahoehoe flows crept across the crater floor but did not flow down the spillway. A small spatter cone ejecting material every few seconds was noted on the floor of the crater on 4 September; observations the next day showed that it had reached an estimated height of around 3-4 m (figure 464). Only a small amount of incandescence was visible overnight on 5-6 September at fissure 8.

Figure (see Caption) Figure 462. An Unmanned Aircraft Systems overflight of Kilauea's LERZ fissure 8 on 1 September 2018 showed incandescence within the cinder cone, with reports that lava had covered the 15 x 65 m foot-print shaped crater floor by evening. Courtesy of HVO.
Figure (see Caption) Figure 463. This 2 September 2018 UAS oblique image of Kilauea's LERZ fissure 8 cone showed that the new lava was mostly confined to the crater floor within the cone, although a small amount extended a short distance into the spillway. HVO geologists noted that the lava activity was at a low level by the evening, with only minimal (if any) incandescence emanating from the cone. Gas emissions from the vent were nearly nonexistent. Courtesy of HVO.
Figure (see Caption) Figure 464. A close-up view of the small cone that formed on the floor of the crater within Kilauea's LERZ fissure 8 on 5 September 2018. Bits of spatter emitted from the cone every few seconds had built it up to an estimated height of around 3-4 m. See video of spatter on HVO website. Courtesy of HVO.

 Pu'u O'o crater experienced a series of small collapses on 8 September. These produced episodes of visible brown plumes throughout the day and generated small tilt offsets and seismic energy recorded by nearby geophysical instruments. The collapses had no discernable effect on other parts of the rift and continued for several days at a decreasing frequency. Minor amounts of incandescence and fuming continued to be observed on 9 September at the fissure 8 cone. A small collapse pit formed in the cone on 10 September exposing hot material underneath and producing a short-lived increase in incandescence. Minor fuming was visible the next day from the small spatter cone. Incandescence at the collapse pit decreased over the next few days, but a glowing spot just west of the pit appeared on 11 September and grew slowly for a few days before diminishing. HVO interpreted it to be a layer of incandescence exposed in the slowly subsiding lava surface within the fissure 8 cone. Minimal incandescence was visible overnight on 14-15 September. After this, only minor fuming was visible during the day; incandescence was no longer observed for the remainder of the month.

HVO determined that the 2018 Lower East Rift Zone eruptive episode ended on 5 September 2018, bringing with it an end to the lava lake at Halema'uma'u crater and the eruptive activity that had been continuous at either Pu'u O'o or Halema'uma'u since 3 January 1983; a period of more than 36 years. Satellite imagery from early September 2018 demonstrated some of the impact of this last eruptive episode on the region around Kilauea's lower East Rift Zone since the first fissure opened at the beginning of May 2018 (figures 465 and 466).

Figure (see Caption) Figure 465. This comparison shows satellite images of Leilani Estates subdivision before (2014) and after the LERZ eruptive episode of May-September 2018 at Kilauea. The image on the right, collected in early September 2018, shows that the eastern portion of the subdivision was covered by new lava. The fissure 8 lava channel runs NE from the fissure 8 cone at the start of the channel. Note also the brown areas of dead vegetation S of the lava flow. Highway 130 runs N-S along the left side of the images. Courtesy of HVO.
Figure (see Caption) Figure 466. This comparison of satellite imagery from before (2014) and after the May-September 2018 LERZ eruptive episode at Kilauea shows the area of Kapoho before and after the event. Kapoho Crater is in the left portion of the image. Lava filled much of the crater, including the small nested crater that contained Green Lake. The Kapoho Beach Lots subdivision is on the right side of the image, north of Kapoho Bay, and was completely covered by the fissure 8 lava flow. Vacationland Hawai'i, in the lower right corner of the image, was also completely covered, along with the adjacent tide pools. Kapoho Farm Lots, near the center of the image, is also beneath the flow. Courtesy of HVO.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Piton de la Fournaise (France) — December 2018 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Eruption from 15 September to 1 November produced a lava flow to the E

Piton de la Fournaise, located in the SE part of La Réunion Island in the Indian Ocean, has been producing frequent effusive basaltic eruptions on average twice a year since 1998. The activity is characterized by lava fountains and lava flows, and occasional explosive eruptions that shower blocks over the summit area and produce ash plumes. Almost all of the recent activity has occurred within the Enclos Fouqué caldera, with recent eruptions in 1977, 1986, and 1998 at vents outside of the caldera. The most recent eruptive episode lasted 18 hours on 13 July 2018. This report summarizes activity during September-November 2018 and is based on reports by Observatoire Volcanologique du Piton de la Fournaise (OVPF) and satellite data.

After deformation had ceased in early August, inflation resumed in the beginning of September (figure 145) accompanied by low-level seismicity. From 1 to 12 September CO2 concentrations at the summit had decreased, followed by an increase during 12-20 September. A seismic crisis was reported on 0145 on 15 September that included 995 shallow (less than 2 km depth) volcano-tectonic earthquakes recorded in less than four hours. This was accompanied by rapid deformation of up to 24 cm.

Figure (see Caption) Figure 145. Horizontal displacement at Piton de la Fournaise recorded in October 2018 at the OVPF permanent GPS stations located inside the caldera. The source for the deformation was located at a depth of 1-1.5 km below the Dolomieu crater. Courtesy of and copyright by OVPF/IPGP.

The eruption began at 0435 on 15 September with a fissure opening and erupting lava on the SW flank near Rivals crater. This new fissure was about 300 m downstream, and was a continuation of, the 27 April-1 June 2018 fissure. Volcanic tremor rapidly and steadily declined once the eruption began, which is commonly observed during eruptions of Piton de la Fournaise. An observation flight that day showed five fissures with lava fountains reaching 30 m high in the center of the fissure system (figure 146). By 1100 two main lava flows had merged further downflow and traveled 2 km from the fissures. During the first hours of the eruption the estimated time-averaged discharge rate was 22.7 and 44.7 m3/s.

Figure (see Caption) Figure 146. An overflight at Piton de la Fournaise at 1100 on 15 September 2018 showed that five fissures had opened and two main lava flows had merged and extended to 2 km. The lava fountain in the center of the fissures reached 30 m high. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 15 Septembre 2018 à 16h45).

A survey on the 15th recorded multiple lobes at the end of the lava flow and flow rates of 1-5 m3/s (figures 147 and 148). Three vents remained active on 16 September and a spatter cone was being constructed around them. The lava effusion rate was measured at 2.5-7 m3/s. SO2 levels were elevated and the resulting gas plume was dispersed towards the W. On the 17th the lava flow was still high on the flank and moving E.

Figure (see Caption) Figure 147. The lava flow of the 15 September 2018 eruption of Piton de la Fournaise as seen on 17 September. The top images are photographs of the active fissure and the location of the lava flow as it progresses towards the SE, and the bottom images are thermal infrared images of the lava flow. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 17 Septembre 2018 à 17h30).
Figure (see Caption) Figure 148. The active vent at Piton de la Fournaise producing a lava flow with flow rates of 1-5 m3/s on 15 September 2018. The opening of the vent is towards the south and a degassing plume is visible. Courtesy of and copyright by OVPF/IPGP.

By 18 September a cone had developed and was open to the south, producing lava fountaining and feeding the lava flow (figure 149). The lava flow had extended to 2.8 km from the vent, with the active flow front about 500 m from the southern wall of the caldera. The flows advanced several hundred meters by the 21st and the height of the cone was 30 m on the eastern side where a near-vertical wall had formed (figure 150). The cone contained three active lava fountains.

Figure (see Caption) Figure 149. A spatter cone being built around the new vent on Piton de la Fournaise on 18 September 2018 at 1230 local time. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 18 Septembre 2018 à 17h00).
Figure (see Caption) Figure 150. The active vent on Piton de la Fournaise with spattering activity on 21 September 2018 at 1615. The wall of the cone on the left of the photograph is nearly vertical and was 30 m high. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 21 Septembre 2018 à 20h00).

Fallout of Pele's hair was reported in the Grand Coude area on 22 September. The cone remained open to the south and a deep channel had formed with lava tubes observed close to the cone (figure 151). Three lava fountains continued to feed the lava flow towards the S, then the SE, with a flow rate of 1-3 m3/s.

Figure (see Caption) Figure 151. The eruption fissure at Piton de la Fournaise on 22 September at 1100 local time. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 22 Septembre 2018 à 17h15).

By 26 September the fissure system had evolved into a single cone and the opening towards the south had closed, leaving a circular vent and a lava lake (figure 152). Observations on the 26th showed that lava tubes were developing and feeding outbreak flows 150-300 m away from the cone. During 24-30 September the surface lava flow rate varied from 0.5 to 5.3 m/s, but this was expected to be higher in the lava tubes. By the 27th the majority of the lava was feeding from within the vent area into lava tubes that continued to feed breakout flows several hundred meters from the cone. On the 30th a small lava flow was also visible at the foot of the cone and spattering was seen low above the cone (figure 153).

Figure (see Caption) Figure 152. A view of the active cone and lava flow on Piton de la Fournaise on 25 September 2018. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 26 Septembre 2018 à 17h00).
Figure (see Caption) Figure 153. An explosion producing spatter that is added to the new cone on Piton de la Fournaise. Photographs taken around 1100 on 29 September 2018. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 30 Septmeber 2018 à 15h00).

The surface lava flow rate ranged from less than 1 and up to 4 m3/s on 1-2 October, with the majority of the activity still taking place in lava tubes with some small breakout flows (figure 154). There was a reduction in surface activity on 2-3 October along with a change from continuous degassing to the emission of discrete gas plumes ("gas pistons") that were accompanied by a sharp increase in tremor (figure 155). Observations on the 4th noted that spattering at the vent was minor and rare. No breakouts were observed.

Figure (see Caption) Figure 154. The surface activity of Piton de la Fournaise at 1030 on 2 October 2018. The activity was focused at a single vent and a cone had developed on top of the initial fissure. A white degassing plume and incandescent lava are seen at the vent, but the majority of activity is below the surface in lava tubes. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 3 Octobre 2018 à 14h00).
Figure (see Caption) Figure 155. Thermal infrared imaging of the Piton de la Fournaise eruptive site and active lava flow field taken from Piton Bert at 1050 on 8 October 2018.

Limited activity continued from the 5 to 7 October surface activity remained low, with minor spattering and few breakouts. Lava continued to flow within the lava tubes and degassing was visible at the surface above them. From 30 September to 8 October the lava had traveled 1.8 km E within lava tubes and emerged as a breakout along the northern flow (figure 156). The south and central flow-fronts had not advanced during this time.

Figure (see Caption) Figure 156. The progression of the Piton de la Fournaise lava flow from 30 September (red) to 8 October 2018 (blue) as determined by InSAR satellite data. There are three main lobes, with the activity focused at the northern lobe during this time. Courtesy of OVPF/IPGP (Bulletin d'activité du samedi 8 Octobre 2018 à 16h00).

On 14 October no lava channels were visible on the surface and only small breakouts were observed (figure 157). Activity continued in lava tubes and strong degassing persisted from both the vent and main lava tubes (figure 158). On the 18th OVPF/IPGP reported continued strong degassing and a small lava channel that had formed out to a few tens of meters from the cone (figures 159 and 160).

Figure (see Caption) Figure 157. OVPF sampling a lava breakout on Piton de la Fournaise 600 m from the lava flow front at 1015 on 14 October 2018. Courtesy of OVPF/IPGP (Bulletin d'activité du samedi 14 Octobre 2018 à 13h00).
Figure (see Caption) Figure 158. The Piton de la Fournaise eruption site at 0945 on 14 October 2018. At this point most of the activity is confined to lava tubes, with the main lava tube marked by degassing moving away from the degassing vent to the left of the photograph. Courtesy of OVPF/IPGP (Bulletin d'activité du samedi 14 Octobre 2018 à 13h00).
Figure (see Caption) Figure 159. A white gas plume at the active vent of Piton de la Fournaise on 18 October 2018. Courtesy of OVPF/IPGP (Bulletin d'activité du samedi 18 Octobre 2018 à 17h00).
Figure (see Caption) Figure 160. The eruptive vent and active lava flow on Piton de la Fournaise at 1130 on 18 October 2018. Courtesy of OVPF/IPGP (Bulletin d'activité du samedi 18 Octobre 2018 à 17h00).

By 25 October the lava flow rate was still low with no further extension of the flow boundary, SO2 emission from the vent were low (close to or below the detection limit), CO2 levels were decreasing, and the intensity of the tremor had stabilized at a very low level for about 24 hours (figure 161). At this point the lava field was essentially composed of lava tubes with a maximum recorded surface temperature (maximum integrated pixel temperature) of 71°C (figure 162). This low level of activity continued during the 26-28th with a small amount of surface lava activity about 1 km from the vent. Over 29-31 October the surface activity was extremely low with no fresh lava observed and only degassing at the vent. The eruption was declared over at 0400 on 1 November after 47 days of activity.

Figure (see Caption) Figure 161. Plot of Real-time Seismic-Amplitude Measurement (RSAM), an indicator of the volcanic tremor and intensity of the Piton de la Fournaise eruption, from 15 September to 25 October 2018. The increase in RSAM beginning on 3 October was due to a change in degassing regime due to the gradual closure of the eruptive vent as the cone grew. The RSAM values stabilized after 24 October; the eruption ended on 1 November. Courtesy of OVPF/IPGP (Bulletin d'activité du samedi 4 Octobre 2018 à 16h30).
Figure (see Caption) Figure 162. An ASTER infrared satellite image of Piton de la Fournaise showing the lava flow in the SE caldera area on 25 October 2018. At this time, the lava field is essentially composed of lava tubes and it has a maximum surface temperature of 71°C. Cooler temperatures are darker and hotter temperatures are shown as white. Courtesy of OVPF/IPGP.

Thermal observations during the September-November eruption showed the evolution of the lava flow and the reduction in surface temperatures when the activity was dominated by lava tubes (figure 163). The sharp increase in thermal anomalies detected by the MIROVA algorithm showed the onset of lava effusion, and the anomalies tapered off as the flow field cooled down (figure 164). The estimated volume of lava produced from 15 September to 17 October was 9-19 million m3, but this is lower than the actual erupted volume due to the lava tube activity. There were 459 MODVOLC thermal alerts from 15 September to 25 October.

Figure (see Caption) Figure 163. Infrared Sentinel-2 images showing the progression of the active areas of the Piton de la Fournaise lava flow (bright yellow-orange) during September and October 2018. Images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 164. The MIROVA plot of thermal energy from Piton de la Fournaise shows three eruptive episodes in 2018: 27 April-1 June, a one day event on 13 July, and 15 September-1 November. Thermal signatures continue beyond the eruption dates as the lava flows cool. Courtesy of MIROVA.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr; Twitter: https://twitter.com/ObsFournaise); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Veniaminof (United States) — January 2019 Citation iconCite this Report

Veniaminof

United States

56.17°N, 159.38°W; summit elev. 2507 m

All times are local (unless otherwise noted)


Eruption with lava flows and ash plumes during September-December 2018

The most recent eruptive period at Veniaminof began in September 2018 with seismic activity followed by ash emissions and lava flows continuing through mid-December 2018, the end of this reporting period (figure 25). An intracaldera cone has been the source of historic volcanic activity in the last 200 years and more recent activity last reported in June 2013 (BGVN 42:02). Veniaminof is closely monitored by the Alaska Volcanic Observatory (AVO) and the Anchorage Volcanic Ash Advisory Center (VAAC), and is also monitored by a Federal Aviation Administration (FAA) web camera in the town of Perryville, 35 km E.

Figure (see Caption) Figure 25. View of Veniaminof to the W with a diffuse ash plume at 1517 local time on 5 September 2018. Photo by Zachary Finley (color adjusted from original); courtesy of USGS/AVO.

The most recent Strombolian-type eruptive cycle commenced with increased seismic activity on 2 September 2018. Low-level ash that rose 3 km and pulsatory low-altitude ash emissions were observed in FAA webcam images on 4-6 September. Ash deposits extended onto the snowfield at and below the summit to the SSW and SE, forming a "v" shape downslope from the summit. On 7 September a thermal feature was detected, suggesting lava fountaining at the summit, which was later confirmed by satellite data showing a S-flank lava flow about 800 m long on 9-11 September (figure 26). FAA webcam images on 26 September showed lava fountains issuing from a second vent 75 m N of the first, producing additional lava flows on the S flank (figures 27 and 28). Minor ash emissions associated with lava fountaining possibly rose as high as 4.5 km and quickly dispersed.

Figure (see Caption) Figure 26. Geologic sketch map of lava flows and features on the intracaldera cone of Veniaminof as of 11 September 2018. DigitalGlobe WorldView-3 image (left) acquired with Digital Globe NextView License. Image by Chris Waythomas; courtesy of USGS/AVO.
Figure (see Caption) Figure 27. Veniaminof eruption on the evening of 18 September 2018. Photo by Pearl Gransbury; courtesy USGS/AVO.
Figure (see Caption) Figure 28. Veniaminof in eruption on 26 September 2018. A lava flow is visible on the S flank of the volcano with steaming at the base. Photo by Jesse Lopez (color adjusted from original); courtesy of USGS/AVO.

The lava flow had traveled 1 km down the S flank of the summit cone by 1 October. Satellite imagery from 6 October showed three lobes of lava flows and a plume over a thin tephra deposit. By 25 October the lava flow had traveled as far as 1.2 km (figures 29 and 30). Fractures in the ice sheet adjacent to the lava flow field continued to grow due to meltwater flowing beneath. Additionally, a persistent and robust steam plume which contained sulfur dioxide was visible from the FAA webcam on 18 October.

Figure (see Caption) Figure 29. False color ESA Sentinel-2 image of Veniaminof on 6 October 2018 showing lava effusion and a plume with a thin tephra deposit beneath to the N. The flow is ~1 km in length with the most active front on the E, which has a SWIR (short wave infrared) anomaly extending to the flow front. A branch in the channel feeding the western lobes appears to be active as well, but without any SWIR anomaly near the flow front, suggesting that this western branch is less active. The eastern flow front is producing the strongest steam plume. Prepared by Hannah Dietterich with ESA Sentinel-2 imagery; courtesy of USGS/AVO.
Figure (see Caption) Figure 30. Sentinel-2 satellite image of Veniaminof acquired 5 December 2018. Image shows three lava lobes with relative ages from oldest (1) to youngest (3). AVO became aware of flow 3 on 29 November 2018. It is uncertain when this flow first formed because the volcano had been obscured by clouds earlier. Prepared by Chris Waythomas; courtesy of USGS/AVO.

Ash emissions significantly increased overnight on 20-21 November, prompting AVO to raise the Aviation Color Code (ACC) to Red and the Alert Level to "Warning" (the highest levels on a four-level scale). The ash emissions rose to below 4.6 km and drifted more than 240 km SE. On 21 November observations and FAA webcam images indicated continuous ash emissions through most of the day as ash plumes drifted SE, extending as far as 400 km (figure 31). A short eruptive pulse was recorded during 1526-1726, and subsequent ash plumes rose to below 3 km with low-altitude ash emissions drifting 100 km S on 22 November (figure 32). Decreased ash emissions prompted AVO to lower the ACC and Alert Level to Orange and "Watch", respectively. However, lava effusion was persistent through 27 November.

Figure (see Caption) Figure 31. Plume rising from Veniaminof on 9 November 2018. View is to the west. Ash is visible at the summit and steam is rising from the S-flank lava flow. Photo by Zachary Finley (color adjusted from original); courtesy of USGS/AVO.
Figure (see Caption) Figure 32. Annotated satellite image of the Veniaminof eruption taken by Sentinel-2 on 22 November 2018. The image shows an eruptive plume above the active cone within the caldera, as well as a broad tephra deposit to the SE on snow extending to Perryville. Image courtesy of USGS/AVO (ESA/Copernicus; Sentinel-2 image visualized in EOS LandViewer).

During 27-28 November acoustic waves were recorded by regional infrasound sensors. A continuous low-amplitude tremor was recorded until the network went offline following a M 7 earthquake in Anchorage on 30 November. On 6 December seismicity changed from nearly continuous low-level volcanic tremor to intermittent small low-frequency events and short bursts of tremors, possibly indicating that lava effusion had slowed or stopped. Variable seismicity continued through 12 December, though there was no visual confirmation of lava effusion.

Minor ashfall was recorded in Perryville (35 km E) on 25 October and 22 November 2018. Elevated surface temperatures and thermal anomalies were identified in satellite data on 7, 12-26 September, 2-9 and 24-30 October, 7-22 November, and 4-5 December. Nighttime incandescence was visible from the FAA webcam at various times during this reporting period (figure 27). Following 22 November, the ACC remained at Orange and the Volcano Alert Level remained at "Watch."

The MIROVA thermal anomalies detected during this period were reported as having moderate to high radiative power (figure 33). Numerous thermal anomalies identified using the MODVOLC algorithm were also detected during this period, and showed the S-flank lava flows (figure 34).

Figure (see Caption) Figure 33. Plot showing the log radiative power of thermal anomalies at Veniaminof identified using MODIS data by the MIROVA system for the year ending on 28 February 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 34. Map of thermal alert pixels at Veniaminof from the MODVOLC Thermal Alert System during 7 September-24 December 2018 (UTC). Courtesy of HIGP - MODVOLC Thermal Alert System.

Geologic Background. Massive Veniaminof volcano, one of the highest and largest volcanoes on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/); Anchorage Volcanic Ash Advisory Center (VAAC), Alaska Aviation Weather Unit, NWS NOAA US Dept of Commerce, 6930 Sand Lake Road, Anchorage, AK 99502-1845 USA (URL: http://vaac.arh.noaa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Poas (Costa Rica) — January 2019 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Frequent changes at the crater lake throughout 2018

After an eruption in April 2017, the hot acidic lake of Poás volcano has been in a state of frequent change, with a fluctuating or absent crater lake and other crater changes. During 2018 low-level activity was dominated by hydrothermal vents and degassing. The crater lake was variable, with changes in water level and complete drying of the lake several times. Seismicity was variable with some periods of increased seismicity, deformation was variable but slight, and gas levels fluctuated through the year (figure 120).

Figure (see Caption) Figure 120. Typical situation in the Poás crater and gas data from 2018. Left: The bottom of the dry crater in March 2018 (top) and hydrothermal activity at the bottom of the crater in May 2018 (bottom). Right: Time series graphs showing the maximum concentration of SO2, ratio of SO2/CO2, and the ratio of H2S/SO2 measured at the Poás volcano by the permanent MultiGAS station. The variations are associated with the presence of the lake and with seismicity. Courtesy of OVSICORI-UNA (2018 annual bulletin).

Hydrothermal activity took place during January, with associated low-level gas emissions, and seismicity that reduced later in the month. At the beginning of January the crater lake was absent. After an increase in hydrothermal activity, the lake returned between 18-20 January (figure 121). The lake was measured to be 54°C on 22 January (on the eastern edge) and had a milky blue color with abundant degassing. Temperatures at actively degassing vents reached 97°C. Fumaroles with abundant yellow sulfur deposits were measured to be 160°C (figure 122).

Figure (see Caption) Figure 121. Changes to the Poás crater lake from January through March 2018. The level of water in the crater varies through time and the lake drained in January and March. Images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 122. Active fumaroles within the Poás crater, east of the lake. Yellow sulfur deposits and active degassing are visible. The fumaroles had a temperature of 160°C on 22 January 2018 when this photograph was taken. Courtesy of OVSICORI-UNA (22 January 2018 field report).

During February, activity remained low with fluctuating levels of CO2, SO2, and seismicity; the level of the lake also fluctuated. Activity remained shallow and related to the hydrothermal system with no magmatic activity. During March the seismicity decreased, coinciding with the disappearance of the crater lake during the March-May dry season. During April there was no change observed at the crater, and gas and seismicity continued to fluctuate within normal levels. Background activity and normal fluctuations continued through May until a phreatic (steam) eruption occurred on 25 May, producing a small gray plume and a larger white steam-and-gas plume (figure 123).

Figure (see Caption) Figure 123. A phreatic (steam) explosion on 25 May 2018 at the active Poás crater. Courtesy of OVSICORI-UNA (20 December 2018 report).

In June there was an increase in activity on the crater floor with increased submarine degassing and an increase in the lake water level. A high flow of SO2 (approximately 500 tons per day) was measured on 22 June. The measured level of SO2 was higher on 27 June, at 1,500 tons per day.

Gas emissions, deformation, and seismicity continued with fluctuations through July and August, with a decrease in SO2 around 30 July. Underwater fumaroles continued to be active. A milky-blue crater lake was present throughout this time (figure 124). During September, seismicity was described as highly variable and the crater lake was present (figure 125). Increased seismicity around 8 October coincided with slight inflation at the surface with an increase in activity through to 16 October. Gas emissions remained variable throughout September and October. A slight increase in seismicity occurred in early November and declined again by 19 November, with all other activity variable and within normal levels.

Figure (see Caption) Figure 124. The Caliente crater at Poás with a blue crater lake on 28 August 2018. Courtesy of Costa Rica Gobierno del Bicentenario.
Figure (see Caption) Figure 125. The partially-flooded Poás crater with a blue 38°C lake on 14 September 2018. The black arrow points to convection in the water from a flooded vent, with the insert photo showing a vent on the dry crater floor on 4 September 2017. Courtesy of OVSICORI-UNA (14 September 2018 report).

During December phreatic activity was observed at hydrothermal vents on the 19th (four events) and 20th (three events) that ejected water-saturated material up to 30 m above the vent accompanied by strong degassing and steam plumes. On 20 December it was observed that the lake level had dropped by 1 m and the lake was divided into two bodies of water, Boca A and Boca C. There were also changes in the crater lake color. Starting at the beginning of the month, the lake progressively changed from blue to green, especially visible on 8 December (figures 126, 127, and 128).

Figure (see Caption) Figure 126. Photos of the Poás crater lake showing the nearly-dry lakebed on 31 May, a blue lake on 7 July and 1 August, and a green lake on 6 December 2018. The change in the color of the water is due to the chemical composition of the lake including silica, iron, and sulfur, reflecting different wavelengths of light. Courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 127. A view of the green crater lake with reduced water levels at Poás on 13 December 2018. Photo by Federico Chavarría-Kopper courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 128. The changing crater lake of Poás volcano in December 2018. In one month the crater had a turquoise lake, a green lake, and was dry with no lake. Images courtesy of Sentinel Hub Playground.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Costa Rica Gobierno del Bicentenario, Official Website - Presidency of the Republic of Costa Rica, Zapote, San José, Costa Rica (URL: https://presidencia.go.cr/comunicados/2018/08/29-de-agosto-presidente-alvarado-dara-banderazo-de-reapertura-del-volcan-poas/).


Nevados de Chillan (Chile) — December 2018 Citation iconCite this Report

Nevados de Chillan

Chile

36.868°S, 71.378°W; summit elev. 3180 m

All times are local (unless otherwise noted)


Dome growth and destruction with several explosive events, June-November 2018

Nevados de Chillán is a complex of late-Pleistocene to Holocene stratovolcanoes in the Chilean Central Andes. An eruption started with a phreatic explosion and ash emission on 8 January 2016 from a new crater (Nicanor) on the E flank of the Nuevo crater, which lies on the NW flank of the cone of the large stratovolcano referred to as Volcán Viejo. Strombolian explosions and ash emissions continued throughout 2016 and 2017. The presence of a lava dome within the Nicanor crater was confirmed in early January 2018; it continued to grow through May 2018. This report covers continuing activity from June-November 2018 when growth and destruction of the dome alternated in a series of explosive events. Information for this report is provided primarily by Chile's Servicio Nacional de Geología y Minería (SERNAGEOMIN)-Observatorio Volcanológico de Los Andes del Sur (OVDAS), and by the Buenos Aires Volcanic Ash Advisory Center (VAAC).

Activity at the Nevados de Chillán volcanic complex from June-November 2018 consisted of continued steam-and-gas emissions and periodic explosions with ash plumes and incandescent ejecta; these caused frequent changes to the size and shape of the Gil-Cruz dome within the Nicanor crater. Incandescent material as far as 300 m down the flank was seen in nighttime and thermal webcam images on multiple occasions. Larger explosive events during 13-15 July, 7-8 August, 11-12 September, 13 October, and 7 November produced significant ash plumes that rose a few kilometers above the summit, covered much of the area around the crater with fresh ash and blocks as large as a meter in diameter, and caused noticeable changes to the size and shape of the dome. A 400-m-long pyroclastic flow traveled down the E flank on 12 September 2018. The highest ash plume, on 7 November, rose almost 4 km above the summit and drifted SE.

Intermittent seismic and effusive activity continued during June 2018. Seismicity consisted of long-period earthquakes (LP) and tremor episodes (TR) related to the growth of the viscous lava dome located in the Nicanor crater, and occasional volcano-tectonic (VT) seismic events. Gray emissions and dark ash covering the snow were reported several times during the month. The dome was visible on clear days from the webcam located in Portezuelo (70 km NW); the thermal camera there showed intermittent evidence of emissions as well, usually as nighttime incandescence and ejecta scattered around the crater. Incandescent material traveled 300 m down the slope on 22 June. The Buenos Aires VAAC reported a brief emission on 23 June that rose to 4.6 km altitude and drifted NE before dissipating. It was accompanied briefly by a hotspot detected in thermal imagery.

Low-altitude steam and gas plumes were visible throughout July 2018 with periodic nighttime incandescence and ejecta blocks occasionally visible around the crater. Three explosions on 13, 14, and 15 July produced seismic events and significant ejecta, and resulted in partial destruction of the dome (figure 26). The event on 13 July was recorded as a M 3.7 located 430 m below the summit. During the night of 13-14 July images showed incandescence and ejecta on the NE flank near the crater ranging from centimeter to meter in size. The thermal webcam measured temperatures around 300?C. The second explosion on 14 July was recorded as a M 3.9 event located 1.4 km below the summit; webcam images in clear weather the following afternoon showed the extent of the new material on the NNE flank (figure 27). The third explosion in the early morning of 15 July was measured as a M 3.8 event and produced an incandescent column 340 m high. Additional ejecta on the NNE slope was visible in the webcam that afternoon. The Buenos Aires VAAC reported a pulse of ash moving ESE on 15 July at 6.4 km altitude. A video taken by SERNAGEOMIN during an overflight on 16 July showed ejecta around the flanks and steam rising from the partly destroyed dome. Intermittent, low-altitude steam-and-gas emissions continued for the rest of the month; light gray emissions were reported from 26 July through the end of the month.

Figure (see Caption) Figure 26. Images of the Gil-Cruz dome inside the Nicanor crater at Nevados de Chillán show changes in the character of the dome between 4 April and 16 July 2018 after a series of explosions on 13, 14, and 15 July 2018. The arrows show the main area covered by incandescent ejecta during the explosions. Left image courtesy of Nicolás Luengo V. and used with permission, right image taken during a SERNAGEOMIN overflight and copyright by Carabineros de Chile.
Figure (see Caption) Figure 27. Images from a SERNAGEOMIN webcam showing the NE slope of Nevados de Chillán on several dates in July 2018. Significant ejecta from an explosion during the night of 13-14 July covered the rim of the crater and traveled down the NNE slope over the snow (top). Additional new ejecta appeared on the NNE slope on 15 July 2018 after a third explosion in three days (bottom left). Steam and gas plumes rose from the crater on 24 July 2018 (bottom right) and for the remainder of the month after the explosions during 13-15 July. Courtesy of SERNAGEOMIN.

An explosion midday on 7 August 2018 produced abundant high-temperature ejecta around the crater and a 1.5 km high ash plume, according to SERNAGEOMIN. Intermittent gray plumes were reported the next day and for the remainder of August, along with incandescence at night from high-temperature degassing and smaller explosive events (figure 28). The Buenos Aires VAAC reported sporadic and small puffs of ash visible in the webcam on 27 August.

Figure (see Caption) Figure 28. Activity during August 2018 included a number of ash plumes and incandescent explosions at Nevados de Chillán. Skier Birgit Erti captured this image of an ash plume rising after an explosion on 8 August (left); courtesy of Jaime S. Sincioco. Incandescence from explosions at Nevados de Chillán on 16 August (right) was typical of activity throughout the month; courtesy of SERNAGEOMIN.

Intermittent gray emissions and minor incandescence at night were typical of the activity during September 2018, except for a series of explosive events during 11-13 September (figures 29). An explosion on 11 September produced ejecta that traveled 300 m down the slope. The largest event, on 12 September, produced a 2.5-km-high dense ash plume and a pyroclastic flow that went 400 m down the E slope. Communities within 1 km of the crater reported ashfall. Drone video footage from 13 September posted by Nicolas Luengo V. showed the path of a block-and-ash flow down the flank and dense steam emissions with ash rising from the partially destroyed dome (figure 30) (Luengo and Palma, 2018). The Buenos Aires VAAC reported a small ash plume at 4.3-4.9 km altitude drifting SSW on 14 September. Satellite images from 16 September again showed partial destruction of the growing dome at the summit from the explosive events.

Figure (see Caption) Figure 29. Incandescent explosions on 12 September 2018 (left) generated significant ash and ejecta, including a pyroclastic flow, that spread down the flank of Nevados de Chillán. Fresh deposits from the explosions were visible on 14 September (right) from the webcam. Courtesy of SERNAGEOMIN.
Figure (see Caption) Figure 30. Dense steam-and-ash rose from the dome inside the Nicanor crater at Nevados de Chillán on 13 September 2018 in multiple explosive events. Courtesy of Nicolás Luengo, used with permission.

The Buenos Aires VAAC reported an ash emission to 6.1 km altitude on 13 October 2018 seen in multispectral imagery under mostly clear skies moving SSE, and another isolated emission at the same altitude moving SE on 31 October. SERNAGEOMIN reported abundant ejecta scattered around the crater after the 13 October event. Another explosive event on 7-8 November produced incandescent ejecta and ash plumes that were the highest of the reporting period, rising to 7 km altitude and moving SE as reported by the Buenos Aires VAAC (figure 31).

Figure (see Caption) Figure 31. Explosive events at Nevados de Chillán on 7 and 8 November 2018 were recorded by the SERNAGEOMIN webcam on the NE flank (left, 8 November), and by Samuel Opazo T (right, 7 November), likely taken from a community about 40 km NW. Courtesy of SERNAGEOMIN and Samuel Opazo T.

For most of November 2018, pulsating emissions from the crater were accompanied by nighttime incandescence with small explosions and short-range ejecta. The SERNAGEOMIN webcam captured images of explosions on 23, 27, and 29 November. The Buenos Aires VAAC observed weak pulses of ash in satellite imagery at 3.9 km altitude on 23 and 27 November. The intermittent explosions with incandescent blocks and ash from June through November 2018 produced occasional low to moderate thermal anomalies that were captured by the MIROVA project (figure 32).

Figure (see Caption) Figure 32. Low to moderate power thermal anomalies at Nevados de Chillán were intermittent between June and November 2018, increasing slightly in both intensity and frequency towards the end of the period. Courtesy of MIROVA.

Reference: Luengo, Nicolas and Palma, Jose Luis, 2018, Morfometría y tasas de extrusión del domo de lava del Complejo Volcánico Nevados de Chillán mediante el uso de drones eimágenes satelitales, Concepción, Chile, XV Congreso Geológico Chileno, University of Concepción, DOI:10.13140/RG.2.2.35386.64966/1.

Geologic Background. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/), 16 July 2018 overflight video on YouTube (https://www.youtube.com/watch?v=SVFklfEnWXI); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Nicolas Luengo, University of Concepcion (Twitter: @nluengov), 13 September drone video footage on YouTube (https://www.youtube.com/watch?v=BZt5X3rWoFM); Jaime S. Sincioco (Twitter: @jaimessincioco); Samuel Opazo T (Twitter: @OpazoSamuel).


Sabancaya (Peru) — December 2018 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Frequent ash plumes continued during June-November 2018

Sabancaya has been continuously active in recent years after renewed unrest began in February 2013 following almost 10 years of quiescence. After an increase in seismicity and an increase in the volume and frequency of fumarole emissions, the first explosion of the current eruption occurred in November 2016. Since then, activity has largely consisted of ash plumes and fumarolic activity.

This report summarizes activity during June-November 2018 (table 3) and is based on reports by the Observatorio Vulcanológico division of El Instituto Geológico, Minero y Metalúrgico (OVI-INGEMMET) and Instituto Geofísico del Perú (IGP), and satellite data. During this time the average daily number of explosions was 22, and ranged from 13 to 30. Maximum ash plume heights varied between 1.3 to 4.5 km above the crater, with the maximum plume heights each month usually between 2.5 and 3.7 km. SO2 emissions were variable and reached a maximum of 14,859 tons per day and the drift directions were wind dependent (figure 51).

Table 3. Summary of eruptive activity at Sabancaya during June-November 2018 based on OVI-INGEMMET weekly reports and the HIGP MODVOLC hotspot monitoring algorithm.

Month Avg. Daily Explosions by week Max Plume Heights (m above crater) Plume Drift MODVOLC Alerts Max SO2 tons/day
Jun 2018 24, 19, 29, 24 1,300-2,500 20-30 km, E, S, SE 19 3,000-5,600
Jul 2018 22, 23, 25, 24 1,300-2,500 20-30 km, S, SE, E 12 4,715-14,859
Aug 2018 19, 23, 27, 25, 25 2,600-4,500 30-50 km, N, NE, S, SE 27 2,230-5,000
Sep 2018 17, 13, 16, 21 2,500-3,700 30-50 km, N, NE, S, SE, NW 28 1,600-3,970
Oct 2018 24, 17, 23, 30 2,500-3,500 30-50 km, N, NE, SE, S, SW, W 21 2,200-5,027
Nov 2018 30, 18, 20, 20, 21 2,500-3,700 30-40 km, N, E, SE, S, SW, W, NW 35 2,300-4,600
Figure (see Caption) Figure 51. Examples of SO2 plumes from Sabancaya detected by the NASA Ozone Monitoring Instrument (OMI) in July, September, and October 2018 (dates, times, and SO2 max values are given in the header of each image). Courtesy of NASA Goddard Flight Center.

During June, Sabancaya produced 19-29 explosions per day that ejected ash plumes up to heights of 1.3-2.5 km above the crater (figure 52). These ash plumes extended to 20-30 km away from the volcano. The maximum emissions of SO2 throughout the month ranged from 3,500 to 5,600 tons per day. There was a total of 19 MIROVA thermal anomalies.

Figure (see Caption) Figure 52. An IGP webcam recorded an ash plume at Sabancaya that reached 1,500 m above the crater on 21 June 2018. Courtesy of IGP via OVI-INGEMMET (RSSAB-25-2018 18-24 June 2018 report).

Throughout July there were on average 22-25 explosions per day. Ash plumes reached heights of 1.3-2.5 km above the crater, and drifted 20-30 km to the S, SE, and E (figure 53). On 23 July, Sabancaya produced a continuous ash plume that traveled over 100 km to the SE (figure 54). SO2 emissions were higher this month, with maximum emissions reaching 14,859 tons per day. Twelve MODVOLC thermal alerts were issued.

Figure (see Caption) Figure 53. An ash plume rising through meteorological clouds at Sabancaya on 16 July 2018. Courtesy of IGP via OVI-INGEMMET (RSSAB-29-2018 16-22 July 2018 report).
Figure (see Caption) Figure 54. The ash plume at Sabancaya on 23 July 2018 traveled over Chachani, Misti, and Ubinas volcanoes, and the Quinistaquillas, Carumas, and Calacoa districts. Courtesy of OVI-INGEMMET (13 August 2018 report).

There were an average of 19-27 explosions per day throughout August (figure 55). Ash plumes reached maximum heights of 2.6-4.5 km, and drifted 30-50 km away in various directions. Activity generated two ash plumes on 24 August, one to 4 km above the crater at 0800 and the other to 4.5 km at 0945 (figure 56). The ash was dispersed to the NE, N, and E for 30 km over the towns of Chivay, Yanque, Coporaque, Ichupampa, Achoma, Maca and Pinchollo. On the 25th, an explosion at 1020 produced an ash plume to over 3 km above the crater that resulted in ashfall in the towns of Achoma, Maca and Pinchollo. There were 28 MODVOLC thermal alerts throughout the month. The maximum SO2 emissions reached 2,230-5,000 tons per day.

Figure (see Caption) Figure 55. Photograph of an explosion producing an ash plume at Sabancaya in early August 2018, taken while OVI-INGEMMET installed monitoring equipment. Courtesy of OVI-INGEMMET (10 August 2018 report).
Figure (see Caption) Figure 56. An ash plume at Sabancaya on 24 August 2018 at 0947 that reached a 4.5 km above the crater. The ash was dispersed 30 km to the NE, N, and E, and impacted the towns of Chivay, Yanque, Coporaque, Ichupampa, Achoma, Maca, and Pinchollo. Courtesy of OVI-INGEMMET (27 August 2018 report).

There was an average of 13-21 explosions per day during September, with ash plumes reaching 2.5-3.5 km above the crater. The ash traveled 30-50 km away in different directions (figure 57). There were 28 MODVOLC thermal alerts issued throughout the month, consistent with elevated thermal activity that is visible in Sentinel-2 satellite images (figure 58). The maximum measured SO2 emissions were 1,600-3,970 tons per day. A drone overflight by the IGP and the Pontifical Catholic University of Peru (PUCP) in the third week of September gave the first view of the crater since the eruption began in 2016 (figure 59), revealing lava in the crater and at least six ash emission points.

Figure (see Caption) Figure 57. Sentinel-2 satellite image of an ash plume at Sabancaya on 17 September 2018. The ash plume was directed towards the NE, then the SE. Natural color (bands 4, 3, 2) image courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 58. Sentinel-2 satellite images showing elevated thermal activity (bright orange-red) in the Sabancaya crater on the 7 and 22 September 2018. False color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 59. Drone video of the Sabancaya crater was taken in September 2018 showed lava on the crater floor and ash emissions from six locations. This image is a screenshot taken from video collected during the collaborative overflight by IGP and the Pontifical Catholic University of Peru. Courtesy of IGP (24 September 2018 report).

Similar activity continued through October, with an average of 17-30 reported explosions per day. Ash plumes reached maximum heights of 2.5-3.5 km and dispersed 30-50 km in various directions (figure 60). Ashfall was reported in the Huanca area during the week of 1-7 October. Maximum SO2 emissions were 2,200-5,027 tons per day. There were 21 MODVOLC thermal alerts issued for the month.

Figure (see Caption) Figure 60. An example of an ash plume at Sabancaya on 28 October 2018. Courtesy of OVI-INGEMMET (RSSAB-43-2018 22-28 October weekly report).

November 2018 marked two years of uninterrupted activity at Sabancaya (figure 61). Between November 2016 and November 2017 there were 14,000 registered explosions with an average of 39 per day. From November 2017 to November 2018 there were more than 9,800 explosions recorded with an average of 27 per day. During the month there was an average of 18-30 explosions per day, with ash plumes reaching maximum heights of 2.5-3.7 km above the crater and dispersing 30-40 km in all directions. This month saw the highest number of MODVOLC thermal alerts with a total of 35. The maximum detected SO2 emissions were 2,300-4,600 tons per day.

Figure (see Caption) Figure 61. Graph showing the number of explosions per day at Sabancaya from November 2017 through to November 2018. Courtesy of IGP (6 November 2018 report).

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Observatorio Volcanologico del INGEMMET, (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe; video URL: https://www.youtube.com/watch?v=CpLhruMwuxQ); Instituto Geofisico del Peru, Observatoria Vulcanologico del Sur (IGP-OVS), Arequipa Regional Office, Urb La Marina B-19, Cayma, Arequipa, Peru (URL: http://ovs.igp.gob.pe/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Stromboli (Italy) — December 2018 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Explosive activity produced ash, lapilli, and bombs, with occasional spattering during July-October 2018

Stromboli is a persistently-active volcano that currently has five active vents in the crater terrace area that sits above the steep slope of the Sciara del Fuoco. For several decades, activity has been focused at three main craters, the North crater (N area) and the Central and South craters (CS area), each with multiple frequently-active vents.

This report summarizes activity for July-October 2018 (table 4) and is based on reports by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and satellite data. Intensities associated with explosions are based on the following heights of material ejected from the crater and are as follows. Very low is less than 40 m; low is 40-80 m; medium is 80-150 m; and high is greater than 150 m (figure 131). Overall, the intensity of all vents ranged from very low to medium, with variations in the eruption of ash and lapilli to bomb-sized material (less than 2 mm, 2-64 mm, and over 64 mm, respectively). The variations in activity of the five active vents during July-October is seen in Sentinel-2 thermal satellite data (figure 132).

Table 4. Activity at Stromboli during July-October 2018 summarized by vent areas: N Area (North) with vents N1 and N2; CS Area (central-south) with vents C, S1, and S2. Maximum reported heights for each month are given as meters above the crater. Data courtesy of INGV weekly reports.

Month N Area Activity CS Area Activity
Jul 2018 N1: Explosions ejected lapilli and bombs with some ash up to heights of 200 m. N2: Explosions ejected ash, lapilli, and bombs up to 200 m. The average explosion frequency for the N-Area was 1-19 per hour. C: Continuous degassing with intense Spattering on the 26th. S1: Gas jets with some ash, lapilli, blocks up to 80 m. S2: Explosions with ash, lapilli, blocks up to 150 m. The average explosion frequency for the CS-Area was 1-11 per hour.
Aug 2018 N1: Explosions ejected lapilli and bombs with some ash up to 140 m. N2: Explosions ejected lapilli and bombs with occasional spattering up to 140 m. The average explosion frequency for the N-Area was 2-20 per hour. C: Continuous degassing at two points, intense spattering on the 27th. Some explosions ejected material up to 120 m. S1: Explosive activity and gas jets, incandescent material up to 150 m. S2: Explosive activity ejected material up to 80 m. Major explosion occurred at the CS area on the 18th.The average explosion frequency for the CS-Area was 1-15 per hour.
Sep 2018 N1: Explosions ejected lapilli and bombs with some ash up to 140 m. N2: Explosions ejected mainly ash with some lapilli and bombs up to 150 m. The average explosion frequency for the N-Area was 2-12 per hour. C: Two emission points with continuous degassing, interrupted by explosions and spattering. S1: Jets of incandescent material up to 120 m. S2: Explosive activity with some ash and lapilli up to 120 m, two active vents from the 10th. The average explosion frequency for the CS-Area was 4-20 per hour.
Oct 2018 N1: Explosions ejected lapilli and bombs with some ash up to 150 m. N2: Explosions ejected mostly ash with some lapilli and bombs up to 150 m. The average explosion frequency for the N-Area was 1-13 per hour. C: Two emission points with continuous degassing interrupted by occasional spattering and explosions. S1: Jets of incandescent material up to 120 m. S2: Variable explosive activity ejecting material up to.120 m. The average explosion frequency for the CS-Area was 6-20 per hour.
Figure (see Caption) Figure 131. A thermal image of the active craters of Stromboli showing the Central-South crater (Area CS) and northern crater (Area N), with the active vents S1, S1, C, N1, N2. The white horizontal lines show the heights attributed to explosion intensity: low (bassa), medium (media), and alta (high). Image taken on 29 October 2018, courtesy of INGV (Report No. 44/2018, released on 30 October 2018).
Figure (see Caption) Figure 132. Infrared Sentinel-2 satellite images showing thermal variations at vents on Stromboli during July-October 2018. The active vents are shown in bright yellow-orange and gas plumes appear as light blue-white areas emanating from the vents. Courtesy of Sentinel Hub Playground.

During July Strombolian activity continued with explosions of low to medium-low intensity in the N Area; variable explosions ejected mainly lapilli and bombs along with some ash at the N1 vent, and mainly ash with lapilli and bombs at the N2 vent. Explosive activity was absent or sporadic at the N2 vent during 4-5 July. There was a rapid increase in explosion frequency at the N1 vent on the 14th, and on the 16th lapilli and bombs were ejected. During 16-29 July explosive activity in the N Area was focused at the N2 vent. The average frequency of explosions in the N area ranged from 1-19 per hour. Explosion intensity in the CS Area ranged from low to medium at both the S1 and S2 vents. The C vent produced continuous degassing that was interrupted by intense spattering on the 26th. Activity at the S1 vent was characterized as jets with some ash, lapilli, and blocks, and explosions with ash, lapilli, and blocks occurred at the S2 vent. The average frequency of explosions in the CS area ranged from 1 to 11 per hour during July. The total number of explosions at Stromboli increased in mid-July and remained elevated compared to previous months through the end of October (figure 133).

Figure (see Caption) Figure 133. Graph showing the average number of explosions at Stromboli per day from 1 January to 20 October 2018. The red data are for the N crater area, green are for the CS crater area, and dark blue are the total explosions per day for all active vents. There was a period from mid-January to mid-July when there was a reduction in the frequency of explosions, which then increased to around a total of 15-30 per day. Courtesy of INGV (Report No. 44/2018 released on 30 October 2018).

Similar activity continued through August with the exception of a strong explosion at the C vent that lasted approximately one minute at 1508 on 18 August (figure 134). The explosion ejected an ash plume that rapidly dissipated. Coarse pyroclastic material fell on the crater terrace area and the upper part of the Sciara del Fuoco, and rolled down to the ocean. Occasional intense spattering at the C vent was also observed on the 27th, interrupting the continuous degassing from two vents. Medium to low, and occasionally high-intensity gas jets that incorporated incandescent material were frequent at the S1 vent through August. Low- to medium-intensity explosive activity occurred at the S2 event throughout the month. Explosions averaged 1-11 per hour for the entire CS area during August. The N area produced variable explosions that ejected lapilli and bombs with some ash at the N1 vent. During 8-12 August most of the activity in the N area continued to be focused at the N2 vent, and during this time it produced intense spattering activity. During the rest of the month activity at the N2 vent was characterized by variable explosive activity that produced lapilli and bombs with occasional spattering. The average frequency of explosions for the month was 2-20 per hour.

Figure (see Caption) Figure 134. The major explosion at the Stromboli C vent on 18 August 2018 as seen in thermal and photograph images. The brief (less than one minute) explosion produced an ash plume that deposited material around the vent and on the Sciara del Fuoco. Courtesy of INGV (Report No. 34/2018 released on 21 August 2018).

The typical activity persisted through September with explosions producing ash, lapilli, and blocks (figures 135 and 136), gas jets with incandescent material (figures 137 and 138), and degassing. Over the month there was an average of 2-12 explosive events per hour at the N area, and an average of 4-20 events per hour at the CS area. Variable explosions that ejected lapilli and bombs with some ash characterized activity at the N2 vent, and mainly ash with some lapilli and bombs were typically ejected at the N1 vent. Continuous emissions originated from two points within the C vent and was occasionally interrupted by explosions and spattering. Jets of gas and incandescent material continued at the S1 vent and explosive activity with some ash and lapilli occurred at the S2 vent. The S2 vent had two active points from the 10 September onwards.

Figure (see Caption) Figure 135. Ash plumes and degassing on 10 September. Courtesy of Benjamin Simons, The University of Auckland.
Figure (see Caption) Figure 136. Thermal infrared video screenshots showing multiple active vents in the Stromboli central-south crater area on 10 September 2018. Vents are actively degassing and explosions eject hot lapilli and blocks at two craters. Courtesy of Benjamin Simons, The University of Auckland.
Figure (see Caption) Figure 137. A gas jet with incandescent lapilli and bombs from the Stromboli central-south crater area on 10 September 2018. White gas plumes are visible emanating from other vents in the central-south and north craters. Courtesy of Benjamin Simons, The University of Auckland.
Figure (see Caption) Figure 138. Screenshots of a video showing a gas jet with incandescent lapilli, bombs, and ash from the Stromboli Central-South crater area on 10 September 2018. A large bomb can be seen ejecting from the vent in the top photo. White plumes are a result of degassing of the surrounding vents. Courtesy of Benjamin Simons, The University of Auckland.

During October variable explosions continued to produce low-to medium-intensity explosions that ejected lapilli and bombs, and sometimes ash, at the N1 vent, and very low- to low-intensity explosions that produced mostly ash with some lapilli and bombs at the N2 vent. Explosions averaged 1-13 events per hour through the month. The CS area produced a higher average of 6-20 explosions per hour for October. Sustained degassing continued at two points in the C vent. Low- to medium-low-intensity jets on incandescent material occurred at the S1 vent, and the same intensity of explosive activity was reported at the S2 vent.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period from about 13,000 to 5000 years ago was followed by formation of the modern edifice. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5000 years ago as a result of the most recent of a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/en/); Benjamin Simons, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand (URL: https://unidirectory.auckland.ac.nz/people/profile/bsim836); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Santa Maria (Guatemala) — December 2018 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Ash plumes, degassing, and avalanches continue during May-October 2018 with occasional lahars

Santa Maria is one of the most active volcanoes of Guatemala. The volcano is composed of a large edifice that reaches over 3.7 km above sea level; the Santiaguito dacitic dome complex to the SW, with the active Caliente dome, rises to a height of over 2.5 km (figure 77). The Santiaguito dome complex is situated in a large crater that formed during a catastrophic eruption in 1902. Growing since 1922, this complex has recently been characterized by dome-growth activity that includes degassing, ash plumes, avalanches, pyroclastic flows, lava flows, and lahars. This report summarizes activity from May through October 2018, and is based on reports by Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and satellite data. During this period, activity consisted of degassing, ash plumes, and avalanches at the Caliente dome, and lahars in multiple tributaries. Intermittent low-power thermal anomalies were detected throughout this period (figure 78).

Figure (see Caption) Figure 77. Santa Maria volcano consists of an older, larger peak to the NW and the Santiaguito dome complex to the SW. Top: The currently-active dome, Caliente, is situated in the 1.5-km-wide collapse crater. Bottom: The Caliente dome has fresh, unstable material accumulating in the crater that is prone to avalanches; image of the dome on 8 August 2018 (4-10 August 2018 weekly report). Courtesy of INSIVUMEH.
Figure (see Caption) Figure 78. Log radiative power MIROVA plot of MODIS infrared data at Santa Maria for May through November 2018. Courtesy of MIROVA.

Throughout May, active degassing of the dome produced white plumes up to 3.2 km above sea level. Frequent weak to moderate explosions produced white and gray ash plumes up to 3.3 km that were dispersed to the SW, W, and SE. As many as 15 explosions were recorded per day. Avalanches frequently occurred on the SE flank of the Caliente dome. The first lahar of the year was generated by rainfall on 10 May and traveled down the Cabello de Angel-Nimá I river. The lahar was composed of abundant fine material with larger branches and blocks up to 1 m in diameter, and it smelled of sulfur. The lahar deposit was 15 m wide and 1.2 m thick. A second lahar descended along the same path on 24 May and emplaced a deposit with a width of 18 m, a depth of 2 m, and blocks up to 2 m in diameter.

During June, white plumes associated with degassing of the Caliente dome often reached altitudes of 2.9 km, with a maximum of 3.9 km on 5 June. An average of 9-11 weak to moderate explosions per day ejected white and gray ash plumes up to 3.1-3.3 km altitude that were dispersed to the SW, W, and SE (figures 79 and 80). Ashfall was reported in Monte Claro on 26 June. Avalanches were recorded most days on the SE side of the dome due to ongoing growth. Lahars were reported on 13, 14, and 16 June down the Nimá I and Cabello de Ángel tributaries of the Samalá River (figures 81 and 82).

Figure (see Caption) Figure 79. A moderate explosion from the Caliente dome at Santa Maria generated an ash plume on 10 June 2018. Courtesy of INSIVUMEH (9-15 June 2018 weekly report).
Figure (see Caption) Figure 80. During the week of 23-30 June 2018 there was an average of 11 weak to moderate explosions per day at Santa Maria, as well as short avalanches on the S side of the dome. Left: a moderate explosion producing a plume from the Caliente dome. Right: Seismicity associated with activity of the dome including weak to moderate explosions. Courtesy of INSIVUMEH (modified from 23-30 2018 June report).
Figure (see Caption) Figure 81. Real-time Seismic-Amplitude Measurement (RSAM) graph showing four peaks corresponding to lahars on the 13 and 14 June 2018. The lahars traveled from Santa Maria down the Nimá I and Cabello de Ángel tributaries of the Samalá River. Courtesy of INSIVUMEH (9-15 June 2018 weekly report).
Figure (see Caption) Figure 82. The seismic signal produced by a lahar at Santa Maria on 16 June 2018. The lahar traveled down the Nimá I river channel. Courtesy of INSIVUMEH (16-22 June 2018 weekly report).

Throughout July, degassing of the dome and fumarolic activity produced white plumes reaching 3 km. These plumes were dominantly directed towards the SW and SE, and on a few days towards the N and W. Explosions frequently produced white and gray ash plumes up to 11 times per day (figure 83). Ash plumes often reached approximately 3.2 km altitude, drifted SE, SW, and W, and frequently deposited ash on the flanks. On 4 July an explosion produced incandescent material up to 150 m above the crater and the accompanying sound was heard in areas including El Palmar, Pueblo Nuevo, and San Felipe Retalhuleu. Avalanches most often occurred on the SE flank of the dome, with some occurring on the N, NE, and W flanks (figure 84). Incandescence was observed on the 11 July.

Figure (see Caption) Figure 83. Examples of plumes from moderate (top) and weak (bottom) explosions at Santa Maria's Caliente dome in July 2018. Courtesy of INSIVUMEH (July 1-6 and 21-27 July 2018 weekly reports, respectively).
Figure (see Caption) Figure 84. Avalanches on Santa Maria's Caliente dome during July 2018. Top: A small avalanche on the SE flank of the dome (7-13 July 2018 weekly report). Bottom: A moderate avalanche on the SE flank of the dome (21-17 July 2018 weekly report). Courtesy of INSIVUMEH.

Through August, degassing of the dome regularly produced white plumes up to a maximum observed altitude of 3.2 km (figure 85). Explosions generated white and gray ash plumes up to 3.1-3.3 km on most days, with a maximum of 13 explosions recorded per day. Gas-and-steam and ash plumes were often dispersed to the SE and sometimes towards the W. Ashfall often occurred on the slopes. Avalanches on the dome were recorded most days on the SE flank and sometimes on the E, NE, and W flanks. On 17 August at 1330 a lahar emplaced a deposit 18 m wide and 2.5 m thick, with blocks up to 3 m in diameter.

Figure (see Caption) Figure 85. Degassing of the Santa Maria Caliente dome forming white plumes during August 2018. Courtesy of INSIVUMEH (27 July-3 August 2018 and 4-10 August 2018, respectively).

Throughout September, degassing and fumarole activity of the Caliente dome produced white plumes up to 3.1 km. Explosions produced ash plumes that reached altitudes of 3.3 km up to 13 times per day. Degassing and ash plumes were most often dispersed to the SW, and sometimes to the W and SE. Red discoloration of ash was noted on 4 September due to the oxidation of the dome rock where the explosion was generated (figure 86). Ashfall often occurred within the proximity of the volcano. Avalanches were often reported as constant on the SE flank of the dome and sometimes occurring on the NE and E flanks. On 12 September a lahar was recorded traveling down both tributaries of the Samalá River. A larger lahar was generated on 20 September in the San Isidro-Tambor tributaries of the Samala River with a width of 25 m and a thickness of 2 m. The lahar carried tree trunks and branches, and blocks up to 2 m in diameter. A third lahar occurred on 24 September down the Cabello de Ángel River, with a width of 15 m, a thickness of 1.5 m, and carrying blocks up to 2 m in diameter.

Figure (see Caption) Figure 86. Oxidation in and around the crater of Caliente dome (top) at Santa Maria occurs due to the high temperatures and causes red discoloration of the rock. This leads to discolored plumes as seen on 4 September 2018 (bottom). Courtesy of INSIVUMEH (1-7 October 2018 weekly report).

Degassing at the dome during October produced white plumes to a maximum altitude of 3.2 km (figure 87). Explosions generated white and gray ash plumes up to 3.2 km, with up to 11 explosions recorded per day and an average of 8-9 per day. Plumes were often directed towards the SE, and sometimes to the W and NW. Ashfall frequently occurred on the slopes and was reported in Monte Claro on 16 and 26 October. Avalanches were frequent on the SE flank of the dome, and sometimes occurred on the W and NE flanks (figure 88). Incandescent material was observed during explosions on the 23rd. Two lahars were generated on 9 October; one traveled down the Cabello de Ángel river channel with a width of 20 m, a thickness of 2 m, and carrying blocks as large as 3 m in diameter. The second was 15-m-wide with a thickness of 1 m and blocks as large as 2 m in diameter which traveled down the San Isidro River.

Figure (see Caption) Figure 87. The Caliente dome of Santa Maria, the active dome of the Santiaguito dome complex. Top: degassing at the edge of the crater on 15 October 2018. Bottom: A moderate explosion that produced an ash plume with abundant gas on 16 October. Courtesy of INSIVUMEH (13-19 October 2018 weekly report).
Figure (see Caption) Figure 88. An avalanche on the NE flank of the Caliente dome of Santa Maria on 25 October 2018 with the corresponding seismic signal that lasted 3 minutes and 40 seconds. Courtesy of INSIVUMEH (20-26 October 2018 weekly report).

Geologic Background. Symmetrical, forest-covered Santa María volcano is one of the most prominent of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, the most recent of which is Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/ ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Kilauea (United States) — December 2018 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Lava fountains on the Lower East Rift Zone build 50-m-high pyroclastic cone and 13-km-long lava flow that engulfs Kapoho Bay during June 2018; 533 homes destroyed since 1 May

Kilauea's East Rift Zone (ERZ) has been intermittently active for at least two thousand years. Open lava lakes and flows from the summit caldera and East Rift Zone have been almost continuously active since the current eruption began in 1983. A marked increase in seismicity and ground deformation at Pu'u 'O'o Cone on the upper East Rift Zone on 30 April 2018 and the subsequent collapse of its crater floor marked the beginning of the largest lower East Rift Zone eruptive episode in at least 200 years.

During the month of May 2018 there were 24 fissures that opened along a 6-km-long NE-trending fracture zone on the lower East Rift Zone spawning lava flows in multiple directions, including several that traveled about 5 km SE to the coast; at least 94 structures were destroyed in the Leilani Estates subdivision and adjacent areas (BGVN 43:10). As lava emerged from the fissures, the lava lake at Halema'uma'u drained and explosions produced plumes that spread minor amounts of ash to downwind communities. At the end of May eruptive activity refocused around fissure 8, which began fountaining lava tens of meters into the air and creating a voluminous incandescent flow that headed downslope to the NE. The eruptive events of June 2018 (figure 386), the second month of this episode, are described below with information provided primarily from the US Geological Survey's (USGS) Hawaii Volcano Observatory (HVO) in the form of daily reports, volcanic activity notices, and abundant photo, map, and video data.

Figure (see Caption) Figure 386. A timeline of events at Kilauea for 28 May-30 June 2018. Blue shaded region denotes activity at Halema'uma'u crater at the summit. Green shaded area describes activity on the lower East Rift Zone (LERZ). HST is Hawaii Standard Time. Black summit symbols indicate earthquakes (diamonds) and ash plumes (stars); red LERZ symbols indicate lava fountains (stars), lava flows (triangles) and lava ocean entry.

Summary of events during June 2018. Lava fountains from fissure 8 were reaching 60 m in height on 29 May 2018 and producing a vigorous stream of lava that traveled rapidly downslope. Several lobes of lava advanced ENE, some at rates of several hundred meters per hour. Fissure 18 was also generating a narrow flow that headed SE for 3 km before stopping. A spatter cone began growing at fissure 8 and reached 30 m in height in just a few days. On the morning of 2 June the fissure 8 flow covered the Four Corners Intersection of Highways 132 and 137, and continued E and then SE around Kapoho Crater; lava flowed into the crater and evaporated the fresh water lake inside. Traveling at a rate of about 75 m per hour, the flow moved towards the shore and reached Kapoho Bay late on 3 June, where it began building a delta. In just a few days the delta was a kilometer in width, and lava was entering the ocean in many streams along the flow front, generating dense plumes of steam and laze.

By 15 June the fissure 8 cone had reached just over 50 m in height. Fissure 8 lava fountains persisted at 40-70 m high for all of June, feeding the 13-km-long channel to Kapoho Bay. Periodic overflows along the channel built up the levees on either side of the fast-moving river of lava; they were short-lived and traveled only a few meters. Flow speeds slowed as the lava spread out over the delta, which reached 150 hectares (380 acres) in size by 20 June. The ocean-entry points migrated north and south along the delta over the course of the month, expanding the width of the ocean entry area to over 3 km. Towards the end of June, lava was crusted over in the delta up to 1 km back from the ocean, and molten material was traveling within the interior of the earlier flows to the ocean. Minor oozing of lava was reported from a few other fissures during the month, but no other significant flow activity was observed.

Within Halema`uma`u crater at the summit a near-daily pattern of collapse explosion events was due to the subsidence caused by the magma withdrawal. As the crater subsided, its rim and walls slumped inward and large blocks dropped down along growing fractures around the caldera with seismic energy releases greater than M 5.0 almost every day. The deepest part of the crater had reached 400 m below the caldera floor by late June.

Activity at the Lower East Rift Zone during 29 May-4 June 2018. By 29 May, activity on Kilauea's lower East Rift Zone was focused on the vigorous eruption of lava from fissure 8 advancing rapidly downslope towards Highway 132. Lava fountains from fissure 8 reached 60 m in height on 29 May, feeding a flow that advanced NE over a flow from a few days earlier. The first lobe of the flow crossed Highway 132 just before 1400 that afternoon and continued NE. Most of the flow remained on the S side of the highway as it moved downslope. Visual observations in the early afternoon also confirmed continued weak activity at fissures 18 and 16. Fissure 18 had produced channelized flows which advanced about 2.6 km toward the coast during the previous day. At the ocean entry on the SE coast, only a few small channels of lava were still entering the ocean. Fissure 8 maintained high fountains throughout the day and into the overnight of 29-30 May with sustained heights exceeding 60 m and multiple secondary fountains that reached 20 m. As the flow moved downslope along the highway, the advance rates accelerated overnight, reaching approximately 550 m/hour. Overnight, sporadic bursts of activity were also observed from fissures 7 and 15.

Fissure 8 maintained fountains that rose 60-75 m high on 30 May. The flow split into three lobes; the two easternmost lobes advanced in a more ENE direction while the westernmost lobe advanced in a NE direction (figure 387). The flow rate had dropped to around 90 m/hour by late afternoon and slowed further to 45 m/hour by late evening. The fissure 18 flow also remained active, moving downslope toward Highway 137 at rates of less than 90 m/hour. By late afternoon, the front of the fissure 18 flow was about 1 km from Highway 137 and was spreading and slowing (figure 388). In the late afternoon, a new flow lobe began branching from the S side of the fissure 18 flow approximately 2 km upslope from the flow front. Throughout the day, sporadic bursts of activity were also observed from fissures 22, 6, and 13.

Figure (see Caption) Figure 387. A major lava flow that first emerged from Kilauea's fissure 8 on 28 May was moving rapidly downslope to the NE when photographed during HVO's early morning overflight on 30 May 2018. The lava channel was estimated to be about 35 m wide; 60-m-high fountains from the fissure are visible in the upper right. Courtesy of HVO.
Figure (see Caption) Figure 388. Kilauea's Lower East Rift Zone had many active flow fronts as of 1500 HST on 30 May 2018. Active fissures and flows are shown in dark red. Shaded purple areas indicate lava flows erupted in 1840, 1955, and 1960. Courtesy of HVO.

Four lobes of the fissure 8 flow advanced on 31 May (figure 389), fed by persistent fountaining that reached heights up to 80 m. A spatter cone was forming on the downwind side of the fountain and was approximately 30 m high. The fountains were feeding the flow to the NE, and minor overflows from the growing fissure 8 channel were occurring along its length, covering several of the remaining roads in Leilani Estates. The front of the flow advanced at about 90 m/hour through agricultural lands and was within 1.7 km of the Four Corners area (the intersection of Highways 132 and 137) by the evening. The fissure 18 flow that had advanced to within 1 km of Highway 137 had stalled. The new flow that branched from the fissure 18 channel 2 km upslope appeared to have captured most of the lava output from fissure 18. It descended downslope just to the S of the previous flow. Lava was pooling around the vent of fissure 22 throughout the day.

Figure (see Caption) Figure 389. Four advancing lobes from Kilauea's LERZ fissure 8 were moving 75 m per hour to the NE on the morning of 31 May 2018 in this view to the E. The flow moved north of Highway 132 in the vicinity of Noni Farms and Halekamahina roads, from which the two easternmost lobes advanced in a more ENE direction while the westernmost lobe advanced in a NE direction. Courtesy of HVO.

The advance rates of the distal part of the fissure 8 flow were low overnight on 31 May-1 June as lava ponded in a flat area, but flow continued throughout the day to within 0.5 km of the Four Corners intersection of Highways 132 and 137 by evening; fissures 18 and 22 were inactive. By 0645 on 2 June it was about 100 m from the intersection (figure 390). Around 0930 on 2 June a broad front over 275 m in width extending both north and south of Highway 132 (figures 391) crossed the intersection and continued advancing into Kapoho Crater (sometimes called Green Lake Crater) and Kapoho Beach Lots. It entered Green Lake within the crater, creating a large steam plume that was visible until 1330. The Hawaii County Fire Department reported around 1500, after an overflight, that lava had filled the lake and apparently boiled away all the water.

Figure (see Caption) Figure 390. This thermal map of Kilauea's LERZ fissure 8 flow shows the location of the lava front as of 0645 on 2 June 2018 shortly before it reached the Four Corners intersection. At that point it was roughly 10 km from the vent. The black and white area is the extent of the thermal map. Temperature is displayed as gray-scale values, with the brightest pixels indicating the hottest areas. The map was constructed by stitching many overlapping oblique images collected by a handheld thermal camera during a helicopter overflight of the flow field. The base is a copyrighted color satellite image (used with permission) provided by Digital Globe. Courtesy of HVO.
Figure (see Caption) Figure 391. Around 0715 on 2 June 2018 Kilauea's LERZ fissure 8 flow was a 275-m-wide lava front advancing on both sides of Highway 132 (left); the flow front was approximately 90 m west of the Four Corners Intersection when USGS scientists on HVO's morning overflight captured this image. Note trees and highway for scale. Courtesy of HVO.

The flow continued to advance overnight on 2-3 June along an 800-m-wide front towards the ocean at Kapoho Bay between Kapoho Beach Road and Kapoho Kai Drive. As of 0700 on 3 June, the lava flow was around 450 m from the ocean (figures 392 and 393) traveling at a rate of about 75 m/hour. By 1745 it had advanced to within 225 m of the ocean at its closest approach point. The other branches of the fissure 8 lava flow were inactive, and all other fissures were inactive, although observers on the late afternoon overflight noted abundant gas emission from fissures 9 and 10 and incandescence without fountaining at fissures 16 and 18.

Figure (see Caption) Figure 392. At 0700 HST on 3 June 2018 Kilauea's LERZ fissure 8 flow front was about 450 m from the ocean, advancing at about 75 m/hour. View is to the W looking up the flow front. Nearly all of the front was active and advancing. Courtesy of HVO.
Figure (see Caption) Figure 393. The flow front of Kilauea's LERZ fissure 8 on the morning of 3 June 2018 was advancing around 75 m/hour along a broad front towards Kapoho Bay. Dark red areas are active flow expansion, shaded purple areas indicate lava flows erupted in 1840, 1955, and 1960. Courtesy of HVO.

Fountaining lava 45-75 m high at fissure 8 continued overnight on 3-4 June, feeding the growing lava channel flowing NE along Highway 132 to the Kapoho area. Throughout 30 May-3 June tephra landing downwind from the fountaining produced a growing pyroclastic cone at fissure 8 (figure 394). Local videographers reported that lava entered the ocean at Kapoho Bay at about 2230 HST on 3 June and began constructing a delta (figure 395); by late afternoon the next day the delta extended about 640 m into the bay. A laze plume (a corrosive seawater steam plume laden with hydrochloric acid and fine volcanic particles) was blowing inland from the ocean entry but dissipating quickly. The lava flow front was about 800 m wide. A lava breakout was also occurring upslope (N) of the Kapoho cone cinder pit. A lava breakout from the S margin of the flow near the intersection of Highway 132 and Railroad Avenue had completely encircled Kapoho Cone by the end of the day.

Figure (see Caption) Figure 394. A comparison of thermal images of the fountains and fast-growing pyroclastic cone at Kilauea's LERZ fissure 8 from 30 May to 3 June 2018 indicated the increase in height of the lava fountains from 45 to over 75 m, as well as the growth of a cone (pu'u) downwind to about 30 m height. HVO reported the lava fountain temperatures were reaching up to about 1,115°C (2,040°F). The composition of the lava erupted had high MgO (magnesium oxide) values, which came from olivine crystals that were being pulled from deep within the rift zone. Courtesy of HVO.
Figure (see Caption) Figure 395. The flow front of Kilauea's LERZ fissure 8 flow reached the ocean at Kapoho Bay late in the evening of 3 June; by 0613 HST on 4 June 2018 when this image was taken during an HVO overflight, the lava was creating a large laze plume and beginning to form a delta into the bay. Courtesy of HVO.

Activity at the Lower East Rift Zone during 5-12 June 2018. The intensity of the fountaining at fissure 8 declined overnight on 4-5 June to between 40-50 m in height, not far above the top of the cone formed during the previous several days (figure 396). By the early morning of 5 June the fissure 8 flow had completely filled Kapoho Bay, extending 1.1 km from the former coastline (figure 397). On the south side of the ocean entry, lava was entering the water at the Vacationland tidepools, having inundated most of that subdivision. To the north, lava had covered all but the northern part of Kapoho Beach Lots. The northernmost lobe of the fissure 8 flow, in the Noni Farms Road area, advanced downslope about 180 m overnight (figure 398) and continued to slowly advance during the day on 5 June.

Figure (see Caption) Figure 396. Lava fountains continued at Kilauea's LERZ fissure 8, although overnight on 4-5 June 2018 USGS field crews reported reduced fountain heights. The lava fountain had built a 35 m (115 ft) high spatter cone, and an actively-growing spatter rampart on its eastern side. The lava channel leading from the cone was filled to the top of its levees at the time of this photo. The white objects in the upper left are the roofs of houses adjacent to the edge of the flow levee. Courtesy of HVO.
Figure (see Caption) Figure 397. Kapoho Bay was filled with lava from Kilauea's LERZ fissure 8 flow by the morning of 5 June 2018, as seen in this view looking S during the morning HVO overflight. Hundreds of homes around the bay were buried within the lava flow. Courtesy of HVO.
Figure (see Caption) Figure 398. By 1000 HST on 5 June 2018 there were two growing areas of active ocean entry on the delta at the front of Kilauea's LERZ fissure 8 lava flow. Dark red areas are active flows and shaded purple areas indicate lava flows erupted in 1840, 1955, 1960, and 2014-2015. Courtesy of HVO.

By the morning of 6 June 2018, the lava fountaining at fissure 8 continued to reach heights of 45-55 m and feed a stable channel to the NE and E (figure 399) to the ocean entry in the Kapoho Bay area. The lava delta that formed at the bay had also extended slightly outward overnight; during the day on 6 June a lateral lobe of the flow pushed slowly N through what remained of the Kapaho Beach Lots subdivision. Overnight on 6-7 June and throughout the following day the fountain heights from fissure 8 fluctuated between 58 and 70 m feeding the channel with vigorous flow (figure 400). The delta was about 1.9 km wide in the Vacationland/Waopae area and the flow was expanding northward (figure 401). By the late afternoon overflight on 8 June, two vigorous steam plumes were rising from the ocean flow front and being blown inland. Strong thermal upwelling was noted in the ocean extending up to 900 m out to sea from the visible lava front. Heavy gas and steam emissions were noted at fissures 9 and 10, but lava emission was occurring only at fissure 8.

Figure (see Caption) Figure 399. HVO used drones, referred to as Unmanned Aircraft Systems (UAS), to gather high-resolution video and images throughout the eruption on Kilauea's lower East Rift Zone. On 6 June 2018 a UAS flight collected video of flowing lava in the upper lava channel of fissure 8. The view is to the S towards the fissure 8 cone in the upper left. The houses on the right provide a sense of scale for the fissure 8 flow. Scientists used the video to assess lava flow velocities, which are measured by tracking surface features in the stationary video view. This still image was taken from video captured by the U.S. Geological Survey and Office of Aviation Services, Department of the Interior, with support from the Hawaiian Volcano Observatory. Courtesy of HVO.
Figure (see Caption) Figure 400. In this early morning view to the E on 7 June 2018, fountains of lava rise 50 m from Kilauea's LERZ fissure 8 and the lava channel travels NE to the ocean, a distance of about 12.5 km. Steam plumes in the distance rise from inactive fissures that opened during May. Courtesy of HVO.
Figure (see Caption) Figure 401. By 8 June 2018, Kilauea's LERZ fissure 8 flow had created a lava delta approximately 77 hectares (190 acres) in size, filling Kapoho Bay and shallow reefs along the nearby coastline. Dark red areas are active flows, shaded purple areas indicate lava flows erupted in 1840, 1955, 1960, and 2014-2015. Courtesy of HVO.

Overnight on 8-9 July the fountains at fissure 8 were slightly lower, reaching heights of 40-55 m. Fissure 22 was incandescent and there was minor lava activity at fissures 16/18 while the fuming from fissures 24, 9, and 10 had decreased from the previous day. The fissure 8 flow had created a lava delta approximately 80 hectares (200 acres) in size by the morning of 9 June, filling Kapoho Bay and covering shallow reefs along the nearby coastline (figure 402); observers that night also noted vigorous convection taking place up to 1.5 km offshore from the entry points. Minor levee overflows along the upper part of the channel occurred on 10 June from the strong channelized flow (figure 403). Near the Four Corners region the channel was incandescent and flowing vigorously.

Figure (see Caption) Figure 402. A view from offshore of the Kapoho ocean entry of Kilauea's LERZ fissure 8 flow as of 0630 HST on 9 June 2018 shows the extent of the lava delta, about 80 hectares (200 acres) in size, that formed over the previous six days. Across the front of the delta plumes of laze, created by molten lava interacting with seawater, appeared diminished that morning, but this was probably due to a change in atmospheric conditions rather than a change in the amount of fissure 8 lava reaching the ocean. Courtesy of HVO.
Figure (see Caption) Figure 403. Overflows of the upper channel at Kilauea's LERZ fissure 8 lava flow on 10 June 2018 sent small flows of lava down the levee walls. These overflows did not extend far from the channel, so they posed no immediate threat to nearby areas. Channel overflows, like the ones shown here, add layers of lava to the channel levees, increasing their height and thickness. In the lower right of the photo, a paved road and power lines provide a scale for the size of the flow channel and levees. Courtesy of HVO.

By the evening on 10 June, three closely spaced lava fountains at fissure 8 were erupting with maximum heights reaching 35-40 m (figure 404), feeding the fast moving channelized and braided flow that now traveled 13 km to the ocean at Kapoho Bay (figure 405). A strong steam plume was observed on the S end of the ocean entry with frequent steam explosions at the flow front. Weak lava activity continued during 10-12 June at fissures 16/18 as it had for the previous several days (figure 406). Incandescence was noted at fissures 15 and 22 on 12 June. Lava was entering the ocean over a broader area than before with several minor incandescent points and small plumes, and two larger entries and corresponding plumes. The fissure 8 cinder cone had reached about 43 m in height by the evening of 12 June.

Figure (see Caption) Figure 404. The three closely spaced lava fountains at Kilauea's LERZ fissure 8 reached maximum heights of 35-40 m overnight 10-11 June 2018. Lava fragments falling from the fountains were building a substantial cinder-and-spatter cone around the erupting vent, with the bulk of the fragments falling on the downwind side of the cone. The cone had reached 43 m in height by 12 June. Courtesy of HVO.
Figure (see Caption) Figure 405. Braided channels of lava from Kilauea's LERZ fissure 8 covered a wide swath of the NW side of the LERZ in the morning on 12 June 2018. Incandescence from the fountain feeding the flow is visible several kilometers in the distance in this image looking upstream. The 13-km-long flow traveled NE then E and flowed into Kapho Bay. Courtesy of HVO.
Figure (see Caption) Figure 406. The fountains at Kilauea's LERZ fissure 8 remained active as of 1400 HST on 12 June 2018, with the 13-km-long lava flow entering the ocean at Kapoho Bay along a growing delta. Very small, weak lava flows were also active near the fissure 18 area (center). The black and white area is the extent of the thermal map. Temperature in the thermal image is displayed as gray-scale values, with the brightest pixels indicating the hottest areas. The map was constructed by stitching many overlapping oblique images collected by a handheld thermal camera during a helicopter overflight of the flow field. The base is a copyrighted color satellite image (used with permission) provided by Digital Globe. Courtesy of HVO.

Activity on the Lower East Rift Zone during 13-19 June 2018. Lava fountaining at fissure 8 during 13-19 June generally rose 30-50 m with intermittent bursts as high as 60 m. The growing cone was 52 m at its highest point on 15 June (figure 407). From fissure 8, lava flowed freely over small cascades (rapids) into a well-established channel (figure 408). Near the vent, channel lava was traveling about 24 km/hour; it slowed as it traveled the 13 km-long-channel (figure 409) to about 2 km/hour near the ocean entry at Kapoho Bay. Minor amounts of lava periodically spilled over the channel levees.

Figure (see Caption) Figure 407. Lava fountains were still rising higher than the 52-m-high cone at Kilauea's LERZ fissure 8 on 15 June 2018. Courtesy of HVO.
Figure (see Caption) Figure 408. Cascades of lava from 50-m-high fountains flowed over rapids into the channel of Kilauea's LERZ fissure 8 lava flow on 17 June 2018. Near the vent, lava was traveling about 24 km per hour; lava slowed to about 2 km per hour near the ocean entry at Kapoho.
Figure (see Caption) Figure 409. Lava flowed in an open channel 13 km long to the ocean from Kilauea's LERZ fissure 8 on 18 June 2018. Kapoho Crater, which partly filled with lava on 2 June, is the vegetated hill on the right side of the photograph. The lava evaporated Green Lake inside the crater. The ocean entry plume can be seen in the distance on the left. The small white objects on either side of the flow are large buildings about 75 m long. Highway 137 emerges from underneath the flow and heads S into the distance in the upper center of the image. Courtesy of HVO.

Several laze plumes rose along the ocean entry margin as break outs fed many small and large flows during mid-June. The largest pahoehoe breakout area was on the northern margin of the flow (figure 410). A small amount of expansion continued at the southern boundary of the flow near the coast and south of Vacationland. By 17 June, lava flowing into the ocean had built a delta of flows, rock rubble, and black sand, which was over 121 hectares (320 acres) in size. The flow front at the coast was about 2.4 km wide by 18 June. Limited spattering and small flows were also observed at fissures 16 and 18 during 13-19 June; mild spattering from fissure 15 was observed late in the day on 16 June, and incandescence and mild spattering were observed from fissure 6 on 17 June.

Figure (see Caption) Figure 410. A large breakout of lava created several laze plumes as it entered the ocean along the northern ocean entry margin of Kilauea's LERZ fissure 8 flow delta on 14 June 2018. Courtesy of HVO.

Fissure 8 lava fountains 52-70 m tall showered spatter onto the cone overnight into 19 June (figure 411). Small overflows were observed on the N side of the channel near Pohoiki Road overnight and in the morning, with one breakout spreading slowly beyond the flow boundary. Field crews on the ground near fissure 8 midday on 19 June observed a still-vigorous channelized lava flow being fed by fountains at the vent. Standing waves were visible within the channel and cascades/rapids were visible near the base of the 50-m-high cone. The maximum flow velocity in the channel was measured at 28 km/hour. During the morning overflight, several small overflows could be seen along the channel margins. The flow of lava was faster in the center of the channel and decreased in speed toward the margins where friction with the channel walls increased. A small, sluggish overflow along a section of Luana Street was advancing NW. Fissures 6, 15, 16 were still oozing lava and fuming.

Figure (see Caption) Figure 411. Kilauea's LERZ fissure 8 vigor increased overnight on 18-19 June 2019 with lava fountains reaching up to 60 m. Spatter continued to build up on the E flank of cone and lava flowed into the channel. Courtesy of HVO.

Activity at Halema'uma'u crater during June 2018. Throughout June intermittent explosions and earthquakes continued at Halema'uma'u crater as the summit area subsided and adjusted to the withdrawal of magma from below. Inward slumping of the rim and walls of Halema`uma`u continued in response to the persistent subsidence. A near-daily pattern of explosive events was characterized by seismicity at the summit that would gradually increase to tens of events per hour, culminating with a larger explosion, often with an energy release equivalent magnitude greater than M 5.0. Seismicity would usually then drop significantly before gradually rising until the next explosion. Ash plumes from the explosions often rose to altitudes of 2.4-4.6 km. With each explosion, Halema'uma'u crater subsided, generating fractures and down-dropped blocks within and around the crater floor, dramatically reshaping the morphology of the summit caldera in just a few weeks (figures 412 and 413).

Figure (see Caption) Figure 412. HVO scientists captured this aerial view of a much-changed Halema'uma'u during their overflight of Kilauea's summit on the afternoon of 5 June 2018. Explosions and collapses had enlarged the crater (foreground) that previously hosted a lava lake, and the far rim of Halema'uma'u had also dropped with continued summit deflation. The parking area for the former overlook (closed since early 2008 due to volcanic hazards) is to the left of the crater with small fractures trending across it. Courtesy of HVO.
Figure (see Caption) Figure 413. Explosions and collapses continued throughout June 2018, enlarging Halema'uma'u crater almost daily. In this view on 12 June (one week after the previous image (figure 412)), the scale and rate of change at the summit of Kilauea was clear. The obvious flat surface (center) was the former Halema'uma'u crater floor, which had subsided at least 100 m during the previous two weeks. Large ground cracks circumferential to the crater rim can be seen cutting across the parking lot (left) for the former Halema'uma'u visitor overlook, which is beginning to fall into the crater. The deepest part of Halema'uma'u (foreground) was about 300 m below the crater rim. Courtesy of HVO.

Overnight on 10-11 June there were two explosions at the summit separated by about four hours, followed by a decrease in seismicity. Video recorded during a UAS (Unmanned Aircraft Systems) flight HVO on 24 June 2018 revealed details of the extensive changes occurring within Halema'uma'u crater since explosive eruptions of ash and gas and ongoing wall collapse had begun in mid-May. Clearly visible were the steep crater walls that continued to slump inward and downward with ongoing subsidence. The deepest part of Halema'uma'u had dropped over 400 m below the caldera floor. There were two obvious flat surfaces within the crater that had slumped downward as nearly intact blocks; the shallower one was the former caldera floor and the deeper one was the former Halema'uma'u crater floor. HVO reduced the Aviation Color code from Red to Orange on 24 June, citing the fact that the episodic plumes from the summit rarely exceeded 3 km altitude where the might pose a risk to aviation.

Activity on the Lower East Rift Zone during 20-30 June 2018. For the remainder of June, vigorous fountaining nearly 60 m high from fissure 8 fed the established channel that transported incandescent lava to the ocean at the Kapoho coastline where several entries were active (figure 414). The largest entry area was at the S end of the flow front, but the locations of the ocean entry points migrated back and forth along the delta over time. Periodic overflows from the channel were short-lived and produced sluggish pahoehoe flows that only traveled a few meters (figure 415). Minor effusion of lava was observed from fissures 6, 15, and 16. Activity ceased at fissure 6 by 22 June. During an overflight in the early morning of 23 June, only incandescence was noted at fissure 22.

Figure (see Caption) Figure 414. Lava from Kilauea's LERZ fissure 8 remained incandescent on its 13-km-long journey to the ocean in an open channel during the last part of June 2018. Plumes of steam and laze at the ocean entry were visible in the upper right of the left image on 20 June 2018. Small streams of lava entered the ocean across a broad area the same day, shown by the multiple white steam and laze plumes. Lava had added about 155 hectares (380 acres) of new land by 20 June 2018. Courtesy of HVO.
Figure (see Caption) Figure 415. Sluggish pahoehoe briefly spilled over a section the levee along the well-established channel of Kilauea's LERZ fissure 8 lava flow on 20 June 2018. The overflows generally traveled short distances measured in meters. Geologists tracked the extent of overflows and looked for potential areas of weakness and seepages along the sides of the perched channel in order to assess potential breakouts from the channel. The small blades of grass in the lower left suggest the scale of this photo is about one meter across. Courtesy of HVO.

The spatter cone grew to 55 m tall by 24 June, after which the lava fountains only occasionally rose above its highest point. Geologists measured lava entering the channel traveling as fast as 30 km/hour. By 25 June, most of the lava was entering the sea on the southern side of the flow front along a 1-km wide area marked by billowing laze plumes, although the lava front extended for more than 3 km along the coast (figure 416). Beginning on 27 June geologists observed fresh lava oozing at several points along the northern margin of the flow field in the area of the Kapoho Beach Lots. By then, the lava channel had crusted over about 0.8 km inland of the ocean entry; lava was moving beneath the crust and into the still-molten interior of earlier flows before it entered the sea (figure 417). The same day, small overflows on both sides of the channel occurred in the uppermost part of channel, but none of these overflows extended past the existing flow field (figure 418).

Figure (see Caption) Figure 416. Most of the lava from Kilauea's LERZ fissure 8 flow was entering the ocean at the southern edge of the delta flow field on 25 June 2018, although the whole delta extended for more than 3 km along the coast. Dark red areas were active flows, shaded purple areas indicate lava flows erupted in 1840, 1955, 1960, and 2014-2015. Courtesy of HVO.
Figure (see Caption) Figure 417. At Kilauea's LERZ fissure 8 delta, small breakouts were observed in the morning of 27 June 2018 in the area of Kapoho Beach Lots on the N flank of the flow delta near the ocean. The lava channel had crusted over about 0.8 km inland of the ocean entry; lava was moving beneath the crust and into the still-molten interior of earlier flows before it entered the sea. This thermal map shows the fissure system and lava flows as of 0600 on 27 June 2018. The fountain at fissure 8 remained active, with the lava flow entering the ocean at Kapoho. Very small, short flows were observed near fissure 22. The black and white area is the extent of the thermal map. Temperature in the image is displayed as gray-scale values, with the brightest pixels indicating the hottest areas. The map was constructed by stitching many overlapping oblique images collected by a handheld thermal camera during a helicopter overflight of the flow field. The base is a copyrighted color satellite image (used with permission) provided by Digital Globe. Courtesy of HVO.
Figure (see Caption) Figure 418. A small overflow from the lava channel of Kilauea's LERZ fissure 8 flow, visible on the left, was recorded by an Unmanned Aircraft System (UAS) flight. Small overflows on both sides of the channel occurred shortly after midnight on 27 June 2018 in the uppermost part of channel. None of these overflows extended past the existing flow field. The 'arm' is likely about 10 m long. Image by the U.S. Geological Survey and Office of Aviation Services, Department of the Interior. Courtesy of HVO.

The northern margin of the ocean entry flow field was the most active during the last few days of the month with lava entering the sea over a broad area (figure 419). A few burning areas were also observed on the S side of the flow and W of Highway 137. Field crews were able to make rough estimates of the velocity of the flow in the channel by timing the large blocks in the flow as they passed by islands within the channel and known points along the edges (figure 420). Volcanic gas emissions were very high from fissure 8 eruptions throughout June 2018 causing trade winds to bring Vog (volcanic air pollution, a hazy mixture of SO2 gas and aerosols) to the central, south, and western parts of the Island of Hawaii on many occasions. Substantial SO2 plumes were recorded daily (figure 421).

Figure (see Caption) Figure 419. At the Kapoho coast, lava from Kilauea's LERZ fissure 8 entered the ocean over a broad area along the northern margin of the flow field on 30 June 2018. Courtesy of HVO.
Figure (see Caption) Figure 420. Lava flowed rapidly around islands in the lava channel of Kilauea's LERZ fissure 8 flow on 30 June 2018. The direction of flow was from the upper right to lower left. Field crews were able to make a rough calculation of velocity by timing large blocks as they passed between two landmarks that were a known distance apart. Courtesy of HVO.
Figure (see Caption) Figure 421. Volcanic gas emissions were very high from Kilauea's LERZ fissure 8 eruptions throughout June 2018 causing trade winds to bring VOG to the central, south, and western parts of the Island of Hawaii on many occasions. Large plumes of SO2 were identified with satellite instruments on numerous days of the month; 4, 13, 20, and 22 June, shown here, were just a few of the days where large SO2 plumes drifted SW on trade winds across the southern and western margins of the island of Hawaii. The island of Hawaii is 150 km from the N tip to the S tip. Courtesy of NASA Goddard Space Flight Center.

Thermal observations during May-June 2018. The MODVOLC thermal alert system captures infrared data from satellite instruments (MODIS) that indicate the location of hot-spots around the planet. The data collected for Kilauea for May and June 2018 clearly indicated the size and scope of the eruptive episode (figures 422 and 423). At the end of April, infrared data indicated strong activity at Halema'uma'u and weak activity from the episode 61g flow that originated on the flank of Pu'u 'O'o (figure 422). The first MODVOLC thermal alert of activity on the LERZ appeared 6 May; even though the lava lake had begun to drop, there was still a strong thermal signal at Halema'uma'u that day as well. As the eruption progressed during May, the increasing size of the effusive activity that included lava flows reaching the SE coast was apparent.

Figure (see Caption) Figure 422. Selected maps showing MODVOLC thermal alert pixels at Kilauea for May 2018. An overflowing lava lake at Halema'uma'u and the episode 61g flow that originated on the flank of Pu'u 'O'o were captured in the infrared data in late April. The first MODVOLC alert on the LERZ appeared in the first week of May, and continued to grow throughout the month; the signal at Halema'uma'u was gone by mid-May. Courtesy of MODVOLC.

By early June, just a few days after the flow-volume increase on the LERZ from the channel emerging from fissure 8, the new pattern of heat flow to the N and NE around Kapoho Cone was recorded in the satellite data. The growing delta filling Kapoho Bay generated a strong infrared signal throughout the month. Although the fissure 8 flow was essentially unchanged in its thermal output on 22 and 23 June based on ground observations, the infrared data for those two days was significantly different, likely reflecting atmospheric conditions that blocked satellite views. In spite of this, the general nature of the flow activity is still clear in the data. By the end of June, the extent of the MODVOLC thermal alert pixels clearly indicated the robust nature of the continuing eruption.

Figure (see Caption) Figure 423. In early June 2018 the new pattern of heat flow to the N and NE around Kapoho Cone was recorded in satellite thermal data. The growing delta filling Kapoho Bay generated a strong infrared signal throughout the month. A change in meteoric conditions, not a change in flow activity, was likely responsible for the change in signal on 22 and 23 June. By the end of June, the extent of the MODVOLC thermal alert pixels clearly indicated the robust nature of the continuing eruption.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 43, Number 03 (March 2018)

Managing Editor: Edward Venzke

Ebeko (Russia)

Continuing frequent ash explosions through November 2017, typically to about 2 km altitude

Fournaise, Piton de la (France)

Second eruption of 2017; July-August, fissure with flows on the SE flank

Kilauea (United States)

Activity continues at Halema'uma'u lava lake, and at the East Rift Zone 61g flow, July-December 2017

Manam (Papua New Guinea)

Ash plumes and Strombolian explosions increase, March-May 2017

Poas (Costa Rica)

Increase in phreatic and phreato-magmatic explosions during April through August 2017

Rincon de la Vieja (Costa Rica)

Phreatic explosions during 29 September-22 October 2017

San Cristobal (Nicaragua)

Intermittent ash-bearing explosions during 2017; ash plume drifts 250 km in August

Sangay (Ecuador)

Eruptive episode of ash-bearing explosions and lava on SE flank, 20 July-26 October 2017

Suwanosejima (Japan)

Large explosions with ash plumes and Strombolian activity continue during 2017

Turrialba (Costa Rica)

Persistent explosions and ash emissions continue through 2017; small lava lake



Ebeko (Russia) — March 2018 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continuing frequent ash explosions through November 2017, typically to about 2 km altitude

Ebeko volcano is located on the remote N end of Paramushir Island in the Kuril Islands and contains many craters, lakes, and thermal features. Eruptions and ash plumes were observed at Ebeko in early July 2010 (BGVN 36:07). No additional activity was reported from Ebeko until October 2016, marking the start of the more recent eruptive cycle. New explosive eruptions accompanied by ash fall began on 20 October 2016 through April 2017 (BGVN: 42:08). Explosive eruptions, ash plumes, ash falls were observed and reported at a regular frequency during this reporting period from May through November 2017 (table 5). Eruptions were reported by observations from residents in the town of Severo-Kurilsk, located about 7 km E of Ebeko, by volcanologists and by satellite imagery. The Kamchatkan Volcanic Eruption Response Team (KVERT) is responsible for monitoring Ebeko, and is the primary source of information. The Aviation Color Code (ACC) remained at Orange throughout this reporting period. This color is the second highest level of the four color scale.

Table 5. Summary of activity at Ebeko volcano from May 2017 to November 2017. Aviation Color Code (ACC) is a 4-color scale. Data courtesy of KVERT.

Date Plume Altitude Plume Distance Plume Direction Other Observations
23 Apr-26 Apr 2017 2.1 km 50 km NE ACC at Orange. Minor ashfall in Severo-Kurilsk reported on 25 April
07 May 2017 -- -- -- Satellite observation
08 May-09 May 2017 2.4-2.7 km -- S, NE Satellite observation
15 May 2017 2 km -- -- Explosions
23-24 May 2017 2 km -- -- Explosions
25 May-02 Jun 2017 -- -- -- Explosions
02 Jun-09 Jun 2017 -- -- -- Explosions
09 Jun-16 Jun 2017 -- -- -- Explosions
17, 21 Jun 2017 2 km -- -- Explosions
23 Jun-30 Jun 2017 2 km -- -- Explosions, ashfall in Severo-Kurilsk reported on 24 and 26 Jun
01, 04 Jul 2017 2.6 km -- -- Explosions
07 Jul-08 Jul 2017 1.5 km -- -- Explosions
31 Jul 2017 -- -- -- Weak thermal anomaly
01 Aug 2017 1.6 km -- -- Explosions
10 Aug 2017 -- -- -- Explosions
22 Aug 2017 2 km -- SW Explosions
28 Aug-29 Aug 2017 2.2 km -- -- Explosions, minor ashfall in Severo-Kurilsk
02 Sep 2017 4 km -- -- Explosions
03, 06-07 Sep 2017 2.1 km -- -- Explosions, minor ashfall in Severo-Kurilsk
13 Sep-14 Sep 2017 2.2 km -- -- Explosions
15 Sep-17 Sep 2017 3 km -- -- Explosions, minor ashfall in Severo-Kurilsk
24 Sep 2017 2 km -- -- Explosions
29-30 Sep, 01, 05 Oct 2017 1.5 km -- -- Explosions
06-07, 09, 12 Oct 2017 3 km -- -- Explosions, ashfall in Severo-Kurilsk reported on 7, 9, and 12 Oct
13-20 Oct 2017 2.5 km -- -- Explosions
20-27 Oct 2017 2 km -- -- Explosions
27 Oct-03 Nov 2017 2 km -- -- Explosions
05, 07-08 Nov 2017 2 km -- -- Explosions
16 Nov 2017 2 km -- -- Explosions
17-18, 20-21 Nov 2017 2 km -- -- Explosions, ashfall in Severo-Kurlisk reported on 22 Nov
25-26, 28-30 Nov 2017 2 km -- -- Explosions, ashfall in Severo-Kurlisk reported on 28 Nov

Explosives events, bursts of ash, ashfall, and ash plumes were reported throughout this period, and were quite variable in appearance (figures 12-16). Minor amounts of ash fell in Severo-Kurilsk on 25 April, 2-3, 6-7, 16, and 18 September, and 22 November. Ash plume altitudes during this reporting period ranged from 1.5 to 4 km; with the highest altitude of 4 km recorded on 2 September (table 5).

Figure (see Caption) Figure 12. Ash plume from an explosive event at Ebeko on 15 May 2017. Ash plume altitude reached 2 km. Photo by L. Kotenko, courtesy of Institute of Volcanology and Seismology IVS FEB RAS.
Figure (see Caption) Figure 13. Ash plume from an explosive event at Ebeko on 23 May 2017. Ash plume altitude reached 2 km. Photo by L. Kotenko, courtesy of Institute of Volcanology and Seismology IVS, FEB, RAS.
Figure (see Caption) Figure 14. Ash explosions from Ebeko on 10 August 2017 as seen from Severo-Kurilsk, 7 km E. Photo by V. Rashidov, courtesy of Institute of Volcanology and Seismology IVS FEB RAS.
Figure (see Caption) Figure 15. Ash bursts up to 2 km on 22 August 2017. Photo by T. Kotenk. Courtesy of Institute of Volcanology and Seismology IVS FEB RAS.
Figure (see Caption) Figure 16. Active crater of Ebeko volcano on 13 September 2017. Ash plume altitude reached 2.2 km. Photo by Ivan and Nataliya Cherkashiny. Courtesy of Institute of Volcanology and Seismology IVS FEB RAS.

MIROVA only identified two low-power thermal anomalies in the past year, one in late February 2017 and the other in late March 2017. A weak thermal anomaly was reported by KVERT on 31 July 2017.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Piton de la Fournaise (France) — March 2018 Citation iconCite this Report

Piton de la Fournaise

France

21.244°S, 55.708°E; summit elev. 2632 m

All times are local (unless otherwise noted)


Second eruption of 2017; July-August, fissure with flows on the SE flank

Short pulses of intermittent eruptive activity have characterized Piton de la Fournaise, the large basaltic shield volcano on Reunion Island in the western Indian Ocean, for several thousand years. The most recent episode occurred during 31 January-27 February 2017 with an active vent located inside the Enclos caldera on the S flank, about 1 km SE of Château Fort and about 2.5 km ENE of Piton de Bert (BGVN 42:07). The next episode, discussed here, began on 14 July 2017 and lasted for about six weeks. Activity through February 2018 is covered in this report. Information is provided by the Observatoire Volcanologique du Piton de la Fournaise (OVPF) and satellite instruments.

A new fissure eruption began on 14 July 2017 on the S flank inside the caldera about 850 m W of Château Fort and lasted through 28 August. The fissure was initially 450 m long with seven active lava fountains. Within 48 hours the flow had reached its farthest extent, about 2.8 km from the fissure. Activity continued from the southernmost cone of the fissure with three active vents for a few weeks. Surface lava flows diminished, and activity was concentrated in lava tubes flowing SE from the cone with occasional breakouts and ephemeral vents along the flow field. The tremor signal briefly spiked with lava fountains on 16-17 August, and then ceased altogether on 28 August. A brief seismic swarm during 24 August-1 September led OVPF to conclude that magma had moved but did not open a new fissure. Inflation was intermittent through December, and then increased significantly during January before leveling off during February 2018.

Activity during June-July 2017. The brief seismic swarm of 17-18 May 2017 was followed by another brief increase in seismicity during the first few days of June 2017, but no surface eruption was reported. The inflation that occurred during the May event tapered off by early June. The volcano remained quiet until seismicity began increasing on 10 July 2017; this was accompanied by inflation recorded at the GPS stations as well. The observatory (OVPF) noted the beginning of seismic tremors, indicative of a new eruption, around 0050 on 14 July 2017. Webcams revealed that eruptive fissures opened on the S flank of the cone inside the Enclos caldera. A reconnaissance flight conducted later in the morning on 14 July indicated that the eruptive site was located 750 m SE of the Kala-Pele peak and 850 m W of Château Fort, about 2.2 km NE of Piton Bert (Figure 110).

Figure (see Caption) Figure 110. Location of the Piton de la Fournaise eruption that began on 14 July 2017. Courtesy of OVPF/IPGP (Bulletin d'activité du vendredi 14 juillet 2017 à 15h30 Heure locale).

By 0930 that morning, the fissure extended over a total length of approximately 450 m. Seven lava fountains with a maximum height of 30 m were active (figure 111). The fountain farthest downstream began to build a cone with two arms of flowing lava. Satellite measurements indicated an initial flow rate of about 22-30 m3/s at the beginning of the eruption.

Figure (see Caption) Figure 111. A new fissure opened on the S flank of the cone inside the Enclos caldera at Piton de la Fournaise on 14 July 2017. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 14 juillet 2017 à 15h30 Heure locale).

The tremor intensity decreased significantly the following day; this was reflected in the decrease in the flow rates and the distribution of activity on the fissure. Only three lava fountains were active on 15 July 2017 near the downstream end of the fissure; they began to form two small cones with lava flows that merged into a single channel (figure 112). The fountains did not exceed 30 m in height. By 1400 on 15 July the flow front was 2.2 km SE from the fissure. Satellite instrument measurements suggested the flow rate had dropped to two m3/s. Sulfur dioxide anomalies were measured by the OMI satellite instrument during 14-16 July (figure 113).

Figure (see Caption) Figure 112. Lava emerged from two vents and merged into a single flow at the eruptive site at Piton de la Fournaise on 15 July 2017 at 1400 local time. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 15 juillet 2017 à 16h30 Heure locale).
Figure (see Caption) Figure 113. Sulfur dioxide anomalies were captured by the OMI instrument on the Aura satellite by NASA on 14 (left) and 16 (right) July 2017 at the beginning of the eruption at Piton de la Fournaise. Courtesy of NASA Goddard Space Flight Center.

Tremors fluctuated over the next few days with changes related to the growth and collapse of various the cones along the fissure. On 18 July, there were six active fountains (figure 114). The flow rate remained approximately 1-3 m3/s. Fountains reached 20 m high on 19 July and a third vent was visible forming on the N side of the main cone. During an overflight on 21 July, OVPF noted that all three vents were active, but lava was only flowing SE from the central one (figure 115). Lava tubes had begun to form downstream of the cone, with numerous breakouts creating small lateral expansion arms.

Figure (see Caption) Figure 114. Six fountains were active along the fissure zone on 18 July 2017 at Piton de la Fournaise. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du mardi 18 juillet 2017 à 16h00 Heure locale).
Figure (see Caption) Figure 115. Lava flowed SE from the central vent of three in the fissure zone at Piton de la Fournaise on 21 July 2017. The magmatic gases are drifting SSE to the upper left of the image. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du vendredi 21 juillet 2017 à 16h30 Heure locale).

OVPF measured the flow dimensions on 22 July as 2.8 km long and 0.6 km wide (figure 116); the flow front had not advanced in the previous seven days. A fourth vent on the N side of the cone was periodically emitting ejecta, and two flows were active; one moving SE towards Château Fort and the other moving towards the SW inside a lava tube. On 24 July OVPF measured the flow rate as 1-4 m3/s, and the total volume of lava to date as 5.3 ± 1.9 million m3. On 25 July 2017, local observers reported that the main vent on the SE flank of the cone was visible, as well as a second vent on the N flank of the growing cone. The main lava channel was clearly visible downstream of the cone with frequent overflows (figure 117), and active flow continued inside the lava tubes.

Figure (see Caption) Figure 116. An outline of the active lava flow at Piton de la Fournainse on 22 July 2017. Base map courtesy of Google Earth. Annotations courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du samedi 22 juillet 2017 à 17h00 Heure locale).
Figure (see Caption) Figure 117. The main lava channel flowed SE from the eruptive vent at Piton de la Fournaise on 25 July 2017. Photo copyright by Cité du Volcan/Arthur Vaitilingom). Courtesy of OVPF/IPGP (Bulletin d'activité du mercredi 26 juillet 2017 à 16h00 Heure locale).

By 30 July the flow intensity had decreased to about half of its original flow rate. The cone continued to grow, but no surface lava flows were observed (figure 118). The main vent rarely produced ejecta. Active lava was flowing in tunnels with a few minor breakouts near the cone. The flow front remained 2.8 km from the eruptive vent.

Figure (see Caption) Figure 118. The eruptive vent of Piton de la Fournaise on 30 July 2017 showed no surface flows, but activity continued in lava tunnels. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du dimanche 30 juillet 2017 à 16h00 Heure locale).

Activity during August 2017-February 2018. The intensity of the tremors associated with the eruption continued to taper off into early August to levels below 20% of what they were at the beginning of the eruption, and this corresponded to a decrease in observed activity in the field. During an OVPF overflight on 2 August 2017 no flows or ejecta from the eruptive cone were seen, but a number of surface breakouts from lava tubes were still visible; the nearest to the cone was 520 m to the SE (figure 119). The main vent was completely blocked, but the smaller vent still had visible incandescence and strong degassing (figure 120).

Figure (see Caption) Figure 119. Lava tubes and small breakouts at Piton de la Fournaise on 2 August 2017 (N to the lower right). The breakouts were several hundred meters SE of the main vent. The eroded cone in the upper right is visible in the upper left of figure 115 showing the relative location compared with the main fissure. See also figure 121 for relative location. 1) A hornito formed from overpressure in an underlying lava tube. 2) A 20-m-long flow from a breakout over an active tunnel. 3) Two ephemeral vents had recently opened in the roof of the tunnel just prior to this photo being taken. 4-5-6) The longest breakout flow observed was 220 m long and began at an ephemeral vent located downstream of points 1, 2, and 3. The flow surface was 10 m wide near 4), spreading out and cooling farther downstream (5 and 6). Incandescent lava was still visible near the flow front (6) in two lobes. 7-8) Two other breakout flows from ephemeral vents 520 meters from the main vent were also visible, 50 and 180 m long, respectively. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du mercredi 2 août 2017 à 16h30 Heure locale).
Figure (see Caption) Figure 120. Visible incandescence and strong degassing were apparent from the smaller vent at the eruptive site on 2 August 2017 at Piton de la Fournaise. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du mercredi 2 août 2017 à 16h30 Heure locale).

Estimates of the flow rates during the first week of August were less than 1-2 m3/s, and the total lava volume emitted on the surface was measured at 7.2 +/- 2.3 million m3. A larger breakout from a tunnel on 5 August was visible in the OVPF webcams and fed a surface flow over several hundred meters for several hours. By 6 August 2017 the activity was focused mainly in lava tunnels with a few surface breakouts, although incandescence was visible from the small vent seen in imagery available in Google Earth (figure 121). Small ejecta was observed during 7-9 August from the remaining active small vent on the N flank of the cone (figure 122).

Figure (see Caption) Figure 121. Imagery from Google Earth captured on 6 August 2017 showed incandescence and degassing from the small vent at the S end of the fissure at Piton de la Fournaise (left plume), as well as degassing from surface breakouts along the still active lava tunnels to the SE. Courtesy of Google Earth.
Figure (see Caption) Figure 122. Only the small vent on the N side of the cone was still incandescent at Piton de la Fournaise on 9 August 2017. N is to the upper right. Courtesy of and copyright by OVPF/IPGP (Bulletin d'activité du mercredi 9 août 2017 à 17h00 Heure locale).

Observations made on 14 August 2017 indicated lava was still active in tunnels as pahoehoe flows were observed about 2 km from the active vent. A brief increase in seismic and surface activity occurred on 16 August. The Piton de Bert webcam captured short-lived lava fountains at the E edge of the eruptive cone. Seismic tremor intensity increased rapidly and then oscillated during 16-17 August. The minor inflation of the cone that had been observed since 1 August ceased by 18 August. Field measurements on 21 August demonstrated a significant decrease in flow activity since 12 August. The volcanic tremor signal was stable at a low level on 25 August; it decreased significantly on 27 August and disappeared altogether about 0300 local time on 28 August 2017, leading OVPF to conclude the eruptive phase had ended.

A number of indications led OVPF to conclude that two migrations of magma that did not reach the surface occurred between 16 August and 1 September. Increased seismicity began on 16 August and was accompanied by a measured increase in SO2; satellite measurements showed two areas of inflation SE of the active fissure between 7 and 25 August. A seismic swarm in the same area was recorded during 24 and 25 August (figure 123). Overflights by OVPF on 25 August did not identify any new fissures associated with the seismic events and inflation.

Figure (see Caption) Figure 123. A seismic swarm on 24 and 25 August 2017 at Piton de la Fournaise led OVPF to conclude that magma was moving beneath the surface in an area SE of the active fissure zone. Courtesy of and copyright by OVPF/IPGP (Bulletin mensuel du lundi 2 octobre 2017).

After the seismic swarm, the number of daily seismic events decreased to less than one per day by the end of September 2017. OVPF reported minor inflation during the second half of October along with a slight increase in seismicity. Inflation stabilized in November but increased again during January 2018 (figure 124). A gradual increase in shallow seismicity beneath the summit craters was recorded during the second half of February. It was accompanied by an increase in CO2 concentrations in the soil as well, which rose to some of the highest levels since measurements began in 2015.

Figure (see Caption) Figure 124. Deformation at Piton de la Fornaise from 14 July 2017 to 28 February 2018. The eruption of 14 July- 28 August 2017 is shown in yellow. The y-axis measures the change in length in centimeters of a N-S line crossing the Dolomieu crater between two GPS receivers. The raw data is shown in black and the blue line is the data smoothed over a week. A rise means elongation and therefore swelling of the volcano; conversely, a decrease indicates contraction and therefore deflation of the volcano. Courtesy of and copyright by OVPF/IPGP (Bulletin mensuel du jeudi 1 mars 2018).

Thermal anomaly data. The MIROVA project thermal anomaly record shows both the episodic nature of the activity and the cooling signature of the flows that continued beyond 28 August 2017 when OVPF noted the cessation of tremors associated with eruptive activity (figure 125). The MODVOLC thermal alerts first appeared on 13 July 2017 and continued persistently with multiple daily alerts until 23 August 2017.

Figure (see Caption) Figure 125. MIROVA thermal anomaly data for Piton de la Fournaise for the year ending 5 January 2018. The eruption of February 2017 had very little cooling after the tremors ceased at the end of February, but the July eruption had significant cooling evident for more than two months after the cessation of seismic tremors on 28 August 2017. Courtesy of MIROVA.

Geologic Background. The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world's most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Information Contacts: Observatoire Volcanologique du Piton de la Fournaise (OVPF), Institut de Physique du Globe de Paris, 14 route nationale 3, 27 ème km, 97418 La Plaine des Cafres, La Réunion, France (URL: http://www.ipgp.fr/fr); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Kilauea (United States) — March 2018 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Activity continues at Halema'uma'u lava lake, and at the East Rift Zone 61g flow, July-December 2017

Hawaii's Kilauea volcano continued its eruptive activity, intermittent for thousands of years and continuous since 1983, throughout 2017. The summit caldera formed about 500 years ago, and the East Rift Zone (ERZ) has been active for much longer. Lava lakes were intermittent in and around Halema'uma'u crater at the summit until 1982. Lava has been continuously flowing from points along the ERZ since 1983, and the episode 61g flow was still vigorous through the end of 2017. A large explosion within Halema'uma'u Crater in March 2008 resulted in a new vent with a lava lake that has been continuously active through 2017.

The US Geological Survey's (USGS) Hawaii Volcano Observatory (HVO) has been monitoring and researching the volcano for over a century, since 1912. Quarterly Kilauea reports for July-December 2017, written by HVO scientists Carolyn Parcheta and Lil DeSmither, form the basis of this report. MODVOLC, MIROVA, and NASA Goddard Space Flight Center (GSFC) provided additional satellite information about thermal anomalies and SO2 plumes.

The lava lake inside the Overlook vent at Halema'uma'u Crater continued to rise and fall during the second half of 2017 with no significant lake level changes and a few periods of spattering. The lake level overall was lower at the end of the year than during much of the year, reflecting long-term deflation of the summit. There were no major explosive events from rockfalls, but smaller sloughs of veneer (thin layers of recently cooled lava that adhere to the vent walls) without accompanying explosions were common. Ongoing subsidence at Pu'u 'O'o, especially around the West Pit prompted moves of monitoring equipment, but little else changed at the cone.

The episode 61g lava flow continued with numerous surface breakouts from areas near the vent all the way down over the pali and into the ocean at the Kamokuna delta during July-December 2017. Changes in the subsurface flow in lava tubes contributed to changing locations of surface breakouts, which were still active at the end of the year. The lava flowing into the ocean at Kamokuna slowed and finally ended in November with changes occurring on the delta in the final weeks of its activity.

Activity at Halema'uma'u. For the second half of 2017, activity at the lava lake inside the Overlook crater continued with little change from January-June. The lake's surface circulation pattern was typical, with upwelling in the N and subsidence of the crust along the southern lake margin, but also around the entire edge of the lake depending on the upwelling location (figure 292). There were often "sinks" a few tens of meters from the SW edge of the lake where the crust folds in on itself and sinks, pulling material away from the wall. A noticeable lava veneer buildup often occurred on the southern margin, where the surface crust was most consistently subducting. Short-term spattering events lasted minutes to hours and occasionally altered the surface crust motion by creating localized subsidence. Throughout the period, spattering was often confined to a grotto at the SE sink. On most days, two or more spattering sites were active simultaneously.

Figure (see Caption) Figure 292. Commonly referenced features and geographic nomenclature at the Halema'uma'u lava lake which is inside the Overlook vent at Kilauea. Geographic directions are faded gray arrows inside the lake with white labels N, S, E, and W, and are distinct from nomenclature cardinal directions (black arrows) used in the text. Satellite image from DigitalGlobe taken on 20 October 2017. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).

The lava lake level generally rose and fell over periods of hours to days in response to gas-piston action and to inferred changes in summit lava pressure indicated by deflation-inflation (DI) events. There were a few periods with exceptions when the lake level remained constant for many days at a time, heating up the surrounding walls enough to produce thermal cracking and popping sounds. The total range of the lake level varied between 35 and 40 m during July-December 2017, with the highest level about 17 m below the rim in early September (elevation 1,020 m), and the lowest levels, about 57 m below the rim in late July and September (elevation 977 m) (figure 293).

Figure (see Caption) Figure 293. Halema'uma'u lava lake level measurements for 2017 in meters above sea level at Kilauea. X-axis represents the count of the calendar days, 0 is 1 January 2017. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).

There were no significant explosive events triggered by rockfalls, but smaller collapses of veneer and the wall were common, particularly during deflationary phases when the lake level was low and exposed larger areas of the walls. A few larger collapses in September 2017 were big enough to change the geometry of the lake slightly (figure 294). The first, on 8 September at 1806 HST, was a collapse of the large ledge attached to the wall in the southern corner of the lake. This event produced a plume containing ash, a composite seismic event, and lake surface agitation. The following day, 9 September, there was another collapse at 0509. This involved an area of the E Overlook rim composed of mainly lithic deposits, directly above the Southeast sink, which produced a dusty plume, a composite seismic event, and lake surface agitation. On 12 September a thin slice of the southwest lake rim collapsed at 1420, producing a dusty plume, an agitated lake surface for about 10 minutes, and a composite seismic event.

Figure (see Caption) Figure 294. Small changes were visible in the geometry of the Overlook vent at Halema'uma'u from veneer and wall collapses in September 2017 at Kilauea. Left image taken 31 May 2017 by T. Orr shows the areas where the largest collapses took place in September 2017. A large shelf collapsed on 8 September, and the other two dates highlight areas where portions of the lake's lithic wall collapsed. The right photo was taken on 21 September 2017 by L. DeSmither. The photo views are looking SE. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for July-September 2017).

An interesting effect observed on two veneer collapses occurred on 24 October 2017 at 1617 and 1623. Both were silent events but were noticed because they visually depressed the lake as they fell in and sent a small "wave" propagating outward before spattering began a few seconds later. The wave did not make it more than half way across the lake in either case, and both spattering events lasted only a few minutes. Several veneer ledges built up and subsequently collapsed around the lakes perimeter but were most notable on the SW corner of the lake. Three collapses, on 5 December at 0400 and 7 December at 1856 and 2024, enlarged the NNE edge of the lake towards true N, but did not produce a spatter deposit or explosion (figure 295). Another rockfall occurred on the N margin of the lake on 23 December 2017 at 1552 and triggered a large spattering event.

Figure (see Caption) Figure 295. View from the SW time-lapse camera at Kilauea into the lava lake at Halema'uma'u showing the locations of two collapses in early December 2017 that expanded the Overlook vent towards the NNE. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).

Activity at Pu'u 'O'o. During July-December 2017, there were only minor changes in the main crater of Pu'u 'O'o as recorded by the PO webcam, PT webcam, and the West Pit time-lapse camera. Due to slight subsidence, altered ground, and widening cracks first noted in August, the West Pit time-lapse camera was relocated 20 m to the SE on 12 October, and roughly 25 m further back from the rim on 1 November after new crack expansion was observed.

During the month of August 2017 there was slight subsidence of the W portion of the crater floor, and around 20 August a crack opened up in the S embayment with three heat locations. There appeared to be slight subsidence of the E side of West Pit from the time-lapse imagery spanning 22 November to 12 December. This subsidence accelerated during 15-17 December, but then was slower through the end of the year. The deformation data confirmed subsidence at Pu'u 'O'o, but it seemed to be confined to the land bridge separating the main crater and the West Pit lava pond. The lava pond inside of the west pit rose slightly during the period from around an elevation of 847 m in early August to 849.5 m on 12 December when measured during site visits about every three weeks. A thick surface crust and sluggish plate motion was typical at the lava pond.

The time-lapse camera located on the E rim of the lava pond (through October) captured three rockfalls in July and two in August that disturbed the pond's surface. On 30 September 2017 a collapse of the west pit's SE rim also broke off a portion of the ledge below, as it was impacted by the falling rocks (figure 296). The collapse was large enough to agitate the pond surface for several tens of minutes, and produced a small step in the tilt at the POC tiltmeter.

Figure (see Caption) Figure 296. The West Pit lava pond time-lapse camera at Kilauea's Pu'u 'O'o crater captured the area of the rim that collapsed (circled in upper left corner) at 0054 HST on 30 September 2017. The larger circle shows where the lower ledge broke off as a result of the impact. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for July-September 2017).

The pond surface was also disturbed from rockfalls on 22, 28, and 31 October 2017. The first two events were on the N side of the West Pit rim, and the events on 31 October were on the S side of the rim. A small rockfall that triggered minor spattering was witnessed during an overflight on 1 November (figure 297). After 1 November, when the camera was moved away from the rim, it no longer had direct views of the pond. One of the E spillway spatter cones collapsed into the lava tube that was feeding the 61g flow on 20 November and provided a skylight into the tube for a day before it crusted over. On 12 December, a large talus pile on the NNE side of West Pit was evidence of rock falls near the original time-lapse camera site. The talus, likely resulting from several rock falls, piled up onto the lava coated bench.

Figure (see Caption) Figure 297. A rockfall witnessed at Kilauea's Pu'u 'O'o cone during a 1 November 2017 overflight. A small event on the W side of the pond triggered minor spattering. The surface of the pond had large plates with wide cracks. Left photo by L. DeSmither, right photo by C. Parcheta. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).

Activity at the East Rift Zone, episode 61g flow field. The 13 June 2017 breakout that had started on the upper flow field, approximately 1.1 km from the vent, was the largest area of active surface flows on the 61g flow during July-September. Ranging between 2.6–5.8 km from the vent, the breakout significantly expanded the upper flow fields western flow margin. This breakout remained active through the end of September (figure 298). On 26 June 2017 a breakout started near the top of Royal Gardens and quickly advanced down the pali, east of the main flow field. By 6 July the front of the breakout had extended 500 m beyond the pali base with fluid pahoehoe at the front, and a small a'a channel on the steep part of the pali. Slow advancement of the flow placed it approximately 1.5 km from the emergency road near the coast by 9 August before the flow front stalled. When mapped again on 15 August, the closest active flows were about 2.1 km uphill from the road. Intermittently during 1-20 September the breakout produced channelized flows on the steep part of the pali, sometimes as often as every 24 hours. By the end of September active surface flows had advanced to approximately 1.6 km from the emergency road (figure 298).

Figure (see Caption) Figure 298. Changes to the extent of Kilauea's active episode 61g flow field between 2 July and 28 September 2017, showing the flow margin expansion in red. The yellow line indicates the active lava tube beneath the surface flow. During this time, the flow field expanded an additional 165 hectares from the previous 1,007 hectares (as of 2 July), to a total of 1,172 hectares, increasing the flow field area by 16 percent. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for July-September 2017).

Two other breakouts that started near the episode 61g vent were also active during July-September 2017. The 5 March breakout, which had advanced downslope during its 4 months of activity, was weakly active on 10 July, with two small lava pads observed approximately 4.8 km from the vent. By the time of the overflight on 9 August, the breakout was inactive. On 26 July around 1025 HST, a new breakout started about 1.1 km from the vent and remained active through the end of September with flow activity located 1.1-2.5 km from the vent. On 27 August at roughly 0945 a breakout began on the steep part of the pali originating from the main 61g tube. By 1 September the breakout was at the base of the pali and spreading onto the coastal plain. A few other channels were reported on this area of the pali, and activity continued through the end of September with very little advancement across the coastal plain (figure 299).

Figure (see Caption) Figure 299. A view looking NW at the breakouts on the Pulama Pali and the coastal plain of Kilauea's East Rift Zone. The majority of the 61g surface flows that spread across the coastal plain were supplied by the 26 June 2017 breakout (right of the kipuka, green area, center right); the breakout that started on 27 August (left of the kipuka, steaming) supplied a smaller pad of flows closer to the base of the pali. A 'kipuka' is an Hawai'ian term for an "island" of land completely surrounded by one or more younger lava flows. Photo taken on 21 September 2017 by L. DeSmither. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for July-September 2017).

The 26 June 2017 breakout remained active and stable through the end of 2017, forming a tube from its breakout point to midway down the pali on the E side of the 61g flow. The area where breakouts from 5 March, 13 June, and 26 July occurred (1.1 km from vent) also remained intermittently active through the end of 2017 (figure 300).

Figure (see Caption) Figure 300. The lava flow field expansion for the 61g lava flow at Kilauea between 1 October and 31 December 2017. In addition to continued activity from the longer-lived breakouts fueling the expansion shown in red, nearly 90 known shorter-lived surface breakouts occurred, based on observations from webcams, overflights, and satellite data. Changes in the breakout locations are seen in the progression of orange, red, and purple dots after the 61g tube became blocked by a graben collapse on the delta near the end of September (see discussion in next section). The yellow lines indicate lava tube locations underneath the surface flow. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).

Numerous overflows originating on the sea cliff began in early October 2017. These breakouts occurred within 310 m of the sea cliff and persisted for nearly a month. There were also approximately 20 short-lived breakouts in October above the sea cliff, each lasting 1-3 days. They were located mostly in clusters on the upper flow field at 1, 2, and 3.5 km from the vent, along the top and base of the pali, and from the coastal tube.

An estimated 35 tube breakouts occurred during November 2017; they typically lasted 2- 10 days, and were located inland of the October breakouts. Locations of activity were in the upper flow field almost entirely between 2 and 3.5 km from vent, with three closer breakouts at 0.5, 0.8, and 1 km from vent. The two active tubes on the pali continued to have breakouts at the top and base of the cliff, but also started breakouts midway downslope (figure 301). At 0805 on 7 November, a viscous breakout occurred approximately 500 m above the sea cliff. The small breakout came directly from the 61g tube and lasted for roughly four and a half days. Another viscous breakout from the tube occurred approximately 950 m upslope of the sea cliff from 18-23 November. A week after that, a third viscous breakout occurred about 2 km from the sea cliff. By the end of November, there was no further breakout activity on the delta or the distal half of the coastal plain.

Figure (see Caption) Figure 301. A pali breakout from the 61g lava tube observed during a 20 November 2017 overflight at Kilauea. The photographer estimated the active breakout at tens of meters across. Photograph by C. Parcheta. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).

During December 2017, an estimated 30 breakouts were recorded from the 61g flow tube, however these were often longer, lasting up to a week on the upper flow field, and with near perpetual breakouts on the pali throughout the month, which made quantifying the exact number difficult. A new breakout occurred 500 m from the 61g vent on 1 December and lasted through 20 December. This breakout, and the whole area between 500-1,200 m from the vent, poured lava onto the eastern upper flow field (figure 300). Most of the upper flow field activity was focused very close to the vent, between 350-800 m; additional activity also occurred at the 1 km location and a few continued breakouts were noted from the 2-3.5 km region. The coastal flow field activity was sluggish and mostly a result of the near-constant pali tube breakouts reaching the base. On 9 December a new voluminous breakout began near the top of the pali that burned through the kipuka near the center of the flow field (figures 302 and 303). This major breakout lasted through the end of the year and produced mostly 'a'a channels on the pali with pahoehoe at the pali base. Pali tube breakouts occurred at nearly every elevation but seemed to move higher up the slope as the month came to a close. Activity did not advance more than 400 m from the base of the pali.

Figure (see Caption) Figure 302. A small channel of lava burned through the kipuka on Kilauea's Pulama Pali on 21 December 2017. Figure 299 shows the kipuka on 21 September, still intact. Photograph by C. Parcheta. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).
Figure (see Caption) Figure 303. Close up of the 'a'a flow front near the base of the pali at Kilauea, which burned the remaining trees within the kipuka. Photograph by M. Patrick on 21 December 2017. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).

Time series thermal maps of the 61g flow field overlaid on all of the tubes mapped from the field to date suggested to HVO scientists that some of the many breakouts during October-December 2017 may have come from reactivation of an earlier tube thought to be inactive since at least April 2017 (figure 304). Breakout locations coincided with the former tube trace, and happened at least five times between 21 September and 5 January 2018.

Figure (see Caption) Figure 304. A time series of thermal maps from overflights at Kilauea with all 61g tubes overlaid. Solid white lines are tubes active as of the image date, indicated by a thermal trace. Long dashed white line is the main (western) tube that became blocked at the end of September 2017. Dotted lines are older tubes from 2016 that were active when the 61g flow first crossed the coastal plain. These tubes were no longer noted in public maps by April 2017. In all thermal maps from October-December 2017, there was activity (indicated by black arrows) located above the older tube down the center of the flow field suggesting to HVO scientists that this tube may have been still producing breakouts from backlogged lava in the system. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).

Activity at the East Rift Zone, Kamokuna ocean entry. By the end of June 2017, flows from multiple breakouts had resurfaced the delta of the Kamokuna ocean entry, covering earlier cracks, and building up and steepening the delta's landward side. These surface breakouts continued into early July, but by 10 July several new cracks had appeared, two of which visibly spanned the width of the delta (figure 305). Slumping of the seaward half of the delta and expansion of the cracks was visible in time-lapse camera images until the end of September.

Figure (see Caption) Figure 305. The Kamokuna ocean entry delta at Kilauea with visible large coast-parallel cracks which span most of the delta's width. On the W (left) side of the delta, the largest crack has been partially buried by the 'a'a flow produced by the 19 August 2017 breakout which started on the sea cliff roughly 100 m inland (lighter in color). Photo taken on 1 September 2017 by L. DeSmither. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for July-September 2017).

On 19 August 2017 around 0405 HST a breakout started on the sea cliff approximately 100 m upslope of the ramp, and five minutes later lava was spilling over the sea cliff and onto the delta. The breakout point and the lava falls over the cliff were both on the W side of the 61g tube. The lava produced a small 'a'a flow on the delta (figure 305), during its short-lived activity that lasted roughly 9.5 hours. Late on 19 August, the time-lapse camera also captured two images of littoral explosions in the center of the delta that produced a large spatter deposit on the delta's surface.

Three more sea cliff breakouts started on 23 September 2017. The first was brief "firehose-like" activity that began in the early morning hours. Based on the delta surface flows it produced, activity lasted less than 24 hours. Later views of the cliff face revealed that the "firehose" came out of a narrow horizontal crack E of the ramp, that was less than a meter below the top of the cliff. Later that day, on the sea cliff near the ocean entry, two new breakouts started, one to the E and one to the W of the tube. The E breakout originated roughly 70 m upslope of the sea cliff, and the breakout point had been fractured and depressed. Its thin pahoehoe flow spread out behind the littoral cone and came close to the edge of the cliff but did not spill over. The W breakout was visible in the time-lapse camera images on 23 September from around noon until midnight, producing only a few small dribbles of lava over the sea cliff. The breakout point was roughly 100 m upslope of the sea cliff, and buried the breakout from 19 August with thick, viscous pahoehoe. By the end of September, surface flows again covered much of the delta until most of the cracks were obscured, and only the ramp and a small area of the eastern delta close to the sea cliff were still uncovered.

Beginning in late August 2017, the ocean entry plume started to fluctuate regularly, and the plume was often weak or would briefly shut down. A shatter ring (a raised rim depression that forms over active lava tubes) began forming near the front of the delta on 21 August. By 30 August, the repeated uplifting and subsidence of the delta had broken the surface flows and built up a large rubble pile. On 26 September 2017 a bulge formed on the back half of the delta where the slope was steepest (figure 306). This inflationary feature produced steam and a delta surface flow from a crack at its base.

Figure (see Caption) Figure 306. Changes at the Kamokuna ocean entry at Kilauea between 26 June (left) and 26 September 2017 (right). The delta grew about 1.62 hectares (4 acres) in size, but also thickened from multiple breakouts resurfacing the delta. The delta cracks are not visible in either photo because the delta had been newly resurfaced in both images. Photos taken by L. DeSmither. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for July-September 2017).

HVO scientists concluded that the bulge observed on 26 September 2017 was the result of the formation of a spreading-induced graben in the middle of the delta that obstructed the 61g tube between 23 and 26 September 2017 (figure 307, top row). During the first part of October, additional breakouts from the tube above the sea cliff produced lava falls that poured down on the W side of the tube (figure 307, middle row). A few breakouts in the latter half of October flowed to the E side of the tube (figure 307, bottom row). The delta did not expand much in area during October-December 2017, but it thickened greatly due to the added volume from the lava falls breakouts and several small sluggish breakouts on the delta. The maximum extent that the delta reached was a little over 4 hectares in October, and then it began to shrink from waves crumbling its edges. By the end of December, the delta had lost about 0.4 hectares (1 acre) of land.

Figure (see Caption) Figure 307. Activity at the Kamokuna ocean entry of Kilauea during September-October 2017. Top: before (left, 19 September 2017) and after (right, 26 September 2017) the graben formation induced by delta slumping. The yellow (left) and orange (right) lines indicate the topographic profile through the middle of the delta. Middle: Aerial photograph (left, C. Parcheta) and thermal image (right, M. Patrick) from a 12 October 2017 overflight showing the extent of lava falls both E and W of the tube. Once the tube became blocked, the whole delta was resurfaced by this outpouring of lava. Bottom: The last of the lava falls occurred on the E side of the tube. The western falls had solidified but were illuminated on the left in this image during the first activity of the eastern lava falls. Image taken by the Kamokuna time-lapse camera on 10 October 2017 at 1842. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).

The ocean entry was thought to have fully ceased activity shortly after 12 November 2017. The plume had its first pause in activity on 23 September, and quickly resumed but with decreasing vigor. By 26 September the plume was noticeably weaker and beginning to show intermittent pauses, which continued and became more prolonged through 4 November. The following day (5 November) was the first day with no plume visible in the HPcam, and 6 November was the last day an ocean entry plume was visible in the HP webcam. Ocean entry was active and observed during field visits between 6-11 November, but its weak, diffuse plume was not visible to the HP camera. The time-lapse camera stopped taking photos during the end of the Kamokuna delta activity in the late afternoon on 11 November (figure 308). This malfunction was discovered during a field visit on 12 November; the batteries were replaced a week later. The last photo of known lava activity on the delta was taken on 12 November, and the delta was likely completely inactive within a day or two.

Figure (see Caption) Figure 308. Kamokuna delta at Kilauea on 11 November 2017 shortly before the edges began to crumble from the continuous wave action. Photograph by Kamokuna time-lapse camera. Courtesy of HVO (Hawaiian Volcano Observatory Quarterly Report for October-December 2017).

During a 12 December 2017 overflight, an HVO scientist witnessed a collapse of a small portion of the sea cliff east of the tube into a yellow talus pile on the back portion of the delta, removing the evidence of the lava falls.

Satellite thermal and SO2 data. In addition to field observations, satellite-based thermal and SO2 data provide important insights into the ongoing activity at Kilauea. The many MODVOLC thermal alerts issued during July-December 2017 show the varying intensity and locations through time of the many breakouts along the episode 61g flow field from near the vent at the base of Pu'u 'O'o all the way down to the Kamokuna ocean entry delta (figure 309).

Figure (see Caption) Figure 309. MODVOLC thermal alert pixels for the episode 61g lava flow at Kilauea during various weeks of July-December 2017. Green grid squares each represent 1 square km. Areas of activity discussed in the earlier text are labelled. Each image represents seven days of thermal alerts. Upper left: 2-8 July 2017, the 13 June breakout expands the upper flow field, and the front of the 26 June breakout has extended beyond the base of the pali. Upper right: 23-29 July 2017, the 26 July breakout appears about 1 km E of the vent, breakouts are active on the pali, and surface flows are active on the Kamokuna delta. Center left: 27 August-2 September 2017, extensive new breakouts along the base of the pali created multiple alerts in that area. Center right: 1-7 October 2017, abundant breakouts just above the delta create lava falls over the delta after the graben formed in late September. Lower left: 12-18 November 2017, many breakouts were observed near the vent and on the pali during November. Lower right: 17-23 December 2017, breakouts were focused on the upper slope and the pali where the kipukas burned up in December, and lava was no longer flowing into the ocean at the delta. Courtesy of HIGP, MODVOLC.

The MIROVA project thermal anomaly graph of distance from the summit also shows the multiple sources of heat at Kilauea and the migration of those sources over time (figure 310). The MIROVA center point for relative distances described here is about 10 km (0.1°) E of Halema'uma'u crater. The anomaly locations at about 10 km distance from this point correspond to both the lava pond at Pu'u 'O'o crater and the Halema'uma'u crater lava lake. Those about 20 km away correspond to the Kamokuna ocean entry. Anomalies that migrate over time between 10 and 20 km distance trace the movement of the many episode 61g flow breakouts between Pu'u 'O'o and the Kamokuna ocean entry during July-December 2017.

Figure (see Caption) Figure 310. The MIROVA project thermal anomaly graph of distance from the summit shows the multiple sources of heat at Kilauea and the migration of those sources from 1 June 2017-15 January 2018. The MIROVA center point for relative distances described here is about 10 km (0.1°) E of western Halema'uma'u crater. The anomaly locations at about 10 km distance (y-axis) correspond to both the lava pond at Pu'u 'O'o crater and the Halema'uma'u crater lava lake. Those about 20 km away correspond to the Kamokuna ocean entry. Anomalies that migrate over time between 10 and 20 km distance trace the movement of the many episode 61g flow breakouts between Pu'u 'O'o and the Kamokuna ocean entry during July-December 2017.

Kilauea emits significant SO2 that is recorded by both ground-based and satellite instruments. Sulfur dioxide emissions exceeded density levels of two Dobson Units (DU) multiple times every month during the period (figure 311). Increases in SO2 flux are caused by many factors including increases in the number and size of surface lava breakouts as well as activity at the summit crater.

Figure (see Caption) Figure 311. Sulfur dioxide emissions generally exceeded density levels of two Dobson Units (DU) multiple times every month at Kilauea and are recorded daily in satellite data. Increases in SO2 emissions are caused by many factors including increases in the number and size of surface lava breakouts as well as activity at the summit crater. A few of the SO2 plumes captured by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite with DU greater than 2 during July-December 2017 are shown. The prevailing winds on Hawaii blow from NE to SW, so plumes generally drift SW. UR: 23 July 2017, UL: 12 September 2017, LR: 9 October 2017 and LL: 28 December 2017. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Manam (Papua New Guinea) — March 2018 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Ash plumes and Strombolian explosions increase, March-May 2017

Manam is a basaltic-andesitic stratovolcano that lies 13 km off the northern coast of mainland Papua New Guinea; it has a 400-year history of recorded evidence for recurring low-level ash plumes and occasional Strombolian emissions, lava flows, pyroclastic avalanches, and large ash plumes. Activity during 2016 included only two episodes of ash emissions, during early March and mid-July, but persistent thermal activity (strongest between March and July 2016) was intermittent throughout the year (BGVN 42:03). Activity from January 2017-January 2018, discussed below, included increased Strombolian activity, lava flows, and ash emissions during February-May 2017 that led to evacuations and concern for local residents. Information about Manam is primarily provided by Papua New Guinea's Rabaul Volcano Observatory (RVO), part of the Department of Mineral Policy and Geohazards Management (DMPGM). This information is supplemented with aviation alerts from the Darwin Volcanic Ash Advisory Center (VAAC). MODIS thermal anomaly satellite data is recorded by the University of Hawai'i's MODVOLC thermal alert recording system, and the Italian MIROVA project; sulfur dioxide monitoring is done by instruments on satellites managed by NASA's Goddard Space Flight Center.

Summary of 2017 activity. A strong surge in thermal activity beginning in mid-February 2017 lasted through mid-June. Low levels of intermittent activity continued for the rest of 2017, with a short-lived increase during late December 2017 and early January 2018 (figure 35). Strong multi-pixel daily MODVOLC thermal alerts began on 17 February and continued through 29 May 2017. Plumes of SO2 were detected with satellite instruments in late February, early March, and during the second half of May.

Figure (see Caption) Figure 35. The MIROVA project Log Radiative Power signal for Manam increased significantly during late February 2017 and remained elevated through mid-June. Significant ash plumes and Strombolian activity were reported from early March-late May, after which only a few low-level ash plumes were reported through the end of 2017. Log Radiative Power graph of the year ending 17 January 2018. The occasional points shown in black indicate thermal sources located more than 5 km from the summit, and are likely unrelated to volcanic activity. Courtesy of MIROVA.

The first report of ash emissions in 2017 was on 2 March. Activity increased in late March, and again during the second half of April. Most of the many ash plume events that took place during May rose to 2-5 km altitude, but on 4 and 26 May they rose to over 12 km altitude. Ash plumes were noted on only two days during June, and none during July. Minor low-level ash emissions resumed in early and mid-August. The final VAAC report of 2017 was issued on 2 September.

RVO reported incandescent activity, Strombolian explosions, lava and pyroclastic flows, and ash emissions during February-May 2017 from both the Main and Southern craters (figures 36 and 37), and steam-and-gas emissions throughout the year. Activity during late February to mid-April occurred at both craters; most of the activity during late April and May came from Southern Crater. The events of mid-May caused ashfall across the island. Lava flows and pyroclastic flows in mid-April and mid-May led to evacuations from several villages. Incandescence was observed once from Southern Crater in November and once from Main Crater in December.

Figure (see Caption) Figure 36. Activity at Main Crater of Manam during 2017. The five graphs represent the rate (right y-axis) and intensity (left y-axis) of various activity at the volcano. Steam-and-gas emissions were observed throughout the year (bottom graph; green bars, blue circles). Explosions were heard during mid-February-April (second from bottom graph; blue bars, green circles). Ash emissions were reported from mid-February through April, and at the end of May (middle graph; purple bars, black crosses). Incandescence was observed from mid-February-April, once at the end of May and once in early December (second from top graph; black bars, red x's). Incandescent bombs, lava flows or pyroclastic flows were observed during mid-February-April and at the end of May (top graph; red bars, black diamonds). Courtesy of Steve Saunders, RVO.
Figure (see Caption) Figure 37. Activity at Southern Crater of Manam during 2017. The five graphs represent the rate (right y-axis) and intensity (left y-axis) of various activity at the volcano. Steam-and-gas emissions were observed throughout the year (bottom graph; green bars, blue circles). Explosions were heard during February-May and in mid-July (second from bottom graph; blue bars, green circles). Ash emissions were reported from mid-January through May (middle graph; purple bars, black crosses). Incandescence was observed in early January, from late January-May, and once in early November (second from top graph; black bars, red x's). Incandescent bombs, lava flows, or pyroclastic flows were observed from mid-February-mid May (top graph; red bars, black diamonds). Courtesy of Steve Saunders, RVO.

Activity during February-March 2017. After a break during much of December 2016, low-to-moderate pulses of thermal anomalies were recorded briefly by the MIROVA project early in January 2017 (BGVN 42:03, figure 34). Activity increased again in mid-February with stronger MIROVA anomalies and multi-pixel MODVOLC thermal alerts. Sulfur dioxide plumes were released on 25 February and 4 March 2017 (figure 38).

Figure (see Caption) Figure 38. Sulfur dioxide emissions from Manam increased in late February 2017 along with increased thermal activity. SO2 plumes were captured by the OMI instrument on the Aura satellite on 25 February 2017 (left) and 4 March 2017 (right). Another emission, partly obscured, on 4 March is likely from Bagana on Bougainville Island to the SE. Courtesy of NASA Goddard Space Flight Center.

MODVOLC thermal alerts were issued on 13 days during March, many days had 3-6 alerts. The Darwin VAAC issued the first Volcanic Ash Advisory of 2017 on 2 March based on a pilot report of ash extending N of the volcano at 3 km altitude. The next report, on 20 March, indicated an ash plume visible in satellite imagery moving NE at 2.4 km altitude. It extended 80 km E of the summit the following day. Mostly-steam emissions with minor ash content were reported on 23 March, extending 75 km SE at the same altitude.

Activity during April 2017. Intense multi-pixel MODVOLC thermal alerts continued into April 2017; days with multiple alerts included 2, 14, 22-23, and 25-26 April. RVO released a Volcano Information Bulletin on 16 April 2017 noting a sudden increase in RSAM values beginning on 15 April, and indicating that a small-to-moderate eruption was ongoing from Main Crater. Incandescence was visible during most nights of April from both Main and Southern craters. RSAM values increased by two orders of magnitude during 16-17 April (figure 39). During that night, a brief report from Dugulava village on the SE side of the island indicated that large incandescent lava fragments were falling into valleys to the N and SW, accompanied by loud explosions. Strombolian activity at Southern Crater increased on 18 April, and was accompanied by emissions of dark ash plumes that rose a few hundred meters above the crater and drifted NW. Two small pyroclastic flows were channeled into valleys on the SE and SW flanks, and terminated at about 1,000 m elevation. Strombolian activity subsided by late afternoon, but weak gray ash emissions continued. At Main Crater, white-gray ash plumes continued with bursts of incandescence at about 5-minute intervals.

Figure (see Caption) Figure 39. A spike in RSAM values during 16-17 April 2017 coincided with increased Strombolian activity from Southern Crater at the summit of Manam. Courtesy of RVO-DMPGM (Volcano Information Bulletin-No. 06-042017, Issue Date: 19th April 2017).

RVO reported that activity diminished after 18 April but continued at low levels through 21 April; explosions were still heard from both Main and Southern Craters. Both craters were incandescent, but only Southern Crater ejected incandescent tephra, which became briefly intense during the morning of 20 April. Pale gray-to-brown plumes containing minor amounts of ash rose from both craters and drifted SE. RSAM values began to rise again on 22 April, and Strombolian activity continued during 22-24 April (figure 40). According to a news article from 25 April (The National) the Alert Level was raised to Stage 3, and an official on the island noted that evacuations of women and children had begun to Bogia, about 16 km SW on the mainland.

Figure (see Caption) Figure 40. An explosion at Manam on 22 April 2017. Incandescence at the summit and steam emissions are visible beneath the meteoric clouds. Photo: USGS/Landsat-8 OLI. Courtesy of Radio New Zealand.

The Darwin VAAC reported an ash plume at 4.6 km altitude extending about 35 km SE from the summit on 24 April. The next day, an ash plume was observed drifting a similar distance SW at 3 km altitude. The drift direction changed to WSW then W during 26 April, and the plume was last observed about 65 km from the summit. Infrared imagery indicated ongoing activity at the summit.

Strombolian activity and strong, dark-gray ash emissions continued during 24-25 April; activity declined for a few days before the next pulse began during the early morning of 28 April with Strombolian explosions that were heard at the Bogia Government Station. Most of the lava fell back into the crater, but some traveled down the SW and SE valleys, and minor amounts of ash fell on the SE and W parts of the island.

A pulse of moderately-high Strombolian activity occurred from Southern Crater during the early morning of 30 April 2017. The episode lasted about two hours and produced a small pyroclastic flow that was channeled into the SW valley and stopped at about 200 m elevation. Ejected incandescent lava fragments landed mostly within the crater, but some traveled down the SW and SE valleys. Ash and scoria up to 40 mm in diameter fell on the E side of the island in Abaria and Boakure.

Activity during May 2017. The strongest thermal activity of the year was recorded during May 2017. MODVOLC thermal alerts were issued on 4, 5, 9, 13, 14, 17, 18, 25, and 29 May, with 21 alerts issued on 18 May and a single alert on 29 May that was the last issued for the year. RVO reported a Strombolian event from Southern Crater, lasting from about 1700 on 4 May to 0700 the following morning. A lava flow descended into the SW valley to 600 m above sea level, and minor amounts of ash fell in areas stretching between Warisi to the E, Dugulaba on the S, and Boda and Baliab on the NW parts of the island.

The Darwin VAAC reported an ash plume drifting E at 3 km altitude late on 4 May 2017 (UTC). About an hour later, they reported a much higher altitude ash plume moving S from the summit at 12.5 km altitude, in addition to continuous ash moving E at 3 km altitude. The high-level ash plume dissipated after about five hours, but the lower-level emission continued to be visible in satellite imagery drifting E, then NE at least 25 km from the summit through 7 May, after which activity subsided. RVO reported steam-and-gas emissions from Southern Crater on 13 May. Incandescent lava fragments were ejected during the early morning of 14 May, generating a lava flow that traveled down the SW valley to an elevation of 600-700 m.

The next VAAC report, on 14 May 2017, noted an ash plume drifting NW at 4.6 km altitude 35 km from the summit. Later in the day, they reported another short-lived ash plume that rose to 5.5 km altitude drifting almost 100 km W, and a large hotspot over the summit. The lower-altitude plume lasted for another day before dissipating. RVO reported light gray to dark gray ash plumes during 15-18 May. The Darwin VAAC reported multiple plumes moving W at 2.1-2.4 km altitude on 17 May, and continuous emissions extending WNW on 18 May. RVO reported explosive activity on 18 May; a small lava flow traveled down the SW valley, but not as far as the 13-14 May flow. A weak ash emission, which dissipated after a few hours, was reported on 19 May drifting W at 2.7 km altitude. The Darwin VAAC reported that a substantial ash emission on 26 May 2017 was seen in satellite images drifting 55-75 km W at 12.2 km altitude. A second plume from a continuous lower-level eruption was reported later in the day rising to 4.6 km altitude. Both plumes dissipated by the end of the day. Sulfur dioxide emissions were captured by satellite instruments on 18 and 27 May (figure 41).

Figure (see Caption) Figure 41. SO2 plumes from Manam were captured on 18 (left) and 27 (right) May 2017 by the OMI instrument on the Aura satellite. Eruptive activity was reported by RVO and ash emissions were reported by the Darwin VAAC on 18 May, and a large ash emission was reported by the Darwin VAAC on 26 May. Courtesy of NASA Goddard Space Flight Center.

Activity during June-December 2017. Activity decreased significantly after May 2017 and was low for the remainder of the year. RVO noted weak-to-moderate steam plumes on the rare clear-weather days during June; there was no observed incandescence, and very low seismicity. The Darwin VAAC reported an ash plume that rose to 5.5 km altitude and drifted W on 6 June. Later in the day the plume extended WNW at about 2.4 km altitude. It was last observed early on 7 June before dissipating. No further ash emissions were noted by the Darwin VAAC or RVO until 5 August 2017 when the Darwin VAAC observed minor ash emissions moving NW at 2.1 km altitude. The emissions were visible that day and the next before dissipating. A new ash emission was reported late on 7 August, drifting W at 1.8 km altitude for about 8 hours before dissipating early the next day. Another minor plume on 12 August briefly extended 35 km NW at 2.1 km altitude. During 21-22 August, a similar plume was seen at the same altitude. A minor ash emission on 1 September, which also rose to 2.1 km altitude, was only visible for a few hours before dissipating, and was the last emission reported in 2017.

RVO noted incandescence at Southern Crater once in early November, and once at Main Crater in early December. The MIROVA data showed a cluster of thermal anomalies during late December2017 and early January 2018 (figure 35) suggesting a renewed pulse of thermal activity during that time.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Radio New Zealand (URL: http://www.radionz.co.nz); The National (URL: http://www.thenational.com.pg).


Poas (Costa Rica) — March 2018 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Increase in phreatic and phreato-magmatic explosions during April through August 2017

Recent activity at Poás has been characterized by intermittent phreatic explosions from the hyperacid lake (figure 118). Explosions were noted in June-August 2016 (BGVN 42:03), but there were no reports explosions since then through March 2017. This report summarizes activity from April 2017 through March 2018. During this period, activity increased substantially during April-August 2017 and thereafter waned. No explosions were reported during 7 November 2017-31 March 2018. Information below was primarily drawn from reports issued by the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

Figure (see Caption) Figure 118. Landsat imagery of Poás taken 11 April 2016. Courtesy of Digital Globe and Google Earth.

Activity during April 2017. According to OVSICORI-UNA, activity increased substantially at the beginning of 2017, with significant increases in seismicity, steam-and-gas emissions, and surface deformation. Seismicity included numerous long-period (LP) earthquakes, more than 200 daily events between the end of March and the beginning of April, and weak explosions since 30 March. Deformation was characterized by inflation, with a vertical increase of more than 1 cm in a three-month period and an increase of 3 mm horizontally between two sites S and N of the crater separated by 1,570 m.

Gas emissions dramatically shifted toward a more magmatic composition, particularly after 30 March. Sulfur dioxide measurements on 4 April were about an order of magnitude greater than those on 28 March (~180 ± 65 tonnes/day (t/d) vs. ~19 ± 8 t/d), with the dome contributing 25% and the lake 75% of the flow. The increased flow was accompanied by the emergence of new fumaroles that may have contributed to the warming of the lake (which went from 35 to 40°C in just one week). In April, the lake quickly changed from a milky green color to a milky gray color, which suggested that emissions of magmatic gases from vents beneath the lake may have increased. The dome is on the S side of the crater lake and was formed during phreatomagmatic activity between 1953 and 1955; it has been a site of persistent fumarolic degassing for the last 200 years.

OVSICORI-UNA reported that a strong 40-minute phreatic explosion from an area between the lava dome and the hot lake occurred on 12 April 2017, starting at 1830. A plume of steam, altered rocks, sediments, and gases was produced; the height of the column could not be determined due to poor visibility. Ash fell around the crater and in Bajos del Toro (7 km WNW). The water level in the Desague River, with headwaters at the S part of the crater, increased by 2 m. According to news articles (Tico Times, The Costa Rica Star), the National Emergency Commission evacuated residents living near the river. The Poás Volcano National Park closed the next day and has remained closed through March 2018.

On 13 April, at 1546, an eight-minute-long explosion produced a plume that rose 500 m above the crater rim. The event rendered a webcam on the N rim inoperable. Explosions at 0758 (strong) and 1055 on 14 April generated plumes that rose to an undetermined height.

A 10-minute-long event that began at 0810 on 15 April again produced a plume of unknown height. Frequent (2-3 events per hour) small, short-lived, phreatic explosions were recorded by seismographs during 15-16 April. A plume that rose 500 m followed an explosion at 0946 on 16 April. Later that day, at 1350, an event generated a plume that rose 1 km. A news article (The Costa Rica Star) reported that boulders as large as 2 m in diameter fell in an area 30 m away from a tourist trail, breaking a water pipe. Rocks also damaged fences and concrete floors in viewing areas. Small, frequent, and short-lived phreatic explosions continued to be recorded through 18 April. A video posted by a news outlet (The Costa Rica Star) showed an explosion ejecting incandescent material.

According to OVSICORI-UNA, on 20 April a dense steam plume rose from a vent in the newly-forming pyroclastic cone at the site of the old dome in the hot lake. Sulfur dioxide levels increased from 1,000 t/d on 13 April to 2,500 t/d on 20 April. During 20-22 April Strombolian activity ejected tephra that fell around the vent within a 300-m radius. Gas-and-ash plumes rose 200 m above the vent. The Cruz Roja (Red Cross) in Grecia reported ashfall in Alajuela (20 km S), Fraijanes (8 km SE), San Miguel (40 km SSE), Carbonal (8.5 km SSW), Cajón (11 km SSW), San Francisco, San Roque (23 km SSE), and San Juan Norte de Poás (8.5 km S). Explosions at 1316 and 1603 on 22 April produced plumes of unknown height. Several more explosions were recorded that day; an event at 2212 was very intense, ejecting bombs large distances. An event at 1215 on 23 April generated a plume of unknown height.

Figure (see Caption) Figure 119. Photo showing location of the acid lake and dome at Poás during or after April 2017. The dotted line follows the outline of the great lake that covered the entire bottom of the caldera during the first half of the last century. Courtesy of OVSICORI-UNA. Borde de Antiguo lago is "Edge of the Ancient Lake"; Tercio norte: Lago is "north third of the lake"; domo is "dome"; Tercio sur: Playón o Angiguo lago is "South Tercio: Playón or Angiguo lake; Fumarola abril 2017 is "fumarole in April 2017; sector de fumarolas 2005-2006 is "sector of fumaroles 2005-226. Courtesy of OVSICORI-UNA (El Domo y el Lago Caliente en el Volcán Poás: Estructuras Básicas para Comprender las Erupciones Actuales. Nota técnica: 16 de abril de 2017).

Activity during May 2017. OVSICORI-UNA reported that large explosions were seismically recorded at 0621 on 1 May and at 1724 on 6 May, though poor visibility prevented visual confirmation of the events. On 10 May, ash emissions were observed. Gas emissions were measured by an instrument mounted on a drone, revealing a gas plume rich in sulfur dioxide and low in carbon dioxide. Deformation was high, with vertical inflation of 3 cm since February.

During 17-23 May, plumes consisted mainly of gas and steam, sometimes including solid material, that rose no more than 1 km above the vent. During 25-26 May, ashfall was reported in some communities around the volcano. Small phreatic explosions were recorded sporadically during 27-30 May.

Activity during June 2017. An explosion reported by OVSICORI-UNA at 1200 on 2 June generated a plume consisting of steam, gases, and minor amounts of ash that rose 600 m above the crater. Another event recorded at 1353 could not be confirmed visually due to weather conditions. An event at 0858 on 6 June generated a plume that rose 1 km.

During 7-8 June, the webcam recorded strong emissions of steam, magmatic gases, and particulates. A sulfur odor was reported in Alajuela, San Ramon (24 km WSW), and Barva (23 km SSE), and incandescence in the area of the crater was recorded at night. OVSICORI-UNA noted that during 8-9 June, a plume of steam, magmatic gases, and particulates rose from two vents; the lake had evaporated and exposed the vents. A minor sulfur odor was reported on the campus of the Universidad Nacional in Heredia. Explosions at 1610 and 1750 on 11 June generated plumes that rose 300 and 600 m above the crater, respectively. Plumes from the vents rose 1 km during 12-13 June. A sulfur odor was noted in Quesada (26 km ENE), Santa Ana (30 km SSE), San José de Alajuela, and San Juanillo Naranjo.

Gas emissions during 13-15 June rose no higher than 500 m above the crater rim and drifted N. During breaks in weather, observers near the crater on 16 June noted ash emissions rising less than 1 km above the crater rim and drifting N. Ash emissions from events at 1340 on 18 June, and 1100 and 1350 on 20 June, rose less than 1 km.

During 20-25 June, plumes of reddish-colored ash, water vapor, and magmatic gases were recorded rising as high as 500 m above two vents during 20-21 June. Magmatic gases and steam plumes rose as high as 1 km above the vents the rest of the period.

Webcams recorded intense incandescence at night during 28-29 June from the bottom of the crater. A sulfur odor was noted in San Rafael de Poás (12 km SSW) and Vara Blanca (10 km ESE). An event at 1115 on 19 June generated a plume that rose 1 km above the vents. An event at 1450 may have generated a plume, but poor visibility did not allow for confirmation.

Activity during July-December 2017. According to OVSICORI-UNA, frequent, but weak Strombolian activity during 1-4 July ejected incandescent material that fell around vent A (Boca Roja). Plumes of steam, magmatic gases, and particulates rose at most 500 m from the vents.

During 4-9 July, plumes of steam, magmatic gases, and aerosols rose 200-600 m above vents A (Boca Roja) and B (Boca Azufrada). Minor incandescence from the bottom of the crater was observed during 4-5 July, and a strong sulfur odor was reported in some areas of Alajuela and Heredia. During 5-7 July, grayish-red ash emissions rose intermittently from vent A, and on 7 July a loud "jet" sound was noted in Mirador. A strong sulfur odor and minor ashfall was reported in some areas of Alajuela. An event at 1450 on 10 July generated a plume that rose 300 m.

OVSICORI-UNA reported that during 12-17 July, gas plumes rose as high as 1 km above vents A and B and drifted SW and NW. From 19 through 24 July plumes of steam, magmatic gases, and aerosols were emitted from vent A, and plumes of steam, gases, and abundant yellow particles of native sulfur rose from vent B. Plumes rose 300-500 m above the vents and drifted W and SW.

On 1 August an event passively produced a plume that rose 500 m above the crater. Incandescence from the bottom of the crater was recorded at night by the webcams. Sulfur dioxide was emitted at a rate of 1,000-1,500 t/d. Activity on 3 August was similar to that in July, except that plumes rose as high as 1 km above the vents. Gas plumes continued to rise from the vents and drift SW and NW at least through 8 August. OVSICORI-UNA reported additional explosions on 22 August (1517 local), 24 August (0920 and 0930), 29 August (0945), 13 September (0820), and 6 November (0915) that rose 300-600 m above the crater rim.

Seismicity. During May and June, some volcano-tectonic (VT) and LP earthquakes were recorded, and tremor levels generally ranged from low-to-moderate amplitude, although higher tremor levels were sometimes detected during 22-30 May. The tremor amplitude often corresponded to the vigor of emissions of steam, magmatic gases, and material from fumarolic vents. Seismic activity was not identified after 30 June, except for a single report that indicated that during 11-14 August seismographs detected low-amplitude tremor, some VT earthquakes, and high-frequency signals indicating gas emissions.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); National Emergency Commission (CNE) (Comisión Nacional de Prevención de Riesgos y Atención de Emergencias (CNE) (URL: http://www.cne.go.cr); Tico Times (URL: http://www.ticotimes.net/); The Costa Rica Star (URL: https://news.co.cr/).


Rincon de la Vieja (Costa Rica) — March 2018 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Phreatic explosions during 29 September-22 October 2017

During the first half of 2017, phreatic explosions at Rincón de la Vieja occurred on 23 May, 11-12 June (however, clouds obscured visible observations), 18 and 23 June, and 5 July (BGVN 42:08). This report describes activity from 6 July through December 2017. Information comes from the Observatorio Vulcanológico Sismológica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

After a small phreatic explosion on 5 July 2017, there were no further reports of any explosions until 29 September when OVSICORI-UNA reported that at 0848 a small phreatic explosion produced a plume that rose 1 km above the crater rim (figure 27); material also flowed down the S flank.

Figure (see Caption) Figure 27. Webcam image of a phreatic explosion at Rincón de la Vieja on 29 September 2017. Courtesy of OVSICORI-UNA (color adjusted).

According to OVSICORI-UNA, events on 3 October at 0848 and 1445 generated plumes that rose 700 m and 1,500 m, respectively. OVSICORI-UNA also reported that on 9 October at 1048, a small explosion produced a plume that rose 700 m above the crater rim. According to news reports (The Costa Rica Star and CRHoy.com) quoting OVSICORI-UNA, an explosion on 22 October at 0640 generated a steam-and-gas plume that rose about 1 km above the crater. There were no further reports of an explosion through the end of December.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanológico Sismológica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/, https://www.facebook.com/OVSICORI/); CRHoy.com (URL: http://www.crhoy.com/); The Costa Rica Star (URL: https://news.co.cr/).


San Cristobal (Nicaragua) — March 2018 Citation iconCite this Report

San Cristobal

Nicaragua

12.702°N, 87.004°W; summit elev. 1745 m

All times are local (unless otherwise noted)


Intermittent ash-bearing explosions during 2017; ash plume drifts 250 km in August

Nicaragua's San Cristóbal volcanic complex has exhibited sporadic eruptive activity dated back to the early 16th century. More consistent modern record keeping has documented short-lived eruptive episodes every year since 1999. Small explosions with intermittent gas-and-ash emissions are typical. Three single-day explosive events were reported in 2015; a series of explosions on 5 March 2015 generated a 500 m high ash plume, 41 explosions on 6 June 2015 ejected ash 200 m above the summit, and the first of two explosions on 12 June 2015 sent an ash plume 2,000 m above the summit. The next eruption did not occur until 22 April 2016 when 11 explosions were recorded, with the largest sending an ash plume 2,000 m above the summit. Activity from July 2016-December 2017 is covered in this report. Information is provided by the Instituto Nicaragüense de Estudios Territoriales (INETER), and the Washington Volcanic Ash Advisory Center (VAAC).

Following little activity during the remainder of 2016 after the 22 April explosions, small explosions with minor ash were reported in February, March, and April 2017. Significant explosions during 18-19 August sent ash plumes over 200 km W and deposited ash in numerous communities. Seismicity was high during October-December 2017, but ash-bearing explosions were only reported on 7 and 11 November.

After the 22 April 2016 explosions, San Cristóbal remained quiet for the remainder of 2016. In the month's they were measured, 45-72 degassing-type seismic events were recorded. During a field visit on 29 November 2016, new landslides around the crater rim, both inside the crater and down the outer flanks, were observed. These were interpreted by INETER scientists as resulting from a major tectonic earthquake that occurred offshore in mid-November that was felt in nearby Chinandega (16 km SW), and not from volcanic activity.

Seismic activity increased slightly in January 2017 with 100 degassing events recorded. INETER reported 15 small ash-and-gas explosions during 18-19 February and 153 degassing events. There were no reports of ashfall in the nearby communities. Only 27 degassing seismic events were reported in March; three small gas explosions with minor ash occurred on 16, 25, and 28 March 2017.

Eight small explosions with gas and minor ash took place during April 2017 on days 13, 15, 16 and 19, but no damage was reported in nearby communities. Very low values of SO2 (averaging 147 tons/day) were measured at the end of April 2017, far less than values of 854 and 642 measured in September and October 2016. Degassing-type seismic events increased sharply beginning on 20 April, totaling 1,931 events; they remained elevated through 25 April.

Volcano-tectonic (VT) earthquakes increased significantly to 235 recorded events during May, from values in the single digits earlier in the year. Minor fumarolic activity occurred at the S side of the summit crater on 27 May 2017 (figure 33). Two small gas explosions were recorded on 20 and 27 May, but no ash emissions were reported. A significant increase to 2,349 degasification-type earthquakes was reported during June 2017; slightly fewer (1,981) were reported during July.

Figure (see Caption) Figure 33. Minor fumarolic activity was observed at the S side of the summit crater at San Cristóbal during a field visit by INETER on 27 May 2017. Courtesy of INETER (Boletín mensual, Sismos y Volcanes de Nicaragua, Mayo 2017).

Significant explosions early on 18 August 2017 were observed from Chinandega with notable gas and ash emissions (figure 34), and ashfall was deposited around the region (figure 35). Communities affected by the ashfall were located to the W and SW of the volcano and included Belén, La Mora, La Bolsa, El Viejo (18 km WSW), La Grecia, Realejo (25 km SW) and Corinto (30 km SW). Ash plumes rose between 300 and 600 m above the crater rim and drifted W and SW. Additional explosions occurred the next day but had ceased by 20 August.

Figure (see Caption) Figure 34. Explosion and ash plume at San Cristóbal at 1330 on 18 August 2017. Courtesy of INETER (Boletín mensual, Sismos y Volcanes de Nicaragua, Agosto, 2017).
Figure (see Caption) Figure 35. Ash was collected by INETER scientists from the 18 August 2017 explosion at San Cristóbal. Courtesy of INETER (Boletín mensual, Sismos y Volcanes de Nicaragua, Agosto, 2017).

A small plume was noted in satellite imagery by the Washington VAAC on 18 August 2017 moving NW. Later imagery showed gas and ash drifting W at an estimated altitude of 2.1 km. It extended approximately 265 km W of the summit before dissipating. Ground measurements of SO2 made during 18-20 August showed increases to a peak of 3,519 metric tons per day on 19 August before dropping back to more typical background values below 700 t/d. INETER scientists used GOES and AVHRR satellite images to identify the maximum extent of the ash plume from the eruptive event. The ash cloud covered the area W of San Cristóbal, approximately 2,960 Km2, and extended more than 80 km offshore, with a total length of 125 km and a maximum width of 33 km (figure 36). Seismometers recorded 3,880 degassing-type seismic events during August 2017. Seismicity decreased slightly during September 2017 to 2,604 measured events, of which 2,415 were degassing-type, 187 were VT events, and two explosions were recorded on 1 September, but no ashfall was reported.

Figure (see Caption) Figure 36. The extent of the ash plume from the 18-20 August 2017 eruptive episode at San Cristóbal, identified in satellite imagery by INETER scientists. Courtesy of INETER (Boletín mensual, Sismos y Volcanes de Nicaragua, Agosto, 2017).

An order-of-magnitude increase in seismicity occurred during October-December 2017, with the monthly totals of the numbers of events ranging from 17,000-21,000 (figure 37). INETER reported a series of 14 explosions during the evening of 7 November. Ashfall was reported to the W in Los Farallones, San Agustín, La Mora, El Naranjo and the city of Chinandega. The Washington VAAC subsequently reported an ash plume that models suggested rose to 6.7 km and drifted W on 11 November.

Figure (see Caption) Figure 37. Numbers of daily seismic events at San Cristóbal during October-December 2017. Event types include VT (volcano-tectonic), degasification, and tremor. Note scale in each graph as different symbols and colors are used for the same type each month. Total seismic events for October (top) was 17,815, November (middle) was 19,206, and December (bottom) was 20,925. Ash bearing explosions were reported by INETER on 7 November, and the Washington VAAC reported an ash plume on 11 November that possibly rose to 6.7 km altitude and drifted W. Courtesy of INETER (Boletín mensual, Sismos y Volcanes de Nicaragua, Octubre, Noviembre, Diciembre, 2017).

Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Sangay (Ecuador) — March 2018 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Eruptive episode of ash-bearing explosions and lava on SE flank, 20 July-26 October 2017

Periodic eruptive activity at Ecuador's remote Sangay has included frequent explosions with ash emissions and occasional andesitic block lava flows. Eruptive activity from late March to mid-November 2016 included multiple ash emissions and persistent thermal signals through July 2016 (BGVN 42:08). A new episode of ash emissions and thermal anomalies, that began on 20 July 2017 (BGVN 42:08) and lasted through late October 2017, is covered in this report. Subsequent activity through February 2018 included a single ash-emission event near the end of the month. Information is provided by Ecuador's Instituto Geofísico (IG) and the Washington Volcanic Ash Advisory Center (VAAC); thermal data from the MODIS satellite instrument is recorded by the University of Hawaii's MODVOLC system and the Italian MIROVA project.

The first ash plume of the latest eruptive episode at Sangay was reported on 20 July 2017. VAAC reports were issued on 20 and 21 July, eleven days in August, six days in September, and on 13 October. Thermal activity first appeared in a MIROVA plot during the last week of July and continued through 26 October. Multiple MODVOLC thermal alerts were issued between 2 August and 19 October. IG reported that low-energy ash emissions rising 1 km or less above the summit crater were typical throughout the period. They also repeatedly noted two distinct thermal hot spots in satellite data. A single ash emission on 25 February 2018 was the only additional activity through the end of February 2018.

Activity during July-October 2017. The Washington VAAC reported an ash emission on 20 July 2017 that rose to 8.2 km altitude and drifted about 80 km W. A plume was reported on 1 August by the Guyaquil MWO near the summit at about 5.3 km altitude, but was obscured by clouds in satellite imagery. The following day an ash plume was observed at 7.6 km altitude centered about 15 km NW of the summit. An ash emission was reported on 6 August, but was not visible in satellite imagery. The MWO reported an ash emission on 12 August at 6.4 km altitude moving SW, but no ash was detected in satellite imagery under partly cloudy conditions. The Washington VAAC observed an ash plume on 13 August extending around 50 km SW at 6.1 km altitude and a well-defined hotpot. IG reported an ash emission drifting W on 16 August, but clouds obscured satellite views of the plume. Hotspots continued to be observed in shortwave infrared (SWIR) imagery. The Washington VAAC reported an ash plume at 8.2 km altitude on 17 August. The imagery showed an initial puff moving NW followed by several smaller puffs. On 19 August, the Guayaquil MWO reported an ash plume at 5.8 km altitude drifting SW. The next day, another explosion was reported with ash rising again to 5.8 km and drifting W, and a hotspot was observed in satellite imagery.

The Washington VAAC reported a possible ash plume extending 30 km SW of the summit at 7 km altitude on 22 August. It had dissipated the next day, but they noted that a hotspot was visible in SWIR imagery. The next ash plume was reported by the MWO on 1 September at 5.2 km altitude but was not observed in satellite imagery. The next day, the Washington VAAC observed an ash plume at 6.1 km altitude extending 15 km NW of the summit. The Guayaquil MWO reported an ash plume to 7.3 km altitude on 6 September. On 20 September, a possible ash plume could be seen in GOES-16 imagery extending about 150 km W from the summit at 6.1 km altitude. Another plume extended 15 km SW from the summit later in the day at the same altitude. By the end of the day, continuous ash emissions were reported drifting W at 5.8 km altitude. The following day, occasional ash emissions were still reported drifting W and dissipating within 35 km of the summit. A new emission late on 21 September sent an ash plume 25 km W of the summit at 6.1 km altitude. Possible ongoing emissions were reported on 22 September, but not visible in satellite imagery. After three weeks of quiet, the Washington VAAC reported an ash emission on 13 October drifting S at 6.1 km altitude along with a bright hot spot visible for part of the day. This was the last report of ash emissions for 2017.

The eruption that began on 20 July 2017 was characterized by explosions from the central crater and lava emissions from the Ñuñurco dome on the E side of the summit. IG reported two areas of hot spots visible in thermal images during August and September. Around 65 seismic explosions and 25 long-period events were recorded daily during most of this time, along with a few harmonic tremors. Low-energy ash emissions rising 1 km or less above the summit crater were typical. Ashfall was reported to the SW and NW in Culebrillas (75 km SW), and Licto (35 km NW). New lava flows were interpreted to be on the ESE flank by IG based on the repeated hot spots visible in satellite imagery and darkened areas in the snow in the webcam images (figure 20).

Figure (see Caption) Figure 20. A dark streak in the snow near the summit (left side, arrow) of Sangay indicates recent ejecta of blocks or flows on the upper ESE flank of the cone on 1 October 2017. View is from the ECU911 webcam located in Huamboya, 40 km E. Courtesy of IG-EPN (Informe Especial del Volcán Sangay, 2017-2, Continúa la erupción, se observan dos ventos, 4 de octubre del 2017).

Thermal activity measured from satellite instruments support the interpretation of significant lava emissions as blocks or flows at Sangay during late July-October 2017. The MODVOLC system reported 11 thermal alerts beginning on 14 August, 15 during September, and 13 between 3 and 19 October. A similar signal of thermal activity was recorded by the MIROVA system during the same period (figure 21).

Figure (see Caption) Figure 21. The MIROVA project graph of thermal anomalies in MODIS data from Sangay for the year ending on 17 November 2017 (lower graph) clearly shows the period of increased heat flow between late July and late October. The last anomaly appeared on 26 October 2017 (upper graph). Courtesy of MIROVA.

Activity on 25 February 2018. The Washington VAAC reported an ash plume rising to 6.1 km altitude and drifting NE from the summit on 25 February 2018. The plume was visible 170 km NE before dissipating by the end of the day.

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico (IG), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec ); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Suwanosejima (Japan) — March 2018 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Large explosions with ash plumes and Strombolian activity continue during 2017

Suwanosejima, an andesitic stratovolcano in Japan's northern Ryukyu Islands, was intermittently active for much of the 20th century, producing ash plumes, Strombolian explosions, and ash deposits. Continuous activity since October 2004 (figure 24) has consisted generally of multiple ash plumes most months rising hundreds of meters above the summit to altitudes between 1 and 3 km, and tens of reported explosions. The rate of activity began increasing during 2014; the frequency of explosions and the height of the plumes have continued to increase through 2017, which is covered in this report. Information is provided primarily by the Japan Meteorological Agency (JMA), and the Tokyo Volcanic Ash Advisory Center (VAAC).

Figure (see Caption) Figure 24. Eruptive history at Suwanosejima from January 2003-December 2017. Black bars represent the height of the emissions in meters above the crater rim, gray volcanoes indicate an explosion, usually accompanied by an ash plume, and the red volcanoes represent large explosions with ash plumes. Courtesy of JMA (Suwanosejima volcanic activity report, December 2017).

Activity at Suwanosejima has been persistent and generally increasing during 2014-2017 (figure 25). During 2017, ash emissions rose from a few hundred to nearly 3 km above the Ontake crater rim. Large explosions were reported 32 times by JMA, including 12 during August. Most explosions sent ash emissions to less than 1,000 m above the crater rim, but the highest ash plume, on 3 August 2017, rose 2.8 km above the crater rim, and was the highest recorded since observations began in 2003. Incandescence was observed at the crater from a thermal camera throughout the year and was witnessed locally many times. Many of the explosions, large and small, were heard in the nearby village. Ashfall was confirmed in the village to the SSW on nine different occasions during the year.

Figure (see Caption) Figure 25. Eruptive history at Suwanosejima for 2014-2017. Black bars represent height of steam, gas, or ash plumes in meters above crater rim, gray arrows or volcanoes represent an explosion, usually accompanied by an ash plume, red arrows or volcanoes represent a large explosion with an ash plume, red bars or orange diamonds indicate incandescence observed in webcams. From top to bottom: Eruptive activity during 2014, 2015, 2016, and 2017. Courtesy of JMA (Suwanosejima volcanic activity reports, December 2014, 2015, 2016, and 2017).

Activity during January-April 2017. There were no large explosions at Suwanosejima during January 2017, but occasional minor ash emissions rose as high as 1,300 m above the Ontake crater rim. Incandescence was visible from the webcam on most clear nights. Ashfall was reported in the village 4 km S on 17 and 26 January. The Tokyo VAAC reported ash emissions four times in January. Ash plumes rose to 1.2 km altitude and drifted SE on 4 January; to 1.8 km and drifted W on 5 January; to 1.2 km and drifted S on 16-17 January; and to 2.1 km and drifted SE on 25 January.

In contrast with January, five large explosions were reported by JMA during February 2017. The first, on 9 February, sent an ash plume to 700 m above the crater rim. An ash emission on 18 February rose to 1,200 m above the rim (figure 26). People in the nearby village reported hearing explosions on 18, 20, 27, and 28 February. The largest explosions occurred during 27-28 February when ejecta was scattered 600 m from the crater rim. The Tokyo VAAC reported ash emissions drifting SE several times: on 9 February at 1.5 km altitude, on 16 and 17 February at 1.8 km, and during 27-28 February at 1.5 km.

Figure (see Caption) Figure 26. An ash emission from Suwanosejima was captured by the 'Campground' webcam on 18 February 2017. Courtesy of JMA (Suwanosejima volcanic activity report, February 2017).

Intermittent ash emissions occurred during March 2017, but no large explosive events were reported. Ejecta was scattered around the edge of the crater on 4 March and an ash plume rose 1,000 m. Small ash plumes were noted rising 900 m on 12 and 15 March; explosions were heard in the village on 14 and 16 March, and ashfall was reported there on 25 March. Incandescence was observed at the summit intermittently throughout the month. During a field survey on 21 and 22 March, JMA noted minor thermal anomalies at the Ontake Crater, the N slope of the Ontake crater, and just above the coastline on the E flank (figure 27). The Tokyo VAAC reported ash emissions three times during March; on 3 March ash plumes rose to 1.5-1.8 km altitude and drifted SE and on both 28 and 31 March they rose to 1.8 km altitude and drifted SE and E.

Figure (see Caption) Figure 27. Thermal anomalies were apparent from the Ontake crater (upper left), the north slope of the crater (upper right), and just above the coastline on the E flank (lower left) in this thermal image of Suwanosejima taken on 22 March 2017 from the NE. Courtesy of JMA (Suwanosejima volcanic activity report, March 2017).

Only minor ash emissions and occasional incandescence was reported during April 2017. Two emission events on 1 April sent ash plumes to 1,200 m above the crater rim. A tremor that lasted nine minutes occurred on 11 April and a small seismic swarm was recorded on 13 April. Small explosions were also reported on 17 and 19 April, with the 19 April event heard at the nearby village; another small explosion was reported on 30 April. There were no reports issued by the Tokyo VAAC.

Activity during May-August 2017. Activity increased slightly during May 2017; two large explosions were recorded by JMA. A small explosion was reported on 1 May, and the highest plume rose to 1,900 m above the crater rim on 10 May during a larger event. Incandescence was observed from the local village on 16 May, and explosions were heard from the village on 16 and 18 May, and again on 28 and 29 May; no ashfall was reported. The Tokyo VAAC reported ash emissions on 7, 8, and 10 May. On 7 May they reported an ash plume located 45 km S at 1 km altitude extending SW. A few hours later ash extended N at 1.5 km. An explosion on 8 May sent an ash plume to 2.1 km where it remained stationary over the volcano for much of the day before dissipating. A higher ash plume was reported on 10 May at 2.7 km altitude drifting E.

Small ash explosions occurred at Ontake Crater on 8 and 21 June 2017, but there were no larger explosive events. Ash plume heights rose to only 600 m above the crater rim, and occasional nighttime incandescence was reported. No reports were issued by the Tokyo VAAC. JMA reported that the highest ash plume during July rose 2.1 km above the summit crater on 17 July, but no large explosions were recorded. Incandescence was observed intermittently throughout the month. A small explosion on 2 July sent an ash plume to 1.9 km above the crater rim. Intermittent ash emissions were noted during 17-19, 22 and 25 July. The Tokyo VAAC reported ash emissions during 2 and 16-18 July. They reported the plumes on 2 July at 1.8-2.4 km altitude, extending N for most of the day. A new explosion on 16 July sent an ash plume to 2.7 km altitude that drifted E. Intermittent ash emissions continued to drift E through 18 July at altitudes ranging from 1.8-2.1 km.

Activity increased substantially during August 2017; JMA reported 12 large explosions, nine of which occurred during the last week. Ashfall was reported in the nearby village on 2 August. The highest plume of the month was reported on 3 August, 2.8 km above the crater rim. Explosions were heard in the village on 3 and 19 August. A small explosion was reported on 12 August. Large explosions occurred on 19, 20, and 24 August in addition to the nine events during the last week. A single MODVOLC thermal alert was reported on 18 August, and the MIROVA system reported thermal anomalies during several days of the last week of the month (figure 28). The Washington VAAC reported ash on 1 August that rose to 2.4 km altitude and drifted SW. A higher plume on 3 August rose to 3.7 km and drifted W. They reported another ash plume that first rose to 3.0 km on 24 August; subsequent emissions that day were drifting NE at 2.1-2.4 km altitude. A new plume on 25 August extended E at 2.4 km. Continuing ash emissions from multiple explosions during 28-31 August rose to 1.2-3.0 km altitude and drifted SE.

Figure (see Caption) Figure 28. Log Radiative Power plot from the MIROVA project for Suwanosejima for 24 May 2017-15 February 2018 shows increased thermal activity during late August 2017, and intermittent pulses of activity from late May-September. Courtesy of MIROVA.

Activity during September-December 2017. Four large explosions were recorded during the first week of September 2017, after which a number of smaller ash emission events were reported. Ashfall was reported four times in the nearby village on 2, 4, 29, and 30 September. The Tokyo VAAC reported explosions on 1, 4, 6, and 29 September. The ash plume from the explosion on 6 September rose to 1.5 km altitude and drifted E; on 29 September, it rose to 2.4 km altitude, also drifting E.

JMA reported four large explosions during October 2017. Two explosions occurred on 11 October; one of the ash plumes rose 1,900 m above the crater rim (figure 29). Explosions were heard in the nearby village on 12 and 31 October, and ashfall was reported on 13 October. During the large explosion of 31 October incandescent ejecta was scattered around the crater rim and the ash plume rose 1,900 m. The Tokyo VAAC reported an explosion with ash on 10 October (UTC) that rose to 2.7 km altitude and remained stationary until dissipating a few hours later. They noted that the explosion on 31 October produced a plume that rose over 1.5 km and drifted NW.

Figure (see Caption) Figure 29. An ash plume from an explosion on 11 October 2017 rises 1.9 km above the Ontake crater of Suwanosejima. Courtesy of JMA (Suwanosejima volcanic activity report, October 2017).

JMA reported five large explosions during November 2017. Incandescent ejecta was seen around the crater rim during the explosion of 1 November, and the plume rose to 2 km above the rim. Loud explosions were heard from the nearby village on 3, 5, 6, 15, and 16 November, and ashfall was reported there on 14, 15, and 20 November. A small explosion was reported on 10 November; intermittent explosions with ash plumes rising 700 m were observed on 20 and 21 November. The Tokyo VAAC reported ash plumes at 1.5 km drifting W on 1 and 5 November, and at 1.8 km altitude drifting NW on 10 November, the last VAAC report issued for 2017.

Only small explosions were reported from Ontake crater during December 2017. The highest plume rose 700 m above the crater rim. Small explosions were heard a number of times in the nearby village on 8-9, 11-13, and 26-30 December. JMA scientists visiting during 8-10 December heard intermittent explosions and witnessed incandescence visible to the naked eye. They also observed ashfall in the village on the morning of 10 December. During a field survey on 14 December, no significant changes were noted from the previous survey in March 2017 (figures 30 and 31).

Figure (see Caption) Figure 30. The summit of Suwanosejima with steam rising from Ontake Crater taken from the W on 14 December 2017. Courtesy of JMA (Suwanosejima volcanic activity report, December 2017).
Figure (see Caption) Figure 31. Steam rises from the Ontake Crater of Suwanosejima viewed from the E on 14 December 2017. Courtesy of JMA (Suwanosejima volcanic activity report, December 2017).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Turrialba (Costa Rica) — March 2018 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


Persistent explosions and ash emissions continue through 2017; small lava lake

A phreatic eruption at Turrialba in January 2010 heralded a series of brief eruptions during subsequent years. Explosions and emissions containing ash increased in 2015 and 2016 (BGVN 42:06). The current report indicates that increased activity continued during 2017. The information below comes from the Observatorio Vulcanologico y Sysmologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) unless otherwise indicated.

Frequent ash emissions, both passive and explosive events, rose the heights of less than 1 km above the crater and were blown downwind, causing ashfall in communities within about 40 km, and a sulfur odor at greater distances. Fumarolic plumes described as consisting of water vapor, aerosols, and magmatic gases were also common from the West Crater. Volcanic seismicity was variable, often corresponding to changes in activity.

Activity during January-June 2017. During the first part of January, no explosions took place. Based on webcam and satellite views, the Washington Volcanic Ash Advisory Center (VAAC) reported that on 22 January, an ash plume rose to an altitude of 4 km and drifted E. The VAAC reported ongoing ash emissions on 27 January.

On 1 February, OVSICORI-UNA reported that since 27 January the seismic network had recorded variable-amplitude, discontinuous tremor indicative of moving pressurized volcanic fluid. Passive emissions of ash were observed during 1-2 February, rising as high as 500 m above the crater. Ashfall was reported in the area of the capital, San Jose (about 37 km WSW), including Desamparados, Calle Blancos, and Tres Ríos (27 km WSW), and a sulfur odor was noted in San Pablo Heredia (35 km W). An explosion at 0900 on 4 February generated an ash plume that rose 300 m and drifted W. Almost continuous ash emissions rose at most 500 above the crater during 4-5 February and drifted WSW (figure 48).

Figure (see Caption) Figure 48. An ash explosion from Turrialba on 4 February 2017 at 1145, taken by an RSN camera at the summit. Courtesy of RSN:UCR-ICE (Resumen de la Actividad Sismica y Eruptiva del Volcan Turrialba, 03 de febrero de 2017).

OVSICORI-UNA reported that at 1610 on 8 February, an ash plume rose 300 m and drifted N. An event at 1531 on 10 February also produced an ash plume, but inclement weather prevented observations. During 11-12 February, variable amplitude tremor was detected, and at night hot blocks ejected from the vent landed in Central Crater. Several events on 13 February (at 0255, 0305, 0415, and 1459) produced ash plumes that rose as high as 1 km and drifted N, NW, and W. Small ejections of incandescent material fell around the active crater during the early morning. On 14 February continuous emissions of gas and steam with low ash content were visible. A strong sulfur odor was reported in San Pablo de Oreamuno (25 km SW). High-amplitude tremor remained constant during 15-16 February and sporadic gas emissions with minor amounts of ash drifted S and E; occasional ballistics were ejected from the crater. During 16-17 February tremor amplitude decreased and sporadic gas emissions with low ash content rose no higher than 300 m and drifted NW and SW. Similar emissions were observed during 20-21 February, drifting NW and NE.

Weak gas emissions during 20-21 March sometimes contained small amounts of ash that rose no higher than 100 m above the crater rim and drifted SW. Volcanic tremor had medium and variable amplitude, and a few low-frequency (LF) earthquakes were recorded. A weak ash emission was visible during 1800-1940 on 25 March. Periods of more intense crater incandescence, from possible Strombolian activity, corresponded to higher tremor amplitude during 0330-0530 on 26 March. Later that day a small plume with minor ash rose 500 m above the crater and drifted S and SE. An event at 0752 on 28 March generated an ash plume that rose 300 m and drifted S.

Ash-and-gas plumes rose 500 m above the crater during 31 March-1 April, and ashfall was reported at the Juan Santamaría airport (48 km W). Ash plumes rose 500 m at 1700 on 2 April, and 200 m at 0601 on 4 April. A passive ash emission occurred on 16 April. An event at 0751 on 17 April generated a plume containing minor amounts of ash that rose 500 m above the crater and drifted SW. On 18 April, a diffuse plume consisting of gas and sometimes ash rose 1 km above the crater and drifted W.

An event at 1700 on 5 May generated a weak ash plume that rose 500 m above the crater and drifted SW. Two short-amplitude events occurred at 1702 and 1820, though it was uncertain if they were associated with an explosion. During 5-7 May volcano-tectonic (VT) and long-period (LP) earthquakes were detected, as well as variable-amplitude tremor. At 1250 on 6 May, an event produced a plume that rose 300 m and drifted W. Passive ash emissions occurred between 1250 and 1730 on 6 May, and at 1000 on 7 May, that rose no higher than 1 km. At 0902 on 9 May an event generated an ash plume that rose 500 m and drifted NW.

An explosion on 10 May was followed by weak and passive ash emissions. Several LP earthquakes were recorded, and inflation continued. Gas measurements indicated a sulfur dioxide flux of 1,000 tonnes/day, and a high carbon dioxide/sulfur dioxide ratio. An event at 0900 on 12 May generated a plume, though poor visibility prevented a height estimate. An event at 0730 on 14 May generated a plume that rose 500 m above the crater rim and drifted N. Low-amplitude tremor was detected during 15-16 May, and a discontinuous ash plume rose no more than 500 m and drifted N and NW.

Ash emissions observed during 17-23 May rose as high as 1 km above the vent. Ashfall was reported in El Tapojo and Juan Viñas (15 km SSE) during 17-18 May, and in Capellades (along with a strong sulfur odor) during 19-20 May. During 23-30 May, tremor amplitude fluctuated from low to high levels, often corresponding to emission characteristics; periods of VT and LP events were also recorded. During 24-26 May several passive ash emissions rose no higher than 500 m above the vent and drifted NW and SW. Frequent and small explosions during 26-27 May generated ash plumes that rose higher than 500 m above the vent and ejected material higher than 200 m and no farther than 100 m towards Central Crater. Small explosions during 27-29 May produced ash plumes that rose 300-500 m. Fumarolic plumes during 30-31 May occasionally contained ash that rose no higher than 300 m above the crater rim and drifted NW.

On 3 June at 1930 an event produced an ash plume that rose 300 m and drifted SW. During 7-13 June, tremor amplitude fluctuated from low to medium levels and periods of small VT events and many small-amplitude LP events were also recorded. Fumarolic plumes rose as high as 1 km above the vent and drifted mainly NW, W, and SW. Gas emissions during 14-15 June sometimes containing ash rose no higher than 300 m above the crater. Events at 0620 and 1405 on 16 June generated ash plumes that rose 500 m and drifted NW, and 200 m and drifted S, respectively. Passive ash emissions during 19-20 June rose as high as 1 km and drifted in multiple directions. During 20-25 June fumarolic plumes rose as high as 1 km above the crater; the gases were strongly incandescent the night of 22-23 June.

Drone observations on 29 June 2017. According to an RSN:UCR-ICE report and meeting abstract (Ruiz and others, 2017), government officials flew a drone over the volcano on 29 June 2017. The observations showed profound changes in the morphology of the active crater since a previous overflight on 30 March 2016. In March 2016, the active crater exhibited internal landslides, an accumulation of materials at the foot of the W wall, and a ring of fumaroles surrounding a small opening that constituted the point of ash emission. The active crater was narrow and had an oblong shape, with a longer axis in the E-W direction.

During the recent overflight, the active crater was deeper and wider, elliptical, with its longest axis in the SW-NE direction, coincident with the preferential direction of explosions. In the N and NE sectors of the crater floor ash and blocks had accumulated. The most significant feature of the crater's central sector was an opening with a major axis of about 50 m across from which incandescent material was observed; the group believed this incandescence originated in the small lava lake from which passive ash emissions or small explosions arise. The authors stated that lava was present on the crater floor, forming a small lava pool (15 x 25 m).

Activity during July-December 2017. During 29 June-11 July seismicity was characterized by low-to-medium amplitude tremor and a small number of low-amplitude VT and LP events. Fumarolic plumes and occasional ash rose as high as 1 km above the West Crater fumaroles. Incandescence from the main crater was recorded at night. Minor ashfall and a sulfur odor was reported in areas of San José including Rancho Redondo, Goicoechea, Moravia, San Pedro Montes de Oca, Guadalupe, and Coronado, and in San Rafael and Barva (Heredia). Parque Nacional Volcán Turrialba staff reported that ash was deposited between La Silvia and La Picada farms. Events at 1325 on 10 July and 1545 on 11 July generated plumes that rose 300 and 500 m above the crater rim, respectively.

Daily explosions over 12-17 July produced gas and ash plumes that rose 200-500 m and generally drifted NW, W, and SW. Multiple events on 15 July caused ashfall in Sabanilla de Montes de Oca (30 km WSW), Ipis (27 km SW), El Carmen de Guadalupe, Purral (26 km WSW), Guadalupe (32 km WSW), and Tibás (35 km WSW). A sulfur dioxide odor was also reported in San José (36 km WSW), Tibás, Guadalupe, Escazú (42 km WSW), and Puriscal (65 km WSW). During 19-24 July fumarolic plumes rose as high as 500 m, and on most nights incandescence emanated from West Crater. The emissions contained ash during 20-22 July; minor ash fell in Coronado (San José) on 20 July, and in Sabanilla de Montes de Oca on 22 July.

Events on 26 July, 9 August (1607), 21 August (1012), 24 August (0715), 28 August (1025), 5 September (0820 and 1550), 11 September (0730), 13 September (0820 and 1555), 14 September (0600), 18 September (0703), 25 September (1112), and 26 September (0910) produced plumes that rose 100-500 m above the crater rim and drifted NW, SW, N, and W.

During 27 September-1 October and on 3 October, daily events generated plumes that rose as high as 1 km above the crater rim and drifted NW, W, SW, and S. On 30 September explosions ejected hot material out of West Crater and minor ashfall was reported in Coronado (San José). On 3 October, ash fell in Santa Cruz (7 km SE), Las Verbenas, Santa Teresita, Calle Vargas, Guayabito, and La Isabel.

Events on 6 October (0815), 9 October (1040), 11 October (0927), and 20 October (0825) produced plumes that rose 50-300 m above the crater rim and drifted NW and N. Events at 1030, 1105, and 1445 on 30 October generated ash plumes that rose 200-500 m above the crater rim and drifted NW, W, and SW. Ashfall was reported in the community of Pacayas (about 12 km SSW).

The Washington VAAC reported that an ash emission was observed in webcam images on 4 November; ash was not identified in satellite images, though weather cloud cover was increasing and may have obscured views. According to OVSICORI-UNA, another ash emission began before 0730 on 13 November and intensified around 0830, generating an ash plume that rose 500 m above the crater rim and drifted SW. A small event at 1319 on 1 December generated a weak ash plume that rose 50 m above the crater rim and drifted SW.

Reference. Ruiz, P., Mora, M., Soto, G.J., Vega, P., Barrantes, R., 2017. Geomorphological mapping using drones into the eruptive summit of Turrialba volcano, Costa Rica. University of Costa Rica. Abstract V23A-0455, AGU Fall meeting of American Geophysical Union, New Orleans, 12 Dec 2017.

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); Red Sismologica Nacional (RSN) a collaboration between a) the Sección de Sismología, Vulcanología y Exploración Geofísica de la Escuela Centroamericana de Geología de la Universidad de Costa Rica (UCR), and b) the Área de Amenazas y Auscultación Sismológica y Volcánica del Instituto Costarricense de Electricidad (ICE), Costa Rica (URL: http://www.rsn.ucr.ac.cr/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

View Atmospheric Effects Reports

Special Announcements

Special announcements of various kinds and obituaries.

View Special Announcements Reports

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).