Photo of this volcano
Google Earth icon
  Google Earth Placemark
  • Country
  • Volcanic Region
  • Primary Volcano Type
  • Last Known Eruption
  • 0.85°S
  • 78.9°W

  • 3914 m
    12838 ft

  • 352060
  • Latitude
  • Longitude

  • Summit

  • Volcano

The Global Volcanism Program has no activity reports for Quilotoa.

The Global Volcanism Program has no Weekly Reports available for Quilotoa.

The Global Volcanism Program has no Bulletin Reports available for Quilotoa.

Basic Data

Volcano Number

Last Known Eruption



1280 CE

3914 m / 12838 ft


Volcano Types

Lava dome(s)

Rock Types

Andesite / Basaltic Andesite

Tectonic Setting

Subduction zone
Continental crust (> 25 km)


Within 5 km
Within 10 km
Within 30 km
Within 100 km

Geological Summary

Quilotoa is a truncated, dacitic cone that is the westernmost of Ecuador's Andean volcanoes. It is located at the margin of the Western Cordillera, 35 km WNW of the city of Latacunga and contains a 3-km-wide caldera with steep-sided walls that rise 400 m above the surface of 240-m-deep caldera lake. More than a half dozen lava domes form an circular array along the caldera's perimeter. This small volcano has produced eight major explosive eruptions during the past 200,000 years. Its most recent major eruption about 800 radiocarbon years ago produced voluminous pyroclastic flows, lahars that reached the Pacific Ocean, and one of the largest airfall-tephra deposits of the northern Andes. Formation of the caldera was followed by extrusion of a small lava dome. Reports of historical eruptions from the caldera lake are somewhat ambiguous. Fumaroles are present on the lake floor and hot springs occur on the eastern flank.


The following references have all been used during the compilation of data for this volcano, it is not a comprehensive bibliography.

Di Muro A, Rosi M, Aguilera E, Barbieri R, Massa G, Mundula F, Pieri F, 2008. Transport and sedimentation dynamics of transitional explosive eruption columns: the example of the 800 BP Quilotoa plinian eruption (Ecuador). J Volc Geotherm Res, 174: 307-324.

Hall M L, 1977. El Volcanismo en El Ecuador. Quito: Biblioteca Ecuador, 120 p.

Hall M L, Mothes P A, 2008a. Quilotoa volcano--Ecuador: an overview of young dacitic volcanism in a lake-filled caldera. J Volc Geotherm Res, 176: 44-55.

Hantke G, Parodi I, 1966. Colombia, Ecuador and Peru. Catalog of Active Volcanoes of the World and Solfatara Fields, Rome: IAVCEI, 19: 1-73.

Mothes P A, Hall M L, 2008. The plinian fallout associated with Quilotoa's 800 yr BP eruption, Ecuadorian Andes. J Volc Geotherm Res, 176: 56-69.

Rosi M, Di Muro A, Aguilera E, 2006. Eruptive dynamics during the 800 yr BP Quilotoa eruption. IAVCEI Commission on Explosive Volcanism Field Workshop, Cities on Volcanoes 4, Quito, Ecuador 23-27 Jan, 2006, 30 p.

Rosi M, Landi P, Polacci M, Di Muro A, Zandomeneghi D, 2004. Role of conduit shear on ascent of the crystal-rich magma feeding the 800-year-B.P. Plinian eruption of Quilotoa volcano (Ecuador). Bull Volc, 66: 307-321.

Sapper K, 1917. Katalog der Geschichtlichen Vulkanausbruche. Strasbourg: Karl J Trubner, 358 p.

Eruptive History

Summary of Holocene eruption dates and Volcanic Explosivity Indices (VEI).

Start Date Stop Date Eruption Certainty VEI Evidence Activity Area or Unit
[ 1797 Feb 4 ] [ Unknown ] Uncertain    
[ 1759 ] [ Unknown ] Uncertain 2  
[ 1740 Dec ] [ Unknown ] Uncertain 2  
[ 1725 ] [ Unknown ] Uncertain 2  
[ 1660 Nov 28 ] [ Unknown ] Discredited    
1280 (?) Unknown Confirmed 6 Radiocarbon (corrected)

This compilation of synonyms and subsidiary features may not be comprehensive. Features are organized into four major categories: Cones, Craters, Domes, and Thermal Features. Synonyms of features appear indented below the primary name. In some cases additional feature type, elevation, or location details are provided.


Quirotoa | Quilatoa

Photo Gallery

Quilotoa is a truncated, forested dacitic cone containing a steep-walled, 3-km-wide caldera filled by a 250-m-deep lake. Lava domes form the caldera's perimeter and occupy its floor. Its most recent large eruption about 800 years ago produced voluminous pyroclastic flows, lahars that reached the Pacific Ocean, and one of the largest airfall-tephra deposits of the northern Andes. Reports of historical eruptions from the caldera lake are somewhat ambiguous. Fumaroles are present on the lake floor and hot springs occur on the eastern flank.

Photo by Minard Hall, 1973 (Escuela Politécnica Nacional, Quito).

Smithsonian Sample Collections Database

There are no samples for Quilotoa in the Smithsonian's NMNH Department of Mineral Sciences Rock and Ore collection.

Affiliated Sites

Large Eruptions of Quilotoa Information about large Quaternary eruptions (VEI >= 4) is cataloged in the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database of the Volcano Global Risk Identification and Analysis Project (VOGRIPA).
WOVOdat WOVOdat is a database of volcanic unrest; instrumentally and visually recorded changes in seismicity, ground deformation, gas emission, and other parameters from their normal baselines. It is sponsored by the World Organization of Volcano Observatories (WOVO) and presently hosted at the Earth Observatory of Singapore.
EarthChem EarthChem develops and maintains databases, software, and services that support the preservation, discovery, access and analysis of geochemical data, and facilitate their integration with the broad array of other available earth science parameters. EarthChem is operated by a joint team of disciplinary scientists, data scientists, data managers and information technology developers who are part of the NSF-funded data facility Integrated Earth Data Applications (IEDA). IEDA is a collaborative effort of EarthChem and the Marine Geoscience Data System (MGDS).
MODVOLC - HIGP MODIS Thermal Alert System Using infrared satellite Moderate Resolution Imaging Spectroradiometer (MODIS) data, scientists at the Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, developed an automated system called MODVOLC to map thermal hot-spots in near real time. For each MODIS image, the algorithm automatically scans each 1 km pixel within it to check for high-temperature hot-spots. When one is found the date, time, location, and intensity are recorded. MODIS looks at every square km of the Earth every 48 hours, once during the day and once during the night, and the presence of two MODIS sensors in space allows at least four hot-spot observations every two days. Each day updated global maps are compiled to display the locations of all hot spots detected in the previous 24 hours. There is a drop-down list with volcano names which allow users to 'zoom-in' and examine the distribution of hot-spots at a variety of spatial scales.
MIROVA Middle InfraRed Observation of Volcanic Activity (MIROVA) is a near real time volcanic hot-spot detection system based on the analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) data. In particular, MIROVA uses the Middle InfraRed Radiation (MIR), measured over target volcanoes, in order to detect, locate and measure the heat radiation sourced from volcanic activity.