Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Ubinas (Peru) Intermittent ash explosions in June-August 2019

Santa Maria (Guatemala) Persistent explosions with local ashfall, March-August 2019; frequent lahars during June; increased explosions in early July

Stromboli (Italy) Major explosions on 3 July and 28 August 2019; hiker killed by ejecta

Ol Doinyo Lengai (Tanzania) Multiple lava flows within the summit crater, September 2018-August 2019

Ulawun (Papua New Guinea) Explosions on 26 June and 3 August 2019 send plumes above 19 km altitude

Sarychev Peak (Russia) Ash plume on 11 August; thermal anomalies from late May to early October 2019

Asamayama (Japan) Ashfall from phreatic eruptions on 7 and 25 August 2019

Villarrica (Chile) Strombolian activity continued during March-August 2019 with an increase in July

Reventador (Ecuador) Daily ash emissions and incandescent block avalanches continue, February-July 2019

Raikoke (Russia) Short-lived series of large explosions 21-23 June 2019; first recorded activity in 95 years

Sinabung (Indonesia) Large ash explosions on 25 May and 9 June 2019

Semisopochnoi (United States) Small explosions detected between 16 July and 24 August 2019



Ubinas (Peru) — September 2019 Citation iconCite this Report

Ubinas

Peru

16.355°S, 70.903°W; summit elev. 5672 m

All times are local (unless otherwise noted)


Intermittent ash explosions in June-August 2019

Prior to renewed activity in June 2019, the most recent eruptive episode at Ubinas occurred between 13 September 2016 and 2 March 2017, with ash explosions that generated plumes that rose up to 1.5-2 km above the summit crater (BGVN 42:10). The volcano remained relatively quiet between April 2017 and May 2019. This report discusses an eruption that began in June 2019 and continued through at least August 2019. Most of the Information was provided by the Instituto Geofísico del Perú (IGP), Observatoria Vulcanologico del Sur (IGP-OVS), the Observatorio Volcanológico del INGEMMET (Instituto Geológical Minero y Metalúrgico) (OVI-INGEMMET), and the Buenos Aires Volcanic Ash Advisory Center (VAAC).

Activity during June 2019. According to IGP, seismic activity increased suddenly on 18 June 2019 with signals indicating rock fracturing. During 21-24 June, signals indicating fluid movement emerged and, beginning at 0700 on 24 June, webcams recorded ash, gas, and steam plumes rising from the crater. Plumes were visible in satellite images rising to an altitude of 6.1 km and drifting N, NE, and E.

IGP and INGEMMET reported that seismic activity remained elevated during 24-30 June; volcano-tectonic (VT) events averaged 200 per day and signals indicating fluid movement averaged 38 events per day. Emissions of gas, water vapor, and ash rose from the crater and drifted N and NE, based on webcam views and corroborated with satellite data. According to a news article, a plume rose 400 m above the crater rim and drifted 10 km NE. Weather clouds often obscured views of the volcano, but an ash plume was visible in satellite imagery on 24 June 2019 (figure 49). On 27 June the Alert Level was raised to Yellow (second lowest on a 4-level scale).

Figure (see Caption) Figure 49. Sentinel-2 satellite image in natural color showing an ash plume blowing north from Ubinas on 24 June 2019. Courtesy of Sentinel Hub Playground.

Activity during July 2019. IGP reported that seismic activity remained elevated during 1-15 July; VT events averaged 279 per day and long-period (LP) events (indicating fluid movement) averaged 116 events per day. Minor bluish emissions (magmatic gas) rose from the crater. Infrared imagery obtained by Sentinel-2 first showed a hotspot in the summit crater on 4 July.

According to IGP, during 17-19 July, gas-and-ash emissions occasionally rose from Ubinas's summit crater and drifted N, E, and SE. Beginning at 0227 on 19 July, as many as three explosions (two were recorded at 0227 and 0235) generated ash plumes that rose to 5.8 km above the crater rim. The Buenos Aires VAAC reported that, based on satellite images, ash plumes rose to an altitude as high as 12 km. The Alert Level was raised to Orange and the public were warned to stay beyond a 15-km radius. Ash plumes drifted as far as 250 km E and SE, reaching Bolivia. Ashfall was reported in areas downwind, including the towns of Ubinas (6.5 km SSE), Escacha, Anascapa (11 km SE), Tonohaya (7 km SSE), Sacohaya, San Miguel (10 km SE), Huarina, and Matalaque, causing some families to evacuate. The Buenos Aires VAAC reported that during 20-23 July ash plumes rose to an altitude of 7.3-9.5 km and drifted E, ESE, and SE.

IGP reported that activity remained elevated after the 19 July explosions. A total of 1,522 earthquakes, all with magnitudes under 2.2, were recorded during 20-24 July. Explosions were detected at 0718 and 2325 on 22 July, the last ones until 3 September. The Buenos Aires VAAC reported that an ash plume rising to an altitude of 9.4 km. and drifting SE was identified in satellite data at 0040 on 22 July (figure 50). Continuous steam-and-gas emissions with sporadic pulses of ash were visible in webcam views during the rest of the day. Ash emissions near the summit crater were periodically visible on 24 July though often partially hidden by weather clouds. Ash plumes were visible in satellite images rising to an altitude of 7 km. Diffuse ash emissions near the crater were visible on 25 July, and a thermal anomaly was identified in satellite images. During 26-28 July, there were 503 people evacuated from areas affected by ashfall.

Figure (see Caption) Figure 50. Image of ash streaming from the summit of Ubinas on 22 July 2019 captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite. Courtesy of NASA's Earth Observatory (Joshua Stevens and Kathryn Hansen).

Activity during August 2019. IGP reported that during 13-19 August blue-colored gas plumes rose to heights of less than 1.5 km above the base of the crater. The number of seismic events was 1,716 (all under M 2.4), a decrease from the total recorded the previous week.

According to IGP, blue-colored gas plumes rose above the crater and eight thermal anomalies were recorded by the MIROVA system during 20-26 August. The number of seismic events was 1,736 (all under M 2.4), and there was an increase in the magnitude and number of hybrid and LP events. Around 1030 on 26 August an ash emission rose less than 2 km above the crater rim. Continuous ash emissions on 27 August were recorded by satellite and webcam images drifting S and SW.

IGP reported that during the week of 27 August, gas-and-water-vapor plumes rose to heights less than 1 km above the summit. The number of seismic events was 2,828 (all under M 2.3), with VT signals being the most numerous. There was a slight increase in the number of LP, hybrid, and VT events compared to the previous week. The Alert Level remained at Orange.

Thermal anomalies. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected a large concentration of anomalies between 19 July until almost the end of August 2019, all of which were of low radiative power (figure 51). Infrared satellite imagery (figure 52) also showed the strong thermal anomaly associated with the explosive activity on 19 July and then the continuing hot spot inside the crater through the end of August.

Figure (see Caption) Figure 51. Log radiative power MIROVA plot of MODIS thermal anomalies at Ubinas for the year ending on 4 October 2019. Thermal activity began in the second half of July. Courtesy of MIROVA.
Figure (see Caption) Figure 52. Sentinel-2 satellite images (Atmospheric penetration rendering, bands 12, 11, 8A) showing thermal anomalies during the eruption on 19 July (left) and inside the summit crater on 29 July 2019 (right). A hot spot inside the crater persisted through the end of August. Courtesy of Sentinel Hub Playground.

Geologic Background. A small, 1.4-km-wide caldera cuts the top of Ubinas, Peru's most active volcano, giving it a truncated appearance. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Perú. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3700 years ago extend 10 km from the volcano. Widespread plinian pumice-fall deposits include one of Holocene age about 1000 years ago. Holocene lava flows are visible on the flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor-to-moderate explosive eruptions.

Information Contacts: Instituto Geofisico del Peru (IGP), Observatoria Vulcanologico del Sur (IGP-OVS), Arequipa Regional Office, Urb La Marina B-19, Cayma, Arequipa, Peru (URL: http://ovs.igp.gob.pe/); Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa (URL: http://ovi.ingemmet.gob.pe); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php?lang=es); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Instituto Nacional de Defensa Civil Perú (INDECI) (URL: https://www.indeci.gob.pe/); Gobierno Regional de Moquegua (URL: http://www.regionmoquegua.gob.pe/web13/); La Republica (URL: https://larepublica.pe/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/).


Santa Maria (Guatemala) — September 2019 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Persistent explosions with local ashfall, March-August 2019; frequent lahars during June; increased explosions in early July

The dacitic Santiaguito lava-dome complex on the W flank of Guatemala's Santa María volcano has been growing and actively erupting since 1922. The youngest of the four vents in the complex, Caliente, has been erupting with ash explosions, pyroclastic, and lava flows for more than 40 years. A lava dome that appeared within the summit crater of Caliente in October 2016 has continued to grow, producing frequent block avalanches down the flanks. Daily explosions of steam and ash also continued during March-August 2019, the period covered in this report, with information primarily from Guatemala's INSIVUMEH (Instituto Nacional de Sismologia, Vulcanologia, Meterologia e Hidrologia) and the Washington VAAC (Volcanic Ash Advisory Center).

Activity at Santa Maria continued with little variation from previous months during March-August 2019, except for a short-lived increase in the frequency and intensity of explosions during early July that produced minor pyroclastic flows. Plumes of steam with minor magmatic gases rose continuously from both the S rim of the Caliente crater and from the summit of the growing dome throughout the period. They usually rose 100-700 m above the summit, generally drifting W or SW, and occasionally SE, before dissipating. In addition, daily explosions with varying amounts of ash rose to altitudes of around 2.8-3.5 km and usually extended no more than 25 km before dissipating. Most of the plumes drifted SW or SE; minor ashfall occurred in the adjacent hills almost daily and was reported at the fincas located within 10 km in those directions several times each month. Continued growth of the Caliente lava dome resulted in daily block avalanches descending its flanks to the base of the dome. The MIROVA plot of thermal energy during this time shows a consistent level of heat from early December 2018 through April 2019, very little activity during May and June, and a short-lived spike in activity from late June through early July that coincides with the increase in explosion rate and intensity. Activity decreased later in July and into August (figure 95).

Figure (see Caption) Figure 95. Thermal activity at Santa Maria from 8 December 2018 through August 2019 was similar to previous months. A noticeable decrease in activity occurred during May and early June 2019 with a short-lived spike during late June and early July that corresponded to an increase in explosion rate and intensity during that brief interval. Courtesy of MIROVA.

Explosive activity increased slightly during March 2019 to 474 events from 409 events during February, averaging about 15 per day; the majority of explosions were weak to moderate in strength. The moderate explosions generated small block avalanches daily that sent debris 300 m down the flanks of Caliente dome; the explosions contained low levels of ash and large quantities of steam. Daily activity consisted mostly of degassing around the southern rim of the crater and within the central dome, with plumes rising about 100 m from the S rim, and pulsating between 100-400 m above the central dome, usually white and sometimes blue with gases; steam plumes drifted as far as 10 km. The weak ash emissions resulted in ashfall close to the volcano, primarily to the W and SW in the mountainous areas of El Faro, Patzulín, La Florida, and Monte Bello farms. During mid-March, residents of the villages of Las Marías and El Viejo Palmar, located S of the dome, reported the smell of sulfur. The seismic station STG3 registered 8-23 explosions daily that produced ash plumes which rose to altitudes between 2.7 and 3.3 km altitude. Explosions from the S rim were usually steam rich, while reddish oxidized ash was more common from the NE edge of the growing dome in the summit crater (figure 96). The constant block avalanches were generated by viscous lava slowly emerging from the growing summit dome, and also from the explosive activity. On the steep S flank of Santa Maria, blocks up to 3 m in diameter often produce small plumes of ash and debris as they fall.

Figure (see Caption) Figure 96. Mostly steam rose from the S rim of the Caliente dome at Santa Maria throughout March-August 2019. On 1 March 2019, oxidized reddish ash from the growing dome was also part of the emissions (left). The dome continued to grow, essentially filling the inside of the summit crater of Caliente. Courtesy of INSIVUMEH (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA MARZO 2019, VOLCÁN SANTIAGUITO).

Late on 4 March 2019 an explosion was heard 10 km away that generated incandescence 100 m above the crater and block avalanches that descended to the base of the Caliente dome; it also resulted in ashfall around the perimeter of the volcano. Powerful block avalanches were reported in Santa María creek on 8 March. Ashfall was reported in the villages of San Marcos and Loma Linda Palajunoj on 14 March. Ash plumes on 18 March drifted W and caused ashfall in the villages of Santa María de Jesús and Calaguache. A small amount of ashfall was reported on 26 March around San Marcos Palajunoj. The Washington VAAC reported volcanic ash drifting W from the summit on 8 March at 4.6 km altitude. A small ash plume was visible in satellite imagery moving WSW on 11 March at 4.6 km altitude. On 20 March a plume was detected drifting SW at 3.9 km altitude for a short time before dissipating.

Explosion rates of 10-14 per day were typical for April 2019. Ash plumes rose to 2.7-3.2 km altitude. Block avalanches reached the base of the Caliente dome each day. Steam and gas plumes pulsated 100-400 m above the S rim of the crater (figure 97). Ashfall in the immediate vicinity of the volcano, generally on the W and SW flanks was also a daily feature. The Washington VAAC reported multiple small ash emissions on 2 April moving W and dissipating quickly at 4.9 km altitude. An ash plume from two emissions drifted WSW at 4.3 km altitude on 10 April, and on 22 April two small discrete emissions were observed in satellite images moving SE at 4.6 km altitude. Ashfall was reported on 13 and 14 April in the nearby mountains and areas around Finca San José to the SE. On 15 and 23 April, ash plumes drifted W and ashfall was reported in the area of San Marcos and Loma Lina Palajunoj.

Figure (see Caption) Figure 97. Degassing from the Caliente dome at Santa Maria on 3 April (left, infrared image) and 13 April 2019 (right) produced steam-rich plumes with minor quantities of ash. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo:, Volcán Santiaguito, Semana del 30 de marzo al 05 de abril de 2019).

Constant degassing continued from the S rim of the crater during May 2019 while pulses of steam and gas rose 100-500 m from the dome at the center of the summit crater. Weak to moderate explosions continued at a rate of 8-12 per day. White and gray plumes of steam and ash rose 300-700 m above the crater daily. A moderate-size lahar on 16 May descended the Rio San Isisdro; it was 20 m wide and carried blocks 2 m in diameter. Ashfall was reported on the W flank around the area of San Marcos and Loma Lina Palajunoj on 21 and 24 May. INSIVIUMEH reported on 29 and 30 May that seismic station STG8 recorded moderate lahars descending the Rio San Isidro (a drainage to the Rio Tambor). The thick, pasty lahars transported blocks 1-3 m in diameter, branches, and tree trunks. They were 20 m wide and 1.5-2 m deep.

Weak to moderate explosions continued during June 2019 at a rate of 9-12 per day, producing plumes of ash and steam that rose 300-700 m above the Caliente crater. On 1 June explosions produced ashfall to the E over the areas of Calaguache, Las Marías and other nearby communities. Ash plumes commonly reached 3.0-3.3 km altitude and drifted W and SW, and block avalanches constantly descended the E and SE flanks from the dome at the top of Caliente. Ashfall was reported at the Santa María de Jesús community on 7 June. Ashfall to the W in San Marcos and Loma Linda Palajunoj was reported on 10, 15, 18, 20, and 22 June. Ashfall to the SE in Fincas Monte Claro and El Patrocinio was reported on 26 June. A few of the explosions on 28 June were heard up to 10 km away. On 29 June ash dispersed to the W again over the farms of San Marcos, Monte Claro, and El Patrocinio in the area of Palajunoj; the next day, ash was reported in Loma Linda and finca Monte Bello to the SW. The Washington VAAC reported ash emissions on 29 June that rose to 4.3 km and drifted W; two ash clouds were observed, one was 35 km from Santa Maria and the second drifted 55 km before dissipating.

With the onset of the rainy season, eight lahars were reported during June. The Rio Cabello de Ángel, a tributary of Río Nimá I (which flows into Rio Samalá) on the SE flank experienced lahars on 3, 5, 11, 12, 21, and 30 June (figure 98). The lahars were 15-20 m wide, 1-2 m deep, and carried branches, tree trunks and blocks 1-3 m in diameter. On 12 and 15 June, lahars descended the Río San Isidro on the SW flank. They were 1.5 m deep, 15-20 m wide and carried tree trunks and blocks up to 2 m in diameter.

Figure (see Caption) Figure 98. Activity at Santa Maria on 12 June 2019 included explosions with abundant ash and lahars. This lahar is in the Rio Nimá I, and started in the Rio Cabello de Ángel. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito, Semana del 08 al 14 de junio de 2019).

An increase in the frequency and intensity of seismic events was noted beginning on 28 June that lasted through 6 July 2019. Explosions occurred at a rate of 5-6 per hour, reaching 40-45 events per day instead of the 12-15 typical of previous months. Ash plumes rose to 3.5-3.8 km altitude and drifted W, SW, and S as far as 10 km, and ashfall was reported in San Marcos Palajunoj, Loma Linda villages, Monte Bello farms, El Faro, La Mosqueta, La Florida, and Monte Claro. Activity decreased after 7 July back to similar levels of the previous months. As a result of the increased activity during the first week of July, several small pyroclastic flows (also known as pyroclastic density currents or PDC's) were generated that traveled up to 1 km down the S, SE, and E flanks during 2-5 and 13 July, in addition to the constant block avalanches from the dome extrusion and explosions (figure 99). As activity levels decreased after 6 July, the ash plume heights lowered to 3.3 km altitude, while pulsating degassing continued from the summit dome, rising 100-500 m.

Figure (see Caption) Figure 99. An increase in explosive activity at Santa Maria during the first week of July 2019 resulted in several small pyroclastic flows descending the flanks, including one on 3 July 2019 (left). An ash emission on 19 July 2019 rose above the nearby summit of Santa Maria (right). Courtesy of INSIVUME (INFORME MENSUAL DE ACTIVIDAD VOLCÁNICA JULIO 2019, VOLCÁN SANTIAGUITO).

The Washington VAAC reported an ash plume on 2 July from a series of emissions that rose to 3.9 km altitude and drifted W. Satellite imagery on 4 July showed a puff of ash moving W from the summit at 4.3 km altitude. The next day an ash emission was observed in satellite imagery moving W at 4.9 km altitude. A plume on 11 July drifted W at 4.3 km for several hours before dissipating. Ashfall was reported on 2 July at the San Marcos farm and in the villages of Monte Claro and El Patrocinio in the Palajunoj area. On 4 and 6 July ash fell to the SW and W in San Marcos and Loma Linda Palajunoj. On 5 July there were reports of ashfall in Monte Claro and areas around San Marcos Palajunoj and some explosions were heard 5 km away. In Monte Claro to the SW ash fell on 7 July and sounds were heard 5 km away every three minutes. Incandescence was observed in the early morning on the SE and NE flanks of the dome. During 8 and 9 July, four to eight weak explosions per hour were noted and ash dispersed SW, especially over Monte Claro; pulsating degassing noises were heard every two minutes. Monte Bello and Loma Linda reported ashfall on 12, 16, 17, 19, and 20 July. On 15, 22, 26, and 29 July ash was reported in San Marcos and Loma Linda Palajunoj; 33 explosions occurred on 25 July. Two lahars were reported on 8 July. A strong one in the Rio San Isidro was more than 2 m deep, and 20-25 m wide with blocks as large as 3 m in diameter. A more moderate lahar affected Rio Cabello de Angel and was also 2 m deep. It was 15-20 m wide and had blocks 1-2 m in diameter.

Activity declined further during August 2019. Constant degassing continued from the S rim of the crater, but only occasional pulses of steam and gas rose from the central dome. Weak to moderate explosions occurred at a rate of 15-20 per day. White and gray plumes with small amounts of ash rose 300-800 m above the summit daily. Block avalanches descended to the base of the dome and sent fine ash particles down the SE and S flanks. Ashfall was common within 5 km of the summit, generally on the SW flank, near Monte Bello farm, Loma Linda village and San Marcos Palajunoj. Explosions rates decreased to 10-11 per day during the last week of the month. Degassing and ash plumes rose to 2.9-3.2 km altitude throughout the month.

On 1 August ash plumes drifted 10-15 km SW, causing ashfall in that direction. On 3 and 27 August ashfall occurred at Monte Claro and El Patrocinio in the Palajunoj area to the SW. On 7 and 31 August ashfall was reported in Monte Claro. San Marcos and Loma Linda Palajunoj reported ash on 11, 16, 19, and 23 August. On 21 August ashfall was reported to the SE around Finca San José. The Washington VAAC reported an ash plume visible in satellite imagery on 10 August 2019 drifting W at 4.3 km altitude a few kilometers from the summit which dissipated quickly. On 27 August a plume was observed 25 km W of the summit at 3.9 km altitude, dissipating rapidly. On 3 August a moderate lahar descended the Rio Cabello de Ángel that was 1 m deep, 15 m wide and carried blocks up to 1 m in diameter along with branches and tree trunks. A large lahar on 20 August descended Río Cabello de Ángel; it was 2-3 m high, 15 m wide and carried blocks 1-2 m diameter, causing erosion along the flanks of the drainage (figure 100).

Figure (see Caption) Figure 100. A substantial lahar at Santa Maria on 20 August 2019 sent debris down the Río Cabello de Ángel in the vicinity of El Viejo Palmar (left), the spectrogram of the seismic signal lasted for 2 hours and 16 minutes (top right), and the seismograph was saturated with the lahar signal in red (bottom right). Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán Santiaguito, Semana del 17 al 23 de agosto de 2019).

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html).


Stromboli (Italy) — September 2019 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Major explosions on 3 July and 28 August 2019; hiker killed by ejecta

Near-constant fountains of lava at Stromboli have served as a natural beacon in the Tyrrhenian Sea for at least 2,000 years. Eruptive activity at the summit consistently occurs from multiple vents at both a north crater area (N area) and a southern crater group (CS area) on the Terrazza Craterica at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island. Periodic lava flows emerge from the vents and flow down the scarp, sometimes reaching the sea; occasional large explosions produce ash plumes and pyroclastic flows. Thermal and visual cameras that monitor activity at the vents are located on the nearby Pizzo Sopra La Fossa, above the Terrazza Craterica, and at multiple locations on the flanks of the volcano. Detailed information for Stromboli is provided by Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) as well as other satellite sources of data; March-August 2019 is covered in this report.

Typical eruptive activity recorded at Stromboli by INGV during March-June 2019 was similar to activity of the past few years (table 6); two major explosions occurred in July and August with a fatality during the 3 July event. In the north crater area, both vents N1 and N2 emitted fine (ash) ejecta, occasionally mixed with coarser lapilli and bombs; most explosions rose less than 80 m above the vents, some reached 150 m. Average explosion rates ranged from 1 to 12 per hour. In the CS crater area continuous degassing and occasional intense spattering were typical at vent C, vent S1 was a low-intensity incandescent jet throughout the period. Explosions from vent S2 produced 80-150 m high ejecta of ash, lapilli, and bombs at average rates of 2-17 per hour.

After a high-energy explosion and lava flow on 25 June, a major explosion with an ash plume and pyroclastic flow occurred on 3 July 2019; ejecta was responsible for the death of a hiker lower down on the flank and destroyed monitoring equipment near the summit. After the explosion on 3 July, coarse ejecta and multiple lava flows and spatter cones emerged from the N area, and explosion rates increased to 4-19 per hour. At the CS area, lava flows emerged from all the vents and spatter cones formed. Explosion intensity ranged from low to very high with the finer ash ejecta rising over 250 m from the vents and causing ashfall in multiple places on the island. This was followed by about 7 weeks of heightened unrest and lava flows from multiple vents. A second major explosion with an ash plume and pyroclastic flow on 28 August reshaped the summit area yet again and scattered pyroclastic debris over the communities on the SW flank near the ocean.

Table 6. Summary of activity levels at Stromboli, March-August 2019. Low-intensity activity indicates ejecta rising less than 80 m, medium-intensity is ejecta rising less than 150 m, and high-intensity is ejecta rising over 200 m above the vent. Data courtesy of INGV.

Month North (N) Area Activity Central-South (CS) Area Activity
Mar 2019 Low- to medium-intensity explosions at both N1 and N2. Coarse-grained ejecta (lapilli and bombs) from N1, fine-grained ash mixed with coarse material from N2. Explosion rates of 3-12 per hour. Medium-intensity explosions from both S area vents, lapilli and bombs mixed with ash, 2-9 explosions per hour.
Apr 2019 Low- to medium-intensity explosions at both N1 and N2. Coarse-grained ejecta (lapilli and bombs) from N1, fine-grained ash from N2. Explosion rates of 5-12 per hour. Continuous degassing from C, low-intensity incandescent jets form S1, up to 4 emission points from S2, mostly fine-grained ejecta, 4-15 explosions per hour.
May 2019 Low- to medium-intensity explosions at both N1 and N2. Mostly fine-grained ejecta, occasionally mixed with coarser material. Explosion rates of 2-8 per hour. Continuous degassing from C, low-intensity incandescent jets form S1, low- to medium-intensity explosions from C, S1, and S2. Mostly fine-grained ejecta, occasionally mixed with coarser material. Explosion rates of 5-16 per hour.
June 2019 Low- to medium-intensity explosions at both N1 and N2. Mostly fine-grained ejecta, occasionally mixed with coarser material. Explosion rates of 1-12 per hour. Continuous degassing at C and sporadic short duration spattering events, low- to medium-intensity incandescent jets at S1, multiple emission points from S2. Ejecta of larger lapilli and bombs mixed with ash. Explosion rates of 2-17 per hour. High-energy explosion on 25 June.
Jul 2019 Low- to medium-intensity explosions at both N1 and N2. Coarse ejecta after major explosion on 3 July. Intermittent intense spattering. Explosions rates of 4-19 per hour. Lava flows from all vents. Major explosion and pyroclastic flow, 3 July, with fatality from falling ejecta. Lava flows from all vents. Continuous degassing and variable intensity explosions from low to very high (over 200 m). Coarse ejecta until 20 July; followed by mostly ash.
Aug 2019 Low- to medium-intensity explosions from the N area, coarse ejecta and occasional intense spattering. Explosion rates of 7-17 per hour. Lava flows. Low- to high-intensity explosions; ash ejecta over 200 m; ashfall during week 1 in S. Bartolo area, Scari, and Piscità. Major explosion on 28 August, with 4-km-high ash plume and pyroclastic flow; lava flows. Explosion rates of 4-16 per hour.

Thermal activity was low from March through early June 2019 as recorded in the MIROVA Log Radiative Power data from MODIS infrared satellite information. A sharp increase in thermal energy coincided with a large explosion and the emergence of numerous lava flows from the summit beginning in late June (figure 144). High heat-flow continued through the end of August and dropped back down at the beginning of September 2019 after the major 28 August explosion.

Figure (see Caption) Figure 144. Thermal activity at Stromboli was low and intermittent from 12 November 2018 through early June 2019, based on this MIROVA plot of thermal activity through August 2019. A spike in thermal energy in late June coincided with a major explosion on 3 July and the emergence of lava from the summit area. Heightened activity continued from 3 July through 28 August with multiple lava flows emerging from both crater areas. Courtesy of MIROVA.

Activity during March-June 2019. Activity was low during March 2019. Low- to medium-intensity explosions occurred at both vents N1 and N2 in the north area. Ejecta was mostly coarse grained (lapilli and bombs) from N1 and fine-grained ash mixed with some coarse material from N2. Intense spattering activity was reported from N2 on 29 March. Explosion rates were reported at 5-12 per hour. At the CS area, medium-intensity explosions from both south area vents produced lapilli and bombs mixed with ash at a rate of 2-9 explosions per hour.

During a visit to the Terrazza Craterica on 2 April 2019, degassing was visible from vents N1, N2, C, and S2; activity continued at similar levels to March throughout the month. Low- and medium-intensity explosions with coarse ejecta, averaging 3-12 per hour, were typical at vent N1 while low-intensity explosions with fine-grained (ash) ejecta occurred at a similar rate from N2. Continuous degassing was observed at the C vent, and low-intensity incandescent jets were present at S1 throughout the month. Multiple emission points from S2 (as many as 4) produced low- to medium-intensity explosions at rates of 4-14 explosions per hour; the ejecta was mostly fine-grained mixed with some coarse material. Frequent explosions on 19 April produced abundant pyroclastic material in the summit area.

Low to medium levels of explosive activity at all of the vents continued during May 2019. Emissions consisted mostly of ash occasionally mixed with coarser material (lapilli and bombs). Rates of explosion were 2-8 per hour in the north area, and 5-16 per hour in the CS Area. Explosions of low-intensity continued from all the vents during the first part of June at rates averaging 2-12 per hour, although brief periods of high-frequency explosions (more than 21 events per hour) were reported during the week of 10 June. Strong degassing was observed from crater C during an inspection on 12 June (figure 145); by the third week, continuous degassing was interrupted at C by sporadic short-duration spattering events.

Figure (see Caption) Figure 145. The Terrazza Craterica as seen from the Pizzo sopra la Fossa (above, near the summit) at Stromboli on 12 June 2019. In red are the two craters (N1 and N2) of the N crater area, in green is the CS crater area with 2 vents (C1 and C2) in the central crater and S2, the largest and deepest crater in the CS area, also with at least two vents. S1 is hidden by the degassing of crater C. Photograph by Giuseppe Salerno, courtesy of INGV (Report 25/2019, Stromboli, Bollettino Settimanale, 10/06/2019-16/06/2019).

Late on 25 June 2019, a high-energy explosion that lasted for 28 seconds affected vent C in the CS area. The ejecta covered a large part of the Terrazza Craterica, with abundant material landing in the Valle della Luna. An ash plume rose over 250 m after the explosion and drifted S. After that, explosion frequency varied from medium-high (17/hour) on 25 June to high (25/hour) on 28 June. On 29 June researchers inspected the summit and noted changes from the explosive events. Thermal imagery indicated that the magma level at N1 was almost at the crater rim. The magma level at N2 was lower and explosive activity was less intense. At vent C, near-constant Strombolian activity with sporadic, more intense explosions produced black ash around the enlarged vent. At vent S2, a pyroclastic cone at the center of the crater produced vertical jets of gas, lapilli, and bombs that exceeded 100 m in height (figure 146).

Figure (see Caption) Figure 146. A high-energy explosion at Stromboli late on 25 June 2019 affected vent C in the CS Area (top row). The ejecta covered a large part of the Terrazza Craterica. An ash plume rose over 250 m after the explosion and drifted S. On 29 June (bottom row) thermal imagery indicated that the magma level at N1 was almost at the crater rim. At vent C, near-constant Strombolian activity was interrupted with sporadic, more intense explosions. At vent S2, a pyroclastic cone at the center of the crater produced vertical jets of gas, lapilli, and bombs that exceeded 100 m in height. Photo 2f by L. Lodato, courtesy of INGV (Rep 27/2019, Stromboli, Bollettino Settimanale, 24/06/2019-30/06/2019).

Activity during July 2019. A large explosion accompanied by lava and pyroclastic flows affected the summit and western flank of Stromboli on 3 July 2019. Around 1400 local time an explosion from the CS area generated a lava flow that spilled onto the upper part of the Sciara del Fuoco. Just under an hour later several events took place: lava flows emerged from the C vent and headed E, from the N1 and N2 vents and flowed N towards Bastimento, and from vent S2 (figure 147). The emergence of the flows was followed a minute later by two lateral blasts from the CS area, and a major explosion that involved the entire Terrazza Craterica lasted for about one minute (figure 148). Within seconds, the pyroclastic debris had engulfed and destroyed the thermal camera located above the Terrazza Craterica on the Pizzo Sopra La Fossa and sent a plume of debris across the W flank of the island (figure 149). Two seismic stations were also destroyed in the event. The Toulouse VAAC reported a plume composed mostly of SO2 at 9.1 km altitude shortly after the explosion. They noted that ash was present in the vicinity of the volcano, but no significant ashfall was expected. INGV scientists observed the ash plume at 4 km above the summit.

Figure (see Caption) Figure 147. A major eruptive event at Stromboli on 3 July 2019 began with an explosion from the CS area that generated a lava flow at 1359 (left). About 45 minutes later (at 1443:40), lava flows emerged from all of the summit vents (right), followed closely by a major explosion. Courtesy of INGV (Eruzione Stromboli. Comunicato straordinario del 4 luglio 2019).
Figure (see Caption) Figure 148. A major explosion at Stromboli beginning at 1445 on 3 July 2019 was preceded by lava flows from all the summit vents in the previous 60 seconds (top row). This thermal camera (SPT) and other monitoring equipment on the Pizzo Sopra La Fossa above the vents were destroyed in the explosion (bottom row). Courtesy of INGV (Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019).
Figure (see Caption) Figure 149. The monitoring equipment at Stromboli on the Pizzo Sopra La Fossa above the summit was destroyed in the major explosion of 3 July 2019 (left, photo by F. Ciancitto). Most of the W half of the island was affected by pyroclastic debris after the explosion, including the town of Ginostra (right). Courtesy of INGV (Report 28/2019, Stromboli, Bollettino Settimanale, 01/07/2019 - 07/07/2019).

Two pyroclastic flows were produced as a result of the explosions; they traveled down the Sciara and across the water for about 1 km before collapsing into the sea (figure 150). A hiker from Sicily was killed in the eruption and a Brazilian friend who was with him was badly injured, according to a Sicilian news source, ANSA, and the New York Post. They were hit by flying ejecta while hiking in the Punta dei Corvi area, due W of the summit and slightly N of Ginostra, about 100 m above sea level according to INGV. Most of the ejecta from the explosion dispersed to the WSW of the summit. Fallout also ignited vegetation on the slopes which narrowly missed destroying structures in the town. Ejecta blocks and bombs tens of centimeters to meters in diameter were scattered over a large area around the Pizzo Sopra La Fossa and the Valle della Luna in the direction of Ginostra. Smaller material landed in Ginostra and was composed largely of blonde pumice, that floated in the bay (figure 151). The breccia front of the lava flows produced incandescent blocks that reached the coastline. High on the SE flank, the abundant spatter of hot pyroclastic ejecta coalesced into a flow that moved 200-300 m down the flank before cooling, crossing the path normally used by visitors to the summit (figure 152).

Figure (see Caption) Figure 150. At the time of the major explosion of Stromboli on 3 July 2019 people on a German ship located about 2 km off the northern coast captured several images of the event. (a) Two pyroclastic flows traveled down the Sciara del Fuoco and spread over the sea up to about 1 km from the coast. (b) The eruption column was observed rising several kilometers above the summit as debris descended the Sciara del Fuoco. (c) Fires on the NW flank were started by incandescent pyroclastic debris. The photos were taken by Egon Karcher and used with permission of the author by INGV. Courtesy of INGV (Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019).
Figure (see Caption) Figure 151. Pumice filled the harbor on 4 July 2019 (left) and was still on roofs (right) on 7 July 2019 in the small port of Ginostra on the SW flank of Stromboli after the large explosion on 3 July 2019. Photos by Gianfilippo De Astis, courtesy of INGV (Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019).
Figure (see Caption) Figure 152. A small lava flow high on the SE flank of Stromboli formed during the 3 July 2019 event from abundant spatter of hot pyroclastic ejecta that coalesced into a flow and moved 200-300 m down the flank before cooling, crossing the path normally used by visitors to the summit. Photo by Boris Behncke taken on 9 July 2019, courtesy of INGV (Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019).

INGV scientists inspected the summit on 4 and 5 July 2019 and noted that the rim of the Terrazza Craterica facing the Sciara del Fuoco in both the S and N areas had been destroyed, but the crater edge near the central area was not affected. In addition, the N area appeared significantly enlarged and deepened, forming a single crater where the former N1 and N2 vents had been located; an incandescent jet was active in the CS area (figure 153). Explosive activity declined significantly after the major explosions, although moderate overflows of lava continued from multiple vents, especially the CS area where the flows traveled about halfway down the southern part of the Sciara del Fuoco; lava also flowed E towards Rina Grande (about 0.5 km E of the summit). The main lava flows active between 3 and 4 July produced a small lava field along the Sciara del Fuoco which flowed down to an elevation of 210 m in four flows along the S edge of the scarp (figure 154). Additional block avalanches rolled to the coastline.

Figure (see Caption) Figure 153. The summit craters of Stromboli were significantly altered during the explosive event of 3 July 2019. The rim of the Terrazza Craterica facing the Sciara del Fuoco in both the CS and N areas was destroyed, but the crater edge near the CS area was not affected. In addition, the N area was significantly enlarged and deepened, forming a single crater where the former N1 and N2 vents had been located; an incandescent jet was active in the CS area. Courtesy of INGV (Report 28/2019, Stromboli, Bollettino Settimanale, 01/07/2019 - 07/07/2019).
Figure (see Caption) Figure 154. The main lava flows active between 3 and 4 July at Stromboli after the major explosion on 3 July 2019 produced a small lava field along the Sciara del Fuoco. Left: Aerial photo taken by Stefano Branca (INGV-OE) on 5 July; the yellow arrow shows a small overflow from the N crater area, the red arrow shows the largest overflow from the CS crater area. Right: Flows from the CS area traveled down to an elevation of 210 m in four flows along the S edge of the scarp. Additional block avalanches rolled to the coastline. Right photo by Francesco Ciancitto taken on 5 July 2019. Courtesy of INGV (Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019).

During the second week of July lava flows continued; on 8 July volcanologists reported two small lava flows from the CS area flowing towards the Sciara del Fuoco. A third flow was noted the following day. The farthest flow front was at about 500 m elevation on 10 July, and the flow at the center of the Sciara del Fuoco was at about 680 m. An overflow from the N area during the evening of 12 July produced two small flows that remained high on the N side of the scarp; lava continued flowing from the CS area into the next day. A new flow from the N area late on 14 July traveled down the N part of the scarp (figure 155).

Figure (see Caption) Figure 155. During the second week of July 2019 lava flows at Stromboli continued from both crater areas. Top left: Lava flows from the CS area flowed down the Sciara on 9 July while Strombolian activity continued at the summit, photo by P. Anghemo, mountain guide. Bottom left: A lava flow from the CS area at Stromboli is viewed from Punta dei Corvi during the night of 12-13 July 2019. Photo by Francesco Ciancitto. Right: The active flows on 10 July (in red) were much closer to the summit crater than they had been during 3-4 July (in yellow). Courtesy of INGV, top left and right photos published in Report 29/2019, Stromboli, Bollettino Settimanale, 08/07/2019 - 14/07/2019; bottom left photo published in 'Il parossismo dello Stromboli del 3 luglio 2019 e l'attività nei giorni successivi: il punto della situazione al 13 luglio 2019'.

A new video station with a thermal camera was installed at Punta dei Corvi, a short distance N of Ginostra on the SW coast, during 17-20 July 2019. During the third week of July lava continued to flow from the CS crater area onto the southern part of the Sciara del Fuoco, but the active flow area remained on the upper part of the scarp; block avalanches continuously rolled down to the coastline (figure 156). During visits to the summit area on 26 July and 1 August activity at the Terrazza Craterica was observed by INGV scientists. There were at least six active vents in the N area, including a scoria cone and an intensely spattering hornito; the other vents were ejecting coarse material in jets of Strombolian activity. In the CS area, a large scoria cone was clearly visible from the Pizzo, with two active vents generating medium- to high-intensity explosions rich in volcanic ash mixed with coarse ejecta (figures 157 and 158). Some of the finer-grained material in the jets reached 200 m above the vents. A second smaller cone in the CS area faced the southernmost part of the Sciara del Fuoco and produced sporadic low-intensity "bubble explosions." Effusive activity decreased during the last week of July; the active lava front was located at about 600 m elevation. Blocks continued to roll down the scarp, mostly from the explosive activity, and were visible from Punta dei Corvi.

Figure (see Caption) Figure 156. Lava continued to flow from the CS area at Stromboli during the third week of July 2019, although the active flow area remained near the top of the scarp. Block avalanches continued to travel down the scarp. Image taken by di Francesco Ciancitto from Punta dei Corvi on 19 July 2019. Courtesy of INGV (Report 30/2019, Stromboli, Bollettino Settimanale, 15/07/2019 - 21/07/2019).
Figure (see Caption) Figure 157. Thermal and visible images of Terrazza Craterica at the summit of Stromboli from the Pizzo Sopra La Fossa on 1 August 2019 showed significant changes since the major explosion on 3 July 2019. A large scoria cone was present in the CS area (left) and at least six vents from multiple cones were active in the N area (right). The active lava flow 'Trabocco Lavico' emerged from the southernmost part of the CS area (far left). Courtesy if INGV (Report 32/2019, Stromboli, Bollettino Settimanale, 29/07/2019 - 04/08/2019.
Figure (see Caption) Figure 158. At the summit of Stromboli on 1 August 2019 two active vents inside a large cone in the CS area generated medium- to high-intensity explosions rich in volcanic ash mixed with coarse ejecta (left). There were at least six active vents in the N area (right), including a scoria cone and an intensely spattering hornito; the other vents were ejecting coarse material in jets of Strombolian activity. Courtesy of INGV (Report 32/2019, Stromboli, Bollettino Settimanale, 29/07/2019 - 04/08/2019).

Activity during August 2019. A small overflow of lava on 4 August 2019 from the N area lasted for about 20 minutes and formed a flow that went a few hundred meters down the Sciara del Fuoco. Observations made at the summit on 7 and 8 August 2019 indicated that nine vents were active in the N crater area, three of which had scoria cones built around them (figure 159). They all produced low- to medium-intensity Strombolian activity. In the CS area, a large scoria cone was visible from the summit that generated medium- to high-intensity explosions rich in volcanic ash, which sometimes rose more than 200 m above the vent. Lava overflowing from the CS area on 8 August was confined to the upper part of the Sciara del Fuoco, at an elevation between 500 and 600 m (figure 160). Occasional block avalanches from the active lava fronts traveled down the scarp. Ashfall was reported in the S. Bartolo area, Scari, and Piscità during the first week of August.

Figure (see Caption) Figure 159. Nine vents were active in the N crater area of Stromboli on 7 August 2019, three of which had scoria cones built around them. They all produced low- to medium-intensity Strombolian activity (top). In the CS area (bottom), a large scoria cone was visible from the summit that generated medium- to high-intensity explosions rich in volcanic ash, which sometimes rose more than 200 m above the vent. Visible images taken by S. Consoli, thermal images taken by S. Branca. Courtesy of INGV (Report 33/2019, Stromboli, Bollettino Settimanale, 05/08/2019 - 11/08/2019).
Figure (see Caption) Figure 160. Multiple Lava flows were still active on the Sciara del Fuoco at Stromboli on 7 August 2019. Top images by INGV personnel S Branca and S. Consoli, lower images by A. Di Pietro volcanological guide. Courtesy of INGV (Report 33/2019, Stromboli, Bollettino Settimanale, 05/08/2019 - 11/08/2019).

Drone surveys on 13 and 14 August 2019 confirmed that sustained Strombolian activity continued both in the N area and the CS area. Lava flows continued from two vents in the CS area; they ceased briefly on 16 and 17 August but resumed on the 18th, with the lava fronts reaching 500-600 m elevation (figure 161). A fracture field located in the southern part of the Sciara del Fuoco was first identified in drone imagery on 9 July. Repeated surveys through mid-August indicated that about ten fractures were identifiable trending approximately N-S and ranged in length from 2.5 to 21 m; they did not change significantly during the period. An overflight on 23 August identified the main areas of activity at the summit. A NE-SW alignment of 13 vents within the N area was located along the crater edge that overlooks the Sciara del Fuoco. At the CS area, the large scoria cone had two active vents, there was a pit crater, and two smaller scoria cones. A 50-m-long lava tube emerged from one of the smaller lava cones and fed two small flows that emerged at the top of the Sciara del Fuoco (figure 162).

Figure (see Caption) Figure 161. Detail of a vent at Stromboli on 14 August 2019 located in the SW part of the Sciara del Fuoco at an elevation of 730 m. Flow is tens of meters long. Courtesy of INGV (COMUNICATO DI DETTAGLIO STROMBOLI del 20190816 ORE 17:05 LT).
Figure (see Caption) Figure 162. Thermal and visual imagery of the summit of Stromboli on 23 August 2019 revealed a NE-SW alignment of 13 vents within the N area located along the crater edge that overlooks the Sciara del Fuoco. At the CS area, the large scoria cone had two active vents (1 and 2), there was a pit crater (3), and two smaller scoria cones (4). A 50-m-long lava tube formed from one of the smaller lava cones (5) and fed two small flows that emerged at the top of the Sciara del Fuoco. Photos by L. Lodato and S. Branca, courtesy of INGV (Report 35/2019, Stromboli, Bollettino Settimanale, 19/08/2019 - 25/08/2019).

INGV reported a strong explosion from the CS area at 1217 (local time) on 28 August 2019. Ejecta covered the Terrazza Craterica and sent debris rolling down the Sciara del Fuoco to the coastline. A strong seismic signal was recorded, and a large ash plume rose more than 2 km above the summit (figure 163). The Toulouse VAAC reported the ash plume at 3.7-4.6 km altitude, moving E and rapidly dissipating, shortly after the event. Once again, a pyroclastic flow traveled down the Sciara and several hundred meters out to sea (figures 164). The entire summit was covered with debris. The complex of small scoria cones within the N area that had formed since the 3 July explosion was destroyed; part of the N area crater rim was also destroyed allowing lava to flow down the Sciara where it reached the coastline by early evening.

Figure (see Caption) Figure 163. A major explosion at Stromboli on 28 August 2019 produced a high ash plume and a pyroclastic flow. The seismic trace from the STR4 station (top left) indicated a major event. The ash plume from the explosion was reported to be more than 2 km high (right). The thermal camera located at Stromboli's Punta dei Corvi on the southern edge of the Sciara del Fuoco captured both the pyroclastic flow and the ash plume produced in the explosion (bottom left). Seismogram and thermal image courtesy of INGV (INGVvulcani blog, 30 AGOSTO 2019INGVVULCANI, Nuovo parossismo a Stromboli, 28 agosto 2019). Photo by Teresa Grillo (University of Rome) Courtesy of AIV - Associazione Italiana di Vulcanologia.
Figure (see Caption) Figure 164. A pyroclastic flow at Stromboli traveled across the sea off the W flank for several hundred meters on 28 August 2019 after a major explosion at the summit. Photo by Alberto Lunardi, courtesy of INGV (5 SETTEMBRE 2019INGVVULCANI, Quando un flusso piroclastico scorre sul mare: esempi a Stromboli e altri vulcani).

At 1923 UTC on 29 August a lava flow was reported emerging from the N area onto the upper part of the Sciara del Fuoco; it stopped at mid-elevation on the slope. About 90 minutes later, an explosive sequence from the CS area resulted in the fallout of pyroclastic debris around Ginostra. Shortly after midnight, a lava flow from the CS area traveled down the scarp and reached the coast by dawn, but the lava entry into the sea only lasted for a short time (figure 165).

Figure (see Caption) Figure 165. Lava flows continued for a few days after the major explosion of 28 August 2019 at Stromboli. Left: A lava flow emerged from the N crater area on 29 August 2019 and traveled a short distance down the Sciara del Fuoco. Incandescent blocks from the flow front reached the ocean. Photo by A. DiPietro. Right: A lava flow that emerged from the CS crater area around midnight on 30 August 2019 made it to the ocean around dawn, as seen from the N ridge of the Sciara del Fuoco at an altitude of 400 m. Photo by Alessandro La Spina. Both courtesy of INGV. Left image from 'COMUNICATO DI ATTIVITA' VULCANICA del 2019-08-29 22:20:06(UTC) – STROMBOLI', right image from INGVvulcani blog, 30 AGOSTO 2019 INGVVULCANI, 'Nuovo parossismo a Stromboli, 28 agosto 2019'.

An overflight on 30 August 2019 revealed that after the explosions of 28-29 August the N area had collapsed and now contained an explosive vent producing Strombolian activity and two smaller vents with low-intensity explosive activity. In the CS area, Strombolian activity occurred at a single large crater (figure 166). INGV reported an explosion frequency of about 32 events per hour during 31 August-1 September. The TROPOMI instrument on the Sentinel-5P satellite captured small but distinct SO2 plumes from Stromboli during 28 August-1 September, even though they were challenging to distinguish from the larger signal originating at Etna (figure 167).

Figure (see Caption) Figure 166. A 30 August 2019 overflight of Stromboli revealed that after the explosions of 28-29 August the N area had collapsed and now contained a single explosive vent producing Strombolian activity and two smaller vents with low intensity explosive activity. In the CS area, a single large crater remained with moderate Strombolian activity. No new lava flows appeared on the Sciara del Fuoco, only cooling from the existing flows was evident. Courtesy of INGV (Report 35.6/2019, Stromboli, Daily Bulletin of 08/31/2019).
Figure (see Caption) Figure 167. Small but distinct SO2 signals were recorded from Stromboli during 28 August through 1 September 2019; they were sometimes difficult to discern from the larger signal originating at nearby Etna. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Toulouse Volcanic Ash Advisory Center (VAAC), Météo-France, 42 Avenue Gaspard Coriolis, F-31057 Toulouse cedex, France (URL: http://www.meteo.fr/aeroweb/info/vaac/); AIV, Associazione Italiana di Vulcanologia (URL: https://www.facebook.com/aivulc/photos/a.459897477519939/1267357436773935; ANSA.it, (URL: http://www.ansa.it/sicilia/notizie/2019/07/03/-stromboli-esplosioni-da-cratere-turisti-in-mare); The New York Post, (URL: https://nypost.com/2019/07/03/dozens-of-people-dive-into-sea-to-escape-stromboli-volcano-eruption-in-italy/).


Ol Doinyo Lengai (Tanzania) — September 2019 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Multiple lava flows within the summit crater, September 2018-August 2019

Frequent historical eruptions from Tanzania's Ol Doinyo Lengai have been recorded since the late 19th century. Located near the southern end of the East African Rift in the Gregory Rift Valley, the unique low-temperature carbonatitic lavas have been the focus of numerous volcanological studies; the volcano has also long been a cultural icon central to the Maasai people who live in the region. Following explosive eruptions in the mid-1960s and early 1980s the volcano entered a phase of effusive activity with the effusion of small, fluid, natrocarbonatitic lava flows within its active north summit crater. From 1983 to early 2007 the summit crater was the site of numerous often-changing hornitos (or spatter cones) and lava flows that slowly filled the crater. Lava began overflowing various flanks of the crater in 1993; by 2007 most flanks had been exposed to flows from the crater.

Seismic and effusive activity increased in mid-2007, and a new phase of explosive activity resumed in September of that year. The explosive activity formed a new pyroclastic cone inside the crater; repeated ash emissions reached altitudes greater than 10 km during March 2008, causing relocation of several thousand nearby villagers. Explosive activity diminished by mid-April 2008; by September new hornitos with small lava flows were again forming on the crater floor. Periodic eruptions of lava from fissures, spatter cones, and hornitos within the crater were witnessed throughout the next decade by scientists and others occasionally visiting the summit. Beginning in 2017, satellite imagery has become a valuable data source, providing information about both the thermal activity and the lava flows in the form of infrared imagery and the color contrast of black fresh lava and whiter cooled lava that is detectable in visible imagery (BGVN 43:10). The latest expeditions in 2018 and 2019 have added drone technology to the research tools. This report covers activity from September 2018 through August 2019 with data and images provided from satellite information and from researchers and visitors to the volcano.

Summary and data from satellite imagery. Throughout September 2018 to August 2019, evidence for repeated small lava flows was recorded in thermal data, satellite imagery, and from a few visits to or overflights of the summit crater by researchers. Intermittent low-level pulses of thermal activity appeared in MIROVA data a few times during the period (figure 187). Most months, Sentinel-2 satellite imagery generated six images with varying numbers of days that had a clear view of the summit and showed black and white color contrasts from fresh and cooled lava and/or thermal anomalies (table 27, figures 188-191). Lava flows came from multiple source vents within the crater, produced linear flows, and covered large areas of the crater floor. Thermal anomalies were located in different areas of the crater; multiple anomalies from different source vents were visible many months.

Figure (see Caption) Figure 187. Intermittent low-level pulses of thermal activity were recorded in the MIROVA thermal data a few times between 21 October 2018 and the end of August 2019. Courtesy of MIROVA.

Table 27. The number of days each month with Sentinel-2 images of Ol Doinyo Lengai, days with clear views of the summit showing detectable color contrasts between black and white lava, and days with detectable thermal anomalies within the summit crater. A clear summit means more than half the summit visible or features identifiable through diffuse cloud cover. Information courtesy of Sentinel Hub Playground.

Month Sentinel-2 Images Clear Summit with Lava Color Contrasts Thermal anomalies
Sep 2018 6 5 5
Oct 2018 7 4 3
Nov 2018 6 2 0
Dec 2018 5 1 1
Jan 2019 6 5 3
Feb 2019 6 5 6
Mar 2019 6 5 5
Apr 2019 6 1 0
May 2019 6 3 2
Jun 2019 6 3 3
Jul 2019 6 5 5
Aug 2019 6 5 3
Figure (see Caption) Figure 188. Sentinel-2 imagery of Ol Doinyo Lengai from September 2018 showed examples of the changing color contrasts of fresh black lava which quickly cools to whitish-brown (top row) and varying intensities and numbers of thermal anomalies on the same days (bottom row). It is clear that the color and thermal patterns change several times during the month even with only a few days of available imagery. Dates of images from left to right are 11, 16, and 21 September. The summit crater is 300 m across and 100 m deep. The top row is with Natural color rendering (bands 4, 3, 2) and the bottom row is with Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 189. Contrasting patterns of dark and light lava flows within the summit crater of Ol Doinyo Lengai on 1 (left) and 11 (right) October 2018 show how quickly new dark flows cool to a lighter color. The flow on 1 October appears to originate in the E part of the crater; the flow in the crater on 11 October has a source in the N part of the crater. These Sentinel-2 images use Natural color rendering (bands 4,3,2). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 190. A large flow at Ol Doinyo Lengai on 3 February 2019 filled most of the summit crater with lobes of black lava (top left) and generated one of the strongest thermal signatures of the period (top right) in these Sentinel-2 satellite images. On 20 March 2019, a small dark area of fresh material contrasted sharply with the surrounding light-colored material (bottom left); the thermal image of the same data shows a small anomaly near the dark spot (bottom right). The left column is with Natural color rendering (bands 4, 3, 2) and the right column is with Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 191. The dark lava spots at Ol Doinyo Lengai on 18 June 2019 (top left) and 28 July 2019 (top center) produced matching thermal anomalies in the Sentinal-2 imagery (bottom left and center). On days when the summit was partly obscured by clouds such as 27 August (top right), the strong thermal signal from the summit still confirmed fresh flow activity (bottom right). The top row is with Natural color rendering (bands 4, 3, 2) and the bottom row is with Atmospheric penetration rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Information from site visits and overflights. Minor steam and gas emissions were visible from the summit crater during an overflight on 29 September 2018. Geologist Cin-Ty Lee captured excellent images of the W flank on 20 October 2018 (figure 192). The large circular crater at the base of the flank is the 'Oldoinyo' Maar (Graettinger, 2018a and 2018b). A view into the crater from an overflight that day (figure 193) showed clear evidence of at least five areas of dark, fresh lava. An effusive eruption was visible on the crater floor on 2 March 2019 (figure 194).

Figure (see Caption) Figure 192. A large maar stands out at the base of the SW flank of Ol Doinyo Lengai on 20 October 2018. Courtesy of Cin-Ty Lee (Rice University).
Figure (see Caption) Figure 193. A view into the summit crater of Ol Doinyo Lengai on 20 October 2018 shows clear evidence of recent flow activity in the form of multiple dark spots of fresh lava that has recently emerged from hornitos and fissures. The lava cools to a pale color very quickly, forming the contrasting background to the fresh flows. The summit crater is 300 m across and 100 m deep. Courtesy of Cin-Ty Lee (Rice University).
Figure (see Caption) Figure 194. A view into the crater floor at Ol Doinyo Lengai on 2 March 2019 showed a vent with both fresh (dark brown) and cooled (gray-white) carbonatite lavas and hornitos on the floor of the crater. The darkest material on the crater floor is from recent flows. Courtesy of Aman Laizer, Tanzania.

Research expedition in July-August 2019. In late July and early August 2019 an expedition, sponsored by the Deep Carbon Observatory (DCO) and led by researchers Kate Laxton and Emma Liu (University College London), made gas measurements, collected lava samples for the first time in 12 years, and deployed drones to gather data and images. The Ol Doinyo Lengai sampling team included Papkinye Lemolo, Boni Kicha, Ignas Mtui, Boni Mawe, Amedeus Mtui, Emma Liu, Arno Van Zyl, Kate Laxton, and their driver, Baraka. They collected samples by lowering devices via ropes and pulleys into the crater and photographed numerous active flows emerging from vents and hornitos on the crater floor (figure 195). By analyzing the composition of the first lava samples collected since the volcano's latest explosive activity in 2007, they hope to learn about recent changes to its underground plumbing system. A comparison of the satellite image taken on 28 July with a drone image of the summit crater taken by them the next day (figure 196) confirms the effectiveness of both the satellite imagery in identifying new flow features on the crater floor, and the drone imagery in providing outstanding details of activity.

Figure (see Caption) Figure 195. Researchers Kate Laxton and Emma Liu collected gas and lava samples at the summit of Ol Doinyo Lengai during their 26 July-4 August 2019 expedition. They sent gas sampling devices (small white "hamster ball" in center of left image) and lava sampling devices (right) down into the crater via ropes and pulleys. The crater is 300 m across and 100 m deep. Courtesy of Kate Laxton (University College London).
Figure (see Caption) Figure 196. A clear view by drone straight down into the crater at Ol Doinyo Lengai on 29 July 2019 provides valuable information about ongoing activity at the remote volcano. N is to the top. The summit crater is 300 m across and 100 m deep. The same configuration of fresh and cooled lava can be seen in Sentinel-2 imagery taken on 28 July 2019 (inset, N to the top). Courtesy of Emma Liu (University College London) and Sentinel Hub Playground.

With the drone technology, they were able to make close-up observations of features on the north crater floor such as the large hornito on the inner W wall of the crater (figure 197), an active lava pond near the center of the crater (figure 198), and several flows resurfacing the floor of the crater while they were there (figure 199). A large crack that rings the base of the N cone had enlarged significantly since last measured in 2014 (figure 200).

Figure (see Caption) Figure 197. A closeup view of the large hornito in the W wall of the Ol Doinyo Lengai summit crater on 26 July 2019 shows recent activity from the vent (dark material). See figure 197 for location of hornito against W wall. View is to the NW. Courtesy of Emma Liu (University College London).
Figure (see Caption) Figure 198. Incandescence from the lava pond in the center of the crater was still visible at 0627 on 29 July 2019 at Ol Doinyo Lengai; incandescence from the large hornito in the NW quadrant (behind the lava pond) had been visible when the researchers arrived at the summit at about 0500 that morning. The crater floor is continually resurfaced by ultra-low viscosity natrocarbonatite lava flows. The lava hydrates on contact with air within hours, changing color from black to grey/white in a very short time. View towards the N. Courtesy of Kate Laxton (University College London).
Figure (see Caption) Figure 199. On 30 July 2019 a lava flow from a hornito cluster resurfaced the NE quadrant of the crater floor at Ol Doinyo Lengai. The initial outbreak occurred at 0819, was vigorous, and ended by 0823. Lava continued to flow out of the hornito cluster at intervals throughout the day. Image facing NE, courtesy of Kate Laxton (University College London).
Figure (see Caption) Figure 200. The circumferential crack near the base of the N cone of Ol Doinyo Lengai is seen here being inspected by Emma Liu on 30 July 2019 where it intersects the Western Summit Trail. View is to the S. Significant widening of the crack is seen when compared with a similar image of the same crack from March 2014 (figure 172, BGVN 39:07). Local observers reported that the crack continued to widen after July 2019. Courtesy of Kate Laxton (University College London).

The color of the flows on the crater floor changed from grays and browns to blues and greens after a night of rainfall on 31 July 2019 (figure 201). Much of the lava pond surface was crusted over that day, but the large hornito in the NW quadrant was still active (figure 202), and both the pond and another hornito produced flows that merged onto the crater floor (figure 203).

Figure (see Caption) Figure 201. The active crater at Ol Doinyo Lengai is on the north side of and slightly below the topographic summit of the mountain (in the background). After overnight rain, lava flows on the crater floor turned various shades of greys, whites, blues, and greens on 31 July 2019. View to the SW, drone image. Courtesy of Emma Liu (University College London).
Figure (see Caption) Figure 202. A closeup view to the NW of the Ol Doinyo Lengai north crater on 31 July 2019 shows the blue and green tones of the hydrated lavas after the previous night's rains. The lava pond is at high-stand with much of the surface crusted over. The adjacent hornito is still active and breached to the NE. Courtesy of Emma Liu (University College London).
Figure (see Caption) Figure 203. Two fresh lava flows merge over the hydrated crater floor of the north crater at Ol Doinyo Lengai on 31 July 2019. One comes from a small hornito just out of view to the SW (lower right) and the other from the overflowing lava pond (left), merging in the SE quadrant. The colors of the two flows differ; the pond lava appears jet black, and the hornito lava is a lighter shade of brown. View to the SE, courtesy of Emma Liu (University College London).

On 1 August 2019 much of the crater floor was resurfaced by a brown lava that flowed from a hornito E of the lava pond (figure 204). Images of unusual, ephemeral features such as "spatter pots," "frozen jets," and "frothy flows" (figure 205) help to characterize the unusual magmatic activity at this unique volcano (figure 206).

Figure (see Caption) Figure 204. On 1 August 2019 at Ol Doinyo Lengai brown lava flowed from a hornito directly E of the lava pond (above the pond in figure 203) and resurfaced much of the S portion of the crater floor. At the far left of the image, the white (hydrated) lava jet aimed away from the hornito was solidified in mid-flow. View to the SE, courtesy of Emma Liu (University College London).
Figure (see Caption) Figure 205. Frothy pale-brown lava flowed across the SE quadrant of the crater floor (right) at Ol Doinyo Lengai on 4 August 2019 from an uncertain source between the adjacent hornito and lava pond which appears nearly crusted over. Spattering from a "spatter pot" (inset) and a small flow also headed NE from the hornito cluster E of the pond (behind pond). Courtesy of Kate Laxton (University College London).
Figure (see Caption) Figure 206. A view from the summit peak of Ol Doinyo Lengai on 4 August 2019 looking at the entire N cone and the swale between it and the peak. The crack shown in figure 201 rings the base of cone; the main summit trail intersects the crack near the bottom center of the cone. The researcher's campsite on the W flank (left) shows the scale of the cone. The East African Rift wall and Lake Natron are visible in the background on the left and right, respectively. Courtesy of Kate Laxton (University College London).

References: Graettinger, A. H., 2018a, MaarVLS database version 1, (URL: https://vhub.org/resources/4365).

Graettinger, A. H., 2018b, Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database. Journal of Volcanology and Geothermal Research, v. 357, p. 1-13. https://doi.org/10.1016/j.jvolgeores.2018.04.002.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: Cin-Ty Lee, Department of Earth, Environmental and Planetary Sciences, Rice University, 6100 Main St., Houston, TX 77005-1827, USA (URL: https://twitter.com/CinTyLee1, images at https://twitter.com/CinTyLee1/status/1054337204577812480, https://earthscience.rice.edu/directory/user/106/); Emma Liu, University College London, UCL Hazards Centre (Volcanology), Gower Street, London, WC1E 6BT, United Kingdom (URL: https://twitter.com/EmmaLiu31, https://www.ucl.ac.uk/earth-sciences/people/academic/dr-emma-liu); Kate Laxton, University College London, UCL Earth Sciences, Gower Street, London, WC1E 6BT, United Kingdom (URL: https://twitter.com/KateLaxton, https://www.ucl.ac.uk/earth-sciences/people/research-students/kate-laxton); Deep Carbon Observatory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, DC 20015-1305, USA (URL: https://deepcarbon.net/field-report-ol-doinyo-lengai-volcano-tanzania); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Aman Laizer, Volcanologist, Arusha, Tanzania (URL: https://twitter.com/amanlaizerr, image at https://twitter.com/amanlaizerr/status/1102483717384216576).


Ulawun (Papua New Guinea) — September 2019 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


Explosions on 26 June and 3 August 2019 send plumes above 19 km altitude

Typical activity at Ulawun consists of occasional weak explosions with ash plumes. During 2018 explosions occurred on 8 June, 21 September, and 5 October (BGVN 43:11). The volcano is monitored primarily by the Rabaul Volcano Observatory (RVO) and Darwin Volcanic Ash Advisory Centre (VAAC). This report describes activity from November 2018 through August 2019; no volcanism was noted during this period until late June 2019.

Activity during June-July 2019. RVO reported that Real-time Seismic-Amplitude Measurement (RSAM) values steadily increased during 24-25 June, and then sharply increased at around 0330 on 26 June. The RSAM values reflect an increase in seismicity dominated by volcanic tremor. An eruption began in the morning hours of 26 June with emissions of gray ash (figure 17) that over time became darker and more energetic. The plumes rose 1 km and caused minor ashfall to the NW and SW. Local residents heard roaring and rumbling during 0600-0800.

Figure (see Caption) Figure 17. Photograph of a small ash plume rising from the summit crater of Ulawun taken by a helicopter pilot at 1030 local time on 26 June 2019. According to the pilot, the amount of ash observed was not unusual. Image has been color adjusted from original. Courtesy of Craig Powell.

The Darwin VAAC issued several notices about ash plumes visible in satellite data. These stated that during 1130-1155 ash plumes rose to altitudes of 6.7-8.5 km and drifted W, while ash plumes that rose to 12.8-13.4 km drifted S and SW. A new pulse of activity (figures 17 and 18) generated ash plumes that by 1512 rose to an altitude of 16.8 km and drifted S and SE. By 1730 the ash plume had risen to 19.2 km and spread over 90 km in all directions. Ash from earlier ejections continued to drift S at an altitude of 13.4 km and W at an altitude of 8.5 km. RVO stated that RSAM values peaked at about 2,500 units during 1330-1600, and then dropped to 1,600 units as the eruption subsided.

Figure (see Caption) Figure 18. Photograph of Ulawun taken by a helicopter pilot at 1310 local time on 26 June 2019 showing a tall ash plume rising from the summit crater. Image has been color adjusted from original. Courtesy of Craig Powell.
Figure (see Caption) Figure 19. Photograph of Ulawun taken by a helicopter pilot at 1350 local time on 26 June 2019 showing a close-up view of the ash plume rising from the summit crater along with an area of incandescent ejecta. According to the pilot, this was the most active phase. Image has been color adjusted from original. Courtesy of Craig Powell.

According to RVO, parts of the ash plume at lower altitudes drifted W, causing variable amounts of ashfall in areas to the NW and SW. A pyroclastic flow descended the N flank. Residents evacuated to areas to the NE and W; a news article (Radio New Zealand) noted that around 3,000 people had gathered at a local church. According to another news source (phys.org), an observer in a helicopter reported a column of incandescent material rising from the crater, residents noted that the sky had turned black, and a main road in the N part of the island was blocked by volcanic material. Residents also reported a lava flow near Noau village and Eana Valley. RVO reported that the eruption ceased between 1800 and 1900. Incandescence visible on the N flank was from either a lava flow or pyroclastic flow deposits.

On 27 June diffuse white plumes were reported by RVO as rising from the summit crater and incandescence was visible from pyroclastic or lava flow deposits on the N flank from the activity the day before. The seismic station 11 km NW of the volcano recorded low RSAM values of between 2 and 50. According to the Darwin VAAC a strong thermal anomaly was visible in satellite images, though not after 1200. Ash from 26 June explosions continued to disperse and became difficult to discern in satellite images by 1300, though a sulfur dioxide signal persisted. Ash at an altitude of 13.7 km drifted SW to SE and dissipated by 1620, and ash at 16.8 km drifted NW to NE and dissipated by 1857. RVO noted that at 1300 on 27 June satellite images captured an ash explosion not reported by ground-based observers, likely due to cloudy weather conditions. The Alert Level was lowered to Stage 1 (the lowest level on a four-stage scale).

RSAM values slightly increased at 0600 on 28 June and fluctuated between 80 to 150 units afterwards. During 28-29 June diffuse white plumes continued to rise from the crater (figure 20) and from the North Valley vent. On 29 June a ReliefWeb update stated that around 11,000 evacuated people remained in shelters.

Figure (see Caption) Figure 20. Photograph of the steaming summit crater at Ulawun taken by a helicopter pilot at 0730 local time on 29 June 2019. Image has been color adjusted from original. Courtesy of Craig Powell.

According to RVO, diffuse white plumes rose from Ulawun's summit crater and the North Valley vent during 1-4 July and from the summit only during 5-9 July. The seismic station located 11 km NW of the volcano recorded three volcanic earthquakes and some sporadic, short-duration, volcanic tremors during 1-3 July. The seismic station 2.9 km W of the volcano was restored on 4 July and recorded small sub-continuous tremors. Some discrete high-frequency volcanic earthquakes were also recorded on most days. Sulfur dioxide emissions were 100 tonnes per day on 4 July. According to the United Nations in Papua New Guinea, 7,318 people remained displaced within seven sites because of the 26 June eruption.

Activity during August 2019. During 1-2 August RVO reported that white-to-gray vapor plumes rose from the summit crater and drifted NW. Incandescence from the summit crater was visible at night and jetting noises were audible for a short interval. RSAM values fluctuated but peaked at high levels. During the night of 2-3 August crater incandescence strengthened and roaring noises became louder around 0400. An explosion began between 0430 and 0500 on 3 August; booming noises commenced around 0445. By 0600 dense light-gray ash emissions were drifting NW, causing ashfall in areas downwind, including Ulamona Mission (10 km NW). Ash emissions continued through the day and changed from light to dark gray with time.

The eruption intensified at 1900 and a lava fountain rose more than 100 m above the crater rim. A Plinian ash plume rose 19 km and drifted W and SW, causing ashfall in areas downwind such as Navo and Kabaya, and as far as Kimbe Town (142 km SW). The Darwin VAAC reported that the ash plume expanded radially and reached the stratosphere, rising to an altitude of 19.2 km. The plume then detached and drifted S and then SE.

The Alert Level was raised to Stage 3. The areas most affected by ash and scoria fall were between Navo (W) and Saltamana Estate (NW). Two classrooms at the Navo Primary School and a church in Navo collapsed from the weight of the ash and scoria; one of the classroom roofs had already partially collapsed during the 26 June eruption. Evacuees in tents because of the 26 June explosion reported damage. Rabaul town (132 km NE) also reported ashfall. Seismicity declined rapidly within two hours of the event, though continued to fluctuate at moderate levels. According to a news source (Radio New Zealand, flights in and out of Hoskins airport in Port Moresby were cancelled on 4 August due to tephra fall. The Alert Level was lowered to Stage 1. Small amounts of white and gray vapor were emitted from the summit crater during 4-6 August. RVO reported that during 7-8 August minor emissions of white vapor rose from the summit crater.

Additional observations. Seismicity was dominated by low-level volcanic tremor and remained at low-to-moderate levels. RSAM values fluctuated between 400 and 550 units; peaks did not go above 700. Instruments aboard NASA satellites detected high levels of sulfur dioxide near or directly above the volcano on 26-29 June and 4-6 August 2019.

Thermal anomalies, based on MODIS satellite instruments analyzed using the MODVOLC algorithm, were observed at Ulawun only on 26 June 2019 (8 pixels by the Terra satellite, 4 pixels by the Aqua satellite). The MIROVA (Middle InfraRed Observation of Volcanic Activity) system detected three anomalies during the reporting period, one during the last week of June 2019 and two during the first week of August, all three within 3 km of the volcano and of low to moderate energy.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it); ReliefWeb (URL: https://reliefweb.int/); Radio New Zealand (URL: https://www.rnz.co.nz); phys.org (URL: https://phys.org); United Nations in Papua New Guinea (URL: http://pg.one.un.org/content/unct/papua_new_guinea/en/home.html).


Sarychev Peak (Russia) — November 2019 Citation iconCite this Report

Sarychev Peak

Russia

48.092°N, 153.2°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Ash plume on 11 August; thermal anomalies from late May to early October 2019

Sarychev Peak, located on Matua Island in the central Kurile Islands of Russia, has had eruptions reported since 1765. Renewed activity began in October 2017, followed by a major eruption in June 2009 that included pyroclastic flows and ash plumes (BGVN 43:11 and 34:06). Thermal anomalies, explosions, and ash plumes took place between September and October 2018. A single ash explosion occurred in May 2019. Another ash plume was seen on 11 August, and small thermal anomalies were present in infrared imagery during June-October 2019. Information is provided by the Sakhalin Volcanic Eruption Response Team (SVERT) and the Tokyo Volcanic Ash Advisory Center (VAAC), with satellite imagery from Sentinel-2.

Satellite images from Sentinel-2 showed small white plumes from Sarychev Peak during clear weather on 4 and 14 August 2019 (figure 27); similar plumes were observed on a total of nine clear weather days between late June and October 2019. According to SVERT and the Tokyo VAAC, satellite data from HIMAWARI-8 showed an ash plume rising to an altitude of 2.7 km and drifting 50 km SE on 11 August. It was visible for a few days before dissipating. No further volcanism was detected by SVERT, and no activity was evident in a 17 August Sentinel-2 image (figure 27).

Figure (see Caption) Figure 27. Small white plumes were visible at Sarychev Peak in Sentinel-2 satellite images on 4 and 14 August 2019 (left and center). No activity was seen on 17 August (right). All three Sentinel-2 images use the "Natural Color" (bands 4, 3, 2) rendering; courtesy of Sentinel Hub Playground.

Intermittent weak thermal anomalies were detected by the MIROVA system using MODIS data from late May through 7 October 2019 (figure 28). Sentinel-2 satellite imagery from 28 June, 13 and 23 July, 9 August, and 21 October showed a very small thermal anomaly, but on 28 September a pronounced thermal anomaly was visible (figure 29). No additional thermal anomalies were identified from any source after 7 October through the end of the month.

Figure (see Caption) Figure 28. Thermal anomalies detected at Sarychev Peak by the MIROVA system (Log Radiative Power) using MODIS data for the year ending on 9 October 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 29. Sentinel-2 satellite images of Sarychev Peak on 23 June and 28 September 2019. A small thermal anomaly is visible on the eastern side of the crater on 23 June (left, indicated by arrow), while the thermal anomaly is more pronounced and visible in the middle of the crater on 28 September (right). Both Sentinel-2 satellite images use the "False Color (Urban)" (bands 12, 11, 4) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.

Information Contacts: Sakhalin Volcanic Eruption Response Team (SVERT), Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Science, Nauki st., 1B, Yuzhno-Sakhalinsk, Russia, 693022 (URL: http://www.imgg.ru/en/, http://www.imgg.ru/ru/svert/reports); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Asamayama (Japan) — September 2019 Citation iconCite this Report

Asamayama

Japan

36.406°N, 138.523°E; summit elev. 2568 m

All times are local (unless otherwise noted)


Ashfall from phreatic eruptions on 7 and 25 August 2019

Asamayama (also known as Asama), located in the Kanto-Chubu Region of Japan, previously erupted in June 2015. Activity included increased volcanic seismicity, small eruptions which occasionally resulted in ashfall, and SO2 gas emissions (BGVN 41:10). This report covers activity through August 2019, which describes small phreatic eruptions, volcanic seismicity, faint incandescence and commonly white gas plumes, and fluctuating SO2 emissions. The primary source of information for this report is provided by the Japan Meteorological Agency (JMA).

Activity during October 2016-May 2019. From October 2016 through December 2017, a high-sensitivity camera captured faint incandescence at night accompanied by white gas plumes rising above the crater to an altitude ranging 100-800 m (figure 44). A thermal anomaly and faint incandescence accompanied by a white plume near the summit was observed at night on 6-7 and 21 January 2017. These thermal anomalies were recorded near the central part of the crater bottom in January, February, and November 2017, and in May 2019. After December 2017 the faint incandescence was not observed, with an exception on 18 July 2018.

Figure (see Caption) Figure 44. A surveillance camera observed faint incandescence at Asamayama in February 2017. Left: Onimushi surveillance camera taken at 0145 on 5 February 2017. Right: Kurokayama surveillance camera taken at 0510 on 1 February 2017. Courtesy of JMA (Monthly Report for February 2017).

Field surveys on 6, 16, and 28 December 2016 reported an increased amount of SO2 gas emissions from November 2016 (100-600 tons/day) to March 2017 (1,300-3,200 tons/day). In April 2017 the SO2 emissions decreased (600-1,500 tons/day). Low-frequency shallow volcanic tremors decreased in December 2016; none were observed in January 2017. From February 2017 through June 2018 volcanic tremors occurred more intermittently. According to the monthly JMA Reports on February 2017 and December 2018 and data from the Geographical Survey Institute's Global Navigation Satellite Systems (GNSS), a slight inflation between the north and south baseline was recorded starting in fall 2016 through December 2018. This growth become stagnant at some of the baselines in October 2017.

Activity during August 2019. On 7 August 2019 a small phreatic eruption occurred at the summit crater and continued for about 20 minutes, resulting in an ash plume that rose to a maximum altitude of 1.8 km, drifting N and an associated earthquake and volcanic tremor (figure 45). According to the Tokyo Volcanic Ash Advisory (VAAC), this plume rose 4.6 km, based on satellite data from HIMAWARI-8. A surveillance camera observed a large volcanic block was ejected roughly 200 m from the crater. According to an ashfall survey conducted by the Mobile Observation Team on 8 August, slight ashfall occurred in the Tsumagoi Village (12 km N) and Naganohara Town (19 km NE), Gunma Prefecture (figure 46 and 47). About 2 g/m2 of ash deposit was measured by the Tokyo Institute of Technology. Immediately after the eruption on 7 August, seismicity, volcanism, and SO2 emissions temporarily increased and then decreased that same day.

Figure (see Caption) Figure 45. Surveillance camera images of Asamayama showing the small eruption at the summit crater on 7 August 2019, resulting in incandescence and a plume rising 1.8 km altitude. Both photos were taken on 7 August 2019.Courtesy of JMA (Monthly Report for August 2019).
Figure (see Caption) Figure 46. A photomicrograph of fragmented ejecta (250-500 µm) from Asamayama deposited roughly 5 km from the crater as a result of the eruption on 7 August 2019. Courtesy of JMA (Monthly Report for August 2019).
Figure (see Caption) Figure 47. Photos of ashfall in a nearby town NNE of Asamayama due to the 7 August 2019 eruption. Courtesy of JMA (Daily Report for 8 August 2019).

Another eruption at the summit crater on 25 August 2019 was smaller than the one on 7 August. JMA reported the resulting ash plume rose to an altitude of 600 m and drifted E. However, the Tokyo VAAC reported that the altitude of the plume up to 3.4 km, according to satellite data from HIMAWARI-8. A small amount of ashfall occurred in Karuizawa-machi, Nagano (4 km E), according to interview surveys and the Tokyo Institute of Technology.

Geologic Background. Asamayama, Honshu's most active volcano, overlooks the resort town of Karuizawa, 140 km NW of Tokyo. The volcano is located at the junction of the Izu-Marianas and NE Japan volcanic arcs. The modern Maekake cone forms the summit and is situated east of the horseshoe-shaped remnant of an older andesitic volcano, Kurofuyama, which was destroyed by a late-Pleistocene landslide about 20,000 years before present (BP). Growth of a dacitic shield volcano was accompanied by pumiceous pyroclastic flows, the largest of which occurred about 14,000-11,000 BP, and by growth of the Ko-Asama-yama lava dome on the east flank. Maekake, capped by the Kamayama pyroclastic cone that forms the present summit, is probably only a few thousand years old and has an historical record dating back at least to the 11th century CE. Maekake has had several major plinian eruptions, the last two of which occurred in 1108 (Asamayama's largest Holocene eruption) and 1783 CE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/).


Villarrica (Chile) — September 2019 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Strombolian activity continued during March-August 2019 with an increase in July

Villarrica is a frequently active volcano in Chile with an active lava lake in the deep summit crater. It has been producing intermittent Strombolian activity since February 2015, soon after the latest reactivation of the lava lake; similar activity continued into 2019. This report summarizes activity during March-August 2019 and is based on reports from the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN), Projecto Observación Villarrica Internet (POVI), part of the Fundacion Volcanes de Chile research group, and satellite data.

OVDAS-SERNAGEOMIN reported that degassing continued through March with a plume reaching 150 m above the crater with visible incandescence through the nights. The lava lake activity continued to fluctuate and deformation was also recorded. POVI reported sporadic Strombolian activity throughout the month with incandescent ejecta reaching around 25 m above the crater on 17 and 24 March, and nearly 50 m above the crater on the 20th (figure 76).

Figure (see Caption) Figure 76. A webcam image of Villarrica at 0441 on 20 March 2019 shows Strombolian activity and incandescent ejecta reaching nearly 50 m above the crater. People are shown for scale in the white box to the left in the blue background image that was taken on 27 March. Photos taken about 6 km away from the volcano, courtesy of POVI.

There was a slight increase in Strombolian activity reported on 7-8 April, with incandescent ballistic ejecta reaching around 50 m above the crater (figure 77). Although seismicity was low during 14-15 April, Strombolian activity produced lava fountains up to 70 m above the crater over those two days (figure 78). Activity continued into May with approximately 12 Strombolian explosions recorded on the night of 5-6 May erupting incandescent ejecta up to 50 m above the crater rim. Another lava fountaining episode was observed reaching around 70 m above the crater on 14 May (figure 79). POVI also noted that while this was one of the largest events since 2015, no significant changes in activity had been observed over the last five months. Throughout May, OVDAS-SERNAGEOMIN reported that the gas plume height did not exceed 170 m above the crater and incandescence was sporadically observed when weather allowed. SWIR (short-wave infrared) thermal data showed an increase in energy towards the end of May (figure 80).

Figure (see Caption) Figure 77. Strombolian activity at Villarrica on 7-8 April 2019 producing incandescent ballistic ejecta reaching around 50 m above the crater. Courtesy of POVI.
Figure (see Caption) Figure 78. Images of Villarrica on 15 April show a lava fountain that reached about 70 m above the crater. Courtesy of POVI.
Figure (see Caption) Figure 79. These images of Villarrica taken at 0311 and 2220 on 14 May 2019 show lava fountaining reaching 70-73 m above the crater. Courtesy of POVI.
Figure (see Caption) Figure 80. This graph shows the variation in short-wave infrared (SWIR) energy with the vertical scale indicating the number of pixels displaying high temperatures between 23 June 2018 and 29 May 2019. Courtesy of POVI.

Ballistic ejecta were observed above the crater rim on 17 and 20 June 2019 (figure 81), and activity was heard on 20 and 21 June. Activity throughout the month remained similar to previous months, with a fluctuating lava lake and minor explosions. On 15 July a thermal camera imaged a ballistic bomb landing over 300 m from the crater and disintegrating upon impact. Incandescent material was sporadically observed on 16 July. Strombolian activity increased on 22 July with the highest intensity activity in four years continuing through the 25th (figure 82).

Figure (see Caption) Figure 81. Ballistic ejecta is visible above the Villarrica crater in this infrared camera (IR940 nm) image taken on 17 June 2019. Courtesy of POVI.
Figure (see Caption) Figure 82. Strombolian activity at Villarrica on 22, 23, and 24 July with incandescent ballistic ejecta seen here above the summit crater. Courtesy of POVI.

On 6 August the Alert Level was raised by SERNAGEOMIN from Green to Yellow (on a scale of Green, Yellow, Orange, and Red indicating the greatest level of activity) due to activity being above the usual background level, including ejecta confirmed out to 200 m from the crater with velocities on the order of 100 km/hour (figure 83). The temperature of the lava lake was measured at a maximum of 1,000°C on 25 July. POVI reported the collapse of a segment of the eastern crater rim, possibly due to snow weight, between 9 and 12 August. The MIROVA system showed an increase in thermal energy in August (figure 84) and there was one MODVOLC thermal alert on 24 July.

Figure (see Caption) Figure 83. Observations during an overflight of Villarrica on 25 July 2019 showed that ballistic ejecta up to 50 cm in diameter had impacted out to 200 m from the crater. The velocities of these ejecta were likely on the order of 100 km/hour. The maximum temperature of the lava lake measured was 1,000°C, and 500°C was measured around the crater. Courtesy of SERNAGEOMIN.
Figure (see Caption) Figure 84. Thermal activity at Villarrica detected by the MIROVA system shows an increase in detected energy in August 2019. Courtesy of MIROVA.

Geologic Background. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Reventador (Ecuador) — August 2019 Citation iconCite this Report

Reventador

Ecuador

0.077°S, 77.656°W; summit elev. 3562 m

All times are local (unless otherwise noted)


Daily ash emissions and incandescent block avalanches continue, February-July 2019

The andesitic Volcán El Reventador lies east of the main volcanic axis of the Cordillera Real in Ecuador and has historical eruptions with numerous lava flows and explosive events going back to the 16th century. An eruption in November 2002 generated a 17-km-high eruption cloud, pyroclastic flows that traveled 8 km, and several lava flows. Eruptive activity has been continuous since 2008. Daily explosions with ash emissions and ejecta of incandescent blocks rolling hundreds of meters down the flanks have been typical for many years. Alameida et al. (2019) provide an excellent summary of recent activity (2016-2018) and monitoring. Activity continued during February-July 2019, the period covered in this report, with information provided by Ecuador's Instituto Geofisico (IG-EPN), the Washington Volcano Ash Advisory Center (VAAC), and infrared satellite data.

Persistent thermal activity accompanied daily ash emissions and incandescent block avalanches during February-July 2019 (figure 111). Ash plumes generally rose 600-1,200 m above the summit crater and drifted W or NW; incandescent blocks descended up to 800 m down all the flanks. On 25 February an ash plume reached 9.1 km altitude and drifted SE, causing ashfall in nearby communities. Pyroclastic flows were reported on 18 April and 19 May traveling 500 m down the flanks. Small but distinct SO2 emissions were detectible by satellite instruments a few times during the period (figure 112).

Figure (see Caption) Figure 111. The thermal energy at Reventador persisted throughout 4 November 2018 through July 2019, but was highest in April and May. Courtesy of MIROVA.
Figure (see Caption) Figure 112. Small SO2 plumes were released from Reventador and detected by satellite instruments only a few times during February-July 2019. Columbia's Nevada del Ruiz produced a much larger SO2 signal during each of the days shown here as well. Top left: 26 February; top right: 27 February; bottom left: 3 April; bottom right: 4 April. Courtesy of NASA Goddard Space Flight Center.

The Washington VAAC issued multiple daily ash advisories on all but two days during February 2019. IGEPN reported daily ash emissions rising from 400 to over 1,000 m above the summit crater. Incandescent block avalanches rolled 400-800 m down the flanks on most nights (figure 113). Late on 8 February the Washington VAAC reported an ash plume moving W at 5.8 km altitude extending 10 km from the summit. Plumes rising more than 1,000 m above the summit were reported on 9, 13, 16, 18, 19, and 25 February. On 25 February the Washington VAAC reported an ash plume visible in satellite imagery drifting SE from the summit at 9.1 km altitude that dissipated quickly, and drifted SSE. It was followed by new ash clouds at 7.6 km altitude that drifted S. Ashfall was reported in San Luis in the Parish of Gonzalo Díaz de Pineda by UMEVA Orellana and the Chaco Fire Department.

Figure (see Caption) Figure 113. Emission of ash from Reventador and incandescent blocks rolling down the cone occurred daily during February 2019, and were captured by the COPETE webcam located on the S rim of the caldera. On 1 February (top left) incandescent blocks rolled 600 m down the flanks. On 13 February (top right) ash plumes rose 800 m and drifted W. On 16 February (bottom left) ash rose to 1,000 m and drifted W. On 18 February (bottom right) the highest emission exceeded 1,000 m above the crater and was clearly visible in spite of meteoric clouds obscuring the volcano. Courtesy of IGEPN (Daily reports 2019-32, 44, 47, and 49).

Ash plumes exceeded 1,000 m in height above the summit almost every day during March 2019 and generally drifted W or NW. The Washington VAAC reported an ash plume visible above the cloud deck at 6.7 km altitude extending 25 km NW early on 3 March; there were no reports of ashfall nearby. Incandescent block avalanches rolled 800 m down all the flanks the previous night; they were visible moving 300-800 m down the flanks most nights throughout the month (figure 114).

Figure (see Caption) Figure 114. Ash plumes and incandescent block avalanches occurred daily at Reventador during March 2019 and were captured by the COPETE webcam on the S rim of the caldera. On 3 March (top left) a possible pyroclastic flow traveled down the E flank in the early morning. Ash plumes on 17 and 18 March (top right, bottom left) rose 900-1,000 m above the summit and drifted W. On 23 March (bottom right) ash plumes rose to 1,000 m and drifted N while incandescent blocks rolled 600 m down the flanks. Courtesy of IGEPN (Daily reports 2019 62, 76, 77, and 82).

During April 2019 ash plume heights ranged from 600 to over 1,000 m above the summit each day, drifting either W or NW. Incandescent avalanche blocks rolled down all the flanks for hundreds of meters daily; the largest explosions sent blocks 800 m from the summit (figure 115). On 18 April IGEPN reported that a pyroclastic flow the previous afternoon had traveled 500 m down the NE flank.

Figure (see Caption) Figure 115. Ash plumes and incandescent block avalanches occurred daily at Reventador during April 2019. On 3 April, ash emissions were reported drifting W and NW at 1,000 m above the summit (top left). On 14 April ash plumes rose over 600 m above the summit crater (top right). The 3 and 14 April images were taken from the LAVCAM webcam on the SE flank. Incandescent block avalanches descended 800 m down all the flanks on 15 April along with ash plumes rising over 1,000 m above the summit (bottom left), both visible in this image from the COPETE webcam on the S rim of the caldera. A pyroclastic flow descended 500 m down the NE flank on 17 April and was captured in the thermal REBECA webcam (bottom right) located on the N rim of the caldera. Courtesy of IGEPN (Daily reports 2019-93, 104, 105, and 108).

On most days during May 2019, incandescent block avalanches were observed traveling 700-800 m down all the flanks. Ash plume heights ranged from 600 to 1,200 m above the crater each day of the month (figure 116) they were visible. A pyroclastic flow was reported during the afternoon of 19 May that moved 500 m down the N flank.

Figure (see Caption) Figure 116. Even on days with thick meteoric clouds, ash plumes can be observed at Reventador. The ash plumes reached 1,000 m above the crater on 8 May 2019 (top left). The infrared webcam REBECA on the N rim of the caldera captured a pyroclastic flow on the N flank on the afternoon of 19 May (top right). Strong explosions on 23 May sent incandescent blocks and possible pyroclastic flows at least 800 m down all the flanks (bottom left). Ash plumes reached 1,000 m above the summit on 27 May and drifted W (bottom right). Images on 8, 23, and 27 May taken from the COPETE webcam on the S rim of the caldera. Courtesy of IGEPN (Daily Reports 2019-128, 140, 143, and 147).

Activity diminished somewhat during June 2019. Ash plumes reached 1,200 m above the summit early in June but decreased to 600 m or less for the second half of the month. Meteoric clouds prevented observation for most of the third week of June; VAAC reports indicated ash emissions rose to 5.2 km altitude on 19 June and again on 26 June (about 2 km above the crater). Incandescent blocks were reported traveling down all of the flanks, generally 500-800 m, during about half of the days the mountain was visible (figure 117). Multiple VAAC reports were also issued daily during July 2019. Ash plumes were reported by IGEPN rising over 600 m above the crater every day it was visible and incandescent blocks traveled 400-800 m down the flanks (figure 118). The Darwin VAAC reported an ash emission on 9 July that rose to 4.9 km altitude as multiple puffs that drifted W, extending about 35 km from the summit.

Figure (see Caption) Figure 117. Activity diminished slightly at Reventador during June 2019. Incandescent material was visible on the N flank from infrared webcam REBECA on the N rim of the caldera on 6 June (top left). On 7 June ash rose over 1,000 m above the summit and drifted N and W (top right) as seen from the COPETE webcam on the S rim of the caldera. Incandescent block avalanches rolled 600 m down all the flanks on 8 June (bottom left) and were photographed by the LAVCAM webcam located on the SE flank. An ash plume rose to 1,000 m on 25 June and was photographed from the San Rafael waterfall (bottom right). Courtesy of IGEPN (Daily Reports 2019-157, 158, 159, and 176).
Figure (see Caption) Figure 118. Daily explosive activity was reported at Reventador during July 2019. On 9 and 10 July ash plumes rose over 600 m and drifted W and incandescent blocks descended 800 m down all the flanks (top row), as seen from the LAVCAM webcam on the SE flank. On 27 July many of the large incandescent blocks appeared to be several m in diameter as they descended the flanks (bottom left, LAVCAM). On 1 August, a small steam plume was visible on a clear morning from the CORTESIA webcam located N of the volcano. Courtesy of IGEPN Daily reports (2019-190, 191, 208, and 213).

References: Almeida M, Gaunt H E, and Ramón P, 2019, Ecuador's El Reventador volcano continually remakes itself, Eos, 100, https://doi.org/10.1029/2019EO117105. Published on 18 March 2019.

Geologic Background. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec ); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/).


Raikoke (Russia) — August 2019 Citation iconCite this Report

Raikoke

Russia

48.292°N, 153.25°E; summit elev. 551 m

All times are local (unless otherwise noted)


Short-lived series of large explosions 21-23 June 2019; first recorded activity in 95 years

Raikoke in the central Kuril Islands lies 400 km SW of the southern tip of Russia's Kamchatcka Peninsula. Two significant eruptive events in historical times, including fatalities, have been recorded. In 1778 an eruption killed 15 people "under the hail of bombs" who were under the command of Captain Chernyi, returning from Matua to Kamchatka. This prompted the Russian military to order the first investigation of the volcanic character of the island two years later (Gorshkov, 1970). Tanakadate (1925) reported that travelers on a steamer witnessed an ash plume rising from the island on 15 February 1924, observed that the island was already covered in ash from recent activity, and noted that a dense steam plume was visible for a week rising from the summit crater. The latest eruptive event in June 2019 produced a very large ash plume that covered the island with ash and dispersed ash and gases more than 10 km high into the atmosphere. The volcano is monitored by the Sakhalin Volcanic Eruption Response Team, (SVERT) part of the Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences (IMGG FEB RAS) and the Kamchatka Volcanic Eruption Response Team (KVERT) which is part of the Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences (IVS FEB RAS).

A brief but intense eruption beginning on 21 June 2019 sent major ash and sulfur dioxide plumes into the stratosphere (figures 1 and 2); the plumes rapidly drifted over 1,000 km from the volcano. Strong explosions with dense ash plumes lasted for less than 48 hours, minor emissions continued for a few more days; the SO2, however, continued to circulate over far eastern Russia and the Bering Sea for more than three weeks after the initial explosion. The eruption covered the island with centimeters to meters of ash and enlarged the summit crater. By the end of July 2019 only minor intermittent steam emissions were observed in satellite imagery.

Figure (see Caption) Figure 1. On the morning of 22 June 2019, astronauts on the International Space Station captured this image of a large ash plume rising from Raikoke in the Kuril Islands. The plume reached altitudes of 10-13 km and drifted E during the volcano's first known explosion in 95 years. Courtesy of NASA Earth Observatory.
Figure (see Caption) Figure 2. A large and very dense SO2 plume (measuring over 900 Dobson Units (DU)) drifted E from Raikoke in the Kuril Islands on 22 June 2019, about 8 hours after the first known explosion in 95 years. Courtesy of NASA Goddard Space Flight Center.

Summary of 2019 activity. A powerful eruption at Raikoke began at 1805 on 21 June 2019 (UTC). Volcano Observatory Notices for Aviation (VONA's) issued by KVERT described the large ash plume that rapidly rose to 10-13 km altitude and extended for 370 km NE within the first two hours (figure 3). After eight hours, the plume extended 605 km ENE; it had reached 1,160 km E by 13 hours after the first explosion (figure 4). The last strong explosive event, according to KVERT, producing an ash column as high as 10-11 km, occurred at 0540 UTC on 22 June. SVERT reported a series of nine explosions during the eruption. Over 440 lightning events within the ash plume were detected in the first 24 hours by weather-monitoring equipment. The Japanese Ministry of Transportation reported that almost 40 planes were diverted because of the ash plume (figure 5).

Figure (see Caption) Figure 3. A dense ash plume drifted E from Raikoke on 22 June 2019 from a series of large explosions that lasted for less than 24 hours, as seen in this Terra satellite image. The plume was detected in the atmosphere for several days after the end of the eruptive activity. Courtesy of NASA Earth Observatory.
Figure (see Caption) Figure 4. The ash plume from Raikoke volcano that erupted on 21 June 2019 drifted over 1,000 km E by late in the day on 22 June, as seen in this oblique, composite view based on data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite. Courtesy of NASA Earth Observatory.
Figure (see Caption) Figure 5. Numerous airplanes were traveling on flight paths near the Raikoke ash plume (black streak at center) early on 22 June 2019. The Japanese Ministry of Transportation reported that almost 40 planes were diverted because of the plume. Courtesy of Flightradar24 and Volcano Discovery.

On 23 June (local time) the cruise ship Athena approached the island; expedition member Nikolai Pavlov provided an eyewitness account and took remarkable drone photographs of the end of the eruption. The ship approached the W flank of the island in the late afternoon and they were able to launch a drone and photograph the shore and the summit. They noted that the entire surface of the island was covered with a thick layer of light-colored ash up to several tens of centimeters thick (figure 6). Fresh debris up to several meters thick fanned out from the base of the slopes (figure 7). The water had a yellowish-greenish tint and was darker brown closer to the shore. Dark-brown steam explosions occurred when waves flowed over hot areas along the shoreline, now blanketed in pale ash with bands of steam and gas rising from it (figure 8). A dense brown ash plume drifted W from the crater, rising about 1.5 km above the summit (figure 9).

Figure (see Caption) Figure 6. The entire surface of the island of Raikoke was covered with a thick layer of light-colored ash up to several tens of centimeters thick on 23 June 2019 when photographed by drone from the cruise ship Athena about 36 hours after the explosions began. View is of the W flank. Photo by Nik Pavlov; courtesy of IVS FEB RAS.
Figure (see Caption) Figure 7. Fresh ash and volcanic debris up to several meters thick coated the flanks of Raikoke on 23 June 2019 after the large explosive eruption two days earlier. View is by drone of the W flank. Photo by Nik Pavlov; courtesy of IVS FEB RAS.
Figure (see Caption) Figure 8. The 21 June 2019 eruption of Raikoke covered the island in volcanic debris. The formerly vegetated areas (left, before eruption) were blanketed in pale ash with bands of steam and gas rising all along the shoreline (right, on 23 June 2019) less than two days after the explosions began. The open water area between the sea stack and the island was filled with tephra. Photos by Nik Pavlov; courtesy of IVS FEB RAS.
Figure (see Caption) Figure 9. At the summit of Raikoke on 23 June 2019, a dense brown ash plume drifted W from the crater, rising about 1.5 km, two days after a large explosive eruption. Drone photo by Nik Pavlov; courtesy of IVS FEB RAS.

Early on 23 June, the large ash cloud continued to drift E and then NE at an altitude of 10-13 km. At that altitude, the leading edge of the ash cloud became entrained in a large low pressure system and began rotating from SE to NW, centered in the area of the Komandorskiye Islands, 1,200 km NE of Raikoke. By then the farthest edge of ash plume was located about 2,000 km ENE of the volcano. Meanwhile, at the summit and immediately above, the ash plume was drifting NW on 23 June (figures 9 and 10). Ashfall was reported (via Twitter) from a ship in the Pacific Ocean 40 km from Raikoke on 23 June. Weak ashfall was also reported in Paramushir, over 300 km NE the same day. KVERT reported that satellite data from 25 June indicated that a steam and gas plume, possibly with some ash, extended for 60 km NW. They also noted that the high-altitude "aerosol cloud" continued to drift to the N and W, reaching a distance of 1,700 km NW (see SO2 discussion below). By 27 June KVERT reported that the eruption had ended, but the aerosols continued to drift to the NW and E. They lowered the Aviation Alert Level to Green the following day.

Figure (see Caption) Figure 10. The brown ash plume from Raikoke was drifting NW on 23 June 2019 (left), while the remnants of the ash from the earlier explosions continued to be observed over a large area to the NE on 25 June (right). The plume in the 23 June image extends about 30 km NW; the plume in the 25 June image extends a similar distance NE. Natural color rendering (bands 4, 3, 2) of Sentinel-2 imagery, courtesy of Sentinel Hub Playground.

Tokyo and Anchorage VAAC Reports. The Tokyo VAAC first observed the ash plume in satellite imagery at 10.4 km altitude at 1850 on 21 June 209, just under an hour after the explosion was first reported by KVERT. About four hours later they updated the altitude to 13.1 km based on satellite data and a pilot report. By the evening of 22 June the high-level ash plume was still drifting ESE at about 13 km altitude while a secondary plume at 4.6 km altitude drifted SE for a few more hours before dissipating. The direction of the high-altitude plume began to shift to the NNW by 0300 on 23 June. By 0900 it had dropped slightly to 12.2 km and was drifting NE. The Anchorage VAAC reported at 2030 that the ash plume was becoming obscured by meteorological clouds around a large and deep low-pressure system in the western Bering Sea. Ash and SO2 signals in satellite imagery remained strong over the region S and W of the Pribilof Islands as well as over the far western Bering Sea adjacent to Russia. By early on 24 June the plume drifted NNW for a few hours before rotating back again to a NE drift direction. By the afternoon of 24 June, the altitude had dropped slightly to 11.6 km as it continued to drift NNE.

The ash plume was still clearly visible in satellite imagery late on 24 June. An aircraft reported SO2 at 14.3 km altitude above the area of the ash plume. The plume then began to move in multiple directions; the northern part moved E, while the southern part moved N. The remainder was essentially stationary, circulating around a closed low-pressure zone in the western Bering Sea. The ash plume remained stationary and slowly dissipated as it circulated around the low through 25 June before beginning to push S (figure 11). By early on 26 June the main area of the ash plume was between 325 km WSW of St. Matthew Island and 500 km NNW of St. Lawrence Island, and moving slowly NW. The Anchorage VAAC could no longer detect the plume in satellite imagery shortly after midnight (UTC) on 27 June, although they noted that areas of aerosol haze and SO2 likely persisted over the western Bering Sea and far eastern Russia.

Figure (see Caption) Figure 11. This RGB image created from a variety of spectral channels from the GOES-17 (GOES-West) satellite shows the ash and gas plume from Raikoke on 25 June 2019. The brighter yellows highlight features that are high in SO2 concentration. Highlighted along the bottom of the image is the pilot report over the far southern Bering Sea; the aircraft was flying at an altitude of 11 km (36,000 feet), and the pilot remarked that there were multiple layers seen below that altitude which had a greyish appearance (likely volcanic ash). Courtesy of NOAA and Scott Bachmeier.

Sulfur dioxide emissions. A very large SO2 plume was released during the eruption. Preliminary total SO2 mass estimates by Simon Carn taken from both UV and IR sensors suggested around 1.4-1.5 Tg (1 Teragram = 109 Kg) that included SO2 columns within the ash plume with values as high as 1,000 Dobson Units (DU) (figure 12). As the plume drifted on 23 and 24 June, similar to the ash plume as described by the Tokyo VAAC, it moved in a circular flow pattern as a result of being entrained in a low-pressure system in the western Bering Sea (figure 13). By 25 June the NW edge of the SO2 had reached far eastern Russia, 1,700 km from the volcano (as described by KVERT), while the eastern edges reached across Alaska and the Gulf of Alaska to the S. Two days later streams of SO2 from Raikoke were present over far northern Siberia and northern Canada (figure 14). For the following three weeks high levels of SO2 persisted over far eastern Russia and the Bering Sea, demonstrating the close relationship between the prevailing weather patterns and the aerosol concentrations from the volcano (figure 15).

Figure (see Caption) Figure 12. A contour map showing the mass and density of SO2 released into the atmosphere from Raikoke on 22 June 2019. Courtesy of Simon Carn.
Figure (see Caption) Figure 13. Streams of SO2 from Raikoke drifted around a complex flow pattern in the Bering Sea on 23 and 24 June 2019. Data from TROPOMI instrument on the Sentinel-5P satellite, courtesy of NASA Goddard Space Flight Center and Simon Carn.
Figure (see Caption) Figure 14. SO2 plumes from Raikoke dispersed over a large area of the northern hemisphere in late June 2019. By 25 June (top) the SO2 plumes had dispersed to far eastern Russia, 1,700 km from the volcano, while the eastern edges reached across Alaska and the Gulf of Alaska to the S. By 27 June (bottom) streams of SO2 were present over far northern Siberia and northern Canada, and also continued to circulate in a denser mass over far eastern Russia. Data from TROPOMI instrument on the Sentinel-5P satellite, courtesy of NASA Goddard Space Flight Center and Simon Carn.
Figure (see Caption) Figure 15. For the first two weeks of July 2019, high levels of SO2 from the 21 June 2019 eruption of Raikoke persisted over far eastern Russia and the Bering Sea entrained in a slow moving low-pressure system, demonstrating the close relationship between the prevailing weather patterns and the aerosol concentrations from the volcano. Data from TROPOMI instrument on the Sentinel-5P satellite, courtesy of NASA Goddard Space Flight Center.

Changes to the island. Since no known activity had occurred at Raikoke for 95 years, the island was well vegetated on most of its slopes and the inner walls of the summit crater before the explosion (figure 16). The first clear satellite image after the explosion, on 30 June 2019, revealed a modest steam plume rising from the summit crater, pale-colored ash surrounding the entire island, and new deposits of debris fans extending out from the NE, SW, and S flanks. Part of a newly enlarged crater was visible at the N edge of the old crater. Two weeks later only a small steam plume was present at the summit, making the outline of the enlarged crater more visible; the extensive shoreline deposits of fresh volcanic material remained. A clear view into the summit crater on 23 July revealed the size and shape of the newly enlarged summit crater (figure 17).

Figure (see Caption) Figure 16. Changes at Raikoke before and after the 21 June 2019 eruption were clear in Sentinel-2 satellite imagery. The island was heavily vegetated on most of its slopes and the inner walls of the summit crater before the explosion (top left, 3 June 2019). The first clear satellite image after the explosion, on 30 June 2019 revealed a steam plume rising from the summit crater, pale-colored ash surrounding the entire island, and new deposits of debris fans extending out from the NE, SW, and S flanks (top right). Part of a newly enlarged crater was visible at the N edge of the old crater. Two weeks later only a small steam plume was present at the summit, making the outline of the enlarged crater more visible; the extensive shoreline deposits of fresh volcanic material remained (bottom right, 13 July 2019). A clear view into the summit crater on 23 July revealed the new size and shape of the summit crater (bottom left). Natural Color rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 17. Sentinel-2 satellite imagery of the summit crater of Raikoke before (left) and after (right) the explosions that began on 21 June 2019. The old crater rim is outlined in red in both images. The new crater rim is outlined in yellow in the 23 July image. Natural Color rendering (bands 4, 3, 2), courtesy of Sentinel Hub Playground.

References: Gorshkov G S, 1970, Volcanism and the Upper Mantle; Investigations in the Kurile Island Arc, New York: Plenum Publishing Corp, 385 p.

Tanakadate H, 1925, The volcanic activity in Japan during 1914-1924, Bull Volc. v. 1, no. 3.

Geologic Background. A low truncated volcano forms the small barren Raikoke Island, which lies 16 km across the Golovnin Strait from Matua Island in the central Kuriles. The oval-shaped basaltic island is only 2 x 2.5 km wide and rises above a submarine terrace. An eruption in 1778, during which the upper third of the island was said to have been destroyed, prompted the first volcanological investigation in the Kuril Islands two years later. Incorrect reports of eruptions in 1777 and 1780 were due to misprints and errors in descriptions of the 1778 event (Gorshkov, 1970). Another powerful eruption in 1924 greatly deepened the crater and changed the outline of the island. Prior to a 2019 eruption, the steep-walled crater, highest on the SE side, was 700 m wide and 200 m deep. Lava flows mantle the eastern side of the island.

Information Contacts: Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Sakhalin Volcanic Eruption Response Team (SVERT), Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Science, Nauki st., 1B, Yuzhno-Sakhalinsk, Russia, 693022 (URL: http://www.imgg.ru/en/, http://www.imgg.ru/ru/svert/reports); Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); NOAA, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Space Science and Engineering Center (SSEC), University of Wisconsin-Madison, 1225 W. Dayton St. Madison, WI 53706, (URL: http://cimss.ssec.wisc.edu/); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn); Scott Bachmeier, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Space Science and Engineering Center (SSEC), University of Wisconsin-Madison, 1225 W. Dayton St. Madison, WI 53706; Flightradar24 (URL: https://www.flightradar24.com/51,-2/6); Volcano Discovery (URL: http://www.volcanodiscovery.com/).


Sinabung (Indonesia) — August 2019 Citation iconCite this Report

Sinabung

Indonesia

3.17°N, 98.392°E; summit elev. 2460 m

All times are local (unless otherwise noted)


Large ash explosions on 25 May and 9 June 2019

Indonesia's Sinabung volcano in north Sumatra has been highly active since its first confirmed Holocene eruption during August and September 2010. It remained quiet after the initial eruption until September 2013, when a new eruptive phase began that continued uninterrupted through June 2018. Ash plumes often rose several kilometers, avalanche blocks fell kilometers down the flanks, and deadly pyroclastic flows traveled more than 4 km repeatedly during the eruption. After a pause in eruptive activity from July 2018 through April 2019, explosions took place again during May and June 2019. This report covers activity from July 2018 through July 2019 with information provided by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), referred to by some agencies as CVGHM or the Indonesian Center of Volcanology and Geological Hazard Mitigation, the Darwin Volcanic Ash Advisory Centre (VAAC), and the Badan Nacional Penanggulangan Bencana (National Disaster Management Authority, BNPB). Additional information comes from satellite instruments and local news reports.

After the last ash emission observed on 5 July 2018, activity diminished significantly. Occasional thermal anomalies were observed in satellite images in August 2018, and February-March 2019. Seismic evidence of lahars was recorded almost every month from July 2018 through July 2019. Renewed explosions with ash plumes began in early May; two large events, on 24 May and 9 June, produced ash plumes observed in satellite data at altitudes greater than 15 km (table 9).

Table 9. Summary of activity at Sinabung during July 2018-July 2019. Steam plume heights from PVMBG daily reports. VONA reports issued by Sinabung Volcano Observatory, part of PVMBG. Satellite imagery from Sentinel-2. Lahar seismicity from PVMBG daily and weekly reports. Ash plume heights from VAAC reports. Pyroclastic flows from VONA reports.

Month Steam Plume Heights (m) Dates of VONA reports Satellite Thermal Anomalies (date) Seismicity indicating Lahars (date) Ash Plume Altitude (date and distance) Pyroclastic flows
Jul 2018 100-700 -- -- -- -- --
Aug 2018 50-700 -- 30 1, 20 -- --
Sep 2018 100-500 -- -- 1st week, 12, 29 -- --
Oct 2018 50-1,000 -- -- 1 -- --
Nov 2018 50-350 -- -- 14 -- --
Dec 2018 50-500 -- -- 30 -- --
Jan 2019 50-350 -- -- -- -- --
Feb 2019 100-400 -- 6, 21 -- -- --
Mar 2019 50-300 -- 3, 8 27 -- --
Apr 2019 50-400 -- -- 2, 4, 11 -- --
May 2019 200-700 7, 11, 12, 24, 26, 27 (2) -- 4, 14 7 (4.6 km), 24 (15.2 km), 25 (6.1 km) --
June 2019 50-600 9, 10 -- -- 9 (16.8 km), 10 (3.0 km) 9-3.5 km SE, 3.0 km S
July 2019 100-700 -- -- 10, 12, 14, 16, 4th week -- --

No eruptive activity was reported after 5 July 2018 for several months, however Sentinel-2 thermal imagery on 30 August indicated a hot spot at the summit suggestive of eruptive activity. The next distinct thermal signal appeared on 6 February 2019, with a few more in late February and early March (figure 66, see table 9).

Figure (see Caption) Figure 66. Sentinel-2 satellite imagery on 30 August 2018, 6 February, and 8 March 2019 showed distinct thermal anomalies suggestive of eruptive activity at Sinabung, although no activity was reported by PVMBG. Images rendered with Atmospheric Penetration, bands 12, 11, and 8A. Courtesy of Sentinel Hub Playground.

PVMBG reported the first ash emission in 11 months early on 7 May 2019. They noted that an ash plume rose 2 km above the summit and drifted ESE. The Sinabung Volcano Observatory (SVO) issued a VONA (Volcano Observatory Notice for Aviation) that described an eruptive event lasting for a little over 40 minutes. Ashfall was reported in several villages. The Jakarta Post reported that Karo Disaster Mitigation Agency (BPDB) head Martin Sitepu said four districts were affected by the eruption, namely Simpang Empat (7 km SE), Namanteran (5 km NE), Kabanjahe (14 km SE), and Berastadi (12 km E). The Darwin VAAC reported the ash plume at 4.6 km altitude and noted that it dissipated about six hours later (figure 67). The TROPOMI SO2 instrument detected an SO2 plume shortly after the event (figure 68).

Figure (see Caption) Figure 67. Images from the explosion at Sinabung on 7 May 2019. Left and bottom right photos by Kopi Cimbang and Kalak Karo Kerina, courtesy of David de Zabedrosky. Top right photo courtesy of Sutopo Purwo Nugroho, BNPB.
Figure (see Caption) Figure 68. The TROPOMI instrument on the Sentinel-5P satellite captured an SO2 emission from Sinabung shortly after the eruption on 7 May 2019. Courtesy of NASA Goddard Space Flight Center.

On 11 May 2019 SVO issued a VONA reporting a seismic eruption event with a 9 mm amplitude that lasted for about 30 minutes; clouds and fog prevented visual confirmation. Another VONA issued the following day reported an ash emission that lasted for 28 minutes but again was not observed due to fog. The Darwin VAAC did not observe the ash plumes reported on 11 or 12 May; they did report incandescent material observed in the webcam on 11 May. Sutopo Purwo Nugroho of BNPB reported that the 12 May eruption was accompanied by incandescent lava and ash, and the explosion was heard in Rendang (figure 69). The Alert Level had been at Level IV since 2 June 2015. Based on decreased seismicity, a decrease in visual activity (figure 70), stability of deformation data, and a decrease in SO2 flux during the previous 11 months, PVMBG lowered the Alert Level from IV to III on 20 May 2019.

Figure (see Caption) Figure 69. Incandescent lava and ash were captured by a webcam at Sinabung on 12 May 2019. Courtesy of Sutopo Purwo Nugroho, BNPB.
Figure (see Caption) Figure 70. The summit of Sinabung emitted only steam and gas on 18 May 2019, shortly before PVMBG lowered the Alert Level from IV to III. Courtesy of PVMBG (Decreased G. Sinabung activity level from Level IV (Beware) to Level III (Standby), May 20, 2019).

A large explosion was reported by the Darwin VAAC on 24 May 2019 (UTC) that produced a high-altitude ash plume visible in satellite imagery at 15.2 km altitude moving W; the plume was not visible from the ground due to fog. The Sinabung Volcano Observatory reported that the brief explosion lasted for only 7 minutes (figure 71), but the plume detached and drifted NW for about 12 hours before dissipating. The substantial SO2 plume associated with the event was recorded by satellite instruments a few hours later (figure 72, left). Another six-minute explosion late on 26 May (UTC) produced an ash plume that was reported by a ground observer at 4.9 km altitude drifting S (figure 72, right). About an hour after the event, the Darwin VAAC observed the plume drifting S at 6.1 km altitude; it had dissipated four hours later. Sumbul Sembiring, a resident of Kabanjahe, told news outlet Tempo.com that ash had fallen at the settlements. Two more explosions were reported on 27 May; the first lasted for a little over 12 minutes, the second (about 90 minutes later, 28 May local time) lasted for about 2.5 minutes. No ash plumes were visible from the ground or satellite imagery for either event.

Figure (see Caption) Figure 71. A brief but powerful explosion at Sinabung in the early hours of 25 May 2019 (local time) produced a seven-minute-long seismic signal and a 15.2-km-altitude ash plume. Courtesy of MAGMA Indonesia and Volcano Discovery.
Figure (see Caption) Figure 72. Two closely spaced eruptive events occurred at Sinabung on 24 and 26 May UTC (25 and 27 May local time). The 24 May event produced a significant SO2 plume recorded by the TROPOMI instrument a few hours afterwards (left), and a 15.2-km-altitude ash plume only recorded in satellite imagery. The event on 26 May produced a visible ash plume that was reported at 6.1 km altitude and was faintly visible from the ground (right). SO2 courtesy of NASA Goddard Space Flight Center, photograph courtesy of PVMBG and Øystein Lund Andersen.

An explosion on 9 June 2019 produced an ash plume, estimated from the ground as rising to 9.5 km altitude, that drifted S and E; pyroclastic flows traveled 3.5 km SE and 3 km S down the flanks (figure 73). The explosion was heard at the Sinabung Observatory. The Darwin VAAC reported that the eruption was visible in Himawari-8 satellite imagery, and reported by pilots, at 16.8 km altitude drifting W; about an hour later the VAAC noted that the detached plume continued drifting SW but lower plumes were still present at 9.1 km altitude drifting W and below 4.3 km drifting SE. They also noted that pyroclastic flows moving SSE were sending ash to 4.3 km altitude. Three hours later they reported that both upper level plumes had detached and were moving SW and W. After six hours, the lower altitude plumes at 4.3 and 9.1 km altitudes had dissipated; the higher plume continued moving SW at 12.2 km altitude until it dissipated within the next eight hours. Instruments on the Sentinel-5P satellite captured an SO2 plume from the explosion drifting W across the southern Indian Ocean (figure 74).

Figure (see Caption) Figure 73. A large explosion at Sinabung on 9 June 2019 produced an ash plume that rose to 16.8 km altitude and also generated pyroclastic flows (foreground) that traveled down the S and SE flanks. Left image courtesy of Sutopo Purwo Nugroho, Head of the BNPB Information and Public Relations Data Center. Right image photo source PVMBG/Mbah Rono/ Berastagi Nachelle Homestay, courtesy of Jaime Sincioco.
Figure (see Caption) Figure 74. An SO2 plume from the 9 June 2019 explosion at Sinabung drifted more than a thousand kilometers W across the southern Indian Ocean. Courtesy of Sentinel Hub and Annamaria Luongo.

The SVO reported continuous ash and gas emissions at 3.0 km altitude moving ESE early on 10 June; it was obscured in satellite imagery by meteoric clouds. There were no additional VONA's or VAAC reports issued for the remainder of June or July 2019. An image on social media from 20 June 2019 shows incandescent blocks near the summit (figure 75). PVMBG reported that emissions on 25 June were white to brownish and rose 200 m above the summit and drifted E and SE.

Figure (see Caption) Figure 75. Incandescent blocks at the summit of Sinabung were visible in this 20 June 2019 image taken from a rooftop terrace in Berastagi, 13 km E. Photo by Nachelle Homestay, courtesy of Jaime Sincioco.

PVMBG detected seismic signals from lahars several times during the second week of July 2019. News outlets reported lahars damaging villages in the Karo district on 11 and 13 July (figure 76). Detik.com reported that lahars cut off the main access road to Perbaji Village (4 km SW), Kutambaru Village (14 km S), and the Tiganderket connecting road to Kutabuluh (17 km WNW). In addition, Puskesmas Kutambaru was submerged in mud. Images from iNews Malam showed large boulders and rafts of trees in thick layers of mud covering homes and roads. No casualties were reported.

Figure (see Caption) Figure 76. Lahars on 11 and 13 July 2019 caused damage in numerous villages around Sinabung, filling homes and roadways with mud, tree trunks, and debris. No casualties were reported. Courtesy of iNews Malam.

Geologic Background. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Jakarta Post (URL: https://www.thejakartapost.com/news/2019/05/07/mount-sinabung-erupts-again.html); Detikcom (URL: https://news.detik.com/berita/d-4619253/hujan-deras-sejumlah-desa-di-sekitar-gunung-sinabung-banjir-lahar-dingin); iNews Malam (URL: https://tv.inews.id/, https://www.youtube.com/watch?v=uAI4CpSb41k); Tempo.com (URL:https://en.tempo.co/read/1209667/mount-sinabung-erupts-on-monday-morning); David de Zabedrosky, Calera de Tango, Chile (Twitter: @deZabedrosky, URL: https://twitter.com/deZabedrosky/status/1125814504867160065/photo/1, https://twitter.com/deZabedrosky/status/1125814504867160065/photo/2); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN); Tom Pfeiffer, Volcano Discovery (URL: http://www.volcanodiscovery.com/); Øystein Lund Andersen? (Twitter: @OysteinLAnderse, URL: https://twitter.com/OysteinLAnderse, URL: http://www.oysteinlundandersen.com image at https://twitter.com/OysteinLAnderse/status/1132849458142572544); Jaime Sincioco, Phillipines (Twitter: @jaimessincioca, URL: https://twitter.com/jaimessincioco); Annamaria Luongo, University of Padua, Venice, Italy (Twitter: @annamaria_84, URL:https://twitter.com/annamaria_84).


Semisopochnoi (United States) — September 2019 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Small explosions detected between 16 July and 24 August 2019

The remote island of Semisopochnoi in the western Aleutians is dominated by a caldera measuring 8 km in diameter that contains a small lake (Fenner Lake) and a number of post-caldera cones and craters. A small (100 m diameter) crater lake in the N cone of Semisopochnoi's Cerberus three-cone cluster has persisted since January 2019. An eruption at Sugarloaf Peak in 1987 included an ash plume (SEAN 12:04). Activity during September-October 2018 included increased seismicity and small explosions (BGVN 44:02). The primary source of information for this reporting period of July-August 2019 comes from the Alaska Volcano Observatory (AVO), when there were two low-level eruptions.

Seismicity rose above background levels on 5 July 2019. AVO reported that data from local seismic and infrasound sensors likely detected a small explosion on 16 July. A strong tremor on 17 July generated airwaves that were detected on an infrasound array 260 km E on Adak Island. In addition to this, a small plume extended 18 km WSW from the Cerberus vent, but no ash signals were detected in satellite data. Seismicity decreased abruptly on 18 July after a short-lived eruption. Seismicity increased slightly on 23 July and remained elevated through August.

On 24 July 2019 AVO reported that satellite data showed that the crater lake was gone and a new, shallow inner crater measuring 80 m in diameter had formed on the crater floor, though no lava was identified. Satellite imagery indicated that the crater of the Cerberus N cone had been replaced by a smooth, featureless area of either tephra or water at a level several meters below the previous floor. Satellite imagery detected faint steam plumes rising to 5-10 km altitude and minor SO2 emissions on 27 July. Satellite data showed a steam plume rising from Semisopochnoi on 18 August and SO2 emissions on 21-22 August. Ground-coupled airwaves identified in seismic data on 23-24 August was indicative of additional explosive activity.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 43, Number 08 (August 2018)

Managing Editor: Edward Venzke

Agung (Indonesia)

Ash explosions and lava dome effusion continue during January-July 2018

Aira (Japan)

Activity increased at Minamidake and decreased at Showa crater in early 2018

Etna (Italy)

Degassing continues, accompanied by intermittent ash emissions and small Strombolian explosions in June and July 2018

Fernandina (Ecuador)

Brief eruptive episode 16-22 June 2018, lava flows down N flank into the ocean

Fuego (Guatemala)

Pyroclastic flows on 3 June 2018 cause at least 110 fatalities, 197 missing, and extensive damage; ongoing ash explosions, pyroclastic flows, and lahars

Karymsky (Russia)

Renewed eruptive activity with ash plumes during April through July 2018

Klyuchevskoy (Russia)

Intermittent moderate gas, steam, and ash emissions; no ash seen after 15 June 2018

Stromboli (Italy)

Continued Strombolian activity from five active summit vents through March-June 2018

Suwanosejima (Japan)

Intermittent ash emission continues from January through June 2018

Yasur (Vanuatu)

Centuries-long eruption continues during February-July 2018



Agung (Indonesia) — August 2018 Citation iconCite this Report

Agung

Indonesia

8.343°S, 115.508°E; summit elev. 2997 m

All times are local (unless otherwise noted)


Ash explosions and lava dome effusion continue during January-July 2018

After a large, deadly explosive and effusive eruption during 1963-64, Indonesia's Mount Agung was quiet until a new eruption began in November 2017 (BGVN 43:01). A lava dome emerged into the summit crater at the end of November and intermittent plumes of ash rose as high as 3 km above the summit through the end of the year. Activity continued into 2018 with explosions that produced ash plumes rising multiple kilometers above the summit, and the growth of the lava dome within the summit crater. Information about the ongoing eruptive episode comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM), the Darwin Volcanic Ash Advisory Center (VAAC), and multiple sources of satellite data. This report covers the ongoing eruption from January through July 2018.

Intermittent explosions with ash plumes were reported at Agung several times during January 2018, including Strombolian activity on 19 January. Activity decreased significantly by the end of the month; only one explosion with ash was reported during February. Two ash plumes were reported in March and three were reported each month during April and May. A more substantial explosion in mid-June produced an ash plume that rose to 7 km altitude. A series of deep-seated earthquakes during the third week of June was followed by large explosions and new effusions of lava inside the summit crater beginning on 28 June. A strong thermal signal also appeared on 28 June that gradually diminished during July. Intermittent plumes of steam and ash recurred daily until 19 July; plume heights rose up to 3 km above the summit on several occasions. Strombolian explosions on 2 and 8 July sent ejecta as far as 2 km from the summit. Explosive activity became more intermittent during the last two weeks of the month; the last reported explosion was on 27 July.

Activity during January-May 2018. During most days of January 2018 when fog was not obscuring the summit, PVMGB reported plumes of steam and minor ash rising about 500 m above the summit. In addition, intermittent explosions produced higher, denser ash plumes that rose 1,000-2,500 m above the summit several times. Ash plumes on 1 and 2 January rose to 1,000 and 1,500 m above the summit; incandescence was observed at the summit on both nights, and trace ashfall was reported at the Rendang Post on 2 January. The Darwin VAAC reported the ash plume on 1 January at 6.1 km altitude moving SW. A single MODVOLC thermal alert was recorded on 4 January. On 5 January PVMGB lowered the evacuation radius from 10 to 6 km, permitting the return of thousands of displaced people to their homes. Approximately 17,000 people in seven villages within 6 km of Agung were still under evacuation orders from the events of late 2017.

The Agung Volcano Observatory issued VONA's (Volcano Observatory Notice for Aviation) on 4, 8, 9, 11, 15, 17, 19, 23, 24, and 30 January relating to the larger explosions and ash plumes. On 11 January, an ash plume rose to 2,500 m above the summit and drifted N and NE (figure 29). Another 2,500-m-high ash plume on 19 January was accompanied by Strombolian activity at the summit for several hours, and incandescent ejecta that traveled 1,000 m from the crater. Ashfall was later reported in Tulamben village in the Kubu district (9 km NE) and in Purwekerti village in the Abang district (14 km ENE). Visual monitoring using drones carried out on 22 January showed that the volume of the lava dome was relatively unchanged at around 20 million m3. The summit was obscured by fog for the last week of the month.

Figure (see Caption) Figure 29. An eruption at Agung on 11 January 2018 sent an ash plume to 2,500 m above the summit. Courtesy of MAGMA Indonesia and PVMBG (Erupsi Gunung Agung 11 Januari 2018 17:54 WITA).

Activity decreased noticeably in late January and February. Steam and minor ash plumes rose only 50-800 m above the summit for most of the month. As a result of the decrease in activity, PVMBG lowered the Alert Level from Level IV to Level III (on a four-level scale) on 10 February 2018. The radius of evacuation was also lowered from 6 to 4 km. A single explosion on 14 February sent an ash plume to 1,500 m above the summit.

For most of March 2018, steam plumes rose less than 400 m above the summit. VONA's were issued by the Agung Volcano Observatory for ash plumes twice, on 12 March (local time) when a plume rose 800 m above the summit and drifted E, and on 26 March when the ash plume rose to 500 m and drifted NW. During much of April 2018, steam plumes rose less than 300 m above the summit; weather obscured views of the summit for most of the last week of the month. AVO issued VONA's for ash plumes on 6, 11 and 30 April; the plumes on 6 and 11 April rose 500 m and drifted W and SW respectively. The Darwin VAAC reported a series of four short-lived explosions with ash plumes on 11 April; they each dissipated within a few hours. PVMBG reported another explosion on 15 April that produced an ash plume that also rose 500 m. The plume on 30 April rose 1,500 m and drifted SW.

Similar activity persisted throughout May 2018. Steam plumes generally rose 50-100 m above the summit crater each day. In addition, explosions were reported on 9, 19, and 29 May. PVMBG reported that no ash plume was observed on 9 May, due to fog obscuring the summit, but the ash plume on 19 May rose to 1,000 m above the summit and drifted SE, and the ash plume on 29 May rose 500 m and drifted SW.

Activity during June and July 2018. The volcano was covered in fog for much of the first two weeks of June. A short-lived explosion on 10 June 2018 was reported by PVMBG, but meteoric clouds obscured the summit. The Darwin VAAC noted the plume in a satellite image drifting W at about 4.6 km altitude. An explosion on 13 June produced an ash plume that rose 2,000 m above the summit and drifted WSW (figure 30). Another explosion was recorded on 15 June, but the summit was obscured, and no ash cloud was visible to ground observers. However, the Darwin VAAC reported the plume visible in satellite imagery at 7 km altitude (about 4 km above the summit) drifting SW and S for most of the day before dissipating. Ashfall was reported about 7 km W in the village of Puregai. PVMBG reported white and gray emissions on 17 June that rose 500 m.

Figure (see Caption) Figure 30. An ash plume at Agung on 13 June 2018 rose about 2,000 m above the summit and drifted WSW. View is looking N. Courtesy of PVMBG (Information on G. Agung Eruption, 13 June 2018).

An explosion during the evening (local time) of 27 June 2018 produced an ash plume that rose 2,000 m from the summit and drifted W. Another explosion the following morning produced a sustained ash cloud that lasted for several hours and again caused ashfall around the village of Puregai. It rose to about 2,000 m above the summit and drifted W and SW (figure 31).

Figure (see Caption) Figure 31. A sustained ash eruption began early on 28 June 2018 at Agung (top) and lasted well into the afternoon (bottom). Photo from a PBVBG webcam, posted on Twitter by Sutopo Purwo Nugroho‏ (BNPB).

PVMBG noted in late June that inflation of 5 mm had occurred since 13 May 2018. They reported that the ash plumes on 28 June caused some airlines to cancel flights to Bali, and ashfall was reported in several villages in Bangli and areas to the W and SW the following day (figure 32). The International Gusti Ngurah Rai (IGNR) airport (60 km SW) in Denpasar, the Blimbing Sari Airport (128 km W) in Banyuwangi, and the Noto Hadinegoro Airport (200 km W) in Jember closed for portions of the day on 29 June (ANTARA News).

Figure (see Caption) Figure 32. Settlement and plantation areas were coated with ash from Mount Agung in Pemuteran Village (10 km W) on 29 June 2018. Courtesy of Tempo.com and ANTARA/Nyoman Budhiana.

Incandescence overnight on 28-29 June indicated fresh effusions of lava at the summit; they were accompanied by ash emissions that rose 1,500-2,500 m. Thermal satellite images recorded on 29 June indicated significant hotspots within the crater with thermal energy reaching 819 Megawatts; this was the largest amount of thermal energy recorded during the 2017-2018 activity, significantly higher than the maximum recorded of 97 Megawatts reached at the end of November 2017. The MIROVA data clearly reflected the sudden surge of thermal energy into the summit crater at the end of June (figure 33).

Figure (see Caption) Figure 33. A large spike in thermal energy beginning on 28 June 2018 signaled a new surge of lava into the summit crater at Agung. This MIROVA plot of Log Radiative Power showed pulses of activity in early January, May, and early June, followed by the much larger surge of heat in late June that tapered off throughout July. Inset shows the nighttime incandescence on 28 June 2018 that resulted from the new effusion of lava. Photo taken at the PGMBG Webcam in Batu Lompeh (15 km N). Graph courtesy of MIROVA, photo courtesy of PVMBG (Press Release of Mount Agung's Latest Activities, June 29 to 3:00 p.m.)

The Darwin VAAC reported continuous emissions of ash beginning on 28 June that drifted to the W for over 24 hours. The height was initially reported by ground observers at 3.7 km altitude but was raised to 7 km altitude a few hours later, based on satellite imagery and pilot reports. By late that day, an upper plume (at 7 km) drifted SW and a second plume drifted W at 5.5 km altitude. By late on 29 June the continuous ash plume was drifting NW at 4.9 km altitude; it finally dissipated early on 30 June. In addition to large ash plumes and a major thermal anomaly, a substantial SO2 plume also emerged from Agung on 28-29 June 2018. The plume drifted W over Java and then dispersed to the NW over the next 24 hours (figure 34). A lingering, smaller plume was still visible two days later.

Figure (see Caption) Figure 34. A substantial SO2 plume was released from Agung during 28-29 June 2018 and captured by both the OMPS instrument on the Suomi satellite (upper images) and the OMI instrument on the Aura satellite (lower images). The plume first appeared on 28 June (top left) and was much larger the next day (top right). By 30 June it was dissipating over Java to the W and N (bottom left). A smaller plume drifted SW two days later (bottom right). Courtesy of NASA Goddard Space Flight Center.

A series of discrete eruptions lasting from late on 30 June through 2 July 2018 produced ash plumes that rose from 3.7 to 5.5 km altitude and drifted NW and W, according to the Darwin VAAC. Effusive activity continued to increase during the first week of July 2018 with the continued growth of the lava dome in the summit crater. PVMBG reported an additional volume of lava of 4 million m3 erupted from 28 June through the middle of July bringing the size of the dome to about 27 million m3. The frequency of explosions peaked on 2 July when Strombolian activity sent incandescent ejecta 2 km from the summit in all directions (figure 35).

Figure (see Caption) Figure 35. The eruption of Mount Agung on 2 July 2017 produced Strombolian activity and incandescent ejecta that traveled 2 km from the summit crater in all directions. Courtesy of ANTARA News/HO/BMKG.

Several VONA's issued during 2-3 July reported multiple explosions that sent ash plumes 700-2,000 m above the summit. Eighteen explosions were reported by PVMBG between 1 and 8 July. The Darwin VAAC noted a substantial explosion early on 2 July that produced a plume that rose to 7.6 km altitude and drifted W. The remains of the ash plume were discernable in satellite imagery about 250 km W of Agung by the end of the day. The ash plume on 4 July rose 2,500 m above the summit (figure 36).

Figure (see Caption) Figure 36. An explosion at Agung on 4 July 2018 produced an ash plume that rose 2,500 m above the summit, according to PVMBG. Courtesy of PVMBG (Information on G. Agung Eruption, July 4, 2018).

Strombolian activity was reported again on 8 July 2018 (figure 37). The Darwin VAAC reported intermittent explosions every day from 3-19 July, with ash plumes rising to altitudes from 3.7 to 6.7 km. Additional explosions were reported on 21, 24, 25, and 27 July (figure 38); ash plumes rose 700-2,000 m and drifted W or SE. MODVOLC thermal alerts resumed on 27 June, and multiple daily alerts persisted on most days through the end of July.

Figure (see Caption) Figure 37. Strombolian activity at Agung recurred for the third time in 2018 on 8 July 2018. Courtesy of PVMBG (Agung Strombolian Eruption Today July 8, 2018).
Figure (see Caption) Figure 38. A dense ash plume rose about 2,000 m above Mount Agung on 27 July 2018 at 1406 local time. Courtesy of PVMBG (Information on G. Agung Eruption, 27 July 2018).

Geologic Background. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sutopo Purwo Nugroho?, BNPB, Twitter (URL: https://twitter.com/Sutopo_PN); TEMPO.CO, Tempo Building, Jl. Palmerah Barat No. 8, South Jakarta 12210, Indonesia (URL: https://nasional.tempo.co/read/1102118/pvmbg-energi-thermal-erupsi-gunung-agung-kali-ini-paling-besar); ANTARANEWS.com, ANTARA guesthouse lt 19, Jalan Merdeka Selatan No. 17, Jakarta Pusat, Indonesia, (URL: https://en.antaranews.com).


Aira (Japan) — August 2018 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Activity increased at Minamidake and decreased at Showa crater in early 2018

Sakurajima is a persistently active volcano within the Aira caldera in Kyushu, Japan. The two currently active summit craters are Showa and Minamidake, both of which produce intermittent ash plumes and occasional pyroclastic flows. This report summarizes the activity from January through June 2018 as described in reports issued by the Japan Meteorological Agency (JMA) and Tokyo Volcanic Ash Advisory Center (VAAC).

The volcano remains on Alert Level 3 (out of five). A change in activity occurred in late 2017 to early 2018, with a reduction in activity at the Showa crater and a significant increase in activity at the Minamidake crater (table 19 and figure 63). During January through June 2018 a total of 260 explosions were recorded at Minamidake (135 of these were explosive), and four at Showa. Pyroclastic flows were produced on 1 April from Showa crater that travelled 800 m, and a flow reached 1,300 m from Minamidake crater on 16 June. Periodic incandescence was visible at the summit throughout the reporting period.

Table 19. Eruptive events and pyroclastic flows recorded at the active craters of Sakurajima volcano in Aira caldera. The number of events that were explosive in nature are in parentheses. Data courtesy of JMA (January to June 2018 monthly reports).

Month No. of ash emissions at Showa crater No. of ash emissions at Minamidake crater Pyroclastic flows
Jan 2018 1 12 (4) --
Feb 2018 0 7 (3) --
Mar 2018 0 44 (17) --
Apr 2018 3 66 (50) 800 m E from Showa.
May 2018 0 96 (48) --
Jun 2018 0 35 (13) 1,300 m SW from Minamidake.
Figure (see Caption) Figure 63. The number of monthly explosions at Minamidake (upper) and Showa (lower) craters of Sakurajima, Aira caldera. The first half of 2018 has seen a dramatic increase in activity at Minamidake, and a decrease in activity at Showa crater. Grey bars indicate eruptions and red bars specify explosive eruptions. Note that the scale on the two graphs are different. Courtesy of JMA (June 2018 monthly report).

In January 2018, one ash emission occurred at Showa crater and twelve occurred at Minamidake, with four of these classified as explosive eruptions. The largest ash plume reached 2,500 m above the crater on the 18th and two explosions ejected material out to a maximum of 700-800 m from the craters. Through February, three of seven ash emissions at Minamidake were explosive. The largest ash plume occurred on the 19th and reached 1,500 m above the crater. On the 27th, the crater ejected material out to 700 m from the crater.

Through March, 44 ash emissions occurred with 17 of these classified as explosive events. The largest ash plume was produced on the 26th and reached 3,400 m above the crater. An explosive eruption on 10 March ejected material out to 1,300 m from the crater. During April, Minamidake produced 66 ash emission; 50 of these were explosive (figure 64). Showa produced three events in total and an event on 1 April produced a pyroclastic flow that traveled 800 m to the E (figure 65).The largest ash plume was from Minamidake that reached 3,400 m above the crater.

Figure (see Caption) Figure 64. True color Sentinel-2 satellite image of an ash plume at Sakurajima, Aira caldera, at 1056 on 12 April. The Tokyo VAAC reported that the plume that reached an altitude of 2.4 km. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 65. Eruption of the Sakurajima Showa crater (within the Aira caldera) at 1611 on 1 April. The ash plume rose to 1,700 m above the crater and the pyroclastic flow (circled) travelled 800 m to the east. Image taken by the Kaigata webcam, courtesy of JMA (April 2018 monthly report).

Elevated activity continued at Minamidake through May, with 96 ash emissions (48 explosive), and the highest reported ash plume reaching 3,200 m above the crater on the 24th. An explosion on 5 May scattered ejecta out to 1,300 m from the crater. Activity was reduced in June with 35 ash emissions (13 explosive) from Minamidake, with an explosive event on the 16th producing an ash plume to 4,700 m above the crater and a pyroclastic flow out to 1,300 m (figure 66). This event deposited ash on nearby communities.

Figure (see Caption) Figure 66. Eruption at the Sakurajima Minamidake crater (at Aira caldera) at 1607 on 16 June. The ash plume rose to 4,700 m above the crater and the pyroclastic flow (circled) traveled 1,300 m. Image captured by the Kaigata surveillance camera, courtesy of JMA (June 2018 monthly report).

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Etna (Italy) — August 2018 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Degassing continues, accompanied by intermittent ash emissions and small Strombolian explosions in June and July 2018

Etna is the tallest active volcano in continental Europe with persistent activity at multiple summit craters and vents. The active craters are Bocca Nuova and Voragine within the Central Crater, the Northeast Crater, Southeast Crater, and the New Southeast Crater (figure 217). This report summarizes activity from April to July 2018 and is based on reports by the Istituto Nazionale di Geofisica e Vulcanologia (INGV).

Figure (see Caption) Figure 217. The active summit craters of Etna volcano: the Bocca Nuova and Voragine craters that occupy the older Central Crater, the Northeast Crater (Cratere di Nord-Est), Southeast Crater (Cratere di Sud-Est), and the New Southeast Crater (Nuovo Cratere di Sud-Est). The years given in parentheses indicate when the craters formed. Photo by Marco Neri, courtesy of INGV (19 July 2018 blog).

Activity through April was characterized by degassing at the summit craters (figure 218), with modest ash emissions from the New Southeast Crater and Northeast Crater in the first week, and occasional small ash emissions at the end of the month. Reduced activity dominated by degassing continued into May with modest ash emission from the Southeast and Northeast craters during the second week, and isolated ash emissions from the Northeast Crater in the second half of the month continuing into June.

Figure (see Caption) Figure 218. Degassing at the Bocca Nuova crater at the summit of Etna in late April. The top image is a photograph of the crater with the location of the bottom image, which is a thermal image showing the degassing and temperature at the vent reaching over 400°C. Courtesy of INGV (Weekly report No. 18/2018 for 24 to 30 April 2018, issued on 2 May 2018).

Throughout June the activity consisted of degassing at the summit craters with isolated diffuse ash emission from Northeast Crater (figure 219). This continued through to July until low-energy Strombolian activity commenced in the Bocca Nuova (from two vents) and Northeast craters (figures 220 and 221). The Strombolian explosions were small, lasting up to several tens of seconds, and were sometimes accompanied by red-brown ash emission. The ejected material was confined to within the craters. More energetic bursts were visible from the INGV surveillance camera located in Milo.

Figure (see Caption) Figure 219. Photos of isolated dilute red-brown ash emissions from the Etna Northeast Crater on the 6 and 8 June. Courtesy of INGV (Report No. 24/2018 for the period 4 to 10 June 2018, issued on 12 June 2018).
Figure (see Caption) Figure 220. A sequence of thermal infrared images of a Strombolian explosion at the Etna Bocca Nuova crater on 17 July 2018. Two vents are active (A and B), with vent B ejecting lava up to a few tens of meters above the vent. The color scale on the right of the images indicates the temperature in Celsius. Images taken by Giuseppe Salerno, courtesy of INGV (24 July 2018 INGV blog).
Figure (see Caption) Figure 221. Photos of Strombolian explosions at the base of the Etna Northeast Crater on 20 and 21 July 2018. The explosions occur when gas pockets burst and eject incandescent fluid lava above the vent. Photo by Michele Mammino, courtesy of INGV (24 July 2018 blog).

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Sezione di Catania - Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/it/); Blog INGVvulcani, Istituto Nazionale di Geofisica e Vulcanologia (INGV) (URL: http://ingvvulcani.wordpress.com).


Fernandina (Ecuador) — August 2018 Citation iconCite this Report

Fernandina

Ecuador

0.37°S, 91.55°W; summit elev. 1476 m

All times are local (unless otherwise noted)


Brief eruptive episode 16-22 June 2018, lava flows down N flank into the ocean

Eruptions at Fernandina Island in the Galapagos often occur from vents located around the caldera rim along boundary faults and fissures, and occasionally from side vents on the flank. The last eruption in September 2017 lasted for about one week and originated from a fissure at the SW rim of the caldera. A new eruption in June 2018 lasted for less than a week and originated from a fissure on the N flank of the volcano. Information about the latest eruption was provided by Ecuador's Institudo Geofisica, Escuela Politécnica Nacional (IG-EPN), the Dirección del Parque Nacional Galápagos (PNG), the Washington Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

A seismic swarm on 16 June 2018 preceded a brief eruptive episode at Fernandina that lasted from 16 to 22 June. Lava erupted from a radial fissure and quickly flowed to the sea down the N flank. Emissions were primarily gas with low ash content and included substantial SO2. After two days of activity, seismicity returned to background levels on 18 June. Park Officials reported only cooling flows and lava no longer entering the sea by 21 June 2018.

Eruption of June 2018. The first evidence of a new eruptive event at Fernandina began as a seismic swarm on 16 June 2018. The largest event (M 4.1) was located 4 km off the NE flank of the island. An active eruption was confirmed a few hours later by guides on a passing boat and by satellite images which indicated a thermal anomaly on the N flank. The eruption consisted of a lava flow on the NNE flank and a gas plume that rose 2-3 km and drifted SW (figure 32). The lava flow quickly reached the ocean, generating steam and gas explosions that were visible from Canal Bolívar, the narrow channel on the NE side of Isla Fernandina that separates it from Isla Isabela (figure 33).

Figure (see Caption) Figure 32. Lava from a new eruption at Fernandina flowed quickly down the N flank of the island to the ocean on 16 June 2018, according to Parque Nacional Galapagos officials. Courtesy of Parque Nacional Galapagos.
Figure (see Caption) Figure 33. Explosions produced large plumes of steam as lava reached the ocean on the N flank of Fernandina on 16 June 2018. Courtesy of Parque Nacional Galapagos.

Observations by PNG officials and visitors indicated that lava flows came from a radial fissure on the NNE flank, and produced gas plumes with low ash content that rose 2-3 km and drifted more than 250 km WNW (figures 34 and 35). The Washington VAAC detected an ash and gas plume in visible satellite imagery drifting W from the summit at 2.4 km altitude late in the day on 16 June, along with a significant thermal signature in infrared imagery. A second gas-and-ash plume at the same altitude drifted WNW the following day for a few hours before dissipating. After two days of intense eruptive activity, seismic tremor activity had declined significantly to background levels by noon on 18 June.

Figure (see Caption) Figure 34. Incandescent lava flows from the eruption of Fernandina produced large plumes of water vapor as they reached the sea during the evening of 16 June 2018. Courtesy of Parque Nacional Galapagos.
Figure (see Caption) Figure 35. Incandescent lava reached the sea during 16-18 June 2018 at Fernandina from a brief eruptive episode. The lava flowed down the N flank. Courtesy of CNH Tours, posted 20 June 2018.

‏A strong pulse of SO2 emissions that drifted W was recorded by satellite instruments on 17 and 18 June 2018 (figure 36). The MODVOLC thermal alert system also recorded a surge of over 100 thermal anomalies from infrared satellite imagery that lasted from 17 to 22 June. More than half of the anomalies appeared on 17 June. The alert pixels were all clustered on the N flank. The MIROVA system also record the spike in thermal activity on 17 June and indicated that the heat source was more than 5 km from the summit (figure 37).

Figure (see Caption) Figure 36. A strong pulse of SO2 issued from Fernandina on 17 June 2018 and was recorded by the OMPS instrument on the SUOMI NPP satellite. The plume drifted W and measured at about 27 Dobson Units (DU). Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 37. The MIROVA system log radiative power measurement for Fernandina showed a spike of thermal activity on 16-17 June 2018 that coincided with the fissure eruption that sent lava flows down the N flank of the volcano into the sea. The black bars indicate a heat source more than 5 km from the summit. The MODVOLC thermal alert system detected over 100 thermal alerts at Fernandina between 17 and 22 June 2018, concurring with observations of lava flows on the N flank of the volcano. Courtesy of MIROVA and MODVOLC.

By 21 June 2018 PNG officials reported that lava was no longer reaching the ocean, but steam from cooling flows was visible at the coastline and over the area of the new flows (figure 38).

Figure (see Caption) Figure 38. By 21 June 2018 active lava flows were no longer reaching the ocean at Fernandina, although steam from cooling lava was still visible near the coast and along the N flank. Courtesy of Parque Nacional Galapagos.

Geologic Background. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 km3 section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake.

Information Contacts: Instituto Geofísico (IG), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec/); Dirección del Parque Nacional Galápagos (DPNG), Av. Charles Darwin y S/N, Isla Santa Cruz, Galápagos, Ecuador (URL: http://www.galapagos.gob.ec/, Twitter: @parquegalapagos); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Cultural and Natural Heritage Tours, Galapagos, (CNH Tours), 14 Kilbarry Crescent, Ottawa, Ontario, K1K 0G8, Canada (URL: https://www.cnhtours.com/, Twitter: @CNHtours).


Fuego (Guatemala) — August 2018 Citation iconCite this Report

Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


Pyroclastic flows on 3 June 2018 cause at least 110 fatalities, 197 missing, and extensive damage; ongoing ash explosions, pyroclastic flows, and lahars

Guatemala's Volcán de Fuego was continuously active throughout the first half of 2018; it has been erupting vigorously since 2002 with historical observations of eruptions dating back to 1531. These eruptions have resulted in major ashfalls, pyroclastic flows, lava flows, and damaging lahars. Large explosions with a significant number of fatalities occurred during 3-5 June 2018 and are covered in this report of activity from January-June 2018. Reports are provided by the Instituto Nacional de Sismologia, Vulcanología, Meteorología e Hidrologia (INSIVUMEH) and the National Office of Disaster Management (CONRED); aviation alerts of ash plumes are issued by the Washington Volcanic Ash Advisory Center (VAAC). Satellite data from NASA, NOAA, and other sources provide valuable information about heat flow and gas emissions. Numerous media outlets provided photographs of the eruptive activity.

Summary of activity, January-June 2018. The first eruptive event of 2018 occurred during 31 January-1 February and lasted for about 20 hours. It included pyroclastic flows, lava flows, incandescent ejecta, ash plumes that rose to 7 km altitude, and ashfall more than 60 km from the volcano. Four lava flows emerged during the event, and the longest traveled 1,500 m down the Seca ravine. Multiple daily explosions that generated ash plumes continued through May 2018. Ash plumes usually rose to 4.2-4.9 km altitude (400-1,200 m above the summit) and drifted up to about 15 km from the volcano in the prevailing wind directions. Ashfall was often reported from communities within 10 km of the summit, most commonly to the W and SW, but also occasionally to the N and NE. Incandescent ejecta rose up to 300 m above the summit during periods of increased activity; block avalanches of the incandescent material descended the major drainages on all flanks, often as far as the vegetated areas several hundred m below the summit.

The first lahar of the year was reported on 9 April; additional lahars occurred several times during May after rainy periods. They were generally 20-30 m wide and 1-2 m deep, carrying debris 1-2 m in diameter. A lava flow was active in the Ceniza ravine for the second half of May, moving up to 1,000 m from the summit during heightened activity on 22 May, and again on 2 June.

The second major eruptive event of 2018, and the largest and deadliest explosive activity in recent history at Fuego, began with a strong explosion on the morning of 3 June 2018. Multiple explosions throughout the day produced an ash plume that was observed in satellite data at 15.2 km altitude, and a strong SO2 plume that drifted N and NE. Numerous large pyroclastic flows generated by the explosions throughout the day descended multiple ravines around the flanks. The most heavily damaged communities were San Miguel Los Lotes and El Rodeo, 10 km SE of the summit at the base of Las Lajas ravine. Most infrastructure in the communities was buried in ash; there were 110 reported fatalities, and at least 197 people reported missing and presumed dead. Additional explosions two days later caused a brief halt in recovery efforts as more pyroclastic flows covered the same area.

Abundant rainfall that began on 6 June 2018 led to over 30 lahars throughout the rest of the month, inundating all of the major ravines and tributaries of the Rio Pantaleón and Rio Gobernador and causing additional infrastructure damage to bridges and roads. The lahars were often 30-40 m wide, 3 m deep, and carried volcanic blocks and debris up to 3 m in diameter. Explosive activity declined to background levels by the middle of June, but daily explosions with ash plumes and incandescent avalanche blocks continued for the remainder of the month, with continued reports of ashfall in communities within 15 km of the summit.

Activity during January-February 2018. During January 2018, plumes of steam rose to 4.3-4.5 km altitude, drifting primarily W, SW, and S. Activity included 3 to 8 explosions per hour that generated ash plumes, which rose to about 4.3-4.8 km altitude (figure 82). Explosions on 19 January increased to 7-13 per hour, and produced ash plumes that drifted more than 15 km W, SW, and S. Incandescent ejecta rose 100-300 m above the crater and traveled up to 400 m from the crater, in some cases reaching vegetated areas. The SW flank was the most affected by ashfall; it was reported in the communities of San Pedro Yepocapa, Escuintla, Sangre de Cristo, Finca Palo Verde, El Porvenir, Santa Sofía, Morelia, Paniché I and II, Rochela, and Ceilán. Block avalanches traveled down the Seca, Taniluyá, Cenizas and Las Lajas ravines. On 28 January, seismic station FG3 registered an increase in pulses of tremor activity. MODVOLC thermal alerts were issued during 17 days in January. The Washington VAAC issued multiple daily aviation alerts on 22 days of the month.

Figure (see Caption) Figure 82. Moderate explosions produced a plume of ash at Fuego on 14 January 2018 that drifted W a few hundred meters above the summit, seen in this view from SW of the volcano. Courtesy of INSIVUMEH (Informe mensual de la actividad del Volcan de Fuego, Enero 2018).

The first major eruptive event of 2018 occurred during 31 January-1 February and lasted for about 20 hours. It included pyroclastic flows, lava flows, incandescent ejecta, ash plumes that rose to 7 km altitude, and ashfall more than 60 km W, SW, and NE from the volcano (figure 83). Explosive activity increased to 5-8 events per hour, incandescent material rose up to 300 m above the crater, and ejecta traveled 300 m.

Figure (see Caption) Figure 83. The first major eruptive event of 2018 at Fuego produced ash plumes, pyroclastic flows, lava flows and incandescent ejecta on 1 February. Photo taken from the N (adjacent Acatenango in the foreground) by Ruben Merida, courtesy of INSIVUMEH (Informe Mensual de la Actividad del Volcan de Fuego, Febrero 2018).

The substantial ash plume produced from the event drifted tens of kilometers to the W and SW (figures 84 and 85). The SW flank was the area most affected by ashfall, where communities of San Pedro Yepocapa and Escuintla, Sangre de Cristo, Palo Verde, El Porvenir, Santa Sofia, Morelia, Paniché I and II are located. Ashfall also occurred 10-25 km NE in La Rochela, San Andrés Osuna, La Reina, Ciudad Vieja, Antigua Guatemala, and in the WSW part of Guatemala City.

Figure (see Caption) Figure 84. A dense ash plume drifts W and SW from Fuego on 1 February 2018. Image taken by the Operational Land Imager (OLI) on Landsat 8. Courtesy of NASA Earth Observatory.
Figure (see Caption) Figure 85. A closeup of Fuego (see box in figure 84) on 1 February 2018 shows an ash plume drifting W and fresh ash and pyroclastic flow deposits around the summit during the first major eruptive event of 2019. Image taken by the Operational Land Imager (OLI) on Landsat 8. Courtesy of NASA Earth Observatory.

Four lava flows emerged during the eruptive event; a 1,500-m-long flow traveled down the Seca ravine, a 700-m-long flow traveled down the Ceniza ravine, and flows in Las Lajas and La Honda canyons traveled 800 m from the summit. Numerous pyroclastic flows also descended the Honda and Seca ravines, and smaller pyroclastic flows descended the Trinidad and Las Lajas ravines (figure 86).

Figure (see Caption) Figure 86. Pyroclastic flows descended short distances down several ravines (barrancas) at Fuego on 1 February 2018. Courtesy of INSIVUMEH (Informe Mensual de la Actividad del Volcan de Fuego, Febrero 2018).

La Honda ravine had not been affected by pyroclastic flows since 1974; they traveled 5.8 km down that ravine (figure 87), and 4.2 km down the Seca ravine. About 2,880 residents of Escuintla (20 km SE) and Alotenango (8 km E) were evacuated during these events. Significant concentrations of SO2 were detected on 1 February by the Ozone Mapper Profiler Suite (OMPS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite (figure 88).

Figure (see Caption) Figure 87. Pyroclastic flow deposits covered several kilometers of barranca La Honda on 6 February 2018 from the events which occurred on 1 February. Courtesy of INSIVUMEH (Informe Mensual de la Actividad del Volcan de Fuego, Febrero 2018).
Figure (see Caption) Figure 88. Significant concentrations of SO2 drifted SW on 1 February from the eruptive event at Fuego; they were recorded by the Ozone Mapper Profiler Suite (OMPS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite. Courtesy of NASA Earth Observatory and NASA Goddard Space Flight Center.

Multiple daily explosions with ash plumes continued throughout the rest of February; plumes generally rose to 4.5-4.7 km altitude, and ashfall was reported in communities 10-20 km from the volcano in various directions. Block avalanches descended barrancas Seca, Taniluyá, and Ceniza on most days. Incandescence at night was visible up to 200 m above the crater. MODVOLC thermal alerts were issued on 8 days of the month, and the Washington VAAC issued multiple daily aviation alerts throughout the month.

Activity during March-May 2018. Constant activity continued during March and April 2018, without any major eruptive episodes. Continuous degassing, explosions with ash plumes (figure 89), incandescent ejecta, and daily block avalanches were reported. Steam plumes rose daily to 4.2-4.4 km altitude and usually drifted NW, W, SW, or S. Explosions averaged 4-9 per hour and produced ash plumes that rose to 4.3-4.8 km altitude drifting more than 20 km NW, W, SW, and S. Incandescent ejecta was measured up to 300 m above the crater and traveled a similar distance down the flanks. Block avalanches sent debris up to a kilometer down the major drainages most days. The MODVOLC system recorded thermal alerts during 20 days of March and 22 days of April. The communities most affected by near-daily ashfall, on the SW flank, included San Pedro Yepocapa and Escuintla, Sangre de Cristo, Palo Verde Estate, El Porvenir, Santa Sofia, Morelia, and Paniché I and II. The Washington VAAC issued multiple daily aviation alerts nearly every day during both months.

Figure (see Caption) Figure 89. The ash plume on 13 April 2018 at Fuego was typical of the activity during March and April. Courtesy of INSIVUMEH (Reporte Semanal de Monitoreo: Volcán de Fuego (1402-09), Semana del 07 al 13 de abril de 2,018).

On 9 April the first lahar of the year descended the Seca canyon and the El Mineral channel, tributaries of the Pantaleón River. It was 10 m wide and 1.5 m deep, carrying abundant debris. In special bulletins released on 14 and 16 April INSIVUMEH noted increased explosive activity occurring at a rate of up to 10 explosions per hour, with ash plumes that rose to 4.8 km altitude. This was followed by a report of a lava flow during the evening of 16 April that traveled 1,300 m down the Seca Ravine.

Activity during the first two weeks of May 2018 was similar in character to the previous two months. Steam plumes rose to 4.1-4.3 km altitude, ash plumes rose to 4.5-4.8 km altitude from explosions that occurred at a rate of 4-8 per hour and drifted SW and W, and ashfall was reported in San Pedro Yepocapa, Morelia, El Por-venir, Sangre de Cristo, Santa Sofía, Finca Palo Verde, Panimaché I y II and other nearby communities. Incandescent ejecta rose 150-300 m high and was thrown 50 m from the crater; shockwaves from the explosions were felt 20-25 km away.

A lahar 12 m wide and 1.5 m deep descended the Seca Ravine on 10 May, dragging tree trunks and volcanic blocks as large as 1.5 m in diameter. A 500-m-long lava flow was reported in the barranca Ceniza on the afternoon of 15 May. Explosions occurred at a rate of 5-7 per hour on 16 May, and ash plumes rose as high as 7.8 km altitude and drifted 20 km W and SW, causing ashfall in Panimaché and Morelia. A moderate-sized lahar traveled down the El Jute ravine on 16 May after rains the previous night. During the afternoons of 16, 17, and 18 May lahars flowed down the Seca ravine from the recent abundant rainfall; they were 20 m wide, 1-2 m deep, and carried tree trunks and blocks 1-2 m in diameter. They grew to 25-30 m wide as they reached the confluence with the Rio Pantaleón, and the odor of sulfur was reported.

A lava flow in the barranca Ceniza was active for a distance of 900 m on 17 May, 600 m on 18 May, and 150 m on 19 May. Occasional sounds were audible more than 30 km from Fuego on 20 May from the 6-8 explosions that occurred every hour. Incandescent pulses rose 250 m above the crater during the night. The lava flow was active again to 700-800 m down the Ceniza ravine on 21 May. Overall activity increased to 10-15 weak to moderate explosions per hour on 22 May. The ash plumes rose to 4.3-4.7 km altitude and drifted 15 km S. Incandescent ejecta rose 300 m above the crater and lava flowed 1,000 m down the Ceniza ravine. On 23 May pulses of incandescent material rose 200-350 m above the crater and generated block avalanches that traveled down the Seca, Ceniza, and Las Lajas ravines as far as the vegetated areas. The lava flow in the Ceniza ravine was active up to 800 m from the summit that day. Explosions had decreased to 5-7 per hour by 24 May; the lava flow was still active 800 m down the Ceniza on 25 May.

The Fuego Observatory reported lahars on 25 May in the Seca and Mineral ravines that were 35 m wide and 1.5 m deep carrying abundant volcanic material. They blocked access between the communities of Yepocapa and Morelia, Santa Sofia, and others on the SW flank. Weak explosions and incandescence continued during the last week of the month, with low-level ash plumes drifting generally S, although poor visibility obscured most observations. Ash advisory reports from the Washington VAAC were more intermittent during May than the previous few months, with reports issued on 13 days of the month. The MODVOLC system reported thermal alerts on 16 days during May. The MIROVA project Log Radiative Power plot for the first six months of 2018 showed constant levels of activity similar to that during 2017 (see figure 73, BGVN 43:02) through the beginning of June, with a spike during the eruptive episode of 31 January-1 February (figure 90). The thermal signal ceased abruptly after the explosive events of early June.

Figure (see Caption) Figure 90. The MIROVA project Log Radiative Power plot for Fuego for the first six months of 2018 showed constant levels of activity similar to that during 2017 (see figure 73, BGVN 43:02) through the beginning of June, with a spike during the eruptive episode of 31 January-1 February. Thermal activity ceased abruptly after the explosive events of early June. Courtesy of MIROVA.

Fuego was characterized by ongoing moderate activity during the first two days of June. Steam plumes rose to 4.5 km altitude and drifted S, and 5-8 moderate explosions per hour produced ash plumes that rose to 4.6-4.8 km altitude and drifted 8-20 km S and SE. Moderate to strong shock waves from the explosions caused roofs to vibrate 15-20 km away on the S flank. Pulses of incandescent ejecta rose 100-200 m above the crater and created block avalanches that descended the Seca, Ceniza and Las Lajas ravines as far as the vegetated areas; fine-grained ash fell in Panamiche I. On 2 June lahars descended the Seca, Rio Mineral, Cenizas, Trinidad and Jute ravines, and a lava flow was reported moving 1,000 m down the Ceniza ravine.

Eruptive events of 3-5 June 2018. The second major eruptive event of 2018, and the deadliest in the recent history of Fuego, began with a strong explosion in the early morning of 3 June 2018. The ash plume rose rapidly to 6 km altitude and initially drifted W and SW. It generated large pyroclastic flows that traveled down the Seca, Santa Teresa, and Ceniza ravines and into the communities of Sangre de Cristo and San Pedro Yepocapa on the W flank. Strong explosions continued throughout the day and generated additional large pyroclastic flows in the Seca, Cenizas, Mineral, Taniluyá, Las Lajas, and Honda ravines with devastating consequences to numerous communities around the volcano (figures 91-94).

Figure (see Caption) Figure 91. Large pyroclastic flows descended multiple flanks of Fuego on 3 June 2018 causing significant fatalities and extensive property damage in adjacent communities. View is from Alotenango, 8 km E of the summit. Photo Credit: Orlando Estrada/AFP/Getty, courtesy of The Express.
Figure (see Caption) Figure 92. A large pyroclastic flow on 3 June 2018 descended the Las Lajas ravine adjacent to La Reunión Golf Course, 7 km SE of the summit of Fuego. Courtesy of Matthew Watson, volcanologist.
Figure (see Caption) Figure 93. The pyroclastic flows at Fuego on 3 June 2018 descended multiple ravines and damaged or destroyed a number of roadways and bridges. Photo Credit: AFP/Getty, courtesy of The Express.
Figure (see Caption) Figure 94. After the pyroclastic flows at Fuego descended on 3 June 2018, the Las Lajas ravine adjacent to La Reunión Golf Course 7 km SE of the summit was filled with steaming ash and debris. Courtesy of GeoGis.

The Washington VAAC reported explosions later in the day that generated an ash plume that drifted NE at 9.1 km altitude and E at 15.2 km altitude. The Suomi NPP satellite captured an image of the ash plume rising above the cloud cover at 1300 local time (figure 95). Ashfall of tephra and lapilli was reported more than 25 km away in the village of La Soledad; in addition, the municipalities of Quisache (8 km NW), Acatenango (12 km NW), San Miguel Dueñas (10 km NE), Alotenango (8 km ENE), Antigua Guatemala (18 km NE), Chimaltenango (22 km N), and other areas NW and N of the volcano were impacted with ashfall. La Aurora airport in Guatemala City was closed for two days. In addition to the ash plume, a large plume of SO2 was recorded drifting N and E from the volcano at an altitude of 8 km shortly after the explosions were reported (figure 96).

Figure (see Caption) Figure 95. The ash plume from a large explosion at Fuego on 3 June 2018 rose above the cloud cover to over 15 km altitude and was imaged by the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi NPP at 1300 local time. Courtesy of NASA Earth Observatory.
Figure (see Caption) Figure 96. A substantial plume of sulfur dioxide (SO2) was detected by the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP satellite after the large eruption at Fuego on 3 June 2018. The image shows concentrations of sulfur dioxide in the middle troposphere at an altitude of 8 kilometers as detected by OMPS. Michigan Tech volcanologist Simon Carn noted that this appeared to be the "highest sulfur dioxide loading measured in a Fuego eruption in the satellite era." Courtesy of NASA Earth Observatory and Goddard Earth Sciences Data and Information Services Center (GES DISC).

The pyroclastic flows down the SE flank were especially devastating to the communities in their path, covering roofs and vehicles with ash and debris (figure 97-100) and killing scores of people. The communities of San Miguel Los Lotes about 9 km SE of the summit and El Rodeo (10 km SE), both in Escuintla Province, were severely damaged from the pyroclastic flows, with most of the fatalities and missing people reported from those communities.

Figure (see Caption) Figure 97. The pyroclastic flows that traveled down the SE flank of Fuego on 3 June 2018 were especially devastating to the communities in their path. This image taken two days later on 5 June shows how the low-lying areas around the ravine are buried in ash from the fast-moving pyroclastic flow, but the higher areas (like the golf course on the right) are relatively free of ash and debris (see figure 94). Courtesy of BBC and Getty Images.
Figure (see Caption) Figure 98. The pyroclastic flows from the eruption at Fuego on 3 June 2018 buried buildings up to 2 m deep in ash and debris in the community of San Miguel Los Lotes, Escuintla Province. Photo by Luis Echeverria/Reuters, courtesy of the Telegraph.
Figure (see Caption) Figure 99. Numerous vehicles were swept away in the pyroclastic flows that descended through the village of San Miguel Los Lotes, Escuintla on 3 June 2018 during the eruption at Fuego. This photo was taken on 5 June as rescue workers continued to search the town. Courtesy of Reuters and the Express.
Figure (see Caption) Figure 100. The pyroclastic flows that traveled through El Rodeo on 3 June 2018 from the large eruption at Fuego contained both fine-grained ash and large angular boulders of volcanic rocks. Rescue workers were forced to evacuate the town on 5 June as additional pyroclastic flows threatened the already devastated community. Courtesy of the Associated Press (AP Photo/Rodrigo Abd).
Figure (see Caption) Figure 101. Most of the village of El Rodeo, 10 km SE of the summit of Fuego, was buried by ash and debris from a pyroclastic flow on 3 June 2018. Rescue workers searched the village while heavy equipment repaired roadways on 5 June. Photo by Rodrigo Abd, courtesy of the Associated Press.

Explosions continued until early evening on 3 June, when pyroclastic flow activity finally diminished. The debris from the pyroclastic flows resulted in lahars descending the Pantaleón, Mineral, and other drainages, leading to the evacuations of the communities of Sangre de Cristo, Finca Palo Verde, Panimache and others that evening. Explosive activity returned to lower levels the following day with dense ash plumes rising to 4.5-4.6 km altitude from 5-7 weak explosions that occurred every hour. Abundant fine ash rose from the ravines filled with pyroclastic flow material from the previous day and drifted SW, W, NW, and N, affecting communities up to 25 km away in those directions. The Washington VAAC reported remnants of the ash plume drifting 300 km ENE on 4 June.

By 4 June, CONRED had increased the Alert Level to red for the communities of Escuintla (22 km SE), Alotenango (8 km E), Sacatepéquez, Yepocapa (8 km NW), Santa Lucía Cotzumalguapa (22 km SW), and Chimaltenango, and opened 13 evacuation shelters in the area. CONRED initially reported on 5 June that 3,271 people were evacuated, 46 were injured and there were 70 known fatalities as a result of the pyroclastic flows and lahars on 3 June. A state of emergency was declared in all three of the provinces (Departments) of Escuintla, Sacatepéquez and Chimaltenango surrounding the volcano.

The number of block avalanches increased on 5 June as a result of 8-10 moderate explosions per hour; ash plumes and pyroclastic flow debris created persistent ash in the air around the volcano. The avalanches traveled 800-1,000 m down Las Lajas and Santa Teresa ravines. On 5 June, a pyroclastic flow descended the El Jute and Las Lajas ravines at 1410 local time. INSIVUMEH reported an increase in explosive activity a few hours later; dense ash plumes rose to 6 km altitude and drifted E and NE. Another pyroclastic flow descended the Las Lajas around 1928 local time that evening. These new pyroclastic flows led CONRAD to evacuate the additional communities of La Reyna, El Rodeo, Cañaveral I and IV, Hunnapu, Magnolia, and Sarita located on the Palín-Escuintla highway, and the highway itself was also closed (figure 102).

Figure (see Caption) Figure 102. Pyroclastic flows descended the flanks of Fuego on 5 June 2018, causing additional damage after the major eruption two days earlier. The view is from the community of El Rodeo, 10 km SE, heavily damaged at the beginning of the eruption. Photo Credits: Rodrigo Abd/AP/REX/Shutterstock, courtesy of the Associated Press.

Activity during 6-30 June 2018. Weak to moderate explosions continued at Fuego on 6 June with ash plumes rising to 4.7 km altitude and drifting W and SW. Significant rainfall in the area that afternoon around 1610 resulted in lahars descending the Seca and Mineral ravines, tributaries of the Rio Pantaleón. One lahar was 30-40 m wide and 4-5 m deep emanating warm sulfurous gases; it carried fine-grained material similar to cement, rocks and debris 2-3 m in diameter, and tree trunks. The communities around the mouths of the ravines and near the Pantaleón Bridge were most affected. New lahars about an hour later descended the Santa Teresa, Mineral and Taniluyá ravines, also tributaries of the Pantaleón River. These lahars were about 30 m wide, 2-3 m deep, and carried similar cement-like fine grained material down the Pantaleón along with blocks 2-3 m in diameter and tree trunks.

Seismic station FG3 recorded a pyroclastic flow descending Las Lajas and El Jute ravines at 2140 local time on 7 June. INSIVUMEH estimated that it produced an ash cloud that rose to 6 km altitude and drifted W and SW. INSIVUMEH issued five special bulletins on 8 June reporting numerous lahars and pyroclastic flows. Lahars descended Santa Teresa, Mineral, and Taniluyá ravines into the Pantaleón around 0240 local time; they were 30 m wide, 2-3 m deep, and carried 2-3-m-diameter blocks and tree trunks. Another surge of lahars registered on the seismogram about two hours later in the same ravines and also in the Ceniza, additionally affecting the Achiguate River. A pyroclastic flow descended Las Lajas ravine at 0820 in the morning, producing another 6-km-high ash cloud. Two more similar pyroclastic flows in the same area were recorded at the seismic station at 1945 and 2040 local time that evening.

During the afternoon of 9 June, lahars descended the Seca, Mineral, Niagara and Taniluyá, generating the largest lahar to date for the year in the Pantaleón River. It was 40 m wide and 5 m deep carrying abundant blocks up to 3 m in diameter and other debris down the W flank. Later that evening explosive activity continued at a rate of 4-7 per hour, dispersing ash plumes up to 15 km W and SW from the summit at an altitude of 4.2-4.4 km. The explosions were audible up to 10 km in all directions. The same ravines and also the Ceniza were affected by new lahars 35 m wide and 3 m deep the following afternoon as a result of the constant rains in the area. Rains continued on 11 June and resulted in strong lahars descending the Seca and Mineral ravines around 1415 local time with diameters of 35-40 m and depths of 3 m. Another strong lahar descended Las Lajas and el Jute ravines in the evening at 1750 local time; these had widths ranging from 35-55 m and depths up to 5 m.

INSIVUMEH reported an increase in explosive activity beginning in the morning of 12 June 2018, producing ash plumes that rose up to 5 km altitude and drifted NE and N 15-25 km. This activity also produced a pyroclastic flow down the Seca ravine around 0730 local time with an ash cloud that rose about 6 km and drifted N and NE. That afternoon a strong lahar descended the Las Lajas ravine, carrying blocks 3 m in diameter in a hot, thick flow that was 35-45 m wide and up to 5 m deep. Since there were no longer distinct channels in the ravine, the material spread out in a wide fan flowing towards the area around El Rodeo. Additional smaller lahars descended the Ceniza and Mineral ravines later that afternoon. By 12 June 2018 CONRED reported that 110 fatalities had been confirmed, 197 additional people were missing, and over 12,500 people had been evacuated since the 3 June explosions began.

On 13 June, a small pyroclastic flow descended the Ceniza ravine around 0630. It was the last pyroclastic flow reported during June. Beginning with the first post-eruption lahars on 6 June, multiple lahars occurred every day during 8-18, 20-23, 26, and 30 June (table 18). The barrancas of Seca, Mineral, Santa Teresa, Taniluyá, Niagra, Ceniza, Las Lajas, El Jute, Rio El Gobernador, and Rio Pantaleón were all impacted by the lahars; they ranged in size from smaller flows that were 20 m wide and 2 m deep carrying blocks 1-3 m in diameter to the largest which were over 40 m wide, up to 5 m deep and carried blocks as large as 3 m in diameter. The flows were warm or hot, carrying tree trunks and other debris, and had strong sulfurous odors. Communities adjacent to the ravines could feel the vibrations of the flows as they passed. As many of the ravines were full of ash and rocks from the pyroclastic flows, new channels were formed and the flows spread out in fans as they descended, further threatening the communities around the flanks of the volcano.

Table 18. Lahars at Fuego were reported 33 separate times between 6 and 30 June 2018; many reports included multiple simultaneous lahars in drainages around all the flanks. Data courtesy of INSIVUMEH.

Date Local time Ravine(s) Width (m) Depth (m) Block Size (m)
06 Jun 2018 1610 Seca, Mineral 30-40 4-5 2-3
06 Jun 2018 1720 Santa Teresa, Mineral and Taniluyá 30 2-3 2-3
08 Jun 2018 0240 Santa Teresa, Mineral, and Taniluyá 30 2-3 2-3
08 Jun 2018 0450 Santa Teresa, Mineral, and Taniluyá, Ceniza -- -- 2-3
09 Jun 2018 1400 Seca, Mineral, Niagara and Taniluyá 40 5 3
10 Jun 2018 1515 Seca, Mineral, Niagara and Taniluyá, Ceniza 35 3 1
11 Jun 2018 1415 Seca and Mineral 35-40 3 3
11 Jun 2018 1750 Las Lajas and el Jute 35-55 3-5 3
12 Jun 2018 1330 Las Lajas 35-45 5 3
12 Jun 2018 1425 Ceniza, Mineral 20 2 1-3
13 Jun 2018 0110 Ceniza 25 2 1-3
13 Jun 2018 1350 Las Lajas 30-40 3 3
14 Jun 2018 0145 Santa Teresa and Mineral 20-25 2 3
14 Jun 2018 1445 Taniluyá, Ceniza, rio El Gobernador, Las Lajas 30-45 3 3
15 Jun 2018 1715 Seca, Mineral 30-35 3 3
15 Jun 2018 1725 Las Lajas 30-35 2 3
15 Jun 2018 1740 Taniluyá, Ceniza 20-25 2 3
16 Jun 2018 1445 Las Lajas 30-35 2 3
17 Jun 2018 1415 Las Lajas -- -- 3
17 Jun 2018 1440 Seca, Mineral 40 2 2
18 Jun 2018 1510 Seca, Mineral 25-30 3 3
18 Jun 2018 1600 Las Lajas 40-45 2 3
20 Jun 2018 0735 Las Lajas 35-45 2-3 3
20 Jun 2018 1230 Las Lajas 30-35 3 3
20 Jun 2018 1415 Seca, Mineral, Taniluyá, Ceniza 30-35 3 3
21 Jun 2018 1940 Las Lajas 30-35 3 3
22 Jun 2018 0030 Las Lajas -- -- 3
22 Jun 2018 1450 Las Lajas -- -- 2-3
22 Jun 2018 1535 Rio Pantaleón 40 3 3
23 Jun 2018 1740 El Jute, Las Lajas, San Miguel los Lotes area -- -- 3
26 Jun 2018 1412 El Jute, Las Lajas, San Miguel los Lotes area -- -- 3
26 Jun 2018 1455 Seca, Mineral, Niagra, Ceniza -- -- 2-3
30 Jun 2018 1435 Seca, Mineral -- -- 2-3

Explosions continued daily through the end of June 2018 at rates ranging from 4 to 9 explosions per hour, creating block avalanches that descended all the major ravines. Ash plumes rose to 4.2-4.9 km altitude (500-1,000 m above the summit) and drifted in multiple directions. On 18 and 22 June, fine-grained ashfall was reported in Panimache, Morelia, Sangre de Cristo, and Palo Verde. By 24 June, satellite imagery revealed that elevated heat was still discernable in several ravines that had been filled with pyroclastic flow debris earlier in the month (figure 103). Explosions on 27 and 28 June sent ash plumes W and ashfall was reported in Sangre de Cristo, Yepocapa, and communities a few km W of Fuego.

Figure (see Caption) Figure 103. Elevated thermal signals in drainages filled with pyroclastic flows were still apparent in satellite imagery at Fuego on 24 June 2018, three weeks after a major explosive event. Courtesy of NASA Earth Observatory.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Information Contacts: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hydrologia (INSIVUMEH), Unit of Volcanology, Geologic Department of Investigation and Services, 7a Av. 14-57, Zona 13, Guatemala City, Guatemala (URL: http://www.insivumeh.gob.gt/); Coordinadora Nacional para la Reducción de Desastres (CONRED), Av. Hincapié 21-72, Zona 13, Guatemala City, Guatemala (URL: http://conred.gob.gt/www/index.php); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: http://earthobservatory.nasa.gov/); NASA Goddard Space Flight Center (NASA/GSFC), Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Associated Press (URL: https://apnews.com/); AFP/Getty, Agence France-Presse (URL: http://www.afp.com/); BBC News (URL: https://www.bbc.com/); The Telegraph (URL: https://www.telegraph.co.uk/); Reuters (http://www.reuters.com/); The Express (URL: https://www.express.co.uk); Matthew Watson, School of Earth Sciences at the University of Bristol, Twitter: @Matthew__Watson), (URL: https://twitter.com/Matthew__Watson); GeoGis, Twitter: @jlescriba, (URL: https://twitter.com/jlescriba).


Karymsky (Russia) — August 2018 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Renewed eruptive activity with ash plumes during April through July 2018

Recent eruptive activity at Karymsky has consisted of moderate intermittent ash explosions during 5-8 October 2016 (BGVN 42:08) and 4 June 2017-27 January 2018 (BGVN 42:11, 43:04). Another eruptive period began on 28 April 2018, with thermal anomalies, gas-and-steam emissions, and ash plumes observed through July 2018. The Aviation Color Code (ACC) was raised from Yellow to Orange at the end of April when moderate explosive activity began. This report was compiled using information from the Kamchatka Volcanic Eruptions Response Team (KVERT).

Moderate explosive activity renewed in April 2018. An ash plume rose to 5.5 km and drifted 150 km on 28 April and 2-3 May to the NE and SE, respectively. On 14 May the ash plume drifted 150 km to the SW. The ACC was lowered to Yellow on 15 June. Weak gas, steam, and some ash plumes were again reported in 10 July. The Tokyo VAAC noted continuous ash seen in Himawari-8 satellite imagery on 12 July, with a plume extending E at 3.6 km altitude. Another ash advisory the VAAC noted an eruption seen at 2120 on 14 July (figure 38) that sent a plume to 7.6 km altitude and drifted S. Continuous ash observations were again cause for a VAAC notice on 16 July. An explosion on 17 July generated an ash plume that rose to 5 km and drifted 11 km WSW, which prompted raising the ACC back to Orange. Satellite images show an ash plume drifting 100 km to the SE on 20 July (figure 39). The ACC remained at alert level Orange.

Figure (see Caption) Figure 38. Explosive eruption of Karymsky at 2110 UTC on 14 July 2018, as seen from the Uzon caldera. Photo by E. Subbotina, Kronotsky Reserve; courtesy of Institute of Volcanology and Seismology (IVS FEB RAS).
Figure (see Caption) Figure 39. Aerial photograph showing explosive activity at Karymsky, 28 July 2018. Photo by N. Balakhontseva; courtesy of Institute of Volcanology and Seismology (IVS FEB RAS).

Thermal anomalies were observed in satellite data and reported by KVERT on 11 April, 3, 13-15, 19-20 May, 8, 10-13-20, 25, 27-29, and 31 July 2018. The MODVOLC system reported six thermal anomalies during this period. The MODIS thermal anomalies detected by MIROVA during this reporting period were all low in intensity, with notable periods of increased activity in the first half of May and July 2018 (figure 40).

Figure (see Caption) Figure 40. MODIS thermal anomalies identified in the MIROVA system, plotted as log radiative power for the year ending 29 August 2018. Courtesy of MIROVA.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Klyuchevskoy (Russia) — August 2018 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Intermittent moderate gas, steam, and ash emissions; no ash seen after 15 June 2018

The current eruptive period at Klyuchevskoy began in late August 2015 (BGVN 39:10). Lava effusion ended in early November 2016 (BGVN 42:04), but explosive activity continued to be observed through February 2018 (BGVN 43:05). From mid-February through mid-August 2018 moderate to weak gas and steam plumes were observed (figure 29), but no ash plumes were reported after 15 June 2018 (figure 29). The Kamchatkan Volcanic Eruption Response Team (KVERT) is responsible for monitoring, and is the primary source of information. The Aviation Color Code was lowered from Orange to Yellow during this reporting period.

Figure (see Caption) Figure 29. Fumarolic plume rising from the summit of Klyuchevskoy, 15 April 2018. Courtesy of Yu. Demyanchuk (IVS FEB RAS, KVERT).

The Aviation Color Code (ACC) was lowered to Yellow by KVERT on 9 February. On 18 February an ash plume that rose to 5.2 km in altitude was reported by the Tokyo Volcanic Ash Advisory Center (VAAC). Moderate gas and steam activity was reported on 25 and 29 April, and 2 May 2018. During 7-8 and 10 May KVERT reported that gas, steam, and ash plumes rose to 5.0-5.5 km altitude and extended to 340 km SE; subsequently the ACC was raised back to Orange. Explosions were reported on 14 May with accompanying ash plumes that rose to 10.5 km in altitude. The ash clouds lingered around Klyuchevskoy and surrounding volcanoes for about eight hours before gradually dissipating. Nighttime summit incandescence and a hot avalanche was observed. A diffuse ash plume was reported by KVERT on 6 June that extended 12 km to the W. Another ash plume was visible on 15 June, but decreasing activity resulted in the ACC being lowered to Yellow again on 29 June. Only moderate gas and steam activity was noted through mid-August.

A thermal anomaly was reported over Klyuchevskoy approximately 16 times during this reporting period in February, April, May, June, and August 2018. The number of MIROVA thermal anomalies detected increased in the first half of January 2018, with decreasing and intermittent low-intensity detections in subsequent months (figure 30).

Figure (see Caption) Figure 30. MODIS thermal anomalies identified in the MIROVA system, plotted as log radiative power for the year ending 24 August 2018. Courtesy of MIROVA.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/).


Stromboli (Italy) — August 2018 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Continued Strombolian activity from five active summit vents through March-June 2018

Stromboli is a persistently active volcano in the Aeolian Islands, Italy, with confirmed historical eruptions going back over about 2,000 years. The active summit craters on the crater terrace are situated above the Sciara del Fuoco, a steep talus slope on the NW side of the island that leads to the Tyrrhenian Sea below. The NE crater (Area N) includes the active N1 and N2 vents, while the Central and SW craters (Area CS) contains the C, S1, and S2 vents (figures 125 and 126).

Figure (see Caption) Figure 125. False color thermal Sentinel-2 satellite image of Stromboli volcano with the locations of the Sciara del Fuoco and the active craters and vents. Four of the active vents are visible in this image as bright yellow-orange areas. Image acquired on 27 June 2018 and processed using bands 12, 11, 4. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 126. Thermal image of the Stromboli crater terrace area showing the N (area N), and the central and S (area CS) craters with the active vents. Image taken by the Pizzo webcam, courtesy of INGV (report number 11/2018 for the period 5 to 11 March, released on 13 March 2018).

Typical activity comprises degassing and multiple explosions per hour that range from tens of seconds to a few minutes, known as Strombolian activity, which is named after this particular volcano (figure 127). The activity usually consists of low-intensity explosions that eject material (ash, lapilli, and blocks) up to 80 m above the crater and medium-low intensity explosions that eject material up to 120 m above the crater. This report describes the activity at Stromboli through March to June 2018 and summarizes reports published by the Istituto Nazionale di Geofisica e Vulcanologia (INGV).

Figure (see Caption) Figure 127. The daily frequency of explosions per hour produced by all the active vents at Stromboli during the period 1 January to 2 July 2018. Red indicates explosions within the N crater, green indicates activity at the central-S craters, and blue indicates the number of total events. Courtesy of INGV (report number 27/2018 for the period 25 June to 7 July, released on 3 July 2018).

Characteristic Strombolian activity occurred throughout March, typically consisting of 5-11 events per hour that ejected material up to 120 m above the craters. High-energy explosive events occurred on 7 and 18 March, both lasting around 40 seconds and ejecting material to a height of 400 m (figures 128 and 129).

Figure (see Caption) Figure 128. A high-energy explosive event on 7 March 2018 at the N2 vent of Stromboli. Top images (frames a to c) are thermal images, with the corresponding visible images across the bottom (frames d to f). Images were taken by the Pizzo webcams, courtesy of INGV (report number 11/2018 for the period 5 to 11 March, released on 13 March 2018).
Figure (see Caption) Figure 129. Thermal infrared images of the high-energy explosive event on 18 March 2018 at Stromboli. The images show approximately 40 seconds of the explosive sequence recorded by the Pizzo webcam, courtesy of INGV (report number 12/2018 for the period 12 to 18 March, released on 20 March 2018).

Typical Strombolian activity continued through April with 6-12 explosive events per hour, with two high-energy explosive events on 24 and 26 April that lasted nine and three minutes, respectively. Both events ejected material across the Sciara del Fuoco, producing ash plumes and lava fountaining (figure 130). Low to medium-low intensity activity continued through May and June, with explosions per hour in the range of 3-15 and 6-13, respectively.

Figure (see Caption) Figure 130. INGV noted an intense explosive sequence on 26 April 2018 at Stromboli. Top images (frames A to C) show the thermal signature of the explosion; bottom images (frames G to I) are the corresponding visible images. The sequence produced abundant ash, incandescent material, lava fountaining, and ejected large blocks to a height of 250 m above the vent that then fell around the crater and on the Sciara del Fuoco. Courtesy of the INGV (Blog INGVvulcani entry for 16 July 2018).

Geologic Background. Spectacular incandescent nighttime explosions at this volcano have long attracted visitors to the "Lighthouse of the Mediterranean." Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent horseshoe-shaped scarp formed about 5,000 years ago due to a series of slope failures that extend to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy (URL: http://www.ct.ingv.it/en/); Blog INGVvulcani, Istituto Nazionale di Geofisica e Vulcanologia (INGV) (URL: https://ingvvulcani.wordpress.com/2018/07/16/stromboli-e-le-sue-esplosioni/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Suwanosejima (Japan) — August 2018 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Intermittent ash emission continues from January through June 2018

Suwanosejima volcano is located in the northern Ryukyu Islands in the south of Japan and has been on Alert Level 2 since December 2007. This report is a summary of activity for the period January to June 2018 and is based on information from the Japan Meteorological Agency (JMA) along with Tokyo VAAC notices.

During the reporting period, the active Otake crater produced intermittent explosions that scattered ejecta around the crater and ash plumes to an altitude of 1.5-3 km. Ashfall was reported in a village 4 km away on 10 days during January-May 2018 (table 14). Incandescence was visible at night using monitoring equipment. Ash plumes were noted by the Tokyo Volcanic Ash Advisory Center (VAAC) throughout the reporting period (figure 32, table 15).

Table 14. Reported explosion information for Suwanosejima recorded in JMA monthly reports.

Month No. of explosions Max plume height (m above crater) Dates of ashfall in village 4 km SSW No. of seismic events Other daily activity detail
Jan 2018 0 1,100 27, 31 97 Incandescence at night.
Feb 2018 1 1,100 2, 3 100 Incandescence at night.
Mar 2018 9 2,200 25, 29 251 Incandescence at night. Ejecta scattered around the crater.
Apr 2018 8 2,000 18, 28, 29 62 Incandescence at night.
May 2018 2 1,100 14 90 Incandescence at night. Ejecta scattered around the crater.
Jun 2018 -- 900 -- 275 Incandescence at night.

Table 15. Number of Volcanic Ash Advisories, explosion dates, and plume heights for activity at Suwanosejima. The numbers in parentheses indicate the number of events on that date; the VAACs issued column does not include advisories that note a continued episode. Drift directions were highly variable. Data courtesy of Tokyo VAAC.

Month VAAs issued VAA dates Plume heights
Jan 2018 1 15 1.8 km
Feb 2018 1 2 1.2 km
Mar 2018 22 17, 22(3), 23, 25(2), 26(5), 27(5), 28(3), 29(2) 1.2-3.6 km
Apr 2018 16 1, 2, 3, 4(4), 5(2), 8, 11, 24, 27, 28(2) 1.2-2.4 km
May 2018 3 1, 4, 15 1-1.8 km
Jun 2018 1 1 --
Figure (see Caption) Figure 32. An ash plume at Suwanosejima reached 1 km above the crater on 3 February 2018. Image captured by the Kyanpuba webcam, courtesy of JMA (February 2018 monthly report).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/).


Yasur (Vanuatu) — August 2018 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Centuries-long eruption continues during February-July 2018

The persistent centuries-long eruption at Yasur continued between February and July 2018. According to the Vanuatu Meteorology and Geo-Hazards Department (VMGD), activity consists of ongoing explosions, some of which are strong. The activity is confined to the crater.

Based on visual observations and satellite data, VMGD reported on 19 March 2018 that explosions remained strong. Using information from webcam images, satellite data, model data, and local visual observations, the Wellington Volcanic Ash Advisory Centre (VAAC) reported that during 5-6 June, 14-15 June, 17-18 June, and 20-21 June, intermittent, low-level ash plumes rose to altitudes of 0.9-1.5 km and drifted in various directions. During the 5-6 June episode, ash was not identified on satellite imagery.

Satellite imagery during clear weather on 25 June showed two distinct heat sources in the crater and a diffuse gas plume blowing NW (figure 49). VMGD reported some stronger explosions during 27-28 June. Based on webcam images the Wellington VAAC reported that on 29 June intermittent, low-level ash plumes rose to an altitude of 1.8 km and drifted NW.

Figure (see Caption) Figure 49. Sentinel-2 satellite images of Yasur on 25 June 2018. The top image uses the Atmospheric Penetration filter, which clearly shows two closely spaced hotspots in the crater. The bottom natural color image (with minor color adjustments) shows a thin, faint plume emanating from the crater and blowing NW. Courtesy of Sentinel Hub.

The Alert Level remained at 2 (on a scale of 0-4) throughout the reporting period. VMGD reminded residents and tourists that hazardous areas were near and around the volcanic crater, within a 395-m-radius permanent exclusion zone (shown in figure 48 of BGVN 43:02), and that volcanic ash and gas could reach areas impacted by trade winds.

During the reporting period, MODIS satellite instruments using the MODVOLC algorithm recorded thermal anomalies between 4 and 16 days per month, many of which had multiple pixels. May 2018 had the greatest number of days with hotspots (16), while the lowest number was recorded during April (4). The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, also based on analysis of MODIS data, recorded numerous hotspots every month during the reporting period. Almost all recorded MIROVA anomalies were within 3 km of the volcano and of low or moderate radiative power.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department, Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).