Garua Harbour

Photo of this volcano
Google Earth icon
  Google Earth Placemark
  • Country
  • Volcanic Region
  • Primary Volcano Type
  • Last Known Eruption
  • 5.3°S
  • 150.07°E

  • 565 m
    1853 ft

  • 252060
  • Latitude
  • Longitude

  • Summit
    Elevation

  • Volcano
    Number

The Global Volcanism Program has no activity reports for Garua Harbour.

The Global Volcanism Program has no Weekly Reports available for Garua Harbour.

The Global Volcanism Program has no Bulletin Reports available for Garua Harbour.

Basic Data

Volcano Number

Last Known Eruption

Elevation

Latitude
Longitude
252060

Unknown - Evidence Uncertain

565 m / 1853 ft

5.3°S
150.07°E

Volcano Types

Volcanic field

Rock Types

Major
Rhyolite
Andesite / Basaltic Andesite

Tectonic Setting

Subduction zone
Continental crust (> 25 km)

Population

Within 5 km
Within 10 km
Within 30 km
Within 100 km
12,090
12,090
44,354
123,676

Geological Summary

The Garua (Talasea) Harbour volcanic field consists of a group of lava domes and ash cones of possible Holocene age. These volcanic vents ring the harbor on the west and form Garua Island to the east. Much of the volcanic field, including the two lava domes on Garua Island, consists of rhyolitic rocks. Active hot springs ring the shores of Garua Harbour and are best developed on the north and south sides. Large boiling pools, fumaroles, and small geysers are found on the north shore near Pangalu village. Another large group of boiling pools, fumaroles, and mudpots is located near the Talasea Government Station on the south shore of the bay.

References

The following references have all been used during the compilation of data for this volcano, it is not a comprehensive bibliography.

Fisher N H, 1957. Melanesia. Catalog of Active Volcanoes of the World and Solfatara Fields, Rome: IAVCEI, 5: 1-105.

IAVCEI, 1973-80. Post-Miocene Volcanoes of the World. IAVCEI Data Sheets, Rome: Internatl Assoc Volc Chemistry Earth's Interior..

Johnson R W, 1990. (pers. comm.).

The Global Volcanism Program is not aware of any Holocene eruptions from Garua Harbour. If this volcano has had large eruptions (VEI >= 4) prior to 10,000 years ago, information might be found on the Garua Harbour page in the LaMEVE (Large Magnitude Explosive Volcanic Eruptions) database, a part of the Volcano Global Risk Identification and Analysis Project (VOGRIPA).

This compilation of synonyms and subsidiary features may not be comprehensive. Features are organized into four major categories: Cones, Craters, Domes, and Thermal Features. Synonyms of features appear indented below the primary name. In some cases additional feature type, elevation, or location details are provided.


Synonyms

Talasea Harbour | Lagenda

Cones

Feature Name Feature Type Elevation Latitude Longitude
Big Mount Worri Cone 565 m 5° 18' 0" S 149° 59' 0" E
Little Mount Worri Cone 406 m 5° 17' 0" S 149° 59' 0" E
Schleuther, Mount Cone 320 m 5° 18' 0" S 150° 1' 0" E

Thermal

Feature Name Feature Type Elevation Latitude Longitude
Pangalu Thermal 5° 17' 0" S 150° 2' 0" E
Talasea Government Station Thermal 5° 18' 0" S 150° 3' 0" E

Photo Gallery


The Garua (Talasea) Harbour volcanic field (upper right center) consists of a group of mostly rhyolitic lava domes and ash cones that ring the harbor on the west and form Garua Island (right center) to the east. Active hot springs ring the shores of Garua Harbour, including a large group of boiling pools, fumaroles, and mudpots located near the Talasea Government Station on the south shore of the bay, directly opposite the western tip of Garua Island.

NASA Landsat image, 2000 (courtesy of Hawaii Synergy Project, Univ. of Hawaii Institute of Geophysics & Planetology).

Smithsonian Sample Collections Database


A listing of samples from the Smithsonian collections will be available soon.

Affiliated Sites

Large Eruptions of Garua Harbour Information about large Quaternary eruptions (VEI >= 4) is cataloged in the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database of the Volcano Global Risk Identification and Analysis Project (VOGRIPA).
WOVOdat WOVOdat is a database of volcanic unrest; instrumentally and visually recorded changes in seismicity, ground deformation, gas emission, and other parameters from their normal baselines. It is sponsored by the World Organization of Volcano Observatories (WOVO) and presently hosted at the Earth Observatory of Singapore.
EarthChem EarthChem develops and maintains databases, software, and services that support the preservation, discovery, access and analysis of geochemical data, and facilitate their integration with the broad array of other available earth science parameters. EarthChem is operated by a joint team of disciplinary scientists, data scientists, data managers and information technology developers who are part of the NSF-funded data facility Integrated Earth Data Applications (IEDA). IEDA is a collaborative effort of EarthChem and the Marine Geoscience Data System (MGDS).
MODVOLC - HIGP MODIS Thermal Alert System Using infrared satellite Moderate Resolution Imaging Spectroradiometer (MODIS) data, scientists at the Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, developed an automated system called MODVOLC to map thermal hot-spots in near real time. For each MODIS image, the algorithm automatically scans each 1 km pixel within it to check for high-temperature hot-spots. When one is found the date, time, location, and intensity are recorded. MODIS looks at every square km of the Earth every 48 hours, once during the day and once during the night, and the presence of two MODIS sensors in space allows at least four hot-spot observations every two days. Each day updated global maps are compiled to display the locations of all hot spots detected in the previous 24 hours. There is a drop-down list with volcano names which allow users to 'zoom-in' and examine the distribution of hot-spots at a variety of spatial scales.
MIROVA Middle InfraRed Observation of Volcanic Activity (MIROVA) is a near real time volcanic hot-spot detection system based on the analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) data. In particular, MIROVA uses the Middle InfraRed Radiation (MIR), measured over target volcanoes, in order to detect, locate and measure the heat radiation sourced from volcanic activity.