Logo link to homepage

Report on Etna (Italy) — October 1992

Bulletin of the Global Volcanism Network, vol. 17, no. 10 (October 1992)
Managing Editor: Lindsay McClelland.

Etna (Italy) More vigorous lava production and gas emission

Please cite this report as:

Global Volcanism Program, 1992. Report on Etna (Italy). In: McClelland, L (ed.), Bulletin of the Global Volcanism Network, 17:10. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199210-211060.

Volcano Profile |  Complete Bulletin


Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


The eruption ... appears to have become slightly stronger in recent weeks. A small increase in the effusion rate was apparent during the report period (13 October-12 November) at the main vent (2,210 m asl) after lava production had remained relatively constant for the previous several months. Lava initially moved through a single tube, with a surface trace marked by four skylights from 2,210 to 2,150 m altitude. The lava resurfaced (beginning at ~1,780 m elevation) within the lava field formed in past months. Three large ephemeral vents fed wide, thick flows, some of which advanced more than a kilometer within the lava field. On 11 November, the front of one flow was at 1,600 m altitude, in the center of the lava field. Small flows also emerged from tens of minor ephemeral vents, with locations that changed daily. Characteristic cumulo-domes formed in areas with high concentrations of ephemeral vents. The total volume of lava produced by 334 days of eruption was estimated at ~ 240x106 m3.

Gas emission from the upper part of the eruptive fissure was also a little stronger than in previous months. Fluctuations in the apparent gas emission rate remained linked to weather conditions. Vigorous degassing continued from Southeast Crater and from the central crater's two vents. Rare, modest ash ejections occurred from the W vent of the central crater (Bocca Nuova). Weak fumarolic activity continued from the walls of Northeast Crater, still obstructed by debris. SO2 flux, measured by COSPEC, remained high, ranging from 5,000 to 10,000 t/d, typically around 8,000 t/d.

Seismicity remained at low levels 13 October-12 November. About 100 events were recorded, mainly in the summit area, with magnitudes of 1.1-3.4. A large proportion of these occurred during the first week in November. The 34 events detected 3-4 November included a swarm of 15 summit-area shocks between 0500 and 0537 on the 3rd; the strongest, at 0500, had M 3.0. Of the four summit earthquakes recorded between 1220 and 1249 on 9 November, three had magnitudes exceeding 2.5, including the strongest of the report period, M 3.4, at 1249. Harmonic tremor has been nearly absent.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: R. Romano and T. Caltabiano, IIV; P. Carveni, M. Grasso, and C. Monaco, Univ di Catania; G. Luongo, OV.