Logo link to homepage

Report on Etna (Italy) — June 1995

Bulletin of the Global Volcanism Network, vol. 20, no. 6 (June 1995)
Managing Editor: Richard Wunderman.

Etna (Italy) Small explosions in May followed by larger ash plumes in June

Please cite this report as:

Global Volcanism Program, 1995. Report on Etna (Italy). In: Wunderman, R. (ed.), Bulletin of the Global Volcanism Network, 20:6. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199506-211060.

Volcano Profile |  Complete Bulletin


Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


The following report from the Istituto Internacionale di Vulcanogia (IIV) describes activity from December 1994 to June 1995. Additional information came from Open University geologists, from Henry Gaudru (SVE), and fromaviation notices. Fumarole temperatures measured by Open University geologists in the vicinity of the summit craters increased at Northeast Crater (NEC) between June and October 1994 (table 6). Temperature increases were greatest at the fumarole field on the S rim of the crater, and decreased towards the N rim.

Table 6. Changes in maximum fumarole temperatures measured at Etna's summit craters between June and October 1994. Courtesy of Open University.

Crater Area Location June 1994 Maximum Temp (°C) October 1994 Maximum Temp (°C) Temperature increase (°C)
NE Crater Fumaroles at N rim 65 77 12
NE Crater Rifts at NW rim 141 246 105
NE Crater Fumaroles at W rim 97 210 113
NE Crater Fumaroles at S rim 86 221 135
Bocca Nuova Fumaroles on N flank 76 76 0
Bocca Nuova Fumaroles and rifts (N rim) 74 74 0
Bocca Nuova Fumaroles at SW rim 66 72 6
Central Craters Fumaroles at S rim 83 82 -1
Central Craters Between S rim and SE crater 81 83 2
SE Crater Fumaroles and rifts-N rim 312 482 170
SE Crater Fumaroles and rifts-W rim 208 218 10

After several months of steady degassing from the summit craters, Bocca Nuova produced a short sequence of mild explosive events on 10-12 December 1994, characterized by brownish columns of non-juvenile ash rising

In January 1995 several ash puffs from NEC were observed. They were more frequent between 31 January and 3 February, but continued all month, forming a thin ash layer around the crater rim. The most significant activity from NEC in the following two months was strong steam degassing, sometimes with ash.

An intense episode of ash emission from NEC occurred at 1000 on 9 May. Red-brown ash and accretionary lapilli fell on Milo, a village on the middle slope of the volcano. No block fallout was observed near the crater rim, and steam emission continued unchanged.

On 23 May at 1605 a new NEC explosion ejected lithic blocks; most of them were affected by fumarolic alteration that changed hard lavas and scoriae into very brittle materials with vivid white, yellow, purple, and reddish colors that were very easy to recognize on the discontinuous snow mantle. The area of fallout was ~0.2 km2 and the maximum block volume reached 0.2 m3, however, most of the blocks were only a few centimeters in size. No juvenile material was found among the fall products and the event resembled to a pure phreatic explosion that ejected very altered material picked up from the walls of the December 1994 degassing vent and the NEC crater bottom. On the morning of 26 May an explosion visible (by SVE members) from the N flank at 1,800 m elevation generated a gray ash-and-vapor plume above NEC. When the SVE group reached the summit area, small blocks were visible around NEC and near the lower slope of Bocca Nuova.

On 30 May a weak, ash-bearing plume was observed from an airplane by J.B. Murray. Stronger activity from the vicinity of Bronte was noted on 8 June, when thick ash clouds up to 70 m high were reported late in the morning. On a 12 June summit visit, scattered wall rock (lying

The IIV reported gas explosions and inner-crater wall collapses from Bocca Nuova in June. Gas emission came from two vents on the crater bottom, the northernmost of which produced some small phreatic explosions that threw several centimeter-size lithic-lava blocks up to 50 m NE beyond the crater rim. Some ash emission from NEC was observed during June. Murray reported that as of mid-June guides had stopped taking tourists to the crater edge because of the danger from explosions. The situation reminded Murray of the activity following the 1983 eruption (SEAN 08:04), when a series of sudden, large non-magmatic explosions occurred from the NE crater.

Aviation notices (SIGMETs) were issued for Etna on 21 June when an ash cloud reportedly rose 4,200 m. Another notice on 25 June described an ash cloud ~18 km E from the central crater at an altitude of 2,100-4,200 m. IIV video surveillance showed no eruptive columns during 21-25 June 1995, although on 21 June the camera was out of order and on the afternoon of 23 June foggy conditions obscured the upper slopes. On 22 June light ash from NEC fell on the IIV high-mountain observatory at Pizzi Deneri (2,850 m elevation), NE of the summit craters.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Mauro Coltelli, CNR Istituto Internazionale di Vulcanologia, Piazza Roma 2, 95123 Catania, Italy; John B. Murray and Andy Harris, Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; Nicki F. Stevens, Department of Geography, University of Reading, Whiteknights, P.O. Box 217, Reading RG6 2AH, United Kingdom; Henry Gaudru, Societe Volcanologique Europeenne (SVE), C.P. 1 - 1211 Geneva 17, Switzerland.