Logo link to homepage

Report on Bagana (Papua New Guinea) — March 2008

Bulletin of the Global Volcanism Network, vol. 33, no. 3 (March 2008)
Managing Editor: Richard Wunderman.

Bagana (Papua New Guinea) June 2007-March 2008, ongoing emissions including a pyroclastic flow

Please cite this report as:

Global Volcanism Program, 2008. Report on Bagana (Papua New Guinea). In: Wunderman, R. (ed.), Bulletin of the Global Volcanism Network, 33:3. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN200803-255020.

Volcano Profile |  Complete Bulletin


Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Lava flows, pyroclastic flows, loud noises, and repeated forceful emissions were witnessed during June 2007-March 2008. Previously, there were brief periods of effusive activity and almost daily thermal anomalies during June 2006 through May 2007 (BGVN 32:04). Emissions during June 2007 consisted largely of steam of variable density.

On 12 June, there was a particularly forceful emission. Glow was observed on the night of 14 June. This kind of behavior continued into July. On 8 July observers saw glow and watched a single forceful release of pale gray ash.

On 14 July, Bagana generated a particularly forceful release that generated a pyroclastic flow. The release spewed out thick, dark-gray ash. The pyroclastic flow descended the S flank of the volcano stopping at the base near a small hot-spring-fed lake located at the head of the Torokina river. Since that event, rock falls from the edge of the active lava flow triggered thin ash clouds of light brown color from the S flank. This was accompanied by a loud roaring noise persisting into 15 July.

On 6 August, some emissions occasionally contained gray ash. The lava flow from the summit crater on the SE flank became active again and continued through 23 August. Thick white plumes escaped forcefully during 13-16 August. Ash clouds seen then were attributed to rock falls from collapse at the edges of the active lava flow. The Darwin VAAC reported that a diffuse plume rose to an altitude of 3.7 km on 23 August.

A particularly forceful emission occurred on 25 August and 12 September and the latter generated thin gray ash clouds directed over the SE flank.

Into October, the summit continued to release gentle emission of thin to thick white vapor. A weak to bright fluctuating glow was visible at night from 2-5 October and a continuous rumbling noise that lasted about an hour was heard on 5 October. On 6 October, there was a particularly forceful emission and the lava flow on the SE flank became active. Observers saw the lava flow emitting glow as it passed down the SE flank on 6-7, 10-12, and 17 October. Occasional thin pale gray ash clouds observed at the edges of the active lava flow were visible on 9-10, and 14-15 October. Based on satellite imagery, the Darwin VAAC reported that ash plumes drifted N then NW on 19 October.

White vapor escaped through November and into December. It was occasionally accompanied by plumes containing ash that were generated along the lava flow.

Two explosions sent forth ash plumes on 19 and 27 November. The SE-flank lavas descended almost continuously and lava fragments vented at the summit on 7 and 9 December. On 9 December an ash plume rose to an altitude of 2.8 km; another on 17 December rose to uncertain height; and one on 26-27 December rose to 3 km altitude and drifted W.

Activity in January through March was generally weak but persistent, with earthquakes absent. Satellite imagery and information from RVO led the Darwin VAAC to report a diffuse plume on 3 March. It rose to an altitude of less than 3 km and drifted SW. Later that day, an ash-and-steam plume drifted SW.

Throughout the reporting period, the MODVOLC satellite system typically detected multiple thermal anomalies monthly. The system uses MODIS (the Moderate Resolution Imaging Spectroradiometer) and a processing algorithm and staff at HIGP (see Information Contacts, below).

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: Herman Patia, Rabaul Volcano Observatory (RVO), P.O. Box 386, Rabaul, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, Northern Territory 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) Hot Spots System, University of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).