Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Aira (Japan) Explosions with ejecta and ash plumes continue weekly during January-June 2019

Agung (Indonesia) Continued explosions with ash plumes and incandescent ejecta, February-May 2019

Kerinci (Indonesia) Intermittent explosions with ash plumes, February-May 2019.

Suwanosejima (Japan) Small ash plumes continued during January through June 2019

Great Sitkin (United States) Small steam explosions in early June 2019

Ibu (Indonesia) Frequent ash plumes and small lava flows active in the crater through June 2019

Ebeko (Russia) Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

Klyuchevskoy (Russia) Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Yasur (Vanuatu) Strong thermal activity with incandescent ejecta continues, February-May 2019

Bagana (Papua New Guinea) Infrequent thermal anomalies, no ash emissions, February-May 2019

Ambae (Vanuatu) Declining thermal activity and no explosions during February-May 2019

Sangay (Ecuador) Explosion on 26 March 2019; activity from 10 May through June produced ash plumes, lava flows, and pyroclastic flows



Aira (Japan) — July 2019 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions with ejecta and ash plumes continue weekly during January-June 2019

Sakurajima rises from Kagoshima Bay, which fills the Aira Caldera near the southern tip of Japan's Kyushu Island. Frequent explosive and occasional effusive activity has been ongoing for centuries. The Minamidake summit cone has been the location of persistent activity since 1955; the Showa crater on its E flank has also been intermittently active since 2006. Numerous explosions and ash-bearing emissions have been occurring each month at either Minamidake or Showa crater since the latest eruptive episode began in late March 2017. This report covers ongoing activity from January through June 2019; the Japan Meteorological Agency (JMA) provides regular reports on activity, and the Tokyo VAAC (Volcanic Ash Advisory Center) issues tens of reports each month about the frequent ash plumes.

From January to June 2019, ash plumes and explosions were usually reported multiple times each week. The quietest month was June with only five eruptive events; the most active was March with 29 (table 21). Ash plumes rose from a few hundred meters to 3,500 m above the summit during the period. Large blocks of incandescent ejecta traveled as far as 1,700 m from the Minamidake crater during explosions in February and April. All the activity originated in the Minamidake crater; the adjacent Showa crater only had a mild thermal anomaly and fumarole throughout the period. Satellite imagery identified thermal anomalies inside the Minamidake crater several times each month.

Table 21. Monthly summary of eruptive events recorded at Sakurajima's Minamidake crater in Aira caldera, January-June 2019. The number of events that were explosive in nature are in parentheses. No events were recorded at the Showa crater during this time. Data courtesy of JMA (January to June 2019 monthly reports).

Month Ash emissions (explosive) Max. plume height above crater Max. ejecta distance from crater
Jan 2019 8 (6) 2.1 km 1.1 km
Feb 2019 15 (11) 2.3 km 1.7 km
Mar 2019 29 (12) 3.5 km 1.3 km
Apr 2019 10 (5) 2.2 km 1.7 km
May 2019 15 (9) 2.9 km 1.3 km
Jun 2019 5 (2) 2.2 km 1.3 km

There were eight eruptive events reported by JMA during January 2019 at the Minamidake summit crater of Sakurajima. They occurred on 3, 6, 7, 9, 17, and 19 January (figure 76). Ash plume heights ranged from 600 to 2,100 m above the summit. The largest explosion, on 9 January, generated an ash plume that rose 2,100 m above the summit crater and drifted E. In addition, incandescent ejecta was sent 800-1,100 m from the summit. Incandescence was visible at the summit on most clear nights. During an overflight on 18 January no significant changes were noted at the crater (figure 77). Infrared thermal imaging done on 29 January indicated a weak thermal anomaly in the vicinity of the Showa crater on the SE side of Minamidake crater. The Kagoshima Regional Meteorological Observatory (KRMO) (11 km WSW) recorded ashfall there during four days of the month. Satellite imagery indicated thermal anomalies inside Minamidake on 7 and 27 January (figure 77).

Figure (see Caption) Figure 76. Incandescent ejecta and ash emissions characterized activity from Sakurajima volcano at Aira during January 2019. Left: A webcam image showed incandescent ejecta on the flanks on 9 January 2019, courtesy of JMA (Explanation of volcanic activity in Sakurajima, January 2019). Right: An ash plume rose hundreds of meters above the summit, likely also on 9 January, posted on 10 January 2019, courtesy of Mike Day.
Figure (see Caption) Figure 77. The summit of Sakurajima consists of the larger Minamidake crater and the smaller Showa crater on the E flank. Left: The Minamidake crater at the summit of Sakurajima volcano at Aira on 18 January 2019 seen in an overflight courtesy of JMA (Explanation of volcanic activity in Sakurajima, March 2019). Right: Two areas of thermal anomaly were visible in Sentinel-2 satellite imagery on 27 January 2019. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

Activity increased during February 2019, with 15 eruptive events reported on days 1, 3, 7, 8, 10, 13, 14, 17, 22, 24, and 27. Ash plume heights ranged from 600-2,300 m above the summit, and ejecta was reported 300 to 1,700 m from the crater in various events (figure 78). KRMO reported two days of ashfall during February. Satellite imagery identified thermal anomalies at the crater on 6 and 26 February, and ash plumes on 21 and 26 February (figure 79).

Figure (see Caption) Figure 78. An explosion from Sakurajima at Aira on 7 February 2019 sent ejecta up to 1,700 m from the Minamidake summit crater. Courtesy of JMA (Explanation of volcanic activity in Sakurajima, February 2019).
Figure (see Caption) Figure 79. Thermal anomalies and ash emissions were captured in Sentinel-2 satellite imagery on 6, 21, and 26 February 2019 originating from Sakurajima volcano at Aira. Top: Thermal anomalies within the summit crater were visible underneath steam and ash plumes on 6 and 26 February (closeup of bottom right photo). Bottom: Ash emissions on 21 and 26 February drifted SE from the volcano. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

The number of eruptive events continued to increase during March 2019; there were 29 events reported on numerous days (figures 80 and 81). An explosion on 14 March produced an ash plume that rose 3,500 m above the summit and drifted E. It also produced ejecta that landed 800-1,100 m from the crater. During an overflight on 26 March a fumarole was the only activity in Showa crater. KRMO reported 14 days of ashfall during the month. Satellite imagery identified an ash plume on 13 March and a thermal anomaly on 18 March (figure 82).

Figure (see Caption) Figure 80. A large ash emission from Sakurajima volcano at Aira was photographed by a tourist on the W flank and posted on 1 March 2019. Courtesy of Kratü.
Figure (see Caption) Figure 81. An ash plume from Sakurajima volcano at Aira on 18 March 2019 produced enough ashfall to disrupt the trains in the nearby city of Kagoshima according to the photographer. Image taken from about 20 km away. Courtesy of Tim Board.
Figure (see Caption) Figure 82. An ash plume drifted SE from the summit of Sakurajima volcano at Aira on 13 March (left) and a thermal anomaly was visible inside the Minamidake crater on 18 March 2019 (right). "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

A decline in activity to only ten eruptive events on days 7, 13, 17, 22, and 25 was reported by JMA for April 2019. An explosion on 7 April sent ejecta up to 1,700 m from the crater. Another explosion on 13 April produced an ash plume that rose 2,200 m above the summit. Most of the eruptive events at Sakurajima last for less than 30 minutes; on 22 April two events lasted for almost an hour each producing ash plumes that rose 1,400 m above the summit. Ashfall at KRMO was reported during seven days in April. Two distinct thermal anomalies were visible inside the Minamidake crater on both 12 and 27 April (figure 83).

Figure (see Caption) Figure 83. Two thermal anomalies were present inside Minamidake crater at the summit of Sakurajima volcano at Aira on 12 (left) and 27 (right) April 2019. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

There were 15 eruptive events during May 2019. An event that lasted for two hours on 12 May produced an ash plume that rose 2,900 m from the summit and drifted NE (figure 84). The Meteorological Observatory reported 14 days with ashfall during the month. Two thermal anomalies were present in satellite imagery in the Minamidake crater on both 17 and 22 May.

Figure (see Caption) Figure 84. An ash plume rose 2,900 m above the summit of Sakurajima at Aira on 12 May 2019 (left); incandescent ejecta went 1,300 m from the summit crater on 13 May. Courtesy of JMA (Explanation of volcanic activity in Sakurajima, May 2019).

During June 2019 five eruptive events were reported, on 11, 13, and 24 June; the event on 11 June lasted for almost two hours, sent ash 2,200 m above the summit, and produced ejecta that landed up to 1,100 m from the crater (figure 85). Five days of ashfall were reported by KRMO.

Figure (see Caption) Figure 85. A large ash plume on 11 June 2019 rose 2,200 m above the summit of Sakurajima volcano at Aira. Courtesy of Aone Wakatsuki.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Mike Day, Minnesota, Twitter (URL: https://twitter.com/MikeDaySMM, photo at https://twitter.com/MikeDaySMM/status/1083489400451989505/photo/1); Kratü, Twitter (URL: https://twitter.com/TalesOfKratue, photo at https://twitter.com/TalesOfKratue/status/1101469595414589441/photo/1); Tim Board, Japan, Twitter (URL: https://twitter.com/Hawkworld_, photo at https://twitter.com/Hawkworld_/status/1107789108754038789); Aone Wakatsuke, Twitter (URL: https://twitter.com/AoneWakatsuki, photo at https://twitter.com/AoneWakatsuki/status/1138420031258210305/photo/3).


Agung (Indonesia) — June 2019 Citation iconCite this Report

Agung

Indonesia

8.343°S, 115.508°E; summit elev. 2997 m

All times are local (unless otherwise noted)


Continued explosions with ash plumes and incandescent ejecta, February-May 2019

After a large, deadly explosive and effusive eruption during 1963-64, Indonesia's Mount Agung on Bali remained quiet until a new eruption began in November 2017 (BGVN 43:01). Lava emerged into the summit crater at the end of November and intermittent ash plumes rose as high as 3 km above the summit through the end of the year. Activity continued throughout 2018 with explosions that produced ash plumes rising multiple kilometers above the summit, and the slow effusion of the lava within the summit crater (BGVN 43:08, 44:02). Information about the ongoing eruptive episode comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM), the Darwin Volcanic Ash Advisory Center (VAAC), and multiple sources of satellite data. This report covers the ongoing eruption from February through May 2019.

Intermittent but increasingly frequent and intense explosions with ash emissions and incandescent ejecta characterized activity at Agung during February through May 2019. During February, explosions were reported three times; events on seven days in March were documented with ash plumes and ashfall in surrounding villages. Five significant events occurred during April; two involved incandescent ejecta that traveled several kilometers from the summit, and ashfall tens of kilometers from the volcano. Most of the five significant events reported in May involved incandescent ejecta and ashfall in adjacent villages; air traffic was disrupted during the 24 May event. Ash plumes in May reached altitudes over 7 km multiple times. Thermal activity increased steadily during the period, according to both the MIROVA project (figure 44) and MODVOLC thermal alert data. MAGMA Indonesia reported at the end of May 2019 that the volume of lava within the summit crater remained at about 25 million m3; satellite information indicated continued thermal activity within the crater. Alert Level III (of four levels) remained in effect throughout the period with a 4 km exclusion radius around the volcano.

Figure (see Caption) Figure 44. Thermal activity at Agung from 4 September 2018 through May 2019 was variable. The increasing frequency and intensity of thermal events was apparent from February-May. Courtesy of MIROVA.

Steam plumes rose 30-300 m high daily during February 2019. The Agung Volcano Observatory (AVO) and PVMBG issued a VONA on 7 February (UTC) reporting an ash plume, although it was not visible due to meteoric cloud cover. Incandescence, however, was observed at the summit from webcams in both Rendang and Karangasem City (16 km SE). The seismic event associated with the explosion lasted for 97 seconds. A similar event on 13 February was also obscured by clouds but produced a seismic event that lasted for 3 minutes and 40 seconds, and ashfall was reported in the village of Bugbug, about 20 km SE. On 22 February a gray ash plume rose 700 m from the summit during a seismic event that lasted for 6 minutes and 20 seconds (figure 45). The Darwin VAAC reported the plume visible in satellite imagery moving W at 4.3 km altitude. It dissipated after a few hours, but a hotspot remained visible about 10 hours later.

Figure (see Caption) Figure 45. An ash plume rose from the summit of Agung on 22 February 2019, viewed from the Besakih temple, 7 km SW of the summit. Courtesy of PunapiBali.

Persistent steam plumes rose 50-500 m from the summit during March 2019. An explosion on 4 March was recorded for just under three minutes and produced ashfall in Besakih (7 km SW); no ash plume was observed due to fog. A short-lived ash plume rose to 3.7 km altitude and drifted SE on 8 March (UTC) 2019. The seismic event lasted for just under 4 minutes. Ash emissions were reported on 15 and 17 March to 4.3 and 3.7 km altitude, respectively, drifting W (figure 46). Ashfall from the 15 March event spread NNW and was reported in the villages of Kubu (6 km N), Tianyar (14 km NNW), Ban, Kadundung, and Sukadana. MAGMA Indonesia noted that two explosions on the morning of 17 March (local time) produced gray plumes; the first sent a plume to 500 m above the summit drifting E and lasted for about 40 seconds, while the second plume a few hours later rose 600 m above the crater and lasted for 1 minute and 16 seconds. On 18 March an ash plume rose 1 km and drifted W and NW. An event on 20 March was measured only seismically by PVMBG because fog prevented observations. An eruption on 28 March produced an ash plume 2 km high that drifted W and NW. The seismic signal for this event lasted for about two and a half minutes. The Darwin VAAC reported the ash plume at 5.5 km altitude, dissipating quickly to the NW. No ash was visible four hours later, but a thermal anomaly remained at the summit (figure 47). Ashfall was reported in nearby villages.

Figure (see Caption) Figure 46. Ash plumes from Agung on 15 (left) and 17 (right) March 2019 resulted in ashfall in communities 10-20 km from the volcano. Courtesy of PVMBG and MAGMA Indonesia (Information on G. Agung Eruption, 15 March 2019 and Gunung Agung Eruption Press Release March 17, 2019).
Figure (see Caption) Figure 47. A thermal anomaly was visible through thick cloud cover at the summit of Agung on 29 March 2019 less than 24 hours after a gray ash plume was reported 2,000 m above the summit. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

The first explosion of April 2019 occurred on the 3rd (UTC); PVMBG reported the dense gray ash plume 2 km above the summit drifting W. A few hours later the Darwin VAAC raised the altitude to 6.1 km based on infrared temperatures in satellite imagery. The seismic signal lasted for three and a half minutes and the explosion was heard at the PGA Post in Rendang (12 km SW). Incandescent material fell within a radius of 2-3 km, mainly on the S flank (figure 48). Ashfall was reported in the villages of Telungbuana, Badeg, Besakih, Pempatan, Teges, and Puregai on the W and S flanks (figure 49). An explosion on 11 April also produced a dense gray ash plume that rose 2 km above the summit and drifted W. A hotspot remained about six hours later after the ash dissipated.

Figure (see Caption) Figure 48. Incandescent ejecta appeared on the flanks of Agung after an eruption on 4 April 2019 (local time) as viewed from the observation post in Rendang (8 km SW). Courtesy of Jamie Sincioco.
Figure (see Caption) Figure 49. Ashfall in a nearby town dusted mustard plants on 4 April 2019 from an explosion at Agung the previous day. Courtesy of Pantau.com (Photo: Antara / Nyoman Hendra).

PVMBG reported an eruption visible in the webcam early on 21 April (local time) that rose to 5.5 km altitude and drifted SW. The ash spread W and S and ash fell around Besakih (7 km SW), Rendang (8 km SW), Klungkung (25 km S), Gianyar (20 km WSW), Bangli (17 km WNW), Tabanan (50 km WSW), and at the Ngurah Rai-Denpasar Airport (60 km SW). About 15 hours later a new explosion produced a dense gray ash plume that rose to 3 km above the summit and produced incandescent ejecta in all directions as far as 3 km away (figure 50). The ash spread to the S and ashfall was reported in Besakih, Rendang, Sebudi (6 km SW), and Selat (12 km SSW). Both of the explosions were heard in Rendang and Batulompeh. The incandescent ejecta from the explosions remained within the 4-km exclusion zone. A satellite image on 23 April showed multiple thermal anomalies within the summit crater (figure 51). A dense gray plume drifted E from Agung on 29 April (30 April local time) at 4.6 km altitude. It was initially reported by ground observers, but was also visible in multispectral satellite imagery for about six hours before dissipating.

Figure (see Caption) Figure 50. An explosion at Agung on 21 April 2019 sent incandescent eject 3,000 m from the summit. Courtesy of MAGMA Indonesia (Gunung Agung Eruption Press Release April 21, 2019).
Figure (see Caption) Figure 51. Multiple thermal anomalies were still present within the summit crater of Agung on 23 April 2019 after two substantial explosions produced ash and incandescent ejecta around the summit two days earlier. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

PVMBG reported an eruption on 3 May 2019 that was recorded on a seismogram with a signal that lasted for about a minute. Satellite imagery reported by the Darwin VAAC showed a growing hotspot and possible ash near the summit at 4.3 km altitude moving NE. A few days later, on 6 May, a gray ash plume rose to 5.2 km altitude and drifted slowly W before dissipating; it was accompanied by a seismic signal that lasted for about two minutes. Explosions on 12 and 18 May produced significant amounts of incandescent ejecta (figure 52). The seismic signal for the 12 May event lasted for about two minutes; no plume was observed due to fog, but incandescent ejecta was visible on the flanks and the explosion was heard at Rendang. The Darwin VAAC reported an ash plume from the explosion on 17 May (18 May local time) at 6.1 km altitude in satellite imagery moving E. They revised the altitude a short while later to 7.6 km based on IR temperature and movement; the plume drifted N, NE, and E in light and variable winds. A few hours after that it was moving NE at 7.6 km altitude and SE at 5.5 km altitude; this lasted for about 12 hours until it dissipated. Ashfall was reported in villages downwind including Cutcut, Tongtongan, Bonyoh (20 km WNW), and Temakung.

Figure (see Caption) Figure 52. Explosions on 12 (left) and 18 (right) May (local time) 2019 produced substantial ejecta on the flanks of Agung visible from a distance of 10 km or more in PVMBG webcams. The ash plume from the 18 May event resulted in ashfall in numerous communities downwind. Courtesy of PVMBG (Information Eruption G. Agung, May 13, 2019, Information Eruption G. Agung, May 18, 2019).

The initial explosion on 18 May was captured by a webcam at a nearby resort and sent incandescent ejecta hundreds of meters down the NE flank within 20 seconds (figure 53). Satellite imagery on 3, 8, 13, and 18 May indicated multiple thermal anomalies growing stronger at the summit. All of the images were captured within 24 hours of an explosive event reported by PVMBG (figure 54).

Figure (see Caption) Figure 53. The 18 May 2019 explosion at Agung produced an ash plume that rose to over 7 km altitude and large bombs of incandescent material that traveled hundreds of meters down the NE flank within the first 20 seconds of the explosion. Images taken from a private webcam located 12 km NE. Courtesy of Volcanoverse, used with permission.
Figure (see Caption) Figure 54. Satellite images from 3, 8, 13, and 18 May 2019 at Agung showed persistent and increasing thermal anomalies within the summit crater. All images were captured within 24 hours of explosions reported by PVMBG. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

PVMBG issued a VONA on 24 May 2019 reporting a new ash emission. They indicated that incandescent fragments were ejected 2.5-3 km in all directions from the summit, and the seismic signal lasted for four and a half minutes (figure 55). A dense gray ash plume was observed from Tulamben on the NE flank rising 2 km above the summit. Satellite imagery indicated that the plume drifted SW and ashfall was reported in the villages of Besakih, Pempatan, Menanga, Sebudi, Muncan, Amerta Bhuana, Nongan, Rendang, and at the Ngurah Rai Airport in Denpassar. Additionally, ashfall was reported in the districts of Tembuku, Bangli, and Susut (20 km SW). The Darwin VAAC reported an ash plume visible in satellite imagery at 4.6 km altitude along with a thermal anomaly and incandescent lava visible in webcam imagery. The remains of the ash plume were about 170 km S of the airport in Denpasar (60 km SW) and had nearly dissipated 18 hours after the event. According to a news article several flights to and from Australia were cancelled or diverted, though the International Gusti Ngurah Rai (IGNR) airport was not closed. On 31 May another large explosion produced the largest ash plume of the report period, rising more than 2 km above the summit (figure 56). The Darwin VAAC reported its altitude as 8.2 km drifting ESE visible in satellite data. It split into two plumes, one drifted E at 8.2 km and the other ESE at 6.1 km altitude, dissipating after about 20 hours.

Figure (see Caption) Figure 55. A large explosion at Agung on 24 May 2019 produced incandescent ejecta that covered all the flanks and dispersed ash to many communities to the SW. Courtesy of PVMBG (Gunung Agung Eruption Press Release 24 May 2019 20:38 WIB, Kasbani, Ir., M.Sc.).
Figure (see Caption) Figure 56. An explosion at Agung on 31 May 2019 sent an ash plume to 8.2 km altitude, the highest for the report period. Courtesy of Sutopo Purwo Nugroho, BNPB.

Geologic Background. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); The Jakarta Post, Mount Agung eruption disrupts Australian flights, (URL: https://www.thejakartapost.com/news/2019/05/25/mount-agung-eruption-disrupts-australian-flights.html); PunapiBali (URL: http://punapibali.com/, Twitter: https://twitter.com/punapibali, image at https://twitter.com/punapibali/status/1098869352588288000/photo/1); Jamie S. Sincioco, Phillipines (URL: Twitter: https://twitter.com/jaimessincioco. Image at https://twitter.com/jaimessincioco/status/1113765842557104130/photo/1); Pantau.com (URL: https://www.pantau.com/berita/erupsi-gunung-agung-sebagian-wilayah-bali-terpapar-hujan-abu?utm_source=dlvr.it&utm_medium=twitter); Volcanoverse (URL: https://www.youtube.com/channel/UCi3T_esus8Sr9I-3W5teVQQ); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN ).


Kerinci (Indonesia) — June 2019 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent explosions with ash plumes, February-May 2019.

Frequently active, Indonesia's Mount Kerinci on Sumatra has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838. Intermittent explosions with ash plumes, usually multiple times per month, have characterized activity since April 2018. Similar activity continued during February-May 2019, the period covered in this report with information provided primarily by the Indonesian volcano monitoring agency, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), MAGMA Indonesia, notices from the Darwin Volcano Ash Advisory Center (Darwin VAAC), and satellite data. PVMBG has maintained an Alert Level II (of 4) at Kerinci for several years.

On 13 February 2019 the Kerinci Volcano Observatory (KVO), part of PVMBG, noted a brownish-white ash emission that was drifting NE about 400 m above the summit. The seismicity during the event was dominated by continuous volcanic tremor. A brown ash emission was reported on 7 March 2019 that rose to 3.9 km altitude and drifted NE. Ash also drifted 1,300 m down the SE flank. Another ash plume the next morning drifted W at 4.5 km altitude, according to KVO. On 10, 11, and 13 March KVO reported brown ash plumes drifting NE from the summit at about 4.0-4.3 km altitude. The Darwin VAAC observed continuous ash emissions in satellite imagery on 15 March drifting W at 4.3 m altitude that dissipated after about 3 hours (figure 10). A gray ash emission was reported on 19 March about 600 m above the summit drifting NE; local news media noted that residents of Kayo Aro reported emissions on both 18 and 19 March (figure 11). An ash emission appeared in satellite imagery on 25 March (figure 10). On 30 March the observatory reported two ash plumes; a brown emission at 0351 UTC and a gray emission at 0746 UTC that both drifted NE at about 4.4 km altitude and dissipated within a few hours. PVMBG reported another gray ash plume the following day at a similar altitude.

Figure (see Caption) Figure 10. Sentinel-2 satellite imagery of Kerinci from 15 (left) and 25 (right) March 2019 showed evidence of ash plumes rising from the summit. Kerinci's summit crater is about 500 m wide. "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 11. Dense ash plumes from Kerinci were reported by local news media on 18 and 19 March 2019. Courtesy of Nusana Jambi.

Activity continued during April with a brown ash emission reported on 3 April by several different agencies; the Darwin VAAC and PVMBG daily reports noted that the plume was about 500 m above the summit (4.3 km altitude) drifting NE. KVO observed two brown ash emissions on 13 April (UTC) that rose to 4.2 km altitude and drifted NE. Satellite imagery showed minor ash emissions from the summit on 14 April; steam plumes 100-500 m above the summit characterized activity for the remainder of April (figure 12).

Figure (see Caption) Figure 12. A dilute ash emission rose from the summit of Kerinci on 14 April 2019 (left); only steam emissions were present on a clear 29 April in Sentinel-2 imagery (right). "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.

Ashfall on the NE and S flanks within 7 km of the volcano was reported on 2 May 2019. According to a news article, at least five villages were affected late on 2 May, including Tanjung Bungo, Sangir, Sangir Tengah, Sungai Rumpun, and Bendung Air (figures 13 and 14). The smell of sulfur was apparent in the villages. Brown ash emissions were observed on 3 and 4 May that rose to 4.6 and 4.1 km altitude and drifted SE. The Darwin VAAC reported an emission on 5 May, based on a pilot report, that rose to 6.7 km altitude and drifted NE for about an hour before dissipating. A brown ash emission on 10 May rose 700 m above the summit and drifted SE. Satellite imagery captured ash emissions from the summit on 14 and 24 May (figure 15). For the remainder of the month, 300-700-m-high dense steam plumes were noted daily until PVMBG reported white and brown plumes on 26 and 27 May rising 500-1,000 m above the summit. Although thermal anomalies were not reported during the period, persistent weak SO2 emissions were identified in TROPOMI instrument satellite data multiple times per month (figure 16).

Figure (see Caption) Figure 13. Ashfall was reported from five villages on the flanks of Kerinci on 2 May 2019. Courtesy of Uzone.
Figure (see Caption) Figure 14. An ash plume at Kerinci rose hundreds of meters on 2 May 2019; ashfall was reported in several nearby villages. Courtesy of Kerinci Time.
Figure (see Caption) Figure 15. Ash emissions from Kerinci were captured in Sentinel-2 satellite imagery on 14 (left) and 24 (right) May 2019. The summit crater is about 500 m wide. "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 16. Weak SO2 anomalies from Kerinci emissions were captured by the TROPOMI instrument on the Sentinel-5P satellite multiple times each month from February to May 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Nuansa Jambi, Informasi Utama Jambi: (URL: https://nuansajambi.com/2019/03/20/gunung-kerinci-semburkan-asap-tebal/); Kerinci Time (URL: https://kerincitime.co.id/gunung-kerinci-semburkan-abu-vulkanik.html); Uzone.id (URL: https://news.uzone.id/gunung-kerinci-erupsi-5-desa-tertutup-abu-tebal).


Suwanosejima (Japan) — July 2019 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Small ash plumes continued during January through June 2019

Suwanosejima is an active volcanic island south of Japan in the Ryuku islands with recent activity centered at Otake crater. The current eruption began in October 2004 and activity has mostly consisted of small ash plumes, ballistic ejecta, and visible incandescence at night. This report summarizes activity during January through June 2019 and is based on reports by the Japan Meteorological Agency (JMA), and various satellite data.

Thermal activity recorded by the MIROVA system was low through January and February after a decline in November (figure 36), shown in Sentined-2 thermal infrared imagery as originating at a vent in the Otake crater (figure 37). During January an explosive event was observed at 1727 on the 3rd, producing a gray plume that rose 600 m above the crater. A white gas-and-steam plume rose to 1.5 km above the crater and nighttime incandescence was observed throughout the month. Reduced activity continued through February with no reported explosive eruptions and light gray plumes up to 900 m above the crater. Incandescence continued to be recorded at night using a sensitive surveillance camera.

Figure (see Caption) Figure 36. MIROVA log radiative power plot of MODIS thermal infrared data at Suwanosejima during September 2018 through June 2019. There was reduced activity in 2019 with periods of more frequent anomalies during March and June. Courtesy of MIROVA.
Figure (see Caption) Figure 37. A Sentinel-2 thermal satellite image shows Suwanosejima with the active Otake crater in the center with elevated temperatures shown as bright orange/yellow. There is a light area next to the vent that may be a gas plume. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

There was an increase in thermal energy detected by the MIROVA system in mid-March and there was a MODVOLC thermal alert on the 15th. Occasional small explosions occurred but no larger explosive events were recorded. A white plume was noted on the 27th rising to 900 m above the crater and an event at 1048 on the 30th produced a light-gray plume that rose to 800 m. Incandescence was only observed using a sensitive camera at night (figure 38).

Figure (see Caption) Figure 38. Incandescence from the Suwanosejima Otake crater reflecting in clouds above the volcano. Courtesy of JMA (Volcanic activity of Suwanosejima March 2019).

No explosive events were observed through April. A white gas-and-steam plume rose to 1,200 m above the crater on the 19th and incandescence continued intermittently. Minor explosions were recorded on 5, 30, and 31 May, but no larger explosive events were observed during the month. The event on the 30th produced ash plume that reached 1.1 km above the crater. Similar activity continued through June with one explosive event occurring on the 2nd. Overall, there was a reduction in the number of ash plumes erupted during this period compared to previous months (figure 39).

Figure (see Caption) Figure 39. Observed activity at Suwanosejima for the year ending in July 2019. The black vertical bars represent steam, gas, or ash plume heights (scale in meters on the left axis), yellow diamonds represent incandescence observed in webcams, gray volcano symbols along the top are explosions accompanied by ash plumes, red volcano symbols represent large explosions with ash plumes. Courtesy of JMA (Volcanic activity of Suwanosejima June 2019).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Great Sitkin (United States) — July 2019 Citation iconCite this Report

Great Sitkin

United States

52.076°N, 176.13°W; summit elev. 1740 m

All times are local (unless otherwise noted)


Small steam explosions in early June 2019

The Great Sitkin volcano is located about 40 km NE of Adak Island in the Aleutian Islands and has had a few short-lived eruptions over the past 100 years. Prior to the latest activity in early June 2019 described below, small phreatic explosions occurred in June and August 2018 (BGVN 43:09). An eruption in 1974 produced a lava dome in the center of the crater. The Alaska Volcano Observatory (AVO) is the primary source of information for this September 2018-June 2019 reporting period.

Low-level unrest occurred from September 2018 through February 2019 with slightly elevated seismic activity (figure 6). Small explosions were seismically detected by AVO on 30 October, 5 and 16 November, and 11 December 2018, but they were not seen in regional infrasound data and satellite data did not show an ash cloud.

On 1, 7, and 9 June 2019, AVO reported small steam explosions as well as slightly elevated seismic activity. Steam plumes and surficial evidence of an explosion were not observed during these events. On 18 June 2019 weakly elevated surface temperatures were recorded, field crews working on Adak observed some steam emissions, and a gas flight was conducted. Elevated concentrations of carbon dioxide detected above the lava dome were likely associated with the steam explosions earlier in the month (figures 7 and 8). From 23 June through the end of the month seismicity began to decline back to background levels.

Figure (see Caption) Figure 6. A steam plume was seen at the summit of Great Sitkin on 7 December 2018. Photo by Andy Lewis and Bob Boyd; courtesy of AVO/USGS.
Figure (see Caption) Figure 7. Some degassing was observed on the southern flank of the Great Sitkin during an overflight on 18 June 2019. Photo by Laura Clor; image courtesy of AVO/USGS.
Figure (see Caption) Figure 8. View of Great Sitkin with white plumes rising from the summit on 20 June 2019. Photo by Laura Clor, courtesy of AVO/USGS.

Geologic Background. The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ibu (Indonesia) — July 2019 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash plumes and small lava flows active in the crater through June 2019

Ibu volcano on Halmahera island in Indonesia began the current eruption episode on 5 April 2008. Since then, activity has largely consisted of small ash plumes with less frequent lava flows, lava dome growth, avalanches, and larger ash plumes up to 5.5 km above the crater. This report summarizes activity during December 2018 through June 2019 and is based on Volcano Observatory Notice for Aviation (VONA) reports by MAGMA Indonesia, reports by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and Badan Nasional Penanggulangan Bencana (BNPB), and various satellite data.

During December PVMBG reported ash plumes ranging from 200 to 800 m above the crater. There were 11 MODVOLC thermal alerts that registered during 1-12 December. An explosion on 12 January 2019 produced an ash plume that reached 800 m above the crater and dispersed to the S (figure 15). A report released for this event by Sutopo at BNPB said that Ibu had erupted almost every day over the past three months; an example given was of activity on 10 January consisting of 80 explosions. There were four MODVOLC thermal alerts through the month.

Figure (see Caption) Figure 15. An eruption at Ibu at 1712 on 21 January 2019 produced an ash plume that rose to 800 m above the crater. Courtesy of BNPB (color adjusted).

Throughout February explosions frequently produced ash plumes as high as 800 m above the crater, and nine MODVOLC thermal alerts were issued. Daily reports showed variable plume heights of 200-800 m most days throughout the month. Wind directions varied and dispersed the plumes in all directions. A VONA released at 1850 on 6 February reported an ash plume that rose to 1,925 m altitude (around 600 m above the summit) and dispersed S. Activity continued through March with the Darwin VAAC and PVMBG reporting explosions producing ash plumes to heights of 200-800 m above the crater and dispersing in various directions. There were ten MODVOLC alerts through the month.

Similar activity continued through April, May, and June, with ash plumes reaching 200-800 m above the crater. There were 12, 6, and 15 MODVOLC Alerts in April, May, and June, respectively.

Planet Scope satellite images show activity at a two vents near the center of the crater that were producing small lava flows from February through June (figure 16). Thermal anomalies were frequent during December 2018 through June 2019 across MODVOLC, MIROVA, and Sentinel-2 infrared data (figures 17 and 18). Sentinel-2 data showed minor variation in the location of thermal anomalies within the crater, possibly indicating lava flow activity, and MIROVA data showed relatively constant activity with a few reductions in thermal activity during January and February.

Figure (see Caption) Figure 16. Planet Scope natural color satellite images showing activity in the Ibu crater during January through June 2019, with white arrows indicating sites of activity. One vent is visible in the 21 February image, and a 330-m-long (from the far side of the vent) lava flow with flow ridges had developed by 24 March. A second vent was active by 12 May with a new lava flow reaching a maximum length of 520 m. Activity was centered back at the previous vent by 23-27 June. Natural color Planet Scope Imagery, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 17. Examples of thermal activity in the Ibu crater during January through May 2019. These Sentinel-2 satellite images show variations in hot areas in the crater due to a vent producing a small lava flow. Sentinel-2 false color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. MIROVA log radiative power plot of MODIS thermal infrared at Ibu from September 2018 through June 2019. The registered energy was relatively stable through December, with breaks in January and February. Regular thermal anomalies continued with slight variation through to the end of June. Courtesy of MIROVA.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/).


Ebeko (Russia) — July 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

The Ebeko volcano, located on the northern end of the Paramushir Island in the Kuril Islands, consists of many craters, lakes, and thermal features and has been frequently erupting since late February 2017. Typical activity includes ash plumes, explosive eruptions, and gas-and-steam activity. The previous report through November 2018 (BGVN 43:12) described frequent ash explosions that sometimes caused ashfall in Severo-Kurilsk (7 km E). The primary source of information is the Kamchatka Volcanic Eruptions Response Team (KVERT). This report updates the volcanic activity at Ebeko for December 2018 through May 2019.

Frequent moderate explosive activity continued after November 2018. Volcanologists in Severo-Kurilsk observed explosions sending up ash, which drifted N, NE, and E, resulting in ash falls on Severo-Kurilsk on 28 different days between December 2018 and March 2019. On 25 December 2018 an explosion sent ash up to a maximum altitude of 4.5 km and then drifted N for about 5 km. Explosions occurring on 8-10 March 2019 sent ash up to an altitude of 4 km, resulting in ashfall on Severo-Kurilsk on 9-10 March 2019. An ash plume from these explosions rose to a height of 2.5 km and drifted to a maximum distance of 30 km ENE.

Satellite data analyzed by KVERT registered 12 thermal anomalies from December 2018 through May 2019. According to satellite data analyzed by MIROVA (Middle InfraRed Observation of Volcanic Activity), only one thermal anomaly was recorded from December 2018-May 2019, and no hotspot pixels were recognized using satellite thermal data from the MODVOLC algorithm.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Klyuchevskoy (Russia) — July 2019 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Klyuchevskoy has had alternating eruptive and less active periods since August 2015. Activity has included lava flows, a growing cinder cone, thermal anomalies, gas-and-steam plumes, and ash explosions. Though some eruptions occur near the summit crater, major explosive and effusive eruptions have also occurred from flank craters (BGVN 42:04 and 43:05). Intermittent moderate gas-and-steam and ash emissions were previously reported from mid-February to mid-August 2018. The Kamchatka Volcanic Eruptions Response Team (KVERT) is the primary source of information for this September 2018-June 2019 reporting period.

KVERT reported that moderate gas-and-steam activity, some of which contained a small amount of ash, and weak thermal anomalies occurred intermittently from the beginning of September 2018 through mid-April 2019. On 21-22 April 2019 webcam data showed a gas-and-steam plume extending about 160 km SE (figure 31). Moderate Strombolian-type volcanism began late April 2019 and continued intermittently through June 2019. On 11-12 June webcam data showed explosions that sent ash up to a maximum altitude of 6 km, with the resulting ash plume extending about 200 km WNW.

Figure (see Caption) Figure 31. Gas-and-steam plume containing some amount of ash rising from the summit of Klyuchevskoy on 22 April 2019. Photo by A. Klimova, courtesy of Institute of Volcanology and Seismology (IVS FEB RAS).

Thermal anomalies were noted by KVERT during two days in September 2018, six days in April 2019, eleven days in May 2019, and six days in June 2019. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed infrequent weak thermal anomalies December 2018 through early May 2019.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Yasur (Vanuatu) — June 2019 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Strong thermal activity with incandescent ejecta continues, February-May 2019

Yasur volcano on Tanna Island has been characterized by Strombolian activity with large incandescent bombs, frequent explosions, lava fountaining, and ash emissions for much of its known eruptive history. Melanesians from nearby islands are believed to have settled Tanna in about 400 BCE; it is now part of the nation of Vanuatu, independent since 1980. The Kwamera language (or Tannese) spoken on the SE coast of the island is thought to be the source of the name of the island. No known oral history describes volcanic activity; the first written English-language documentation of activity dates to 5 August 1774, when Captain James Cook saw "a great fire" on Tanna Island. Cook realized that it "was a Volcano which threw up vast quantities of fire and smoak and made a rumbling noise which was heard at a good distance" (The Captain Cook Society) (figure 51).

Figure (see Caption) Figure 51. Incandescence, steam, and dark ash from Yasur fill the sky in this sketch representing Captain James Cook's landing in the 'Resolution' at Tanna Island on 5 August 1774. The form of the volcano is behind the ship, the incandescence is in the upper right next to the ship's masts. "Landing at Tanna" by William Hodges, 1775-1776, National Maritime Museum, Greenwich, London. The Maritime Museum noted that this is one of a group of panel paintings produced by Hodges of encounters with islanders during the voyage, in which the European perception of each society at the time is portrayed. Image taken from Wikimedia Commons.

Based on numerous accounts from ships logs and other sources, volcanic activity has been continuous since that time. During periods of higher activity, multiple vents within the summit crater send ejecta 100 m or more above the crater rim, with large bombs occasionally landing hundreds of meters away. Continued activity during February-May 2019 is covered in this report with information provided by the Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD) which monitors the volcano and satellite data; photographs from tourists also provide valuable information about this remote location.

VMGD has maintained Alert Level 2 at Yasur since October 2016, indicating that it is in a major state of unrest. There is a permanent exclusion zone within 395 m of the eruptive vents where access is prohibited due to multiple hazards, primarily from large incandescent bombs up to 4 m in diameter which have been ejected from the vents onto the crater rim in the past, resulting in fatalities (BGVN 20:08).

Satellite and ground based information all support high levels of thermal activity during February -May 2019. MODVOLC thermal alerts were issued 11 times in February, 27 times in March, and 20 times each in April and May. The MIROVA graph also indicated the ongoing consistently high levels of thermal energy throughout the period (figure 52). Plumes of SO2 emissions are common from Vanuatu's volcanoes; newer higher resolution data available beginning in 2019 reveal a persistent stream of SO2 from Yasur on a near-daily basis (figure 53).

Figure (see Caption) Figure 52. The MIROVA graph of thermal energy at Yasur from 3 September 2018 through May 2019 indicates the ongoing activity at the volcano. Courtesy of MIROVA.
Figure (see Caption) Figure 53. The SO2 plumes from Yasur were persistent during January-May 2019 when they were visible many days of each week throughout the period. Top left: On 12 January plumes were visible drifting E from both Ambrym (top) and Yasur (bottom). Top right: Plumes drifted W from three Vanuatu volcanoes on 7 February, Gaua (top), Ambrym (middle) and Yasur (bottom). Bottom left: On 12 March N drifting plumes could be seen from Ambae (top) and Yasur (bottom). On 27 April, only Yasur had an SO2 plume drifting W. Courtesy of Goddard Space Flight Center.

Satellite imagery confirmed that the heat sources from Yasur were vents within the summit crater of the pyroclastic cone. Both northern and southern vent areas were active. On 7 March 2019 the N vent area had a strong thermal signal. Ten days later, on 17 March, similar intensity thermal anomalies were present in both the N and S vent areas (figure 54). On 6 April the S vent area had a stronger signal, and gas emissions from both vents were drifting N (figure 55). Satellite imagery from 21 May 2019 indicated a strong thermal signal inside the crater in the area of the vents, and included a weaker signal clearly visible on the inside E crater rim. Strong Strombolian activity or spatter sending large incandescent bombs as far as the crater rim are a likely explanation for the signal (figure 56), underscoring the hazardous nature of approaching the crater rim.

Figure (see Caption) Figure 54. Strong thermal anomalies from the crater of Yasur's pyroclastic cone seen in satellite images confirmed the ongoing high level of activity. Left: 7 March 2019, a strong thermal anomaly from the N vent area, shown with "Geology" rendering (bands 12, 4, 2). Right: 17 March 2019, thermal anomalies at both the N and S vent areas, shown with "Atmospheric Penetration" rendering (bands 12, 11, 8A). The crater is about 500 m in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 55. Strong thermal anomalies (left) and gas emissions (right) at Yasur were captured with different bands in the same Sentinel-2 satellite image on 6 April 2019. Left: The thermal anomaly in the S vent area was stronger than in the N vent area, "Atmospheric Penetration" rendering (bands 12, 11, 8A). Right: Gas plumes drifted N from both vent areas, "Natural color" rendering (bands 4, 3, 2). The crater is about 500 m in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Thermal activity from the crater of Yasur on 21 May 2019 produced a strong thermal signal from the center of the crater and a weaker signal on the inside E crater rim, likely the result of hazardous incandescent bombs and ejecta, frequent products of the activity at Yasur. Left: "Atmospheric Penetration" rendering (bands 12, 11, 8A). Right: "Geology" rendering (bands 12, 4, 2). The crater is about 0.5 km in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.

Tourists visit Yasur on a regular basis. A former lake on the N side of Yasur has left ripples in the sand deposits over older volcanic rocks on the N side of the volcano (figure 57) since it drained in 2000 (BGVN 28:01). Visitors are allowed to approach the S rim of the crater where incandescence from both the N and S vents is usually visible (figure 58). Incandescent spatter from the convecting lava in the vents is highly dangerous and unpredictable and often covers the inner slopes of the rim as well as sending bombs outside the crater (figure 59).

Figure (see Caption) Figure 57. The pyroclastic cone of Yasur viewed from the north on 6 May 2019. Ripples in volcaniclastic sand in the foreground are remnants of a lake that was present on the N side of the volcano until a natural dam breached in 2000. Copyrighted photo by Nick Page, used with permission.
Figure (see Caption) Figure 58. Two glowing vents were visible from the south rim of Yasur on 6 May 2019. The S vent area is in the foreground, the N vent area is in the upper left. Copyrighted by Nick Page, used with permission.
Figure (see Caption) Figure 59. Incandescent spatter at Yasur on 6 May 2019 sent fragments of lava against the inside crater wall and onto the rim. The convecting lava in the vent can be seen in the lower foreground. Copyrighted photo by Nick Page, used with permission.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Captain Cook Society (URL: https://www.captaincooksociety.com/home/detail/225-years-ago-july-september-1774); Royal Museums Greenwich (URL: https://collections.rmg.co.uk/collections/objects/13383.html); Wikimedia Commons, (URL: https://commons.wikimedia.org/wiki/File:The_Landing_at_Tana_one_of_the_New_Hebrides,_by_William_Hodges.jpg); Nick Page, Australia,Flickr: (URL: https://www.flickr.com/photos/152585166@N08/).


Bagana (Papua New Guinea) — June 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Infrequent thermal anomalies, no ash emissions, February-May 2019

With historical eruptions reported back to 1842, Papua New Guinea's Bagana volcano on the island of Bougainville has been characterized by viscous andesitic lava flows down the steep flanks of its cone, along with intermittent ash plumes and pyroclastic flows. Ongoing thermal anomalies and frequent ash plumes have been typical of activity during the current eruption since it began in early 2000. Activity declined significantly in December 2018 and remained low through May 2019, the period covered in this report (figure 33). Information for this report comes primarily from satellite images and thermal data.

Figure (see Caption) Figure 33. The MIROVA plot of radiative power at Bagana from 1 September 2018 through May 2019 shows a marked decline in thermal activity during December 2018 after ash explosions and satellite observations of flows during the previous months. Courtesy of MIROVA.

The last ash emission at Bagana was reported on 1 December 2018 by the Darwin Volcanic Ash Advisory Center (VAAC). A Sentinel-2 satellite image showed a linear thermal anomaly trending NW from the summit on 14 December (BGVN 50:01). On 8 January 2019, an image contained a dense steam plume drifting E and a very faint thermal anomaly on the N flank a few hundred meters from the summit. A more distinct thermal anomaly at the summit appeared on 22 February 2019 (figure 34). A visitor to the region photographed incandescence on the flank, likely from the volcano, at dawn around 19 February 2019 (figure 35).

Figure (see Caption) Figure 34. Sentinel-2 satellite imagery revealed thermal anomalies at Bagana in January and February 2019. Left: a very faint thermal anomaly was N of the summit at the edge of the E-drifting steam plume on 8 January 2019. Right: A thermal anomaly was located at the summit, at the base of the NE-drifting steam plume on 22 February 2019. Sentinel-2 satellite images with "Atmospheric Penetration" rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 35. A visitor near Bagana spotted incandescence on the flank at dawn, possibly from a lava flow. Posted online 19 February 2019. Courtesy of Emily Stanford.

Two faint thermal anomalies were visible at the summit in satellite imagery on 19 March; a single one appeared on 29 March 2019 (figure 36). No thermal anomalies were recorded in Sentinel-2 images during April or May, but steam plumes and gas emissions were visible through cloud cover on multiple occasions (figure 37).

Figure (see Caption) Figure 36. Faint thermal anomalies at Bagana were recorded in satellite imagery twice during March 2019. Left: 19 March, two anomalies appear right of the date label. Right: 29 March, a small anomaly appears right of the date label. Sentinel-2 image rendered with "Atmospheric Penetration" (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 37. Steam and gas emissions at Bagana were recorded in satellite imagery during April and May 2019. Left: A steam plume drifted NW from the summit on 23 April, visible through dense cloud cover. Right: A gas plume drifted SW from the summit on 18 May. Sentinel-2 image with "Geology" rendering (bands 12, 4, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Emily Stanford (Twitter: https://twitter.com/NerdyBatLady, image posted at https://twitter.com/NerdyBatLady/status/1098052063009792001/photo/1).


Ambae (Vanuatu) — June 2019 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Declining thermal activity and no explosions during February-May 2019

Ambae (Aoba) is a large basaltic shield volcano in the New Hebrides arc, part of the multi-island country of Vanuatu. Its periodic phreatic and pyroclastic explosions originating in the summit crater lakes have been recorded since the 16th century. A pyroclastic cone appeared in Lake Voui during November 2005-February 2006 (BGVN 31:12, figure 30); an explosive eruption from a new pyroclastic cone in the lake began in mid-September 2017 (BGVN 43:02). Activity included high-altitude ash emissions (9.1 km), lava flows, and Strombolian activity. Intermittent pulses of ash emissions during the following months resulted in extensive ashfall and evacuations; multiple communities were affected by lahars. The most recent episode of the eruption from July to September 2018 (BGVN 44:02) resulted in 11-km-altitude ash plumes and the evacuation of the entire island due to heavy ashfall and lahars. This report covers activity from February to May 2019, with information provided by the Vanuatu Geohazards Observatory of the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data from multiple sources.

Activity diminished after the extensive eruptive phase of July-September 2018 when substantial ash plumes and ashfall resulted in evacuations. An explosion with an ash plume on 30 October 2018 was the last activity reported for 2018. Thermal alerts were reported by the Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC thermal alerts system through January 2019, and the Log Radiative Power graph prepared by the MIROVA project showed decreasing thermal anomalies into June 2019 (figure 92). Satellite images recorded in April and May 2019 (figure 93) showed the configuration of the summit lakes to be little changed from the previous November except for the color (BGVN 44:02, figure 89). No ash emissions or SO2 plumes were reported during the period. VMGD noted that the volcano remained at Alert Level 2 through May 2019 with a 2-km-radius exclusion zone around the summit.

Figure (see Caption) Figure 92. The MIROVA log radiative power plot for Ambae showed ongoing intermittent thermal anomalies from early September 2018 through May 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 93. Satellite imagery in April and May 2019 showed little change in the configuration of lakes at the summit of Ambae since November 2018 (see BGVN 44:02, figure 89). Left: 24 April 2019. Right: 29 May 2019. Sentinel-2 satellite imagery with "Natural Color" rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sangay (Ecuador) — July 2019 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Explosion on 26 March 2019; activity from 10 May through June produced ash plumes, lava flows, and pyroclastic flows

Sangay is the southernmost active volcano in Ecuador, with confirmed historical eruptions going back to 1628. The previous eruption occurred during August and December and was characterized by ash plumes reaching 2,500 m above the crater. Lava flows and pyroclastic flows descended the eastern and southern flanks. This report summarizes activity during January through July 2019 and is based on reports by Instituto Geofísico (IG-EPN), Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

After the December 2018 eruption there was a larger reduction in seismicity, down to one event per day. During January, February, and most of March there was no recorded activity and low seismicity until the Washington VAAC reported an ash plume at 0615 on 26 March. The ash plume rose to a height of around 1 km and dispersed to the SW as seen in GOES 16 satellite imagery as a dark plume within white meteorological clouds. There was no seismic data available due to technical problems with the station.

More persistent eruptive activity began on 10 May with thermal alerts (figure 30) and an ash plume at 0700 that dispersed to the W. An explosion was recorded at 1938 on 11 May, producing an ash plume and incandescent material down the flank (figure 31). Two M 2 earthquakes were detected between 3.5 and 9 km below the crater on 10 May, possibly corresponding to explosive activity. By 17 May there were two active eruptive centers, the central crater and the Ñuñurcu dome (figure 32).

Figure (see Caption) Figure 30. MIROVA log radiative power plot of MODIS thermal infrared at Sangay for the year ending June 2019. The plot shows the August to December 2018 eruption, a break in activity, and resumed activity in May 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 31. An explosion at Sangay on 10 May 2019 sent ballistic projectiles up to 650 m above the crater at a velocity of over 400 km/hour, an ash plume that rose to over 600 m, and incandescent blocks that traveled over 1.5 km from the crater at velocities of around 150 km/hour. Screenshots are from video by IG-EPN.
Figure (see Caption) Figure 32. A photograph of the southern flank of Sangay on 17 May 2019 with the corresponding thermal infrared image in the top right corner. The letters correspond to: a) a fissure to the W of the lava flow; b) an active lava flow from the Ñuñurcu dome; c) the central crater producing a volcanic gas plume; d) a pyroclastic flow deposit produced by collapsing material from the front of the lava flow. Prepared by M. Almeida; courtesy of IG-EPN (special report No. 3 – 2019).

Activity at the central crater by 21 May was characterized by sporadic explosive eruptions that ejected hot ballistic ejecta (blocks) with velocities over 400 km/hour; after landing on the flanks the blocks travelled out to 2.5 km from the crater. Ash plumes reached heights between 0.9-2.3 km above the crater and dispersed mainly to the W and NW; gas plumes also dispersed to the W. The Ñuñurcu dome is located around 190 m SSE of the central crater and by 21 May had produced a lava flow over 470 m long with a maximum width of 175 m and an estimated minimum volume of 300,000 to 600,000 m3. Small pyroclastic flows and rockfalls resulted from collapse of the lava flow front, depositing material over a broad area on the E-SE flanks (figure 33). One pyroclastic flow reached 340 m and covered an area of 14,300 m2. During the 17 May observation flight the lava flow surface reached 277°C.

Figure (see Caption) Figure 33. A view of the ESE flanks of Sangay on 17 May 2019. The area within the black dotted line is the main area of pyroclastic flow deposition from the Ñuñurco Dome. Photo by M. Almeida; courtesy of IG-EPN (special report No. 4 – 2019).

At the end of June activity was continuing at the central crater and Ñuñurco Dome. At least three lava flows had been generated from the dome down the SE flank and pyroclastic flows continued to form from the flow fronts (figure 34). Pyroclastic material had been washed into the Upano river and steam was observed in the Volcán River possibly due to the presence of hot rocks. Ash plumes continued through June reaching heights of 800 m above the crater (figure 35), but no ashfall had been reported in nearby communities.

Figure (see Caption) Figure 34. Sentinel-2 natural color (left) and thermal (center) images (bands 12, 11, 4), and 1:50 000 scale maps (right) of Sangay with interpretation on the background of a 30 m numerical terrain model (WGS84; Zone 17S) (Prepared by B. Bernard). The dates from top to bottom are 17 May, 22 May, 27 May, 16 June, and 26 June 2019. Prepared by B. Bernard; courtesy IG-EPN (special report No. 4 – 2019).
Figure (see Caption) Figure 35. Plots giving the heights and dispersal direction of ash plumes at Sangay during May and June 2019. Top: Ash plume heights measures in meters above the crater. Bottom: A plot showing that the dominant dispersal direction of ash plumes is to the W during this time. Courtesy of IG-EPN (special report No. 4 – 2019).

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Scientific Event Alert Network Bulletin - Volume 14, Number 06 (June 1989)

Managing Editor: Lindsay McClelland

Aira (Japan)

Ash emission but no recorded explosions

Arenal (Costa Rica)

1987-89 explosive activity described

Asosan (Japan)

Ash ejections continue; new vent on crater floor

Atmospheric Effects (1980-1989) (Unknown)

No new volcanic injections into the stratosphere

Bagana (Papua New Guinea)

Explosions; S-flank lava flow remains active

Campi Flegrei (Italy)

Inflation and seismicity resume after 4-year hiatus

Colima (Mexico)

Summit morphology and seismicity described

Etna (Italy)

Summit explosive activity

Izu-Tobu (Japan)

Brief eruption follows two-week seismic swarm

Kilauea (United States)

Earthquake causes bench collapse; no effect on eruption

Langila (Papua New Guinea)

Activity subsides; landslides widen crater

Lascar (Chile)

Continued lava dome growth

Lengai, Ol Doinyo (Tanzania)

Bubbling lava at one vent

Long Valley (United States)

Earthquake swarm near caldera rim

Lonquimay (Chile)

Strong fluorine emission; one person and many animals killed

Manam (Papua New Guinea)

Fewer earthquakes; slow deflation continues

Masaya (Nicaragua)

Lava lake freezes; small explosions

Poas (Costa Rica)

Rains partly refill crater lake; intense gas emission

Rabaul (Papua New Guinea)

Activity remains at background levels

Ruiz, Nevado del (Colombia)

Sharp increase in seismicity precedes ash emission

San Cristobal (Nicaragua)

New fumaroles along fissure on SE spur of Casita

Santa Maria (Guatemala)

Lava production; explosions; hot avalanches

Suwanosejima (Japan)

Frequent explosions; ashfall on inhabited area

Telica (Nicaragua)

Fumaroles emit white plumes

Tokachidake (Japan)

Seismicity increases; no explosions

Ulawun (Papua New Guinea)

White vapor plume; seismicity decreases

White Island (New Zealand)

Explosions continue; craters enlarge



Aira (Japan) — June 1989 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Ash emission but no recorded explosions

No explosions . . . were recorded in May or June, but plume emission continued. The highest plume in May rose 1800 m on the 19th. Ash accumulation in May was 112 g/m2 at the observatory. No earthquake swarms were recorded by the nearest seismometer, 2.3 km NW of the crater.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: JMA.


Arenal (Costa Rica) — June 1989 Citation iconCite this Report

Arenal

Costa Rica

10.463°N, 84.703°W; summit elev. 1670 m

All times are local (unless otherwise noted)


1987-89 explosive activity described

A cooperative study of Arenal by the OVSICORI and the SI, assisted by Earthwatch and Smithsonian Research Expedition volunteers, has completed eight periods of continuous day/night monitoring, generally of 10-14 days each, in the past 2 years. Most of the observations were made from the Arenal Volcanological and Biological Observatory, 2.7 km S of the summit, on the Marigold Genis macademia plantation. The following is excerpted from a report by W. Melson. A more detailed version will be published in Boletín de Vulcanología [see Further Reference, below].

"Over the past 2 years, Arenal's eruptions include the infrequent emission of lava flows and a variety of frequent pyroclastic eruptions that can be classified into three overlapping and sometimes sequential event types. Sounds were recorded at the Observatory using a standard cassette recorder and directional microphone. We also used a sound-level meter and a strip recorder to obtain time-sound intensity records of eruptions. Only rarely is Arenal's summit visible. Thus, we normally must classify eruptions by their sound characteristics (figure 20).

Figure (see Caption) Figure 20. Arenal eruption sound sequence at 0407 on 3 April 1989, beginning with an explosion (type 1) and grading through type 2 to type 3. Sound level intensities were made from a tape recording and are thus only relative. The predominance of low-frequency components in the sequence is shown by comparing the unfiltered sequence (solid line) with the low-frequency filtered (

1. Explosions are intense, brief, energy releases, usually

Figure (see Caption) Figure 21. Explosion plume and impacting blocks, photographed from the Observatory, 2.7 km S of the new summit crater, on 15 April 1989 about 25 seconds after the onset of the explosion at 0759. Plume drift and tephra fall are to the W, the normal direction of trade winds at Arenal.

2. Long-duration eruptions of blocks, bombs, and tephra may occur singly, or, more typically, in a series of varying loudness and ejecta volume. They are commonly associated with an intense, sometimes harmonic seismic event lasting >30 seconds. Pyroclastic flows associated with this type of eruption are of the fallback type, where tephra of low ejection velocity falls on the crater rim and coalesces into coherent flows. We have observed three pyroclastic flows over the past 2 years that descended >1 km from the crater; all were associated with a low-intensity sound signal but with a strong and sustained seismic signal. The sonic signatures are rich in low-frequency components (50 volume % crystals with compositionally evolved matrix glasses that are mainly dacitic.

3. A sequence of rhythmic gas emissions with or without ejection of small amounts of tephra. Frequencies are typically about 0.75-1.5 Hz between separate events. Within a given eruptive sequence, these are the highest-frequency, lowest sound-intensity, events.

"The frequency of eruptions varies widely with time. We have found no clear-cut cyclicity nor other obvious patterns in these data (figure 22). Over the past 2 years, the seven periods of close monitoring suggest a decline in the frequency of pyroclastic eruptions followed by a slight increase. During the April 1989 observations, the number of explosions (type 1) particularly increased. Small lava flows moving down the S slope also led to an increase in recorded rockslides. However, during the past 2 years, most of the lava flows have moved down the N slopes, many of them in the headwaters of the Río Tabacón; rockslides associated with their advance are not audible from the Observatory.

Figure (see Caption) Figure 22. Average number of eruptions at Arenal per hour during each 10-14-day period of observation, 28 April 1987-April 1989.

"The number of pyroclastic events decreased dramatically after about 15 April 1989, reaching the lowest level in the past 2 years. Only one explosion occurred during 5 days of close monitoring 30 June-4 July. During that time, intense lava fountaining in the summit crater was visible at night and at least two wide but thin flows were active on the N flank, in the headwaters of the Río Tabacón, with advancing flow fronts ~1,200 m below the new crater, now at ~1,600 m elevation. This is the second period of low pyroclastic activity associated with a high level of lava flow production. The first was recorded 9-19 February 1988, when an active lava flow had reached ~1,200 m elevation in the headwaters of the Río Tabacón. The rate of magma emission is far greater during times of strong lava emission than during even high levels of pyroclastic activity. It is likely that during periods of high rates of lava production, the conduit is essentially open, preventing formation of a plug by cooling and degassing, and hence the buildup of vapor pressure and attendant pyroclastic events.

"We find no consistent relationship between tremor levels and eruption frequency or type during our last two periods of close monitoring, except for Type 2 eruptions, which were most common at high tremor levels during both periods. Notably, explosions (Type 1 eruptions) occurred at minimal levels during tremor-free periods during the February expedition, but at maximum frequency during periods of maximum tremor in February."

The ICE reported that seismicity declined to a moderate level in June, with a mean of only three recorded volcanic earthquakes/day. However, there was an increase in the number of harmonic tremor episodes, related to lava degassing.

Further Reference. Melson, W., 1989, Las erupciones del Volcán Arenal, 1 al 13 de Abril de 1989: Boletín de Vulcanología (Univ Nacional, Costa Rica), no. 20, p. 15-22 (in Spanish).

Geologic Background. Conical Volcán Arenal is the youngest stratovolcano in Costa Rica and one of its most active. The 1670-m-high andesitic volcano towers above the eastern shores of Lake Arenal, which has been enlarged by a hydroelectric project. Arenal lies along a volcanic chain that has migrated to the NW from the late-Pleistocene Los Perdidos lava domes through the Pleistocene-to-Holocene Chato volcano, which contains a 500-m-wide, lake-filled summit crater. The earliest known eruptions of Arenal took place about 7000 years ago, and it was active concurrently with Cerro Chato until the activity of Chato ended about 3500 years ago. Growth of Arenal has been characterized by periodic major explosive eruptions at several-hundred-year intervals and periods of lava effusion that armor the cone. An eruptive period that began with a major explosive eruption in 1968 ended in December 2010; continuous explosive activity accompanied by slow lava effusion and the occasional emission of pyroclastic flows characterized the eruption from vents at the summit and on the upper western flank.

Information Contacts: W. Melson, SI; V. Barboza, J. Barquero, E. Fernández, and R. Saenz, OVSICORI; R. Barquero and G. Alvarado, ICE.


Asosan (Japan) — June 1989 Citation iconCite this Report

Asosan

Japan

32.884°N, 131.104°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Ash ejections continue; new vent on crater floor

After a small ash ejection 5 April, tephra emission continued at a relatively high rate in May and June. On 8 May at 1000, a vent (1 m in diameter) on the Naka-dake crater floor ejected ash to ~10 m. At 1132, an M 3.3 shock (3 on the JMA Intensity Scale) occurred beneath the crater and was felt at AWS. Five (felt) aftershocks were recorded on 8 May (at 1120, 1147, 1216, 1417, and 2039), and 1 (not felt) was recorded the next day (at 0057) by a seismograph 0.8 km W of the crater. A 1-km area around the crater was closed to tourists by the Aso Disaster Authority. During a field survey at 1910, no ash ejection was observed.

On 16 May, ash rose ~100 m above the crater rim at 0810, and ~200 m at 1030. About 20% of the crater floor was covered by a rainwater pool, from which mud and water were continuously ejected to 3 m. During a field survey on 20 May at 1150, a strong rumbling noise was audible, but no ash ejection was seen.

Ash rose ~200 m above the crater rim on 22 May from 0740 to 0800, and 20 m above the crater floor at 0820. Activity declined, stopping by 1000. Two days later at 1000, ash was ejected to 200 m above the crater rim, and 5 g/m2 of ash was deposited at AWS. Ash had not fallen there since 28 June 1985. Red glow at the vent and in cracks on the crater floor was observed at night through May. During the night of 27 May, red glow emanated from 40-50% of the crater floor. On 28 May, ash rose about 50 m from the N portion of the vent.

In June, a vent on the NW floor of Crater 1 emitted an ash-laden steam plume a few hundred meters above the crater rim. During a 6 June field survey, the vent had enlarged and was emitting a 300-m ash plume. Flames from burning volcanic gases were occasionally observed rising 3-4 m above the crater floor during night visits. Ash accumulation at AWS was 9 g/m2 on the 7th, and 2 g/m2 on the 8th. The Crater 1 vent was buried by ash during rainfall 8-9 June. A new vent (named "891") about 18 m in diameter opened in the center of the crater floor on 10 June, and was the largest new vent since "853" formed 6 May 1985. The highest plumes of the month reached 1,000 m above the crater rim on 7 and 20 June.

Isolated volcanic tremor remained high (200-400 events/day) in May and June (figure 11) with a total of 5,760 events in May and 6,752 in June (compared to 5,821 in April). The amplitude of continuous tremor was generally unchanged in May but increased slightly in June.

Figure (see Caption) Figure 11. Daily number of isolated tremor episodes at Aso, January-June 1989. Courtesy of JMA.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: JMA.


Atmospheric Effects (1980-1989) (Unknown) — June 1989 Citation iconCite this Report

Atmospheric Effects (1980-1989)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


No new volcanic injections into the stratosphere

Lidar data from Northern Hemisphere stations showed no evidence of new injections of volcanic material into the stratosphere (figure 67). A polar stratospheric cloud, with strongest backscatter at about 23 km altitude, was detected from Obninsk, USSR on 1 February.

Figure with caption Figure 67. Lidar data from various locations, showing altitudes of aerosol layers during January-June 1989. Note that some layers have multiple peaks. Backscattering ratios from Obninsk and Teplocklychenka are for the Nd-YAG wavelength of 0.53 µm; all others are for the ruby wavelength of 0.69 µm. Integrated values show total backscatter, expressed in steradians-1, integrated over 500-m intervals from 15-30 km at Obninsk and Teplocluchenka, and 300-m intervals from 16-33 km at Mauna Loa.

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found here.

Information Contacts: Sergei Khmelevtsov, Institute of Experimental Meteorology, Lenin St. 82, Obninsk, Kaluga Reg., USSR; Thomas DeFoor, Mauna Loa Observatory, P. O. Box 275, Hilo, HI 96720 USA; Horst Jäger, Fraunhofer-Institut für Atmosphärische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, West Germany.


Bagana (Papua New Guinea) — June 1989 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Explosions; S-flank lava flow remains active

"Bagana is currently the most active volcano in Papua New Guinea. Unfortunately, civil disturbance on Bougainville Island Island prevents proper monitoring. The observer reported fluctuating night glows from the summit and from the new (blocky) lava flow on the S flank. Incandescent rockfalls were frequent on all flanks, accompanied by rumbling sounds. Explosions and incandescent projections over the crater were reported 10 and 12-15 June. The thick, white to brown plume . . . produced occasional light ashfalls downwind."

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: P. de Saint-Ours and B. Talai, RVO.


Campi Flegrei (Italy) — June 1989 Citation iconCite this Report

Campi Flegrei

Italy

40.827°N, 14.139°E; summit elev. 458 m

All times are local (unless otherwise noted)


Inflation and seismicity resume after 4-year hiatus

From the beginning of 1985 until the end of 1988, activity . . . was characterized by a generally deflationary trend, but uplift then resumed and a maximum uplift of 7.2 cm was measured in June.

The surveillance network operated by OV consists of eight seismic stations, five tide gauges (four in the Gulf of Pozzuoli, one in Naples for comparison), and four electronic tiltmeters (figure 16). Periodic levelling measurements are made on an extended line and distance measurements are performed twice a year. Radon content and water temperature are monitored in four water wells. Periodic measurements of S/C ratio and water vapor content of fumarolic emissions are made at Solfatara Crater.

Figure (see Caption) Figure 16. Levelling network and tide gauges at Campi Flegrei.

Deformation. Vertical motion recorded by the tide gauge in Pozzuoli harbor showed steady deflation until mid-1987 (figure 15). The record then became more oscillatory and some uplift episodes were observed in the general deflationary trend. Figure 15 also shows vertical motion recorded on the levelling line at benchmark 25 (the site of maximum vertical deformation). A steady trend with an average rate of -12.7 mm/month was observed until mid-1987. From then until the beginning of 1989 a decrease in the subsidence rate was observed, and a net uplift of 7.2 cm was measured January-June 1989. Since the end of 1988, four tilt stations have been installed at Campi Flegrei. They are 2-component horizontal pendulum systems with resolutions of 6.9 and 14.5x10-9 rad for the radial and tangential components, respectively. One tiltmeter is in Baia Castle (on the W side of the bay), the other three along an abandoned tunnel roughly 2.5-3.5 km N of Pozzuoli pier. Different trends were observed December 1987-June 1989, showing complex local movement still not fully understood. Two periods of inclination toward the SE were observed, 10 December 1987-12 February 1988 and 22 March-7 April 1988, compatible with deflation of the area of maximum vertical deformation. In other periods the trends were less compatible with this feature, as if the source of deformation had changed its center. Particularly notable was the rotation of the vector after March 1989, indicating an inclination toward the ENE.

Seismicity. No seismic events were observed from 1985 through the beginning of 1987. Since April 1987, several swarms have been observed (figures 17 and 18): 10 April 1987, 50 events, maximum M 2, W sector of Solfatara; 4 November 1987, 26 events, maximum M 1.1, E sector of Solfatara; March 1989, 15 events, Solfatara area; 3 April 1989, 82 events, maximum M 2.2, Solfatara; May 1989, 33 events, maximum M 2.2, Solfatara; 1-13 June 1989, 45 events, maximum M 2.7. Most notable was the occurrence of several low-frequency events, the first time that such events have been observed. They were generally shallow and on the E border of Solfatara crater.

Figure (see Caption) Figure 17. Seismic stations (large squares) and March-June 1989 earthquake epicenters (diamonds) in the Campi Flegrei area.
Figure (see Caption) Figure 18. Number of local earthquakes recorded in the Campi Flegrei area, January 1987-June 1989.

Chemistry. The Costagliola well near Monte Nuovo has shown a clear increase in average radon content superimposed on annual variations. A similar trend is apparent for radon contents measured in water wells in different parts of Campi Flegrei. Both the S/C ratio and the water vapor content of a fumarole at Solfatara showed a steady increase starting in mid-1986.

Geologists noted that "All of these data seem to indicate a progressive change in the style of activity . . . , and it seems that the steady deflationary trend has come to an end. We still do not know if the picture we have described is the precursor of a new prolonged uplift phase, or if it represents the restoration of a trend similar to that after the 1970-72 uplift episode, characterized by oscillatory activity until 1982. It is notable, however, that Campi Flegrei is displaying in each new episode of unrest a new phenomenon that was not observed in the previous one. In 1970-72 there was a major uplift without significant seismic activity, and in 1982-84 there was uplift accompanied by seismic activity. In this case, although we still do not know if a sustained uplift will occur, there is the occurrence of low-frequency seismic events."

Further Reference. Tedesco, D., Bottiglieri, L., and Pece,R., 1988, 10th of April 1987 seismic swarm; correlation with geochemical parameters in Campi Flegrei Caldera (southern Italy): Geophysical Research Letters, v. 15, p. 661-664.

Geologic Background. Campi Flegrei is a large 13-km-wide caldera on the outskirts of Naples that contains numerous phreatic tuff rings and pyroclastic cones. The caldera margins are poorly defined, and on the south lie beneath the Gulf of Pozzuoli. Episodes of dramatic uplift and subsidence within the dominantly trachytic caldera have occurred since Roman times. The earliest known eruptive products are dated 47,000 yrs BP. The caldera formed following two large explosive eruptions, the massive Campanian ignimbrite about 36,000 BP, and the over 40 km3 Neapolitan Yellow Tuff (NYT) about 15,000 BP. Following eruption of the NYT a large number of eruptions have taken place from widely scattered subaerial and submarine vents. Most activity occurred during three intervals: 15,000-9500, 8600-8200, and 4800-3800 BP. Two eruptions have occurred in historical time, one in 1158 at Solfatara and the other in 1538 that formed the Monte Nuovo cinder cone.

Information Contacts: G. Luongo, C. Del Gaudio, F. Obrizzo, G. Ricciardi, and D. Tedesco, OV; R. Pece and R. Scandone, Univ di Napoli.


Colima (Mexico) — June 1989 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Summit morphology and seismicity described

When Julián Flores Díaz and José Angel Cortés visited Colima 13-14 and 25-26 May, the summit area consisted of a dome on the N side, a semicircular depression on the SE side, and an irregular platform (figure 3). Fumaroles were concentrated in three areas on the dome (figure 4). On 14 May, gas emission, dominated by SO2, had increased and the gas was light-brown in color, but it had substantially diminished by 25-26 May.

Figure (see Caption) Figure 3. Sketch of Colima's summit, May 1989. Courtesy of J.F. Díaz.
Figure (see Caption) Figure 4. Map (top) and cross-section (bottom) of Colima's summit area, showing positions of the dome, fumarolic activity, and the summit depression. Courtesy of J.F. Díaz.

The depression that formed 2 July [1987] after a phreatic explosion and avalanche from the summit was 100-150 in diameter and 30-40 m deep (from the high point in the middle of the summit area) [but see 15:12]. The area was warm but fumaroles observed during a November 1988 overflight had disappeared. Altered fragmented rocks and sand were present on the depression's floor. The remainder of the summit area, an irregular platform, was composed of blocks of many shapes and sizes. Warm gases containing SO2 were emitted, and blocks were altered and covered with sulfur. On the SW flank, a talus slope of scoria and sand had developed. Thermometric equipment was not available to the team.

A group from CICBAS, Universidad de Colima (Guillermo Castellanos, Carlos Ariel Ramírez-Vázquez, and Juan Reyes-Gómez) visited the volcano 23-25 May. Average temperatures adjacent to fumaroles were 167°C, a decrease from 216°C measured in May 1988. Emissions were dense, dark-gray in color, and had a pH of 2-3. New fractures were observed near the fumaroles. Rockfall avalanches, persisting for much of the past year, were last seen 14-15 April on the W flank (observed 20 km from the volcano). Three avalanche paths were visible, on the W, E, and N flanks.

Two digital high-gain 3-component seismographs and one analog single-component seismic station were installed near the volcano (figure 5). The seismographs collected data continuously for about 40 hours and recorded an average of 30 events/day. Preliminary analysis of the data by Reyes and Ramírez showed that most of the activity was tectonic with long separation between P- and S-wave arrivals. On 1, 14, and 22 June, the operators of the Red Sismologica Telemetrizada de Colima (a network that will consist of eight short-period, vertical seismograph stations; figure 6) installed three telemetric stations. Data are telemetered to CICBAS in the city of Colima. No deformation data are available, but changes in Colima's shape are visible and geodetic studies would be welcomed.

Figure (see Caption) Figure 5. Location of digital high-gain 3-component seismographs (SS2, SS3) and an analog single-component (SS1) seismograph installed near Colima. Courtesy of G. Castellanos.
Figure (see Caption) Figure 6. Distribution of instruments for the planned Colima Telemetric Seismological Network (RESCO). Courtesy of G. Castellanos.

Geologic Background. The Colima volcanic complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. A group of cinder cones of late-Pleistocene age is located on the floor of the Colima graben west and east of the Colima complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide caldera, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, and have produced a thick apron of debris-avalanche deposits on three sides of the complex. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Julián Flores-Díaz, Instituto de Geografía y Estadística, Univ de Guadalajara; Guillermo Castellanos, Gilberto Ornelas-Arciniega, C. Ariel Ramírez-Vázquez, G.A. Reyes-Dávila, and Hector Tamez, CICBAS, Universidad de Colima.


Etna (Italy) — June 1989 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Summit explosive activity

The following, from IIV, describes activity May-June 1989.

Summit activity. (S. Calvari, M. Coltelli, and M. Pompilio.) Vigorous activity at the two central crater vents (Bocca Nuova and La Voragine) continued in May. On the 4th, La Voragine ejected bombs and lapilli that fell as far as the rim of Cratere del Piano (roughly 300 m away), choking the crater bottom with tephra. In late May, explosive activity diminished and continued at a normal level throughout June. Discontinuous effusive activity was observed in May within Bocca Nuova, and bombs accumulated in the crater to ~ 100 m from the rim. From late May through most of June, many bombs, some of considerable size, fell outside the crater. This activity suddenly stopped in late June, when the small cone inside the crater collapsed, and was succeeded by sporadic scoria ejection from two vents. Mild Strombolian activity at Southeast Crater in May slightly eroded the scoria cone that had formed in April (14:05). Strombolian activity continued at a medium-low level in June, with occasional pulses ejecting small numbers of bombs over wide areas. The vent on Northeast Crater's floor continued to degas through May and June.

Seismicity. (V. Longo, A. Montaldo, M. Patané, E. Privitera, and S. Spampinato.) The frequency of tectonic seismicity in May and June was generally similar to that of the past year, with occasional seismic swarms. During the last two days in May, low-energy events were detected ~ 10 km below the volcano's central area. A seismic swarm, recorded 19-24 June on the W flank, was 13-15 km deep and included the largest events (M 3.1-3.2) of the month. One of the earthquakes (on the 24th at 0230) was felt by area residents. On 28 June, a small mainshock-aftershock sequence (11 events) was recorded, with the largest earthquake located near the S portion of the Valle del Bove at <5 km depth. From late June to 1 July, events with M 2.5-3.0 occurred 10-15 km beneath the summit. No significant variations in the volcanic tremor pattern were observed during May or June.

Ground deformation. (O. Campisi, G. Falzone, B. Puglisi, G. Puglisi, and R. Velardita.) Ground deformation measured at the Serra Pizzuta Calvarina borehole tilt station showed no significant variation in May or June. Measurements in May using the S trilateration network showed little deformation since l June 1988.

SO2 emissions. (T. Caltabiano and R. Romano.) The average value of SO2 flux in May 1989 was the lowest of the past year, but moderately high values returned in June. SO2 flux was measured 3, ll, 17, and 24 May and 1, 7, 15, 22, and 29 June. Emissions fluctuated in May, with high values on the 3rd and 17th and low values on the 11th and 24th, reaching only 2,500 t/d on the latter date.

Tephra composition. (S. Calvari, M. Coltelli, and M. Pompilio.) January 1989 activity produced hawaiite tephra, with petrography and chemical composition similar to tephra from the previous year. Tephra emitted from Southeast Crater during 1988 had relatively more evolved compositions, but early 1989 tephra was less differentiated than material emitted by the other summit craters.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: R. Santacroce, IIV.


Izu-Tobu (Japan) — June 1989 Citation iconCite this Report

Izu-Tobu

Japan

34.9°N, 139.098°E; summit elev. 1406 m

All times are local (unless otherwise noted)


Brief eruption follows two-week seismic swarm

After a 2-week earthquake swarm, a brief submarine eruption built a small cone on the sea bottom a few kilometers off the coast of the Izu Peninsula. [See 14:7 for a more detailed report from JMA.]

Earthquakes began 30 June, and by 9 July, more than 19,000 had been recorded. Many were at depths of 4-5 km in a zone roughly 3-7 km NE of Ito, a city of 72,000 about 100 km SW of Tokyo and 40 km NW of Oshima volcano. The swarm included a pair of strong events that occurred within a minute of each other on 9 July at 1109; the first was of M 5.5, the second slightly weaker. At least 18 people were injured by these shocks, and landslides were reported at 16 sites. A year earlier, more than 17,000 events centered farther from the coast were recorded during a month of seismicity that began in late July 1988. Previous swarms had occurred SE of the 1989 epicentral area in 1984 and 1985, and numerous other 1984-86 events occurred in a zone separating the 1984 and 1985 swarm epicenters.

The eruption began on 13 July. A JMA seismometer started to record microseismicity at 1829. The captain of the RV Takuyo (Hydrographic Dept, JMSA), carrying out a bathymetric survey in the area, reported hearing an explosion sound from the sea bottom and a 30-second vibration at 1833. One minute later, the JMA seismometer was saturated by seismic events and remained saturated for the next 10 minutes or more. At 1840, the crew of the RV Takuyo saw the sea surface dome upward about 500 m from the vessel, then a gray-black plume rose from the same area. Five more plumes, ~30 m high and 100 m across, were observed in the next 5 minutes. The ejection of each plume was accompanied by violent shaking and vibration of the ship. No more eruptive activity was reported. Seismographs were again saturated at 1902, and another seismic sequence, of different frequency, was recorded at 1907. Another 15 minutes of volcanic microseismicity began at 2130. No detailed reports were available for the next few days, but strong seismicity stopped after 16 July.

After the eruption, a bathymetric survey using an unmanned vessel detected a new cone in about 100 m of water at the eruption site. The cone was about 450 m wide, with a summit crater 200 m in diameter, but rose only ~10 m above the sea bottom. The eruption occurred in a region of Recent monogenetic volcanism that has built numerous subaerial and submarine cones (figure 1). One nearby pyroclastic flow (Kawagodiara) on the Izu Peninsula has been dated at about 3,250 BP. No ages are available for the submarine edifices, although very fresh pillow lavas were found downslope during work in a submersible.

Figure (see Caption) Figure 1. Topographic and bathymetric map of the E-central Izu Peninsula and nearby waters, after Ishii and others (1988). The 13 July eruption site is labeled with a star. Young submarine cones are labeled with letters and open triangles. Pillow lavas were found in the outlined area labeled D173, 174 Tanaka.

Reference. Ishii, T., Watanabe, M., Ishizuka, T., Ohta, S., Sakai, H., Haramura, H., Shikazono, N., Togashi, K., Minai, Y., Tominaga, T., Chinzei, K., Horikoshi, M., and Matsumoto, E., 1988, Geological Study with the "Shinkai 2000" in the West Sagami Bay including Calyptogena Colonies; Technical Reports of the Japan Marine Science and Technology Center, 1988, p. 189-218.

Geologic Background. The Izu-Tobu volcano group (Higashi-Izu volcano group) is scattered over a broad, plateau-like area of more than 400 km2 on the E side of the Izu Peninsula. Construction of several stratovolcanoes continued throughout much of the Pleistocene and overlapped with growth of smaller monogenetic volcanoes beginning about 300,000 years ago. About 70 subaerial monogenetic volcanoes formed during the last 140,000 years, and chemically similar submarine cones are located offshore. These volcanoes are located on a basement of late-Tertiary volcanic rocks and related sediments and on the flanks of three Quaternary stratovolcanoes: Amagi, Tenshi, and Usami. Some eruptive vents are controlled by fissure systems trending NW-SE or NE-SW. Thirteen eruptive episodes have been documented during the past 32,000 years. Kawagodaira maar produced pyroclastic flows during the largest Holocene eruption about 3000 years ago. The latest eruption occurred in 1989, when a small submarine crater was formed NE of Ito City.

Information Contacts: T. Ishii, SI; S. Aramaki, Earthquake Research Institute, Univ of Tokyo; JMA; Hydrographic Dept, JMSA; Asahi Shinbun News, Tokyo.


Kilauea (United States) — June 1989 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Earthquake causes bench collapse; no effect on eruption

A M 6.1 S-flank earthquake on 25 June triggered collapse of the coastal lava bench, but apparently had little effect on the continuing eruption. Lava flows that emerged from the tube system on the lower flanks reached the sea at two new sites, after destroying structures near the coast.

Surface lava flows that broke from the W tube system in April and destroyed houses . . . in May advanced S towards the coast in June. Lower elevation lava breakouts from the W tube, which had moved SW around the Royal Gardens kipuka in May, also continued to advance. Lava flows moving W along the Chain of Craters road destroyed a maintenance area on 21 June. The two flow fronts merged the next day, destroying the National Park Service Wahaula Visitor Center (figure 61). By 25 June, the flow front had advanced another 100 m W along Chain of Craters road. A lava front that had moved to within 30 m of the coast in mid-May, stagnated, reactivated in mid-June, and entered the sea on 22 June in a new area at Kupapau Point. The Kupapau flow (intermittently active) had stagnated by 30 June, but resumed activity in early July. On 23 June, lava began entering the ocean at Poupou (just E of the Wahaula residential area). Lava also continued to enter the ocean E of Kupapau Point.

Figure (see Caption) Figure 61. Map of the coastal area affected by the recent activity of Kupaianaha, as of September 1989. Dashed lines indicate roads buried in June and July; filled squares represent structures destroyed during the same period (VC = Visitor Center). Lava contacts from lower Royal Gardens subdivision to the Wahaula area are preliminary. The four "entries" are places where the lava was entering the ocean in July. Lava contacts from lower Royal Gardens subdivision to the Wahaula area are preliminary. Courtesy of Christina Heliker.

The M 6.1 earthquake on 25 June at 1727 was centered on the SE coast, W of Kalapana, at 19.36°N, 155.08°W, 9 km depth (figure 62). Preliminary assessment of the data suggests that the main shock caused seaward movement of Kilauea's S flank along a subhorizontal plane at the bottom of the volcanic pile near the ocean floor. Aftershock focal depths indicate rupture from near the surface to slightly more than 10 km depth. The motion was similar to the M 7.2 earthquake that struck the same region on 29 November 1975 and most of the strong S flank earthquakes (M>5.5) commonly occur in the mainshock area. Significant earthquakes also were located in this area in March 1954 and September 1979.

Figure (see Caption) Figure 62. Locations of the M 6.1 earthquake and associated aftershocks, 25 June-6 July, 1989. Courtesy of R. Koyanagi.

The earthquake caused almost total collapse of the seacoast lava bench, but apparently did not significantly disrupt the lava tube system. The next morning, geologists noted that the level of the Kupaianaha lava pond had dropped by ~1 m. Lava flow activity at the coast declined 27-28 June, accompanied by a slight decrease in tremor 26-28 June. On the 28th, tremor near the vent gradually rose to normal as the level of Kupaianaha lava pond rose ~1.5 m. By the next day, activity at the coast returned to the pre-earthquake level. An active lava pond in Pu`u `O`o was visible on 28 June.

During the last few days of June, tremor amplitude was relatively steady beneath the East rift zone near Pu`u `O`o and Kupaianaha. Low-amplitude tremor signals associated with ocean front activity near Kupapau Point also resumed. The 25 June earthquake saturated seismographs, masking signals from the associated lava bench collapse. The number of shallow microearthquakes was about average in the summit region and above average in the East rift zone. Intermediate-depth long-period events in the summit region continued at a moderate rate . . . .

Geologic Background. Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island.

Information Contacts: C. Heliker and R. Koyanagi, HVO.


Langila (Papua New Guinea) — June 1989 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Activity subsides; landslides widen crater

"Langila returned to very subdued activity in June. Crater 2 released moderate white-grey emissions, accompanied by occasional rumbling noises. Explosions were heard on 1, 2, 6, 24, and 30 June, and a weak red glow was seen above this crater on the night of the 14th.

"When the volcano was inspected on 10 June, Crater 2 had enlarged and deepened since the last field inspection in October 1985 (10:10). The flat, [40]-m-wide, annular platform that formerly surrounded the crater had caved in, resulting in an estimated [130]-m wide crater with a narrow ledge. The crater now has a composite funnel shape produced by the sinking of the former magma plug in two successive steps. The top of the active plug (responsible for the occasional night glow) is now at ~1,045 m altitude (the crater rim is at 1,100-1,120 m) and clogged by debris from sub-continuous rocksliding.

"Crater 3 . . . remains inactive. The crater is sealed at ~900 m asl by a flat muddy floor from wash-outs of the walls (the crater rim is at 1,045-1,080 m altitude). The source of white vapour occasionally observed from the observatory is an active fumarole at the base of the sub-vertical S wall."

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: P. de Saint-Ours and B. Talai, RVO.


Lascar (Chile) — June 1989 Citation iconCite this Report

Lascar

Chile

23.37°S, 67.73°W; summit elev. 5592 m

All times are local (unless otherwise noted)


Continued lava dome growth

A lava dome has been growing in the active summit crater, site of occasional tephra emission since 1986. Observations and pictures from Stephen Foot (MINSAL, Ltda.), who climbed the volcano on 18 April 1989, confirm Paul King's February 1989 report of a steaming lava dome (14:3). The photographs clearly show a dome growing in the W crater of the eastern of Lascar's two andesite cones (figure 1). Until early 1986, this crater was empty, with only solfataric and fumarolic activity. Foot's photographs show that by April 1989 the dome had reached an estimated 200 m in diameter and 50 m height. The dome had steep sides and a blocky, steamy, dark brown surface. Steam emissions of different intensities were still being continuously released in late June, and glow was visible from Toconao (~30 km away) on one occasion.

Figure (see Caption) Figure 1. Photograph of the growing lava dome in Lascar's summit crater, 18 April 1989, by Stephen Foot. Courtesy of M. Gardeweg.

Geologic Background. Láscar is the most active volcano of the northern Chilean Andes. The andesitic-to-dacitic stratovolcano contains six overlapping summit craters. Prominent lava flows descend its NW flanks. An older, higher stratovolcano 5 km E, Volcán Aguas Calientes, displays a well-developed summit crater and a probable Holocene lava flow near its summit (de Silva and Francis, 1991). Láscar consists of two major edifices; activity began at the eastern volcano and then shifted to the western cone. The largest eruption took place about 26,500 years ago, and following the eruption of the Tumbres scoria flow about 9000 years ago, activity shifted back to the eastern edifice, where three overlapping craters were formed. Frequent small-to-moderate explosive eruptions have been recorded since the mid-19th century, along with periodic larger eruptions that produced ashfall hundreds of kilometers away. The largest historical eruption took place in 1993, producing pyroclastic flows to 8.5 km NW of the summit and ashfall in Buenos Aires.

Information Contacts: M. Gardeweg, SERNAGEOMIN, Santiago; S. Foot, MINSAL Ltda., Santiago.


Ol Doinyo Lengai (Tanzania) — June 1989 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Bubbling lava at one vent

On 12 January, when Michael Peterson led a field party to the volcano's summit, no liquid lava was visible in the crater. Steam was emitted from vents T4/T7, T8, and T9, as well as from areas along the saddle. Intermittent rumbling sounds originated from near H4 (W of T5). During an overflight in late May, Steve Cunningham witnessed bubbling lava on the SE side of the crater, near T10.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: C. Nyamweru, Kenyatta Univ; Thad Peterson, Arusha, Tanzania.


Long Valley (United States) — June 1989 Citation iconCite this Report

Long Valley

United States

37.7°N, 118.87°W; summit elev. 3390 m

All times are local (unless otherwise noted)


Earthquake swarm near caldera rim

An earthquake swarm began 4 May under the SSW flank of Mammoth Mountain, just outside the SW caldera rim (figure 7). The number of events increased through early June, with 44 recorded on the 11th. Seismicity was continuing as of 10 July, and totaled 712 recorded events (magnitude greater than or equal to 0.3) (figure 8). Most were small (M <1); the largest, M 3.1, occurred on 21 June at 0058. As the swarm continued, most of the events remained centered beneath the SW flank of Mammoth Mountain, on strike with the Inyo chain, at depths ranging from 2 to 9 km. Focal depths during previous swarms have generally been around 6 km. Most of the shallower earthquakes showed less high-frequency energy in their spectra, probably because of attenuation effects, but had clear S-waves and were therefore not considered low-frequency events. However, seven low-frequency events were recorded on 11 June. Several mixed-frequency events had high-frequency P and S-waves superimposed on 1-2-Hz waves, suggesting possible resonance of a fluid-filled cavity. Possible spasmodic tremor was recorded for 2-3 minutes on 2 and 26 June, and 6 July.

Figure (see Caption) Figure 7. Representative epicenters (26-31 May) of the May-July 1989 earthquake swarm at Long Valley. Mammoth Mountain is shown by the solid triangle. Events S of the caldera are in the Sierra Nevada. Courtesy of Stephen McNutt.
Figure (see Caption) Figure 8. Number of local earthquakes per day recorded by the California Division of Mines and Geology NEWT system, 5 May-30 September. Courtesy of Stephen McNutt.

The Devils Postpile dilatometer, near the W foot of Mammoth Mountain, recorded 0.05 microstrain of deformation during the swarm's most active day, 11 June. No significant changes to existing trends were reported from other instruments a few kilometers away.

The May-July swarm is the largest near Mammoth Mountain in 3.5 years; a small swarm occurred there in January 1987. During the past 4 years, virtually all of the other seismic swarms in the Mammoth Lakes area have lasted only a few days. The largest recent swarm, 393 recorded events in the caldera's E moat, began 22 November 1988 and ended after 3 days.

Geologic Background. The large 17 x 32 km Long Valley caldera east of the central Sierra Nevada Range formed as a result of the voluminous Bishop Tuff eruption about 760,000 years ago. Resurgent doming in the central part of the caldera occurred shortly afterwards, followed by rhyolitic eruptions from the caldera moat and the eruption of rhyodacite from outer ring fracture vents, ending about 50,000 years ago. During early resurgent doming the caldera was filled with a large lake that left strandlines on the caldera walls and the resurgent dome island; the lake eventually drained through the Owens River Gorge. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation, seismicity, and other unrest in recent years. The late-Pleistocene to Holocene Inyo Craters cut the NW topographic rim of the caldera, and along with Mammoth Mountain on the SW topographic rim, are west of the structural caldera and are chemically and tectonically distinct from the Long Valley magmatic system.

Information Contacts: S. McNutt, California Division of Mines and Geology, Sacramento.


Lonquimay (Chile) — June 1989 Citation iconCite this Report

Lonquimay

Chile

38.379°S, 71.586°W; summit elev. 2832 m

All times are local (unless otherwise noted)


Strong fluorine emission; one person and many animals killed

The eruption was continuing as of late June. Explosive activity remained relatively weak (VEI 1) through much of May, with occasional more violent pulses (VEI 2) as on 1-3 and 16-25 May. Hugo Moreno flew over the area on 30 May. Strong WNW winds carried the plume directly over Lonquimay village (~20 km ESE of Navidad Crater; figure 12). The lava flow continued to advance very slowly at the front in the Lolco River valley (~9.5 km from the crater) and more vigorously at the Laguna Verde front (~4 km from the crater). Lava volume was estimated at 160 x 106 m3.

Figure (see Caption) Figure 12. Approximate ashfall thicknesses in the Lonquimay area, as of mid-May 1989, courtesy of O. González-Ferrán. The lava flow is shown in black.

As of mid-June, hundreds of cattle and horses had died of osteofluorosis caused by 300-400 ppm fluorine on grass in an 80,000 hectare (800 km2) area. Some dogs have also recently died after suffering from nervous, renal, digestive, and breathing problems. Concentration of very fine ash has at times been at levels 10 times those considered safe for breathing. Mid-June medical checks of 260 people revealed neurological damage with associated reflex loss in 45 adults and children.

A report (quoted in the 24 June El Mercurio) from Maximino Beltrán, Regional Secretary of Health, to the national Subsecretary of Health, detailed numerous neurological and blood chemistry abnormalities discovered in varying proportions of area residents. An autopsy on a 64-year-old woodcutter, exposed to ashfall for more than 8 hours daily, revealed evidence of acute hemorrhagic colitis and massive bilateral lung hemorrhaging, plus central nervous system lesions. Similar lesions (plus lung, liver, and heart problems) were seen in seven dogs (one sick and six outwardly healthy) studied in the eruption area. The report recommended prompt evacuation of the most affected people, the 800 inhabitants of the Bernardo Nanco area, and the evacuation or relocation of ~3,800 persons judged moderately affected, in the town of Lonquimay. Evacuations had apparently begun by early July.

Geologic Background. Lonquimay is a small, flat-topped, symmetrical stratovolcano of late-Pleistocene to dominantly Holocene age immediately SE of Tolguaca volcano. A glacier fills its summit crater and flows down the S flank. It is dominantly andesitic, but basalt and dacite are also found. The prominent NE-SW Cordón Fissural Oriental fissure zone cuts across the entire volcano. A series of NE-flank vents and scoria cones were built along an E-W fissure, some of which have been the source of voluminous lava flows, including those during 1887-90 and 1988-90, that extended out to 10 km.

Information Contacts: H. Moreno, Univ de Chile; O. González-Ferrán, Univ de Chile; Pedro Riffo, Univ de la Frontera; El Mercurio, Santiago.


Manam (Papua New Guinea) — June 1989 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Fewer earthquakes; slow deflation continues

"Activity was at a very low level throughout June. Southern Crater released white to grey vapour [and ash] in weak to moderate amounts. Weak deep rumbling noises were occasionally heard. Main Crater released weak emissions of white vapour. The seismicity fluctuated at a somewhat lower level than 'normal' inter-eruptive rates, between 500 and 1,100 minor events/day. Tilt readings also fluctuated, although continuing on a slow deflationary trend since early March."

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: P. de Saint-Ours and B. Talai, RVO.


Masaya (Nicaragua) — June 1989 Citation iconCite this Report

Masaya

Nicaragua

11.984°N, 86.161°W; summit elev. 635 m

All times are local (unless otherwise noted)


Lava lake freezes; small explosions

The February-March lava lake in Santiago Crater (14:02) probably froze over in early March, and degassing from the lake vent had apparently ceased by 12 March. Other vents remained open through April, with occasional strong degassing episodes. Beginning around 11 May, collapses from the W, S, and N sides of the main crater blocked all vents. Little, if any, gas emission was evident until 22 May when park rangers reported more collapses and a plume visible from the Masaya road (6 km from the crater).

On 25 May, geologists found fresh scoria and lithic fragments scattered from Plaza Sapper to the San Pedro crater (figure 7, top). Ten-cm fragments were found to 20 m from the edge of Santiago, 5-cm fragments to 50 m, and fragments <2 cm were found farther away (90% <1 cm). All tephra was highly vesicular, often with smooth surfaces indicating solidification in flight. Many Pelé's tears were found. The fragments were concentrated in small areas, suggesting a number of discrete explosions. Tephra from the explosions rose an estimated 100-300 m above the crater. Most fragments were glassy basalt with occasional small (1-3 mm) fresh plagioclase. Lithic fragments were porphyritic basalts with 10% plagioclase and some were slightly altered hydrothermally.

Figure (see Caption) Figure 7. Sketch of the summit complex at Masaya, May-June 1989 (top) and Santiago Crater, 3 June 1989 (bottom). Courtesy of B. van Wyk de Vries and O. Castellón.

A 3 June visit revealed small amounts of fresh scoria up to 5 cm in diameter as far as 50 m SW of the crater. The tephra was probably erupted on 2 June when inhabitants reported a "brown cloud". Crater geometry was similar to that in February. The lava lake vent and the "cannon" (3rd vent in 14:02) were blocked by collapse debris, but vent No. 2 (glowing vent in 14:02) had enlarged and was thought to be the source of the eruptions. On 25 May the vent was oval and about 4 m across, oriented vertically, rather than horizontally as in February. On the 26th it had enlarged by 1 m, and by 3 June it was 7 x 3 m and rectangular. There appeared to be a considerably larger chamber beneath the vent. The cannon (3rd) deepened slightly between 25 May and 3 June.

Periodic fumarolic activity on the W wall and from a fault on the N side (figure 7, bottom) was also observed. Weak fumaroles along the trend of the fault (on the Nindirí crater floor below La Cruz) had temperatures <45°C. Fumarolic activity decreased from May to June.

Geologic Background. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras pyroclastic shield volcano and is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The twin volcanoes of Nindirí and Masaya, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6500 years ago. Historical lava flows cover much of the caldera floor and have confined a lake to the far eastern end of the caldera. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals cause health hazards and crop damage.

Information Contacts: B. van Wyk de Vries and O. Castellón, INETER.


Poas (Costa Rica) — June 1989 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2708 m

All times are local (unless otherwise noted)


Rains partly refill crater lake; intense gas emission

During the first 12 days of May, activity remained similar to that at the end of April. Gas emission was intense, and ejections of mud and lithic ash fed plumes that reached maximum heights of 1.5-2 km above the crater floor. Individual ash ejections lasted for more than an hour. Trade winds generally carried ash clouds toward the WSW. Various towns reported ashfalls, including Atenas, 32 km SW (on 9 May). Some ashfalls also occurred on the ENE and S flanks. On the rim, roughly 300 m W of the center of the crater (point F on figure 18) 5 mm of new ash was measured on 7 May and 60 mm on the 12th. The ash was composed of hydrothermally altered lithic fragments, soluble mud, and sulfur. The maximum measured grain size was 1.5 mm, and 80% of the ash volume was composed of fragments between 0.075 and 0.25 mm.

Figure (see Caption) Figure 18. Sketch map of Poás showing ash isopachs as of 12 May. Grid spacing is 1 km. Thicknesses of ash at each collection point: A, 3 mm; B, 5 mm; C, 13-20 mm; D, 42 mm; E, 50 mm; F, 60 mm. Courtesy of Gerardo Soto.

Gases were dominated by water vapor from the aquifer beneath the crater, and included SO2, H2S, and (possibly) hydrogen. Sulfur sublimates were deposited around fumarolic vents, and some of the sulfur burned, forming SO2. Flames from the combustion of sulfur (and perhaps hydrogen) were intense above some vents. In the center of the area formerly occupied by the crater lake, two primary pyroclastic mud cones (and various smaller neighboring cones) had been growing since mid-April, reaching maximum heights of 25 m despite frequent collapses. In the SE part of the crater, there was a molten, bubbling, sulfur lake and sulfur had flowed across the muddy crater floor. Fumaroles emitted sulfurous gases and a mud-sulfur cone was growing. The crater's NE quadrant included a vigorous fumarole that emitted sulfur-rich gas with a jet-aircraft sound, and deposited sulfur sublimates.

With the onset of the rainy season in mid-May, water started to accumulate in the former crater lake, reaching a depth of about 2 m by early June. Eruptive activity began to decline noticeably on 13 May. By the last week of May, the central cones had collapsed and been reworked by convective bubbling. Nevertheless, emission of water vapor and sulfur gases, some burning, continued at the end of the month. Bubbling was vigorous in the muddy zones on the crater floor, but no mud columns were ejected nor were there ash eruptions. The former site of the sulfur lake was occupied by a muddy area and a fumarole producing sulfur sublimates that burned with red-orange flames. Bubbling mud and intense evaporation were found in the active zone in the NE part of the crater. A zone of weak fumaroles and sulfur sublimates was present on the wall and NE side of the inner crater. Activity on the remnants of the 1953-55 [dome] remained stable through June, with low-temperature fumaroles depositing sulfur, gypsum, other minerals, and clays.

Intense gas emission (dominated by water vapor, with SO2 and H2S) continued in June from the crater lake. The lake remained about 2 m deep through the month. Its inner zone was muddy and showed continuous convective bubbling, while its periphery was emerald green with a pH <= 0.5, fed by multiple surface springs of about pH 2.0. There were five principal hot areas in the lake's inner zone, three in the N area, one in the center, and one to the SE. The NE site showed intense fumarolic activity and had constructed a small mud-sulfur cone that contained an orange-brown lake of molten sulfur and boiling mud. The central N site included small cones with mud/sulfur spines. Fumarolic activity and a mud rampart had developed at the SE site. At the other hot areas, intense convection of muddy water generated waves. Small emissions of muddy ash occurred within the crater, including one on 23 June at 1845 that produced a column hundreds of meters high. Other explosions occurred between 28 June and 2 July.

Substantial changes have been noted in volcanic seismicity. The characteristic B-type shallow (<500 m depth) signals declined in May but increased again in June.

During the first 30 days of May, 2,247 seismic events were recorded, a daily mean of about 75 (figure 19), down from 141/day in April. June's average was similar (1,904 events in the first 27 days, a mean of 71/day) but the number of earthquakes increased sharply after lower activity during the month's first week. Geologists noted that tremor or volcanic noise has become common at Poás, probably resulting from continuous degassing in a partially open conduit. Origins looked like those of B-type signals and the activity could represent continuous trains of B-type events. A-type shocks, of volcano-tectonic origin, had preliminary locations near the crater, with magnitudes <1.

Figure (see Caption) Figure 19. Number of seismic events/day at Poás, 1-30 May and 1-27 June, 1989. Courtesy of Mario Fernández.

Geologic Background. The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: Gerardo J. Soto, Guillermo E. Alvarado, Mario Fernández, and Héctor Flores, UCR.


Rabaul (Papua New Guinea) — June 1989 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Activity remains at background levels

"Activity remained at background levels throughout June. There were 152 small earthquakes recorded in the caldera. The daily count fluctuated between 0 and 15. Only two events were large enough to be accurately located, originating 1 km under Greet Harbour. Monthly levelling measurements to Matupit Island show a steady (or slightly subsiding) trend since December 1988. Neither tilt nor EDM data have shown any significant trend."

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: P. de Saint-Ours and B. Talai, RVO.


Nevado del Ruiz (Colombia) — June 1989 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Sharp increase in seismicity precedes ash emission

Seismic energy release has been at increased levels since about February 1988. A sharp increase in seismicity began on 24 June 1989 with a felt earthquake (M 3.1) in Arenas crater. The next day, a shallow swarm of high-frequency events (also in Arenas crater) began at 1130 and continued for 1 hour. From 0100 to 1100 on the 26th, another high-frequency swarm was centered at 4 km depth, 3 km W and SW of Olleta crater (Olleta is roughly 5 km W of Arenas crater). Late that evening, a shallow high-frequency swarm began in Arenas crater, followed by strong tremor associated with a small ash emission that deposited 1 mm of ash, 4 km from the crater. The press reported that the civil aeronautics board issued a warning to airline pilots to avoid a 60-km area around the volcano. Tremor gradually diminished, disappearing on 28 June. SO2 emission was moderate during June. Dry and electronic tilt did not show significant changes. As of 10 July, a yellow alert remained in effect for population within a 10-km radius of the volcano.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: C. Carvajal, INGEOMINAS, Manizales; Reuters.


San Cristobal (Nicaragua) — June 1989 Citation iconCite this Report

San Cristobal

Nicaragua

12.702°N, 87.004°W; summit elev. 1745 m

All times are local (unless otherwise noted)


New fumaroles along fissure on SE spur of Casita

Previously unobserved fumarolic activity on the SE spur of Casita (at sites 150 m and 0.5-1 km below the communications complex on the summit) was noticed on 8 June. Area residents report that the activity has been present for some time. Emissions appear to originate from a N-S fissure (figure 1). Casita was last reported active in the l6th century.

Figure (see Caption) Figure 1. Oblique sketch of Casita, its fumaroles, and neighboring volcanic features, 8 June 1989. Courtesy of B. van Wyk de Vries and O. Castellón.

Geologic Background. The San Cristóbal volcanic complex, consisting of five principal volcanic edifices, forms the NW end of the Marrabios Range. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km W of San Cristóbal; it and the eroded Moyotepe volcano, 4 km NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.

Information Contacts: B. van Wyk de Vries and O. Castellón, INETER, Managua.


Santa Maria (Guatemala) — June 1989 Citation iconCite this Report

Santa Maria

Guatemala

14.757°N, 91.552°W; summit elev. 3745 m

All times are local (unless otherwise noted)


Lava production; explosions; hot avalanches

Santiaguito's most recent (7th) period of rapid block lava extrusion began in June 1986 and had declined about February 1988. A small lobe that descended slowly toward the W margin of the lava field was 1.3 km from the dome's Caliente vent in November 1988. Very slow extrusion continued until the onset of a new period of vigorous lava production around 14 February. Observations 23-24 March revealed that the new lava flow, about 70 m wide and 20 m thick, was overriding the June 1986-February 1988 lava (figure 9) and its oversteepened front had reached about 1,470 m altitude. Moderate pyroclastic avalanches generated by collapse of the flow at the altitude of maximum slope (2,000-1,800 m) and at its oversteepened front partially filled canyons in the headwaters of the Río Nimá II and the tributary E of the lava flow. Brief observations 3 May about 1 km from the flow (at El Mirador) showed no substantial changes.

Figure (see Caption) Figure 9. Map of Santiaguito Dome, showing the ages of its lobes. Succesive fronts of 1986-89 lava flows are shown. Modified from Rose and others (1987). Courtesy of Otoniel Matías.

During September and October 1988, seismic instruments 2.6 km S and 5 km NNW of Santiaguito recorded 8-28 explosions and 130-330 avalanches/day. After the beginning of November, the number of explosions declined to 4-16 daily and the number of avalanches to 60-120 (figure 10), remaining at similar low to moderate levels through late February. More violent explosions began on 25 February and continued through 13 March, stronger than any since the start of vigorous block lava extrusion in June 1986. Some dense ash columns rose at least 3 km above the crater and were visible from the summit of Fuego, 75 km away. Ash columns during this period easily exceeded the height of Santa María's summit (3,772 m), more than 1,200 m above the vent, forming mushroom-shaped clouds 1 km in diameter. Ash reached parts of Quetzaltenango, 12 km NE, within 15 minutes. During this period, 8-26 explosions were recorded daily. The strongest produced acoustic waves that moved suspended objects 7 km to the S (at Finca El Faro). Sounds similar to a jet turbine continued for up to 4 minutes, alternating with the phreatomagmatic explosions. Winds 24-25 February were dominantly from the N-NE at 20-30 km/hour; fine ashfall was reported to 28 km S-SW (in the El Palmar, San Felipe, and Retalhuleu regions). From 26 February through 13 March, winds were generally from the S-SW, calm in the morning and reaching 18-30 km/hour in the afternoon. Fine ash was carried 7-25 km NW and NE; losses from vegetation damage were reported in Llanos del Pinal, Almolonga, and Quetzaltenango (7, 12, and 14 km N-NE).

Figure (see Caption) Figure 10. Number of daily explosions (bottom) and an extrapolation of the number of daily avalanche events (top) recorded by seismic stations 2.6 km S and 5 km NNW of Santiaguito, November 1988-April 1989. Courtesy of Otoniel Matías.

A brief decline was evident 14-16 March, with only 6-10 small explosions daily generating clouds <=1 km high. Activity increased again 17 March, dominated by degassing that produced dense whitish clouds with little ash and moderate to strong jet turbine sounds. Between 14 and 24 explosions/day were recorded through 31 March. The number of explosions grew gradually in early April, reaching 34 on the 18th (the most recorded in a single day since June 1988) then fell to 14-26/day after the 21st. Avalanches from the dome, the central area of the lava flow (2,000-1,700 m elevation), and its oversteepened front ranged from 150 to 300/day.

Weak to moderate fumarolic emissions persisted from the N and S margins of the Caliente vent area. The E fumarole was more active and acted as a secondary crater during some explosions, feeding columns that were similar to or smaller than those from the main vent. The E fumarole may have been the source of the jet turbine sounds as it underwent high-pressure degassing. After some explosions, its emissions increased, often persisting for several hours as sustained columns rose tens of meters to 1 km. Very weak fumarolic emissions occurred throughout the summit area of the dome complex, frequently linked with increased activity from Caliente vent.

At press time, we learned that Santiaguito erupted an ash column to 4 km above the dome on 19 July at 0915 [see also 14:07]. A pyroclastic flow traveled 5 km down the Río Nimá II, reaching 2 km from Finca La Florida. Ash was 1 cm thick at Finca Monte Bello (6 km WSW) and fell as far as the Mexican border. Thirty two Central American volcanologists, attending a course in El Palmar (12 km SSW of the volcano), witnessed the eruption during good viewing conditions, took photographs, and made a videotape. The eruption was followed by two smaller explosions within 1/2 hour, and another at 1600. Prelimimary observations by volcanologists suggest that the eruption may have been associated with partial collapse around the vent. There were no reports of death or damage.

Geologic Background. Symmetrical, forest-covered Santa María volcano is part of a chain of large stratovolcanoes that rise above the Pacific coastal plain of Guatemala. The sharp-topped, conical profile is cut on the SW flank by a 1.5-km-wide crater. The oval-shaped crater extends from just below the summit to the lower flank, and was formed during a catastrophic eruption in 1902. The renowned Plinian eruption of 1902 that devastated much of SW Guatemala followed a long repose period after construction of the large basaltic-andesite stratovolcano. The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four vents, with activity progressing W towards the most recent, Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

Information Contacts: Otoniel Matías and Jorge Girón, INSIVUMEH; W. Rose, Michigan Technological Univ.


Suwanosejima (Japan) — June 1989 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Frequent explosions; ashfall on inhabited area

. . . March-April activity is summarized in table 2. No explosions were observed in May, but several tens of explosions 22-23 June were accompanied by detonations and air shocks. Ash fell on the S part of the small island volcano, in the only inhabited area.

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: JMA.


Telica (Nicaragua) — June 1989 Citation iconCite this Report

Telica

Nicaragua

12.606°N, 86.84°W; summit elev. 1036 m

All times are local (unless otherwise noted)


Fumaroles emit white plumes

A visit to the volcano on 5 June revealed two small brown crater lakes, 10 m across (figure 2). A number of large collapses had occurred, covering much of the crater floor with blocks. Fumarolic activity was vigorous (particularly from a vent on the SE side) and produced a continuous plume over the crater. No eruptive activity has been reported since December 1987.

Figure (see Caption) Figure 2. Sketch of the active crater of Telica, 5 June 1989. Courtesy of B. van Wyk de Vries and O. Castellón.

Geologic Background. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately E, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.

Information Contacts: B. van Wyk de Vries and O. Castellón, INETER, Apartado 1761, Managua, Nicaragua.


Tokachidake (Japan) — June 1989 Citation iconCite this Report

Tokachidake

Japan

43.418°N, 142.686°E; summit elev. 2077 m

All times are local (unless otherwise noted)


Seismicity increases; no explosions

Tephra produced by the phreatomagmatic explosions that began 19 December contained a little fresh magma (scoria and blocks) of basaltic andesite composition similar to that of the 1926 and 1962 ejecta. Some of the pyroclastic flows and surges melted snow and fed small lahars. A detailed description of this eruption can be found in Katsui (1989).

No eruptive activity has occurred since a brief explosion from crater 62-2 on 5 March. A continuous steam plume, which often contained ash in May but was white in June, was observed from Tokachi-dake Observatory. Plume heights reached 800 m above the crater rim in May and 100-600 m in June. A seismograph 4.5 km NNW of the crater recorded only five volcanic earthquakes and no volcanic tremor in May, but seismicity increased in late June (figure 5). A total of 25 volcanic earthquakes was recorded in June, and seismicity remained elevated as of early July.

Figure (see Caption) Figure 5. Daily number of local seismic events, 1 January-9 July 1989 (top) and number of small earthquakes recorded by a seismograph ~2 km NW of the volcano, 11 June-9 July 1989 (bottom). Courtesy of JMA.

Reference. Katsui, Y., ed., 1989, The 1988 eruption of Tokachi-dake, its sequence, mechanism, and influence on community: Report of Natural Disaster Scientific Research no. B-63-5, March 1989, 108 pp (8 papers).

Geologic Background. Tokachidake volcano consists of a group of dominantly andesitic stratovolcanoes and lava domes arranged on a NE-SW line above a plateau of welded Pleistocene tuffs in central Hokkaido. Numerous explosion craters and cinder cones are located on the upper flanks of the small stratovolcanoes, with the youngest Holocene centers located at the NW end of the chain. Frequent historical eruptions, consisting mostly of mild-to-moderate phreatic explosions, have been recorded since the mid-19th century. Two larger eruptions occurred in 1926 and 1962. Partial cone collapse of the western flank during the 1926 eruption produced a disastrous debris avalanche and mudflow.

Information Contacts: JMA.


Ulawun (Papua New Guinea) — June 1989 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


White vapor plume; seismicity decreases

"The level of activity has shown a continuous decrease since the mild phreatic unrest in March. Throughout the month, the terminal crater was releasing a plume of white vapour, while the seismicity was steadily decreasing . . . "

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: P. de Saint-Ours and B. Talai, RVO.


White Island (New Zealand) — June 1989 Citation iconCite this Report

White Island

New Zealand

37.52°S, 177.18°E; summit elev. 321 m

All times are local (unless otherwise noted)


Explosions continue; craters enlarge

Eruptions of ash and blocks continued from R.F. Crater and Donald Duck vent in May and June. On 10 May, when R. Fleming visited White Island, R.F. Crater was erupting dark gray coarse ash, most of which fell into the crater. Donald Duck vent was emitting minor amounts of gas. A small (3 m diameter) new vent had opened 20-30 m NNE of Donald Duck, discharging gas and ash. On 1 June, Fleming observed similar conditions.

During geological fieldwork on 23 June, the main crater floor was covered with fine gray ash that thickened toward Donald Duck vent. Block-ejecting explosions (the largest yet from Donald Duck) had apparently also occurred since the 1 June visit. Fresh new impact craters and lithic blocks (up to 1 m in diameter) were abundant to ~200 m SW of Donald Duck, which had enlarged to 100 m in diameter and >200 m in depth. No fresh magma has been detected in the Donald Duck tephra. The new vent NNE of Donald Duck vent was no longer active. The pits that had formed in late January (SEAN 14:01) and the 1980 pits (W of Donald Duck) were quiet, but had recently collapsed (probably due to recent heavy rainfalls) and were deeper, with vertical walls.

Large scoria bombs (1 m) and blocks (>5 m in diameter near the 1978 Crater rim) had been erupted from R.F. Crater, which was emitting a dilute, green-brown ash column and a few small blocks. Coarse ash fell back into the crater. A total of 450 mm of ash had accumulated on the 1978 Crater rim since 26 April. Rare, vesiculated, brown glass was the only indication of fresh magma in the tephra. Hitchhiker vent (in Congress Crater) was slightly enlarged, but had not collapsed, suggesting reinforcement by local intrusions. Recent heavy rainfalls had triggered several debris flows of saturated ash from the 1978 Crater walls. The largest had flowed across the 1978 Crater floor and over the rims of R.F. and Congress Craters.

Fumarole temperatures in the Donald Mound area had dropped since 26 April, and tephra (ejected from Donald Duck) covered the vents. Deflation of the area had accelerated, with the W portion subsiding 21 mm and the NW portion >40 mm since 16 March. The area near the rim of 1978 Crater had subsided 300 mm since the small eruptions in early 1984 (09:02).

Intermittent seismic data after 26 April showed that seismicity had not significantly changed, other than an increase in E-type events (14 in May and 4 in June before transmission ceased). A- and B-type events were recorded most days, with maximum daily totals of 12 and 15 events respectively. Microearthquakes were recorded 26-31 April and 20-21 May, with 10 events/minute on 27 April.

Vegetation studies indicate that the post-l976 eruption is stronger than any in the last several hundred years at White Island (White Island 1976-82 Eruption [appendix by Clarkson and others]: New Zealand Geological Survey Bulletin, in press).

Geologic Background. Uninhabited 2 x 2.4 km White Island, one of New Zealand's most active volcanoes, is the emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes; the summit crater appears to be breached to the SE, because the shoreline corresponds to the level of several notches in the SE crater wall. Volckner Rocks, four sea stacks that are remnants of a lava dome, lie 5 km NNE. Intermittent moderate phreatomagmatic and strombolian eruptions have occurred throughout the short historical period beginning in 1826, but its activity also forms a prominent part of Maori legends. Formation of many new vents during the 19th and 20th centuries has produced rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project.

Information Contacts: I. Nairn and B. Scott, NZGS Rotorua; P. Otway, NZGS Wairakei.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (SEAN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (SEAN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (SEAN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (SEAN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (SEAN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).