Logo link to homepage

Report on Kilauea (United States) — April 1991


Kilauea

Bulletin of the Global Volcanism Network, vol. 16, no. 4 (April 1991)
Managing Editor: Lindsay McClelland.

Kilauea (United States) Lava breakout from tube system feeds new ocean entry

Please cite this report as:

Global Volcanism Program, 1991. Report on Kilauea (United States) (McClelland, L., ed.). Bulletin of the Global Volcanism Network, 16:4. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199104-332010



Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Lava . . . continued to enter the ocean . . . on the W side of the flow field through April (figure 77). The tube supplying lava to the coast divided just above the sea cliff. Its W branch fed a single entry site, where repeated collapse of the fragile lower lava bench caused nearly continuous explosive activity in early April. Bench collapse episodes left the lava tube perched in the sea cliff, and lava poured into the ocean in an arching stream. The explosive activity built a littoral cone >3 m high that was >90% covered by spatter. The two entry sites fed by the tube's E branch have built a large bench below the (pre-autumn 1990) sea cliff.

In mid-April, lava broke out of the tube system near 150 m (500 ft) elevation, generating a large pahoehoe flow that was diverted E by 1990 and 1991 flows and reached the ocean ~1.5 km E of the W entry sites. By 22 April, it had built a new bench below the sea cliff, and had an active front ~300 m wide that extended no more than 20 m offshore. Lava continued to pour into the sea until the beginning of May, when only three sluggish streams of lava were observed at the ocean front. Behind the active entry, small viscous surface flows broke out from the main flow. Despite the apparently diminished supply of lava to the E entry, large volumes of lava continued to flow into the sea at the W entry sites in early May. Surface flows, noted during April along the tube system between ~430 and 340 m (1,400-1,100 ft) elevation, covered a previously lava-free area (kipuka) on the W side of the flow field.

Skylights in the tube system at the base of Kupaianaha shield revealed lava velocities of ~1.5 m/s in late April. The uppermost skylight, at ~620 m (2,050 ft) elevation, was fuming heavily, but very little degassing was occurring from the vicinity of Kupaianaha and its former lava pond, which remained sealed through the month. Three kilometers uprift, the lava pond in the base of Pu`u `O`o crater, ~60 m below the rim, remained active through April. The pond covered less than half of the crater floor, but sometimes overflowed onto more. The walls of Pu`u `O`o remained unstable and collapse continued.

Since the intrusive swarm seismicity in late March seismic activity has returned to lower levels. Low-amplitude volcanic tremor continued along the East rift zone, with some variability at stations near Kupaianaha and Pu`u `O`o. Increases in summit-area microearthquakes were recorded 9-10, 14, and 26-27 April, but events were very small and did not appear to be associated with changes in eruptive activity.

Geological Summary. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: T. Moulds and P. Okubo, HVO.