Logo link to homepage

Report on Galeras (Colombia) — March 1994

Bulletin of the Global Volcanism Network, vol. 19, no. 3 (March 1994)
Managing Editor: Richard Wunderman.

Galeras (Colombia) Low levels of seismicity, SO2 emission, and deformation

Please cite this report as:

Global Volcanism Program, 1994. Report on Galeras (Colombia). In: Wunderman, R. (ed.), Bulletin of the Global Volcanism Network, 19:3. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199403-351080.

Volcano Profile |  Complete Bulletin


Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


The number of seismic events, SO2 emission rate, and deformation were all low in March. Instruments detected a total of 2,247 "butterfly-type" events. These were characterized by small magnitudes, associated with rock fracturing and fluid movement at depths of <2 km within the active cone, and influenced by earth tidal movements and external agents such as rain. Rock fracture events of M <2.5, were located predominantly in the W and NNE sectors of the active cone. Background tremor was variable. There were also new occurrences of the long-period "screw-type" events that are associated with pressurization of the system. These events are important because they were registered before most of the explosive eruptions at Galeras between July 1992 and June 1993, when volcanic activity was low. Measurements of SO2 emission obtained by the mobil COSPEC method remained low (<780 t/d). Aerial observations of the active volcanic cone revealed no changes; gas emission continues to be concentrated in the W sector of the main crater. Electronic tiltmeters showed no deformation changes.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large horseshoe-shaped caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate historical eruptions since the time of the Spanish conquistadors.

Information Contacts: INGEOMINAS, Pasto.