Logo link to homepage

Report on Fuego (Guatemala) — 24 May-30 May 2017

Smithsonian / US Geological Survey Weekly Volcanic Activity Report, 24 May-30 May 2017
Managing Editor: Sally Kuhn Sennert

Please cite this report as:

Global Volcanism Program, 2017. Report on Fuego (Guatemala). In: Sennert, S K (ed.), Weekly Volcanic Activity Report, 24 May-30 May 2017. Smithsonian Institution and US Geological Survey.

Volcano Profile |  Weekly Report (24 May-30 May 2017)


Fuego

Guatemala

14.473°N, 90.88°W; summit elev. 3763 m

All times are local (unless otherwise noted)


INSIVUMEH reported that on 23 May a hot lahar descended Fuego’s Santa Teresa (W) drainage, carrying blocks 2 m in diameter, branches, and tree trunks. The lahar was 10 m wide and 1 m high, and could be heard in the vicinity of the drainage. On 27 May a large hot lahar traveled down the Santa Teresa drainage, carrying blocks 2 m in diameter, branches, and tree trunks. The lahar was 30 m wide, 2 m high, and had a strong sulfur odor.

During 24-25 and 27-30 May explosions generated ash plumes that rose as high as 950 m above the crater rim and drifted as far as 12 km W and SW. Ash fell in multiple areas including Panimaché I and II (8 km SW), Morelia (9 km SW), Santa Sofía (12 km SW), Los Yucales, El Porvenir, and Sangre de Cristo (8 km WSW). Incandescent material was ejected as high as 250 m above the crater rim, and caused avalanches of material that traveled into the Ceniza (SSW), Taniluyá (SW), and Santa Teresa drainages.

Geologic Background. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH)