Cerro Pantojo

Photo of this volcano
Google Earth icon
  Google Earth Placemark
  • Chile-Argentina
  • South America
  • Stratovolcano
  • Unknown - Evidence Credible
  • Country
  • Volcanic Region
  • Primary Volcano Type
  • Last Known Eruption
  • 40.768°S
  • 71.943°W

  • 1897 m
    6222 ft

  • 357152
  • Latitude
  • Longitude

  • Summit
    Elevation

  • Volcano
    Number

The Global Volcanism Program has no activity reports for Cerro Pantojo.

The Global Volcanism Program has no Weekly Reports available for Cerro Pantojo.

The Global Volcanism Program has no Bulletin Reports available for Cerro Pantojo.

Basic Data

Volcano Number

Last Known Eruption

Elevation

Latitude
Longitude
357152

Unknown - Evidence Credible

1897 m / 6222 ft

40.768°S
71.943°W

Volcano Types

Stratovolcano
Pyroclastic cone

Rock Types

Major
Basalt / Picro-Basalt
Andesite / Basaltic Andesite

Tectonic Setting

Subduction zone
Continental crust (> 25 km)

Population

Within 5 km
Within 10 km
Within 30 km
Within 100 km
91
474
9,443
269,944

Geological Summary

Cerro Pantojo is an eroded 1897-m-high dominantly basaltic volcano of Pleistocene age along the Chile-Argentina border with a Holocene cinder cone on the Argentinian side (Moreno 1985, pers. comm). It lies SSW of Lake Constancia, which is located immediately west of the Argentinian border, and has a dramatic steep-sided summit pinnacle.

References

The following references have all been used during the compilation of data for this volcano, it is not a comprehensive bibliography.

Gonzalez-Ferran O, 1995. Volcanes de Chile. Santiago: Instituto Geografico Militar, 635 p.

IAVCEI, 1973-80. Post-Miocene Volcanoes of the World. IAVCEI Data Sheets, Rome: Internatl Assoc Volc Chemistry Earth's Interior..

Lara L, Rodriguez C, Moreno H, Perez de Arce C, 2001. Geocronologia K-Ar y geoquimica del volcanismo plioceno superior-pleistoceno de los Andes del sur (39-42° S). Rev Geol Chile, 28: 67-90.

Moreno H, 1985. (pers. comm.).

The Global Volcanism Program is not aware of any Holocene eruptions from Cerro Pantojo. If this volcano has had large eruptions (VEI >= 4) prior to 10,000 years ago, information might be found on the Cerro Pantojo page in the LaMEVE (Large Magnitude Explosive Volcanic Eruptions) database, a part of the Volcano Global Risk Identification and Analysis Project (VOGRIPA).

This compilation of synonyms and subsidiary features may not be comprehensive. Features are organized into four major categories: Cones, Craters, Domes, and Thermal Features. Synonyms of features appear indented below the primary name. In some cases additional feature type, elevation, or location details are provided.


Synonyms

Pantoja, Cerro

Photo Gallery


The small volcanic center with the crater outlined by snow just to the left of the bottom center of this NASA International Space Station image (with north to the upper right) is Cerro Pantoja. This eroded basaltic-andesite volcano of Pleistocene age along the Chile-Argentina border has a Holocene cinder cone on the Argentinian side. The deep blue lake at right-center is Lago Constancia, and the large stratovolcano with a snow-filled summit crater at the top of the image is Puyehue.

NASA Space Station image ISS006-E-40413, 2003 (http://eol.jsc.nasa.gov/).

Smithsonian Sample Collections Database


A listing of samples from the Smithsonian collections will be available soon.

Affiliated Sites

Large Eruptions of Cerro Pantojo Information about large Quaternary eruptions (VEI >= 4) is cataloged in the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database of the Volcano Global Risk Identification and Analysis Project (VOGRIPA).
WOVOdat WOVOdat is a database of volcanic unrest; instrumentally and visually recorded changes in seismicity, ground deformation, gas emission, and other parameters from their normal baselines. It is sponsored by the World Organization of Volcano Observatories (WOVO) and presently hosted at the Earth Observatory of Singapore.
EarthChem EarthChem develops and maintains databases, software, and services that support the preservation, discovery, access and analysis of geochemical data, and facilitate their integration with the broad array of other available earth science parameters. EarthChem is operated by a joint team of disciplinary scientists, data scientists, data managers and information technology developers who are part of the NSF-funded data facility Integrated Earth Data Applications (IEDA). IEDA is a collaborative effort of EarthChem and the Marine Geoscience Data System (MGDS).
MODVOLC - HIGP MODIS Thermal Alert System Using infrared satellite Moderate Resolution Imaging Spectroradiometer (MODIS) data, scientists at the Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, developed an automated system called MODVOLC to map thermal hot-spots in near real time. For each MODIS image, the algorithm automatically scans each 1 km pixel within it to check for high-temperature hot-spots. When one is found the date, time, location, and intensity are recorded. MODIS looks at every square km of the Earth every 48 hours, once during the day and once during the night, and the presence of two MODIS sensors in space allows at least four hot-spot observations every two days. Each day updated global maps are compiled to display the locations of all hot spots detected in the previous 24 hours. There is a drop-down list with volcano names which allow users to 'zoom-in' and examine the distribution of hot-spots at a variety of spatial scales.
MIROVA Middle InfraRed Observation of Volcanic Activity (MIROVA) is a near real time volcanic hot-spot detection system based on the analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) data. In particular, MIROVA uses the Middle InfraRed Radiation (MIR), measured over target volcanoes, in order to detect, locate and measure the heat radiation sourced from volcanic activity.