Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Manam (Papua New Guinea) Few ash plumes during November-December 2022

Krakatau (Indonesia) Strombolian activity and ash plumes during November 2022-April 2023

Stromboli (Italy) Strombolian explosions and lava flows continue during January-April 2023

Nishinoshima (Japan) Small ash plumes and fumarolic activity during November 2022 through April 2023

Karangetang (Indonesia) Lava flows, incandescent avalanches, and ash plumes during January-June 2023

Ahyi (United States) Intermittent hydroacoustic signals and discolored plumes during November 2022-June 2023

Kadovar (Papua New Guinea) An ash plume and weak thermal anomaly during May 2023

San Miguel (El Salvador) Small gas-and-ash explosions during March and May 2023

Semisopochnoi (United States) Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Ebeko (Russia) Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Home Reef (Tonga) Discolored plumes continued during November 2022-April 2023

Ambae (Vanuatu) New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023



Manam (Papua New Guinea) — July 2023 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Few ash plumes during November-December 2022

Manam is a 10-km-wide island that consists of two active summit craters: the Main summit crater and the South summit crater and is located 13 km off the northern coast of mainland Papua New Guinea. Frequent mild-to-moderate eruptions have been recorded since 1616. The current eruption period began during June 2014 and has more recently been characterized by intermittent ash plumes and thermal activity (BGVN 47:11). This report updates activity that occurred from November 2022 through May 2023 based on information from the Darwin Volcanic Ash Advisory Center (VAAC) and various satellite data.

Ash plumes were reported during November and December 2022 by the Darwin VAAC. On 7 November an ash plume rose to 2.1 km altitude and drifted NE based on satellite images and weather models. On 14 November an ash plume rose to 2.1 km altitude and drifted W based on RVO webcam images. On 20 November ash plumes rose to 1.8 km altitude and drifted NW. On 26 December an ash plume rose to 3 km altitude and drifted S and SSE.

Intermittent sulfur dioxide plumes were detected using the TROPOMI instrument on the Sentinel-5P satellite, some of which exceeded at least two Dobson Units (DU) and drifted in different directions (figure 93). Occasional low-to-moderate power thermal anomalies were recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system; less than five anomalies were recorded each month during November 2022 through May 2023 (figure 94). Two thermal hotspots were detected by the MODVOLC thermal alerts system on 10 December 2022. On clear weather days, thermal activity was also captured in infrared satellite imagery in both the Main and South summit craters, accompanied by gas-and-steam emissions (figure 95).

Figure (see Caption) Figure 93. Distinct sulfur dioxide plumes were captured, rising from Manam based on data from the TROPOMI instrument on the Sentinel-5P satellite on 16 November 2022 (top left), 6 December 2022 (top right), 14 January 2023 (bottom left), and 23 March 2023 (bottom right). Plumes generally drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 94. Occasional low-to-moderate power thermal anomalies were detected at Manam during November 2022 through May 2023, as shown in this MIROVA graph (Log Radiative Power). Only three anomalies were detected during late November, one in early December, two during January 2023, one in late March, four during April, and one during late May. Courtesy of MIROVA.
Figure (see Caption) Figure 95. Infrared (bands B12, B11, B4) satellite images show a consistent thermal anomaly (bright yellow-orange) in both the Main (the northern crater) and South summit craters on 10 November 2022 (top left), 15 December 2022 (top right), 3 February 2023 (bottom left), and 24 April 2023 (bottom right). Gas-and-steam emissions occasionally accompanied the thermal activity. Courtesy of Copernicus Browser.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Krakatau (Indonesia) — July 2023 Citation iconCite this Report

Krakatau

Indonesia

6.1009°S, 105.4233°E; summit elev. 285 m

All times are local (unless otherwise noted)


Strombolian activity and ash plumes during November 2022-April 2023

Krakatau is located in the Sunda Strait between Java and Sumatra, Indonesia. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan cones and left only a remnant of Rakata. The post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones; it has been the site of frequent eruptions since 1927. The current eruption period began in May 2021 and has recently consisted of explosions, ash plumes, and thermal activity (BGVN 47:11). This report covers activity during November 2022 through April 2023 based on information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Center (VAAC), and several sources of satellite data.

Activity was relatively low during November and December 2022. Daily white gas-and-steam plumes rose 25-100 m above the summit and drifted in different directions. Gray ash plumes rose 200 m above the summit and drifted NE at 1047 and at 2343 on 11 November. On 14 November at 0933 ash plumes rose 300 m above the summit and drifted E. An ash plume was reported at 0935 on 15 December that rose 100 m above the summit and drifted NE. An eruptive event at 1031 later that day generated an ash plume that rose 700 m above the summit and drifted NE. A gray ash plume at 1910 rose 100 m above the summit and drifted E. Incandescent material was ejected above the vent based on an image taken at 1936.

During January 2023 daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in multiple directions. Gray-to-brown ash plumes were reported at 1638 on 3 January, at 1410 and 1509 on 4 January, and at 0013 on 5 January that rose 100-750 m above the summit and drifted NE and E; the gray-to-black ash plume at 1509 on 4 January rose as high as 3 km above the summit and drifted E. Gray ash plumes were recorded at 1754, 2241, and 2325 on 11 January and at 0046 on 12 January and rose 200-300 m above the summit and drifted NE. Toward the end of January, PVMBG reported that activity had intensified; Strombolian activity was visible in webcam images taken at 0041, 0043, and 0450 on 23 January. Multiple gray ash plumes throughout the day rose 200-500 m above the summit and drifted E and SE (figure 135). Webcam images showed progressively intensifying Strombolian activity at 1919, 1958, and 2113 on 24 January; a gray ash plume at 1957 rose 300 m above the summit and drifted E (figure 135). Eruptive events at 0231 and 2256 on 25 January and at 0003 on 26 January ejected incandescent material from the vent, based on webcam images. Gray ash plumes observed during 26-27 January rose 300-500 m above the summit and drifted NE, E, and SE.

Figure (see Caption) Figure 135. Webcam images of a strong, gray ash plume (left) and Strombolian activity (right) captured at Krakatau at 0802 on 23 January 2023 (left) and at 2116 on 24 January 2023 (right). Courtesy of PVMBG and MAGMA Indonesia.

Low levels of activity were reported during February and March. Daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in different directions. The Darwin VAAC reported that continuous ash emissions rose to 1.5-1.8 km altitude and drifted W and NW during 1240-1300 on 10 March, based on satellite images, weather models, and PVMBG webcams. White-and-gray ash plumes rose 500 m and 300 m above the summit and drifted SW at 1446 and 1846 on 18 March, respectively. An eruptive event was recorded at 2143, though it was not visible due to darkness. Multiple ash plumes were reported during 27-29 March that rose as high as 2.5 km above the summit and drifted NE, W, and SW (figure 136). Webcam images captured incandescent ejecta above the vent at 0415 and around the summit area at 2003 on 28 March and at 0047 above the vent on 29 March.

Figure (see Caption) Figure 136. Webcam image of a strong ash plume rising above Krakatau at 1522 on 28 March 2023. Courtesy of PVMBG and MAGMA Indonesia.

Daily white gas-and-steam plumes rose 25-300 m above the summit and drifted in multiple directions during April and May. White-and-gray and black plumes rose 50-300 m above the summit on 2 and 9 April. On 11 May at 1241 a gray ash plume rose 1-3 km above the summit and drifted SW. On 12 May at 0920 a gray ash plume rose 2.5 km above the summit and drifted SW and at 2320 an ash plume rose 1.5 km above the summit and drifted SW. An accompanying webcam image showed incandescent ejecta. On 13 May at 0710 a gray ash plume rose 2 km above the summit and drifted SW (figure 137).

Figure (see Caption) Figure 137. Webcam image of an ash plume rising 2 km above the summit of Krakatau at 0715 on 13 May 2023. Courtesy of PVMBG and MAGMA Indonesia.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent low-to-moderate power thermal anomalies during November 2022 through April 2023 (figure 138). Some of this thermal activity was also visible in infrared satellite imagery at the crater, accompanied by gas-and-steam and ash plumes that drifted in different directions (figure 139).

Figure (see Caption) Figure 138. Intermittent low-to-moderate power thermal anomalies were detected at Krakatau during November 2022 through April 2023, based on this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 139. A thermal anomaly (bright yellow-orange) was visible at Krakatau in infrared (bands B12, B11, B4) satellite images on clear weather days during November 2022 through May 2023. Occasional gas-and-steam and ash plumes accompanied the thermal activity, which drifted in different directions. Images were captured on 25 November 2022 (top left), 15 December 2022 (top right), 27 January 2023 (bottom left), and 12 May 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Stromboli (Italy) — July 2023 Citation iconCite this Report

Stromboli

Italy

38.789°N, 15.213°E; summit elev. 924 m

All times are local (unless otherwise noted)


Strombolian explosions and lava flows continue during January-April 2023

Stromboli, located in Italy, has exhibited nearly constant lava fountains for the past 2,000 years; recorded eruptions date back to 350 BCE. Eruptive activity occurs at the summit from multiple vents, which include a north crater area (N area) and a central-southern crater (CS area) on a terrace known as the ‘terrazza craterica’ at the head of the Sciara del Fuoco, a large scarp that runs from the summit down the NW side of the volcano-island. Activity typically consists of Strombolian explosions, incandescent ejecta, lava flows, and pyroclastic flows. Thermal and visual monitoring cameras are located on the nearby Pizzo Sopra La Fossa, above the terrazza craterica, and at multiple flank locations. The current eruption period has been ongoing since 1934 and recent activity has consisted of frequent Strombolian explosions and lava flows (BGVN 48:02). This report updates activity during January through April 2023 primarily characterized by Strombolian explosions and lava flows based on reports from Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) and various satellite data.

Frequent explosive activity continued throughout the reporting period, generally in the low-to-medium range, based on the number of hourly explosions in the summit crater (figure 253, table 16). Intermittent thermal activity was recorded by the MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data (figure 254). According to data collected by the MODVOLC thermal algorithm, a total of 9 thermal alerts were detected: one on 2 January 2023, one on 1 February, five on 24 March, and two on 26 March. The stronger pulses of thermal activity likely reflected lava flow events. Infrared satellite imagery captured relatively strong thermal hotspots at the two active summit craters on clear weather days, showing an especially strong event on 8 March (figure 255).

Figure (see Caption) Figure 253. Explosive activity persisted at Stromboli during January through April 2023, with low to medium numbers of daily explosions at the summit crater. The average number of daily explosions (y-axis) during January through April (x-axis) are broken out by area and as a total, with red for the N area, blue for the CS area, and black for the combined total. The data are smoothed as daily (thin lines) and weekly (thick lines) averages. The black squares along the top represent days with no observations due to poor visibility (Visib. Scarsa). The right axis indicates the qualitative activity levels from low (basso) to highest (altissimo) with the green highlighted band indicating the most common level. Courtesy of INGV (Report 17/2023, Stromboli, Bollettino Settimanale, 18/04/2023 - 24/04/2023).

Table 16. Summary of type, frequency, and intensity of explosive activity at Stromboli by month during January-April 2023; information from webcam observations. Courtesy of INGV weekly reports.

Month Explosive Activity
Jan 2023 Typical Strombolian activity with spattering and lava overflows in the N crater area. Explosions were reported from 4 vents in the N area and 1-2 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-12 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Feb 2023 Typical Strombolian activity with spattering in the N crater area. Explosions were reported from 2-3 vents in the N area and 1-4 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-14 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Mar 2023 Typical Strombolian activity with spattering and lava overflows in the N crater area. Explosions were reported from 2-3 vents in the N area and 2-4 vents in the CS area. The average hourly frequency of explosions was low-to-medium (1-18 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in the N crater area and up to high (greater than 150 m high) in the CS crater area.
Apr 2023 Typical Strombolian activity. Explosions were reported from 2 vents in the N area and 2-3 vents in the CS area. The average hourly frequency of explosions was low-to-high (1-16 events/hour). The intensity of the explosions varied from low (less than 80 m high) to medium (less than 150 m high) in both the N and CS crater areas.
Figure (see Caption) Figure 254. Intermittent thermal activity at Stromboli was detected during January through April 2023 and varied in strength, as shown in this MIROVA graph (Log Radiative Power). A pulse of activity was captured during late March. Courtesy of MIROVA.
Figure (see Caption) Figure 255. Infrared (bands B12, B11, B4) satellite images showing persistent thermal anomalies at both summit crater on 1 February 2023 (top left), 23 March 2023 (top right), 8 March 2023 (bottom left), and 27 April 2023. A particularly strong thermal anomaly was visible on 8 March. Courtesy of Copernicus Browser.

Activity during January-February 2023. Strombolian explosions were reported in the N crater area, as well as lava effusion. Explosive activity in the N crater area ejected coarse material (bombs and lapilli). Intense spattering was observed in both the N1 and N2 craters. In the CS crater area, explosions generally ejected fine material (ash), sometimes to heights greater than 250 m. The intensity of the explosions was characterized as low-to-medium in the N crater and medium-to-high in the CS crater. After intense spattering activity from the N crater area, a lava overflow began at 2136 on 2 January that flowed part way down the Sciara del Fuoco, possibly moving down the drainage that formed in October, out of view from webcams. The flow remained active for a couple of hours before stopping and beginning to cool. A second lava flow was reported at 0224 on 4 January that similarly remained active for a few hours before stopping and cooling. Intense spattering was observed on 11 and 13 January from the N1 crater. After intense spattering activity at the N2 crater at 1052 on 17 January another lava flow started to flow into the upper part of the Sciara del Fuoco (figure 256), dividing into two: one that traveled in the direction of the drainage formed in October, and the other one moving parallel to the point of emission. By the afternoon, the rate of the flow began to decrease, and at 1900 it started to cool. A lava flow was reported at 1519 on 24 January following intense spattering in the N2 area, which began to flow into the upper part of the Sciara del Fuoco. By the morning of 25 January, the lava flow had begun to cool. During 27 January the frequency of eruption in the CS crater area increased to 6-7 events/hour compared to the typical 1-7 events/hour; the following two days showed a decrease in frequency to less than 1 event/hour. Starting at 1007 on 30 January a high-energy explosive sequence was produced by vents in the CS crater area. The sequence began with an initial energetic pulse that lasted 45 seconds, ejecting predominantly coarse products 300 m above the crater that fell in an ESE direction. Subsequent and less intense explosions ejected material 100 m above the crater. The total duration of this event lasted approximately two minutes. During 31 January through 6, 13, and 24 February spattering activity was particularly intense for short periods in the N2 crater.

Figure (see Caption) Figure 256. Webcam images of the lava flow development at Stromboli during 17 January 2023 taken by the SCT infrared camera. The lava flow appears light yellow-green in the infrared images. Courtesy of INGV (Report 04/2023, Stromboli, Bollettino Settimanale, 16/01/2023 - 22/01/2023).

An explosive sequence was reported on 16 February that was characterized by a major explosion in the CS crater area (figure 257). The sequence began at 1817 near the S2 crater that ejected material radially. A few seconds later, lava fountains were observed in the central part of the crater. Three explosions of medium intensity (material was ejected less than 150 m high) were recorded at the S2 crater. The first part of this sequence lasted approximately one minute, according to INGV, and material rose 300 m above the crater and then was deposited along the Sciara del Fuoco. The second phase began at 1818 at the S1 crater; it lasted seven seconds and material was ejected 150 m above the crater. Another event 20 seconds later lasted 12 seconds, also ejecting material 150 m above the crater. The sequence ended with at least three explosions of mostly fine material from the S1 crater. The total duration of this sequence was about two minutes.

Figure (see Caption) Figure 257. Webcam images of the explosive sequence at Stromboli on 16 February 2023 taken by the SCT and SCV infrared and visible cameras. The lava appears light yellow-green in the infrared images. Courtesy of INGV (Report 08/2023, Stromboli, Bollettino Settimanale, 13/02/2023 - 19/02/2023).

Short, intense spattering activity was noted above the N1 crater on 27 and 28 February. A lava overflow was first reported at 0657 from the N2 crater on 27 February that flowed into the October 2022 drainage. By 1900 the flow had stopped. A second lava overflow also in the N crater area occurred at 2149, which overlapped the first flow and then stopped by 0150 on 28 February. Material detached from both the lava overflows rolled down the Sciara del Fuoco, some of which was visible in webcam images.

Activity during March-April 2023. Strombolian activity continued with spattering activity and lava overflows in the N crater area during March. Explosive activity at the N crater area varied from low (less than 80 m high) to medium (less than 150 m high) and ejected coarse material, such as bombs and lapilli. Spattering was observed above the N1 crater, while explosive activity at the CS crater area varied from medium to high (greater than 150 m high) and ejected coarse material. Intense spattering activity was observed for short periods on 6 March above the N1 crater. At approximately 0610 a lava overflow was reported around the N2 crater on 8 March, which then flowed into the October 2022 drainage. By 1700 the flow started to cool. A second overflow began at 1712 on 9 March and overlapped the previous flow. It had stopped by 2100. Material from both flows was deposited along the Sciara del Fuoco, though much of the activity was not visible in webcam images. On 11 March a lava overflow was observed at 0215 that overlapped the two previous flows in the October 2022 drainage. By late afternoon on 12 March, it had stopped.

During a field excursion on 16 March, scientists noted that a vent in the central crater area was degassing. Another vent showed occasional Strombolian activity that emitted ash and lapilli. During 1200-1430 low-to-medium intense activity was reported; the N1 crater emitted ash emissions and the N2 crater emitted both ash and coarse material. Some explosions also occurred in the CS crater area that ejected coarse material. The C crater in the CS crater area occasionally showed gas jetting and low intensity explosions on 17 and 22 March; no activity was observed at the S1 crater. Intense, longer periods of spattering were reported in the N1 crater on 19, 24, and 25 March. Around 2242 on 23 March a lava overflow began from the N1 crater that, after about an hour, began moving down the October 2022 drainage and flow along the Sciara del Fuoco (figure 258). Between 0200 and 0400 on 26 March the flow rate increased, which generated avalanches of material from collapses at the advancing flow front. By early afternoon, the flow began to cool. On 25 March at 1548 an explosive sequence began from one of the vents at S2 in the CS crater area (figure 258). Fine ash mixed with coarse material was ejected 300 m above the crater rim and drifted SSE. Some modest explosions around Vent C were detected at 1549 on 25 March, which included an explosion at 1551 that ejected coarse material. The entire explosive sequence lasted approximately three minutes.

Figure (see Caption) Figure 258. Webcam images of the lava overflow in the N1 crater area of Stromboli on 23 March 2023 taken by the SCT infrared camera. The lava appears light yellow-green in the infrared images. The start of the explosive sequence was also captured on 25 March 2023 accompanied by an eruption plume (e) captured by the SCT and SPT infrared webcams. Courtesy of INGV (Report 13/2023, Stromboli, Bollettino Settimanale, 20/03/2023 - 26/03/2023).

During April explosions persisted in both the N and CS crater areas. Fine material was ejected less than 80 m above the N crater rim until 6 April, followed by ejection of coarser material. Fine material was also ejected less than 80 m above the CS crater rim. The C and S2 crater did not show significant eruptive activity. On 7 April an explosive sequence was detected in the CS crater area at 1203 (figure 259). The first explosion lasted approximately 18 seconds and ejected material 400 m above the crater rim, depositing pyroclastic material in the upper part of the Sciara del Fuoco. At 1204 a second, less intense explosion lasted approximately four seconds and deposited pyroclastic products outside the crater area and near Pizzo Sopra La Fossa. A third explosion at 1205 was mainly composed of ash that rose about 150 m above the crater and lasted roughly 20 seconds. A fourth explosion occurred at 1205 about 28 seconds after the third explosion and ejected a mixture of coarse and fine material about 200 m above the crater; the explosion lasted roughly seven seconds. Overall, the entire explosive sequence lasted about two minutes and 20 seconds. After the explosive sequence on 7 April, explosions in both the N and CS crater areas ejected material as high as 150 m above the crater.

Figure (see Caption) Figure 259. Webcam images of the explosive sequence at Stromboli during 1203-1205 (local time) on 7 April 2023 taken by the SCT infrared camera. Strong eruption plumes are visible, accompanied by deposits on the nearby flanks. Courtesy of INGV (Report 15/2023, Stromboli, Bollettino Settimanale, 03/04/2023 - 09/04/2023).

On 21 April research scientists from INGV made field observations in the summit area of Stromboli, and some lapilli samples were collected. In the N crater area near the N1 crater, a small cone was observed with at least two active vents, one of which was characterized by Strombolian explosions. The other vent produced explosions that ejected ash and chunks of cooled lava. At the N2 crater at least one vent was active and frequently emitted ash. In the CS crater area, a small cone contained 2-3 degassing vents and a smaller, possible fissure area also showed signs of degassing close to the Pizzo Sopra La Fossa. In the S part of the crater, three vents were active: a small hornito was characterized by modest and rare explosions, a vent that intermittently produced weak Strombolian explosions, and a vent at the end of the terrace that produced frequent ash emissions. Near the S1 crater there was a hornito that generally emitted weak gas-and-steam emissions, sometimes associated with “gas rings”. On 22 April another field inspection was carried out that reported two large sliding surfaces on the Sciara del Fuoco that showed where blocks frequently descended toward the sea. A thermal anomaly was detected at 0150 on 29 April.

Geologic Background. Spectacular incandescent nighttime explosions at Stromboli have long attracted visitors to the "Lighthouse of the Mediterranean" in the NE Aeolian Islands. This volcano has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout much of historical time. The small island is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The Neostromboli eruptive period took place between about 13,000 and 5,000 years ago. The active summit vents are located at the head of the Sciara del Fuoco, a prominent scarp that formed about 5,000 years ago due to a series of slope failures which extends to below sea level. The modern volcano has been constructed within this scarp, which funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded for more than a millennium.

Information Contacts: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Catania, Piazza Roma 2, 95123 Catania, Italy, (URL: http://www.ct.ingv.it/en/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Nishinoshima (Japan) — July 2023 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 100 m

All times are local (unless otherwise noted)


Small ash plumes and fumarolic activity during November 2022 through April 2023

Nishinoshima is a small island located about 1,000 km S of Tokyo in the Ogasawara Arc in Japan. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. Eruptions date back to 1973; the most recent eruption period began in October 2022 and was characterized by ash plumes and fumarolic activity (BGVN 47:12). This report describes ash plumes and fumarolic activity during November 2022 through April 2023 based on monthly reports from the Japan Meteorological Agency (JMA) monthly reports and satellite data.

The most recent eruptive activity prior to the reporting internal occurred on 12 October 2022, when an ash plume rose 3.5 km above the crater rim. An aerial observation conducted by the Japan Coast Guard (JCG) on 25 November reported that white fumaroles rose approximately 200 m above the central crater of a pyroclastic cone (figure 119), and multiple plumes were observed on the ESE flank of the cone. Discolored water ranging from reddish-brown to brown and yellowish-green were visible around the perimeter of the island (figure 119). No significant activity was reported in December.

Figure (see Caption) Figure 119. Aerial photo of gas-and-steam plumes rising 200 m above Nishinoshima on 25 November 2022. Reddish brown to brown and yellowish-green discolored water was visible around the perimeter of the island. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, November 2022).

During an overflight conducted by JCG on 25 January 2023 intermittent activity and small, blackish-gray plumes rose 900 m above the central part of the crater were observed (figure 120). The fumarolic zone of the E flank and base of the cone had expanded and emissions had intensified. Dark brown discolored water was visible around the perimeter of the island.

Figure (see Caption) Figure 120. Aerial photo of a black-gray ash plume rising approximately 900 m above the crater rim of Nishinoshima on 25 January 2023. White fumaroles were visible on the E slope of the pyroclastic cone. Dense brown to brown discolored water was observed surrounding the island. Photo has been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, January, 2023).

No significant activity was reported during February through March. Ash plumes at 1050 and 1420 on 11 April rose 1.9 km above the crater rim and drifted NW and N. These were the first ash plumes observed since 12 October 2022. On 14 April JCG carried out an overflight and reported that no further eruptive activity was visible, although white gas-and-steam plumes were visible from the central crater and rose 900 m high (figure 121). Brownish and yellow-green discolored water surrounded the island.

Figure (see Caption) Figure 121. Aerial photo of white gas-and-steam plumes rising 900 m above Nishinoshima on 14 April 2023. Brown and yellow-green discolored water is visible around the perimeter of the island. Photo has been color corrected. Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, April, 2023).

Intermittent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity) during November 2022 through April 2023 (figure 123). A cluster of six to eight anomalies were detected during November while a smaller number were detected during the following months: two to three during December, one during mid-January 2023, one during February, five during March, and two during April. Thermal activity was also reflected in infrared satellite data at the summit crater, accompanied by occasional gas-and-steam plumes (figure 124).

Figure (see Caption) Figure 123. Intermittent low-to-moderate thermal anomalies were detected at Nishinoshima during November 2022 through April 2023, according to this MIROVA graph (Log Radiative Power). A cluster of anomalies occurred throughout November, while fewer anomalies were detected during the following months. Courtesy of MIROVA.
Figure (see Caption) Figure 124. Infrared (bands B12, B11, B4) satellite images show a small thermal anomaly at the summit crater of Nishinoshima on 9 January 2023 (left) and 8 February 2023 (right). Gas-and-steam plumes accompanied this activity and extended S and SE, respectively. Courtesy of Copernicus Browser.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Karangetang (Indonesia) — July 2023 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, incandescent avalanches, and ash plumes during January-June 2023

Karangetang (also known as Api Siau), at the northern end of the island of Siau, Indonesia, contains five summit craters along a N-S line. More than 40 eruptions have been recorded since 1675; recent eruptions have included frequent explosive activity, sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters and collapses of lava flow fronts have produced pyroclastic flows. The two active summit craters are Kawah Dua (the N crater) and Kawah Utama (the S crater, also referred to as the “Main Crater”). The most recent eruption began in late November 2018 and has more recently consisted of weak thermal activity and gas-and-steam emissions (BGVN 48:01). This report updates activity characterized by lava flows, incandescent avalanches, and ash plumes during January through June 2023 using reports from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), MAGMA Indonesia, the Darwin VAAC (Volcano Ash Advisory Center), and satellite data.

Activity during January was relatively low and mainly consisted of white gas-and-steam emissions that rose 25-150 m above Main Crater (S crater) and drifted in different directions. Incandescence was visible from the lava dome in Kawah Dua (the N crater). Weather conditions often prevented clear views of the summit. On 18 January the number of seismic signals that indicated avalanches of material began to increase. In addition, there were a total of 71 earthquakes detected during the month.

Activity continued to increase during the first week of February. Material from Main Crater traveled as far as 800 m down the Batuawang (S) and Batang (W) drainages and as far as 1 km W down the Beha (W) drainage on 4 February. On 6 February 43 earthquake events were recorded, and on 7 February, 62 events were recorded. White gas-and-steam emissions rose 25-250 m above both summit craters throughout the month. PVMBG reported an eruption began during the evening of 8 February around 1700. Photos showed incandescent material at Main Crater. Incandescent material had also descended the flank in at least two unconfirmed directions as far as 2 km from Main Crater, accompanied by ash plumes (figure 60). As a result, PVMBG increased the Volcano Alert Level (VAL) to 3 (the second highest level on a 1-4 scale).

Figure (see Caption) Figure 60. Photos of the eruption at Karangetang on 8 February 2023 that consisted of incandescent material descending the flanks (top left), ash plumes (top right and bottom left), and summit crater incandescence (bottom right). Courtesy of IDN Times.

Occasional nighttime webcam images showed three main incandescent lava flows of differing lengths traveling down the S, SW, and W flanks (figure 61). Incandescent rocks were visible on the upper flanks, possibly from ejected or collapsed material from the crater, and incandescence was the most intense at the summit. Based on analyses of satellite imagery and weather models, the Darwin VAAC reported that daily ash plumes during 16-20 February rose to 2.1-3 km altitude and drifted NNE, E, and SE. BNPB reported on 16 February that as many as 77 people were evacuated and relocated to the East Siau Museum. A webcam image taken at 2156 on 17 February possibly showed incandescent material descending the SE flank. Ash plumes rose to 2.1 km altitude and drifted SE during 22-23 February, according to the Darwin VAAC.

Figure (see Caption) Figure 61. Webcam image of summit incandescence and lava flows descending the S, SW, and W flanks of Karangetang on 13 February 2023. Courtesy of MAGMA Indonesia.

Incandescent avalanches of material and summit incandescence at Main Crater continued during March. White gas-and-steam emissions during March generally rose 25-150 m above the summit crater; on 31 March gas-and-steam emissions rose 200-400 m high. An ash plume rose to 2.4 km altitude and drifted S at 1710 on 9 March and a large thermal anomaly was visible in images taken at 0550 and 0930 on 10 March. Incandescent material was visible at the summit and on the flanks based on webcam images taken at 0007 and 2345 on 16 March, at 1828 on 17 March, at 1940 on 18 March, at 2311 on 19 March, and at 2351 on 20 March. Incandescence was most intense on 18 and 20 March and webcam images showed possible Strombolian explosions (figure 62). An ash plume rose to 2.4 km altitude and drifted SW on 18 March, accompanied by a thermal anomaly.

Figure (see Caption) Figure 62. Webcam image of intense summit incandescence and incandescent avalanches descending the flanks of Karangetang on 18 March 2023. Photo has been color corrected. Courtesy of MAGMA Indonesia.

Summit crater incandescence at Main Crater and on the flanks persisted during April. Incandescent material at the S crater and on the flanks was reported at 0016 on 1 April. The lava flows had stopped by 1 April according to PVMBG, although incandescence was still visible up to 10 m high. Seismic signals indicating effusion decreased and by 6 April they were no longer detected. Incandescence was visible from both summit craters. On 26 April the VAL was lowered to 2 (the second lowest level on a 1-4 scale). White gas-and-steam emissions rose 25-200 m above the summit crater.

During May white gas-and-steam emissions generally rose 50-250 m above the summit, though it was often cloudy, which prevented clear views; on 21 May gas-and-steam emissions rose 50-400 m high. Nighttime N summit crater incandescence rose 10-25 m above the lava dome, and less intense incandescence was noted above Main Crater, which reached about 10 m above the dome. Sounds of falling rocks at Main Crater were heard on 15 May and the seismic network recorded 32 rockfall events in the crater on 17 May. Avalanches traveled as far as 1.5 km down the SW and S flanks, accompanied by rumbling sounds on 18 May. Incandescent material descending the flanks was captured in a webcam image at 2025 on 19 May (figure 63) and on 29 May; summit crater incandescence was observed in webcam images at 2332 on 26 May and at 2304 on 29 May. On 19 May the VAL was again raised to 3.

Figure (see Caption) Figure 63. Webcam image showing incandescent material descending the flanks of Karangetang on 19 May 2023. Courtesy of MAGMA Indonesia.

Occasional Main Crater incandescence was reported during June, as well as incandescent material on the flanks. White gas-and-steam emissions rose 10-200 m above the summit crater. Ash plumes rose to 2.1 km altitude and drifted SE and E during 2-4 June, according to the Darwin VAAC. Material on the flanks of Main Crater were observed at 2225 on 7 June, at 2051 on 9 June, at 0007 on 17 June, and at 0440 on 18 June. Webcam images taken on 21, 25, and 27 June showed incandescence at Main Crater and from material on the flanks.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong thermal activity during mid-February through March and mid-May through June, which represented incandescent avalanches and lava flows (figure 64). During April through mid-May the power of the anomalies decreased but frequent anomalies were still detected. Brief gaps in activity occurred during late March through early April and during mid-June. Infrared satellite images showed strong lava flows mainly affecting the SW and S flanks, accompanied by gas-and-steam emissions (figure 65). According to data recorded by the MODVOLC thermal algorithm, there were a total of 79 thermal hotspots detected: 28 during February, 24 during March, one during April, five during May, and 21 during June.

Figure (see Caption) Figure 64. Strong thermal activity was detected during mid-February 2023 through March and mid-May through June at Karangetang during January through June 2023, as recorded by this MIROVA graph (Log Radiative Power). During April through mid-May the power of the anomalies decreased, but the frequency at which they occurred was still relatively high. A brief gap in activity was shown during mid-June. Courtesy of MIROVA.
Figure (see Caption) Figure 65. Incandescent avalanches of material and summit crater incandescence was visible in infrared satellite images (bands 12, 11, 8A) at both the N and S summit crater of Karangetang on 17 February 2023 (top left), 13 April 2023 (top right), 28 May 2023 (bottom left), and 7 June 2023 (bottom right), as shown in these infrared (bands 12, 11, 8A) satellite images. The incandescent avalanches mainly affected the SW and S flanks. Sometimes gas-and-steam plumes accompanied the thermal activity. Courtesy of Copernicus Browser.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented (Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); IDN Times, Jl. Jend. Gatot Subroto Kav. 27 3rd Floor Kuningan, Jakarta, Indonesia 12950, Status of Karangetang Volcano in Sitaro Islands Increases (URL: https://sulsel.idntimes.com/news/indonesia/savi/status-gunung-api-karangetang-di-kepulauan-sitaro-meningkat?page=all).


Ahyi (United States) — July 2023 Citation iconCite this Report

Ahyi

United States

20.42°N, 145.03°E; summit elev. -75 m

All times are local (unless otherwise noted)


Intermittent hydroacoustic signals and discolored plumes during November 2022-June 2023

Ahyi seamount is a large, conical submarine volcano that rises to within 75 m of the ocean surface about 18 km SE of the island of Farallon de Pajaros in the Northern Marianas. The remote location of the seamount has made eruptions difficult to document, but seismic stations installed in the region confirmed an eruption in the vicinity in 2001. No new activity was detected until April-May 2014 when an eruption was detected by NOAA (National Oceanic and Atmospheric Administration) divers, hydroacoustic sensors, and seismic stations (BGVN 42:04). New activity was first detected on 15 November by hydroacoustic sensors that were consistent with submarine volcanic activity. This report covers activity during November 2022 through June 2023 based on daily and weekly reports from the US Geological Survey.

Starting in mid-October, hydroacoustic sensors at Wake Island (2.2 km E) recorded signals consistent with submarine volcanic activity, according to a report from the USGS issued on 15 November 2022. A combined analysis of the hydroacoustic signals and seismic stations located at Guam and Chichijima Island, Japan, suggested that the source of this activity was at or near the Ahyi seamount. After a re-analysis of a satellite image of the area that was captured on 6 November, USGS confirmed that there was no evidence of discoloration at the ocean surface. Few hydroacoustic and seismic signals continued through November, including on 18 November, which USGS suggested signified a decline or pause in unrest. A VONA (Volcano Observatory Notice for Aviation) reported that a discolored water plume was persistently visible in satellite data starting on 18 November (figure 6). Though clouds often obscured clear views of the volcano, another discolored water plume was captured in a satellite image on 26 November. The Aviation Color Code (ACC) was raised to Yellow (the second lowest level on a four-color scale) and the Volcano Alert Level (VAL) was raised to Advisory (the second lowest level on a four-level scale) on 29 November.

Figure (see Caption) Figure 6. A clear, true color satellite image showed a yellow-green discolored water plume extending NW from the Ahyi seamount (white arrow) on 21 November 2022. Courtesy of Copernicus Browser.

During December, occasional detections were recorded on the Wake Island hydrophone sensors and discolored water over the seamount remained visible. During 2-7, 10-12, and 16-31 December possible explosion signals were detected. A small area of discolored water was observed in high-resolution Sentinel-2 satellite images during 1-6 December (figure 7). High-resolution satellite images recorded discolored water plumes on 13 December that originated from the summit region; no observations indicated that activity breached the ocean surface. A possible underwater plume was visible in satellite images on 18 December, and during 19-20 December a definite but diffuse underwater plume located SSE from the main vent was reported. An underwater plume was visible in a satellite image taken on 26 December (figure 7).

Figure (see Caption) Figure 7. Clear, true color satellite images showed yellow-green discolored water plumes extending NE and W from Ahyi (white arrows) on 1 (left) and 26 (right) December 2022, respectively. Courtesy of Copernicus Browser.

Hydrophone sensors continued to detect signals consistent with possible explosions during 1-8 January 2023. USGS reported that the number of detections decreased during 4-5 January. The hydrophone sensors experienced a data outage that started at 0118 on 8 January and continued through 10 January, though according to USGS, possible explosions were recorded prior to the data outage and likely continued during the outage. A discolored water plume originating from the summit region was detected in a partly cloudy satellite image on 8 January. On 11-12 and 15-17 January possible explosion signals were recorded again. One small signal was detected during 22-23 January and several signals were recorded on 25 and 31 January. During 27-31 January a plume of discolored water was observed above the seamount in satellite imagery (figure 8).

Figure (see Caption) Figure 8. True color satellite images showed intermittent yellow-green discolored water plumes of various sizes extending N on 5 January 2023 (top left), SE on 30 January 2023 (top right), W on 4 February 2023 (bottom left), and SW on 1 March 2023 (bottom right) from Ahyi (white arrows). Courtesy of Copernicus Browser.

Low levels of activity continued during February and March, based on data from pressure sensors on Wake Island. During 1 and 4-6 February activity was reported, and a submarine plume was observed on 4 February (figure 8). Possible explosion signals were detected during 7-8, 10, 13-14, and 24 February. During 1-2 and 3-5 March a plume of discolored water was observed in satellite imagery (figure 8). Almost continuous hydroacoustic signals were detected in remote pressure sensor data on Wake Island 2,270 km E from the volcano during 7-13 March. During 12-13 March water discoloration around the seamount was observed in satellite imagery, despite cloudy weather. By 14 March discolored water extended about 35 km, but no direction was noted. USGS reported that the continuous hydroacoustic signals detected during 13-14 March stopped abruptly on 14 March and no new detections were observed. Three 30 second hydroacoustic detections were reported during 17-19 March, but no activity was visible due to cloudy weather. A data outage was reported during 21-22 March, making pressure sensor data unavailable; a discolored water plume was, however, visible in satellite data. A possible underwater explosion signal was detected by pressure sensors at Wake Island on 26, 29, and 31 March, though the cause and origin of these events were unclear.

Similar low activity continued during April, May, and June. Several signals were detected during 1-3 April in pressure sensors at Wake Island. USGS suggested that these may be related to underwater explosions or earthquakes at the volcano, but no underwater plumes were visible in clear satellite images. The pressure sensors had data outages during 12-13 April and no data were recorded; no underwater plumes were visible in satellite images, although cloudy weather obscured most clear views. Eruptive activity was reported starting at 2210 on 21 May. On 22 May a discolored water plume that extended 4 km was visible in satellite images, though no direction was recorded. During 23-24 May some signals were detected by the underwater pressure sensors. Possible hydroacoustic signals were detected during 2-3 and 6-8 June. Multiple hydroacoustic signals were detected during 9-11 and 16-17 June, although no activity was visible in satellite images. One hydroacoustic signal was detected during 23-24 June, but there was some uncertainty about its association with volcanic activity. A single possible hydroacoustic signal was detected during 30 June to 1 July.

Geologic Background. Ahyi seamount is a large conical submarine volcano that rises to within 75 m of the ocean surface ~18 km SE of the island of Farallon de Pajaros in the northern Marianas. Water discoloration has been observed there, and in 1979 the crew of a fishing boat felt shocks over the summit area, followed by upwelling of sulfur-bearing water. On 24-25 April 2001 an explosive eruption was detected seismically by a station on Rangiroa Atoll, Tuamotu Archipelago. The event was well constrained (+/- 15 km) at a location near the southern base of Ahyi. An eruption in April-May 2014 was detected by NOAA divers, hydroacoustic sensors, and seismic stations.

Information Contacts: US Geological Survey, Volcano Hazards Program (USGS-VHP), 12201 Sunrise Valley Drive, Reston, VA, USA, https://volcanoes.usgs.gov/index.html; Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Kadovar (Papua New Guinea) — June 2023 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


An ash plume and weak thermal anomaly during May 2023

Kadovar is a 2-km-wide island that is the emergent summit of a Bismarck Sea stratovolcano. It lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the volcano, filling an arcuate landslide scarp open to the S. Submarine debris-avalanche deposits occur to the S of the island. The current eruption began in January 2018 and has comprised lava effusion from vents at the summit and at the E coast; more recent activity has consisted of ash plumes, weak thermal activity, and gas-and-steam plumes (BGVN 48:02). This report covers activity during February through May 2023 using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.

Activity during the reporting period was relatively low and mainly consisted of white gas-and-steam plumes that were visible in natural color satellite images on clear weather days (figure 67). According to a Darwin VAAC report, at 2040 on 6 May an ash plume rose to 4.6 km altitude and drifted W; by 2300 the plume had dissipated. MODIS satellite instruments using the MODVOLC thermal algorithm detected a single thermal hotspot on the SE side of the island on 7 May. Weak thermal activity was also detected in a satellite image on the E side of the island on 14 May, accompanied by a white gas-and-steam plume that drifted SE (figure 68).

Figure (see Caption) Figure 67. True color satellite images showing a white gas-and-steam plume rising from Kadovar on 28 February 2023 (left) and 30 March 2023 (right) and drifting SE and S, respectively. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 68. Infrared (bands B12, B11, B4) image showing weak thermal activity on the E side of the island, accompanied by a gas-and-steam plume that drifted SE from Kadovar on 14 May 2023. Courtesy of Copernicus Browser.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


San Miguel (El Salvador) — June 2023 Citation iconCite this Report

San Miguel

El Salvador

13.434°N, 88.269°W; summit elev. 2130 m

All times are local (unless otherwise noted)


Small gas-and-ash explosions during March and May 2023

San Miguel in El Salvador is a broad, deep crater complex that has been frequently modified by eruptions recorded since the early 16th century and consists of the summit known locally as Chaparrastique. Flank eruptions have produced lava flows that extended to the N, NE, and SE during the 17-19th centuries. The most recent activity has consisted of minor ash eruptions from the summit crater. The current eruption period began in November 2022 and has been characterized by frequent phreatic explosions, gas-and-ash emissions, and sulfur dioxide plumes (BGVN 47:12). This report describes small gas-and-ash explosions during December 2022 through May 2023 based on special reports from the Ministero de Medio Ambiente y Recursos Naturales (MARN).

Activity has been relatively low since the last recorded explosions on 29 November 2022. Seismicity recorded by the San Miguel Volcano Station (VSM) located on the N flank at 1.7 km elevation had decreased by 7 December. Sulfur dioxide gas measurements taken with DOAS (Differential Optical Absorption Spectroscopy) mobile equipment were below typical previously recorded values: 300 tons per day (t/d). During December, small explosions were recorded by the seismic network and manifested as gas-and-steam emissions.

Gas-and-ash explosions in the crater occurred during January 2023, which were recorded by the seismic network. Sulfur dioxide values remained low, between 300-400 t/d through 10 March. At 0817 on 14 January a gas-and-ash emission was visible in webcam images, rising just above the crater rim. Some mornings during February, small gas-and-steam plumes were visible in the crater. On 7 March at 2252 MARN noted an increase in degassing from the central crater; gas emissions were constantly observed through the early morning hours on 8 March. During the early morning of 8 March through the afternoon on 9 March, 12 emissions were registered, some accompanied by ash. The last gas-and-ash emission was recorded at 1210 on 9 March; very fine ashfall was reported in El Tránsito (10 km S), La Morita (6 km W), and La Piedrita (3 km W). The smell of sulfur was reported in Piedra Azul (5 km SW). On 16 March MARN reported that gas-and-steam emissions decreased.

Low degassing and very low seismicity were reported during April; no explosions have been detected between 9 March and 27 May. The sulfur dioxide emissions remained between 350-400 t/d; during 13-20 April sulfur dioxide values fluctuated between 30-300 t/d. Activity remained low through most of May; on 23 May seismicity increased. An explosion was detected at 1647 on 27 May generated a gas-and-ash plume that rose 700 m high (figure 32); a decrease in seismicity and gas emissions followed. The DOAS station installed on the W flank recorded sulfur dioxide values that reached 400 t/d on 27 May; subsequent measurements showed a decrease to 268 t/d on 28 May and 100 t/d on 29 May.

Figure (see Caption) Figure 32. Webcam image of a gas-and-ash plume rising 700 m above San Miguel at 1652 on 27 May 2023. Courtesy of MARN.

Geologic Background. The symmetrical cone of San Miguel, one of the most active volcanoes in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. A broad, deep, crater complex that has been frequently modified by eruptions recorded since the early 16th century caps the truncated unvegetated summit, also known locally as Chaparrastique. Flanks eruptions of the basaltic-andesitic volcano have produced many lava flows, including several during the 17th-19th centuries that extended to the N, NE, and SE. The SE-flank flows are the largest and form broad, sparsely vegetated lava fields crossed by highways and a railroad skirting the base of the volcano. Flank vent locations have migrated higher on the edifice during historical time, and the most recent activity has consisted of minor ash eruptions from the summit crater.

Information Contacts: Ministero de Medio Ambiente y Recursos Naturales (MARN), Km. 5½ Carretera a Nueva San Salvador, Avenida las Mercedes, San Salvador, El Salvador (URL: http://www.snet.gob.sv/ver/vulcanologia).


Semisopochnoi (United States) — June 2023 Citation iconCite this Report

Semisopochnoi

United States

51.93°N, 179.58°E; summit elev. 1221 m

All times are local (unless otherwise noted)


Occasional explosions, ash deposits, and gas-and-steam plumes during December 2022-May 2023

Semisopochnoi is located in the western Aleutians, is 20-km-wide at sea level, and contains an 8-km-wide caldera. The three-peaked Mount Young (formerly Cerberus) was constructed within the caldera during the Holocene. Each of these peaks contains a summit crater; the lava flows on the N flank appear younger than those on the S side. The current eruption period began in early February 2021 and has more recently consisted of intermittent explosions and ash emissions (BGVN 47:12). This report updates activity during December 2022 through May 2023 using daily, weekly, and special reports from the Alaska Volcano Observatory (AVO). AVO monitors the volcano using local seismic and infrasound sensors, satellite data, web cameras, and remote infrasound and lightning networks.

Activity during most of December 2022 was relatively quiet; according to AVO no eruptive or explosive activity was observed since 7 November 2022. Intermittent tremor and occasional small earthquakes were observed in geophysical data. Continuous gas-and-steam emissions were observed from the N crater of Mount Young in webcam images on clear weather days (figure 25). On 24 December, there was a slight increase in earthquake activity and several small possible explosion signals were detected in infrasound data. Eruptive activity resumed on 27 December at the N crater of Mount Young; AVO issued a Volcano Activity Notice (VAN) that reported minor ash deposits on the flanks of Mount Young that extended as far as 1 km from the vent, according to webcam images taken during 27-28 December (figure 26). No ash plumes were observed in webcam or satellite imagery, but a persistent gas-and-steam plume that might have contained some ash rose to 1.5 km altitude. As a result, AVO raised the Aviation Color Code (ACC) to Orange (the second highest level on a four-color scale) and the Volcano Alert Level (VAL) to Watch (the second highest level on a four-level scale). Possible explosions were detected during 21 December 2022 through 1 January 2023 and seismic tremor was recorded during 30-31 December.

Figure (see Caption) Figure 25. Webcam image of a gas-and-steam plume rising above Semisopochnoi from Mount Young on 21 December 2022. Courtesy of AVO.
Figure (see Caption) Figure 26. Webcam image showing fresh ash deposits (black color) at the summit and on the flanks of Mount Young at Semisopochnoi, extending up to 1 km from the N crater. Image was taken on 27 December 2022. Image has been color corrected. Courtesy of AVO.

During January 2023 eruptive activity continued at the active N crater of Mount Young. Minor ash deposits were observed on the flanks, extending about 2 km SSW, based on webcam images from 1 and 3 January. A possible explosion occurred during 1-2 January based on elevated seismicity recorded on local seismometers and an infrasound signal recorded minutes later by an array at Adak. Though no ash plumes were observed in webcam or satellite imagery, a persistent gas-and-steam plume rose to 1.5 km altitude that might have carried minor traces of ash. Ash deposits were accompanied by periods of elevated seismicity and infrasound signals from the local geophysical network, which AVO reported were likely due to weak explosive activity. Low-level explosive activity was also detected during 2-3 January, with minor gas-and-steam emissions and a new ash deposit that was visible in webcam images. Low-level explosive activity was detected in geophysical data during 4-5 January, with elevated seismicity and infrasound signals observed on local stations. Volcanic tremor was detected during 7-9 January and very weak explosive activity was detected in seismic and infrasound data on 9 January. Weak seismic and infrasound signals were recorded on 17 January, which indicated minor explosive activity, but no ash emissions were observed in clear webcam images; a gas-and-steam plume continued to rise to 1.5 km altitude. During 29-30 January, ash deposits near the summit were observed on fresh snow, according to webcam images.

The active N cone at Mount Young continued to produce a gas-and-steam plume during February, but no ash emissions or explosive events were detected. Seismicity remained elevated with faint tremor during early February. Gas-and-steam emissions from the N crater were observed in clear webcam images on 11-13 and 16 February; no explosive activity was detected in seismic, infrasound, or satellite data. Seismicity has also decreased, with no significant seismic tremor observed since 25 January. Therefore, the ACC was lowered to Yellow (the second lowest level on a four-color scale) and the VAL was lowered to Advisory (the second lowest level on a four-color scale) on 22 February.

Gas-and-steam emissions persisted during March from the N cone of Mount Young, based on clear webcam images. A few brief episodes of weak tremor were detected in seismic data, although seismicity decreased over the month. A gas-and-steam plume detected in satellite data extended 150 km on 18 March. Low-level ash emissions from the N cone at Mount Young were observed in several webcam images during 18-19 March, in addition to small explosions and volcanic tremor. The ACC was raised to Orange and the VAL increased to Watch on 19 March. A small explosion was detected in seismic and infrasound data on 21 March.

Low-level unrest continued during April, although cloudy weather often obscured views of the summit; periods of seismic tremor and local earthquakes were recorded. During 3-4 April a gas-and-steam plume was visible traveling more than 200 km overnight; no ash was evident in the plume, according to AVO. A gas-and-steam plume was observed during 4-6 April that extended 400 km but did not seem to contain ash. Small explosions were detected in seismic and infrasound data on 5 April. Occasional clear webcam images showed continuing gas-and-steam emissions rose from Mount Young, but no ash deposits were observed on the snow. On 19 April small explosions and tremor were detected in seismic and infrasound data. A period of seismic tremor was detected during 22-25 April, with possible weak explosions on 25 April. Ash deposits were visible near the crater rim, but it was unclear if these deposits were recent or due to older deposits.

Occasional small earthquakes were recorded during May, but there were no signs of explosive activity seen in geophysical data. Gas-and-steam emissions continued from the N crater of Mount Young, based on webcam images, and seismicity remained slightly elevated. A new, light ash deposit was visible during the morning of 5 May on fresh snow on the NW flank of Mount Young. During 10 May periods of volcanic tremor were observed. The ACC was lowered to Yellow and the VAL to Advisory on 17 May due to no additional evidence of activity.

Geologic Background. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked Mount Cerberus (renamed Mount Young in 2023) was constructed within the caldera during the Holocene. Each of the peaks contains a summit crater; lava flows on the N flank appear younger than those on the south side. Other post-caldera volcanoes include the symmetrical Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented eruptions have originated from Young, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone could have been recently active.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ebeko (Russia) — June 2023 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continued explosions, ash plumes, and ashfall during October 2022-May 2023

Ebeko, located on the N end of Paramushir Island in the Kuril Islands, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruption period began in June 2022 and has recently consisted of frequent explosions, ash plumes, and thermal activity (BGVN 47:10). This report covers similar activity during October 2022 through May 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Activity during October consisted of explosive activity, ash plumes, and occasional thermal anomalies. Visual data by volcanologists from Severo-Kurilsk showed explosions producing ash clouds up to 2.1-3 km altitude which drifted E, N, NE, and SE during 1-8, 10, 16, and 18 October. KVERT issued several Volcano Observatory Notices for Aviation (VONA) on 7, 13-15, and 27 October 2022, stating that explosions generated ash plumes that rose to 2.3-4 km altitude and drifted 5 km E, NE, and SE. Ashfall was reported in Severo-Kurilsk (Paramushir Island, about 7 km E) on 7 and 13 October. Satellite data showed a thermal anomaly over the volcano on 15-16 October. Visual data showed ash plumes rising to 2.5-3.6 km altitude on 22, 25-29, and 31 October and moving NE due to constant explosions.

Similar activity continued during November, with explosions, ash plumes, and ashfall occurring. KVERT issued VONAs on 1-2, 4, 6-7, 9, 13, and 16 November that reported explosions and resulting ash plumes that rose to 1.7-3.6 km altitude and drifted 3-5 km SE, ESE, E, and NE. On 1 November ash plumes extended as far as 110 km SE. On 5, 8, 12, and 24-25 November explosions and ash plumes rose to 2-3.1 km altitude and drifted N and E. Ashfall was observed in Severo-Kurilsk on 7 and 16 November. A thermal anomaly was visible during 1-4, 16, and 20 November. Explosions during 26 November rose as high as 2.7 km altitude and drifted NE (figure 45).

Figure (see Caption) Figure 45. Photo of an ash plume rising to 2.7 km altitude above Ebeko on 26 November 2022. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

Explosions and ash plumes continued to occur in December. During 1-2 and 4 December volcanologists from Severo-Kurilsk observed explosions that sent ash to 1.9-2.5 km altitude and drifted NE and SE (figure 46). VONAs were issued on 5, 9, and 16 December reporting that explosions generated ash plumes rising to 1.9 km, 2.6 km, and 2.4 km altitude and drifted 5 km SE, E, and NE, respectively. A thermal anomaly was visible in satellite imagery on 16 December. On 18 and 27-28 December explosions produced ash plumes that rose to 2.5 km altitude and drifted NE and SE. On 31 December an ash plume rose to 2 km altitude and drifted NE.

Figure (see Caption) Figure 46. Photo of an explosive event at Ebeko at 1109 on 2 December 2022. Photo has been color corrected. Photo by S. Lakomov, IVS FEB RAS.

Explosions continued during January 2023, based on visual observations by volcanologists from Severo-Kurilsk. During 1-7 January explosions generated ash plumes that rose to 4 km altitude and drifted NE, E, W, and SE. According to VONAs issued by KVERT on 2, 4, 10, and 23 January, explosions produced ash plumes that rose to 2-4 km altitude and drifted 5 km N, NE, E, and ENE; the ash plume that rose to 4 km altitude occurred on 10 January (figure 47). Satellite data showed a thermal anomaly during 3-4, 10, 13, 16, 21, 22, and 31 January. KVERT reported that an ash cloud on 4 January moved 12 km NE. On 6 and 9-11 January explosions sent ash plumes to 4.5 km altitude and drifted W and ESE. On 13 January an ash plume rose to 3 km altitude and drifted SE. During 20-24 January ash plumes from explosions rose to 3.7 km altitude and drifted SE, N, and NE. On 21 January the ash plume drifted as far as 40 km NE. During 28-29 and 31 January and 1 February ash plumes rose to 4 km altitude and drifted NE.

Figure (see Caption) Figure 47. Photo of a strong ash plume rising to 4 km altitude from an explosive event on 10 January 2023 (local time). Photo by L. Kotenko, IVS FEB RAS.

During February, explosions, ash plumes, and ashfall were reported. During 1, 4-5 and 7-8 February explosions generated ash plumes that rose to 4.5 km altitude and drifted E and NE; ashfall was observed on 5 and 8 February. On 6 February an explosion produced an ash plume that rose to 3 km altitude and drifted 7 km E, causing ashfall in Severo-Kurilsk. A thermal anomaly was visible in satellite data on 8, 9, 13, and 21 February. Explosions on 9 and 12-13 February produced ash plumes that rose to 4 km altitude and drifted E and NE; the ash cloud on 12 February extended as far as 45 km E. On 22 February explosions sent ash to 3 km altitude that drifted E. During 24 and 26-27 February ash plumes rose to 4 km altitude and drifted E. On 28 February an explosion sent ash to 2.5-3 km altitude and drifted 5 km E; ashfall was observed in Severo-Kurilsk.

Activity continued during March; visual observations showed that explosions generated ash plumes that rose to 3.6 km altitude on 3, 5-7, and 9-12 March and drifted E, NE, and NW. Thermal anomalies were visible on 10, 13, and 29-30 March in satellite imagery. On 18, 21-23, 26, and 29-30 March explosions produced ash plumes that rose to 2.8 km altitude and drifted NE and E; the ash plumes during 22-23 March extended up to 76 km E. A VONA issued on 21 March reported an explosion that produced an ash plume that rose to 2.8 km altitude and drifted 5 km E. Another VONA issued on 23 March reported that satellite data showed an ash plume rising to 3 km altitude and drifted 14 km E.

Explosions during April continued to generate ash plumes. On 1 and 4 April an ash plume rose to 2.8-3.5 km altitude and drifted SE and NE. A thermal anomaly was visible in satellite imagery during 1-6 April. Satellite data showed ash plumes and clouds rising to 2-3 km altitude and drifting up to 12 km SW and E on 3 and 6 April (figure 48). KVERT issued VONAs on 3, 5, 14, 16 April describing explosions that produced ash plumes rising to 3 km, 3.5 km, 3.5 km, and 3 km altitude and drifting 5 km S, 5 km NE and SE, 72 km NNE, and 5 km NE, respectively. According to satellite data, the resulting ash cloud from the explosion on 14 April was 25 x 7 km in size and drifted 72-104 km NNE during 14-15 April. According to visual data by volcanologists from Severo-Kurilsk explosions sent ash up to 3.5 km altitude that drifted NE and E during 15-16, 22, 25-26, and 29 April.

Figure (see Caption) Figure 48. Photo of an ash cloud rising to 3.5 km altitude at Ebeko on 6 April 2023. The cloud extended up to 12 km SW and E. Photo has been color corrected. Photo by L. Kotenko, IVS FEB RAS.

The explosive eruption continued during May. Explosions during 3-4, 6-7, and 9-10 May generated ash plumes that rose to 4 km altitude and drifted SW and E. Satellite data showed a thermal anomaly on 3, 9, 13-14, and 24 May. During 12-16, 23-25, and 27-28 May ash plumes rose to 3.5 km altitude and drifted in different directions due to explosions. Two VONA notices were issued on 16 and 25 May, describing explosions that generated ash plumes rising to 3 km and 3.5 km altitude, respectively and extending 5 km E. The ash cloud on 25 May drifted 75 km SE.

Thermal activity in the summit crater, occasionally accompanied by ash plumes and ash deposits on the SE and E flanks due to frequent explosions, were visible in infrared and true color satellite images (figure 49).

Figure (see Caption) Figure 49. Infrared (bands B12, B11, B4) and true color satellite images of Ebeko showing occasional small thermal anomalies at the summit crater on 4 October 2022 (top left), 30 April 2023 (bottom left), and 27 May 2023 (bottom right). On 1 November (top right) ash deposits (light-to-dark gray) were visible on the SE flank. An ash plume drifted NE on 30 April, and ash deposits were also visible to the E on both 30 April and 27 May. Courtesy of Copernicus Browser.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Home Reef (Tonga) — June 2023 Citation iconCite this Report

Home Reef

Tonga

18.992°S, 174.775°W; summit elev. -10 m

All times are local (unless otherwise noted)


Discolored plumes continued during November 2022-April 2023

Home Reef is a submarine volcano located in the central Tonga islands between Lateiki (Metis Shoal) and Late Island. The first recorded eruption occurred in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, a large volume of floating pumice, and an ephemeral island 500 x 1,500 m wide, with cliffs 30-50 m high that enclosed a water-filled crater. Another island-forming eruption in 2006 produced widespread pumice rafts that drifted as far as Australia; by 2008 the island had eroded below sea level. The previous eruption occurred during October 2022 and was characterized by a new island-forming eruption, lava effusion, ash plumes, discolored water, and gas-and-steam plumes (BGVN 47:11). This report covers discolored water plumes during November 2022 through April 2023 using satellite data.

Discolored plumes continued during the reporting period and were observed in true color satellite images on clear weather days. Satellite images show light green-yellow discolored water extending W on 8 and 28 November 2022 (figure 31), and SW on 18 November. Light green-yellow plumes extended W on 3 December, S on 13 December, SW on 18 December, and W and S on 23 December (figure 31). On 12 January 2023 discolored green-yellow plumes extended to the NE, E, SE, and N. The plume moved SE on 17 January and NW on 22 January. Faint discolored water in February was visible moving NE on 1 February. A discolored plume extended NW on 8 and 28 March and NW on 13 March (figure 31). During April, clear weather showed green-blue discolored plumes moving S on 2 April, W on 7 April, and NE and S on 12 April. A strong green-yellow discolored plume extended E and NE on 22 April for several kilometers (figure 31).

Figure (see Caption) Figure 31. Visual (true color) satellite images showing continued green-yellow discolored plumes at Home Reef (black circle) that extended W on 28 November 2022 (top left), W and S on 23 December 2022 (top right), NW on 13 March 2023 (bottom left), and E and NE on 22 April 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. Home Reef, a submarine volcano midway between Metis Shoal and Late Island in the central Tonga islands, was first reported active in the mid-19th century, when an ephemeral island formed. An eruption in 1984 produced a 12-km-high eruption plume, large amounts of floating pumice, and an ephemeral 500 x 1,500 m island, with cliffs 30-50 m high that enclosed a water-filled crater. In 2006 an island-forming eruption produced widespread dacitic pumice rafts that drifted as far as Australia. Another island was built during a September-October 2022 eruption.

Information Contacts: Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ambae (Vanuatu) — June 2023 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


New lava flow, ash plumes, and sulfur dioxide plumes during February-May 2023

Ambae, also known as Aoba, is a large basaltic shield volcano in Vanuatu. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas. Periodic phreatic and pyroclastic explosions have been reported since the 16th century. A large eruption more than 400 years ago resulted in a volcanic cone within the summit crater that is now filled by Lake Voui; the similarly sized Lake Manaro fills the western third of the caldera. The previous eruption ended in August 2022 that was characterized by gas-and-steam and ash emissions and explosions of wet tephra (BGVN 47:10). This report covers a new eruption during February through May 2023 that consisted of a new lava flow, ash plumes, and sulfur dioxide emissions, using information from the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data.

During the reporting period, the Alert Level remained at a 2 (on a scale of 0-5), which has been in place since December 2021. Activity during October 2022 through March 2023 remained relatively low and mostly consisted of gas-and-steam emissions in Lake Voui. VMGD reported that at 1300 on 15 November a satellite image captured a strong amount of sulfur dioxide rising above the volcano (figure 99), and that seismicity slightly increased. The southern and northern part of the island reported a strong sulfur dioxide smell and heard explosions. On 20 February 2023 a gas-and-ash plume rose 1.3 km above the summit and drifted SSW, according to a webcam image (figure 100). Gas-and-steam and possibly ash emissions continued on 23 February and volcanic earthquakes were recorded by the seismic network.

Figure (see Caption) Figure 99. Satellite image of the strong sulfur dioxide plume above Ambae taken on 15 November 2022. The Dobson Units (DU) exceeded 12. Courtesy of VMGD.
Figure (see Caption) Figure 100. Webcam image of a gas-and-ash plume rising above Ambae at 1745 on 20 February 2023. The plume drifted SSW. Courtesy of VMGD.

During April, volcanic earthquakes and gas-and-steam and ash emissions were reported from the cone in Lake Voui. VMGD reported that activity increased during 5-7 April; high gas-and-steam and ash plumes were visible, accompanied by nighttime incandescence. According to a Wellington VAAC report, a low-level ash plume rose as high as 2.5 km above the summit and drifted W and SW on 5 April, based on satellite imagery. Reports in Saratamata stated that a dark ash plume drifted to the WSW, but no loud explosion was heard. Webcam images from 2100 showed incandescence above the crater and reflected in the clouds. According to an aerial survey, field observations, and satellite data, water was no longer present in the lake. A lava flow was reported effusing from the vent and traveling N into the dry Lake Voui, which lasted three days. The next morning at 0745 on 6 April a gas-and-steam and ash plume rose 5.4 km above the summit and drifted ESE, based on information from VMGD (figure 101). The Wellington VAAC also reported that light ashfall was observed on the island. Intermittent gas-and-steam and ash emissions were visible on 7 April, some of which rose to an estimated 3 km above the summit and drifted E. Webcam images during 0107-0730 on 7 April showed continuing ash emissions. A gas-and-steam and ash plume rose 695 m above the summit crater at 0730 on 19 April and drifted ESE, based on a webcam image (figure 102).

Figure (see Caption) Figure 101. Webcam image showing a gas-and-ash plume rising 5.4 km above the summit of Ambae at 0745 on 6 April 2023. Courtesy of VMGD.
Figure (see Caption) Figure 102. Webcam image showing a gas-and-ash plume rising 695 m above the summit of Ambae at 0730 on 19 April 2023. Courtesy of VMGD.

According to visual and infrared satellite data, water was visible in Lake Voui as late as 24 March 2023 (figure 103). The vent in the caldera showed a gas-and-steam plume drifted SE. On 3 April thermal activity was first detected, accompanied by a gas-and-ash plume that drifted W (figure 103). The lava flow moved N within the dry lake and was shown cooling by 8 April. By 23 April much of the water in the lake had returned. Occasional sulfur dioxide plumes were detected by the TROPOMI instrument on the Sentinel-5P satellite that exceeded 2 Dobson Units (DU) and drifted in different directions (figure 104).

Figure (see Caption) Figure 103. Satellite images showing both visual (true color) and infrared (bands B12, B11, B4) views on 24 March 2023 (top left), 3 April 2023 (top left), 8 April 2023 (bottom left), and 23 April 2023 (bottom right). In the image on 24 March, water filled Lake Voui around the small northern lake. A gas-and-steam plume drifted SE. Thermal activity (bright yellow-orange) was first detected in infrared data on 3 April 2023, accompanied by a gas-and-ash plume that drifted W. The lava flow slowly filled the northern part of the then-dry lake and remained hot on 8 April. By 23 April, the water in Lake Voui had returned. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 104. Images showing sulfur dioxide plumes rising from Ambae on 26 December 2022 (top left), 25 February 2023 (top right), 23 March 2023 (bottom left), and 5 April 2023 (bottom right), as detected by the TROPOMI instrument on the Sentinel-5P satellite. These plumes exceeded at least 2 Dobson Units (DU) and drifted in different directions. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2,500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone with numerous scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Wellington Volcanic Ash Advisory Centre (VAAC), Meteorological Service of New Zealand Ltd (MetService), PO Box 722, Wellington, New Zealand (URL: http://www.metservice.com/vaac/, http://www.ssd.noaa.gov/VAAC/OTH/NZ/messages.html); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 20, Number 10 (October 1995)

Managing Editor: Richard Wunderman

Adatarayama (Japan)

First tremor since 1965

Aira (Japan)

Explosive activity continues

Akan (Japan)

Continued elevated seismicity

Asosan (Japan)

Isolated tremor; ejections of mud and water

Atmospheric Effects (1995-2001) (Unknown)

Lidar data from Germany and Virginia

Dukono (Indonesia)

Pilot report of plume on 25 September

Etna (Italy)

Frequent Strombolian explosions and ash emissions from Northeast Crater and Bocca Nuova

Galeras (Colombia)

Minor seismicity and fumarolic emissions

Iwatesan (Japan)

Short tremor episode

Izu-Oshima (Japan)

Minor tremor and 48 earthquakes

Izu-Tobu (Japan)

Tremor observed again

Kozushima (Japan)

Earthquake swarm ends in mid-October

Kujusan (Japan)

Additional data on the sudden aseismic eruption of 11 October

Langila (Papua New Guinea)

Ash-bearing eruption columns rise hundreds of meters

Lengai, Ol Doinyo (Tanzania)

New hornitos and lava flows observed in July

Llaima (Chile)

Minor eruption just after a M 4.0 earthquake 160 km to the east

Manam (Papua New Guinea)

Passive degassing

Merapi (Indonesia)

Pyroclastic flows travel down two river drainages

Poas (Costa Rica)

High seismicity

Rabaul (Papua New Guinea)

Minor seismicity and vapor emission

Raung (Indonesia)

Aviation report of a plume, but not seen on satellite imagery

Rincon de la Vieja (Costa Rica)

New eruption; lahars damage a bridge and lead to evacuations

Rinjani (Indonesia)

Small ash plume seen on 12 September

Ruapehu (New Zealand)

Late September-early October eruptions rival those in 1945

Ruby (United States)

Submarine eruption

Semeru (Indonesia)

Explosions and pyroclastic flows continue

Soufriere Hills (United Kingdom)

Small ash explosions continue; three new vents form; September dome grows

Tengger Caldera (Indonesia)

Eruption from Bromo sends dark ash plume 700 m above the rim

Vulcano (Italy)

Fumarolic activity notably diminished from previous years

Yellowstone (United States)

New mud volcano, minor mud flow, and associated thermal features



Adatarayama (Japan) — October 1995 Citation iconCite this Report

Adatarayama

Japan

37.647°N, 140.281°E; summit elev. 1728 m

All times are local (unless otherwise noted)


First tremor since 1965

During 27 October, volcanic tremor of about 3-minutes duration was recorded at a site 4.8 km NE of Adatara's summit (station A). This was the first case of tremor since the local observatory began observations in 1965.

Geologic Background. The broad forested massif of Adatarayama volcano is located E of Bandai volcano, about 15 km SW of Fukushima city. It consists of a group of dominantly andesitic stratovolcanoes and lava domes that rise above Tertiary rocks on the south and abut Azumayama volcano on the north. Construction took place in three main stages that began about 550,000, 350,000, and 200,000 years ago. The high point of the complex is 1728-m-high Minowasan, a dome-shaped stratovolcano north of Tetsuzan, the currently active stratovolcano. Numanotaira, the active summit crater, is surrounded by hot springs and fumaroles and is breached by the Iogawa river ("Sulfur River") on the west. Seventy-two workers of a sulfur mine in the summit crater were killed during an eruption in 1900. Historical eruptions have been restricted to the 1.2-km-wide, 350-m-deep Numonotaira crater.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Aira (Japan) — October 1995 Citation iconCite this Report

Aira

Japan

31.5772°N, 130.6589°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosive activity continues

Activity at Minami-dake crater became high during both early and late October. On 28 October, 9 explosive eruptions occurred and significant volcanic ash fell in Kagoshima City. During October, seismic station B (2.3 km NE of Minami-dake crater) recorded 720 earthquakes and 1,206 tremors. On 27-28 October there were seismic swarms. During October the volcano produced 31 eruptions, 23 of them explosive; the highest ash plume, on 28 October, rose 3 km above the summit crater. October ashfall (measured 10 km W at the Kagoshima Meteorological Observatory) was 117 g/m2.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim and built an island that was joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4,850 years ago, after which eruptions took place at Minamidake. Frequent eruptions since the 8th century have deposited ash on the city of Kagoshima, located across Kagoshima Bay only 8 km from the summit. The largest recorded eruption took place during 1471-76.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Akan (Japan) — October 1995 Citation iconCite this Report

Akan

Japan

43.384°N, 144.013°E; summit elev. 1499 m

All times are local (unless otherwise noted)


Continued elevated seismicity

Seismicity during October, and thus far in 1995, remained slightly higher than was typical for the past several years (figure 6). The highest daily number of earthquakes during the month took place on 2 October and consisted of 33 events (recorded at Station A, 2.3 km from Ponmachineshiri Crater). The monthly total for October consisted of 395 events.

Figure (see Caption) Figure 6. The number of daily earthquakes at Akan's station A, 1 January 1987 through October 1995. Courtesy of JMA.

Geologic Background. Akan is a 13 x 24 km caldera located immediately SW of Kussharo caldera. The elongated, irregular outline of the caldera rim reflects its incremental formation during major explosive eruptions from the early to mid-Pleistocene. Growth of four post-caldera stratovolcanoes, three at the SW end of the caldera and the other at the NE side, has restricted the size of the caldera lake. Conical Oakandake was frequently active during the Holocene. The 1-km-wide Nakamachineshiri crater of Meakandake was formed during a major pumice-and-scoria eruption about 13,500 years ago. Within the Akan volcanic complex, only the Meakandake group, east of Lake Akan, has been historically active, producing mild phreatic eruptions since the beginning of the 19th century. Meakandake is composed of nine overlapping cones. The main cone of Meakandake proper has a triple crater at its summit. Historical eruptions at Meakandake have consisted of minor phreatic explosions, but four major magmatic eruptions including pyroclastic flows have occurred during the Holocene.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Asosan (Japan) — October 1995 Citation iconCite this Report

Asosan

Japan

32.8849°N, 131.085°E; summit elev. 1592 m

All times are local (unless otherwise noted)


Isolated tremor; ejections of mud and water

During October the floor of Aso's active crater (Naka-dake Crater 1) remained covered by a pond of hot water. The pond's surface was disrupted by occasional fountaining up to 5-m high. Elevated tremor continued since last month, and some October days had over 200 earthquakes; the daily mean amplitude of continuous tremors sometimes reached over 0.5 þm. Personnel 800 m W of the crater (at Aso Weather Station) felt earthquakes at 1829 and 1909 on 11 and 22 October, respectively.

Geologic Background. The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. The summit crater of Nakadake is accessible by toll road and cable car, and is one of Kyushu's most popular tourist destinations.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Atmospheric Effects (1995-2001) (Unknown) — October 1995 Citation iconCite this Report

Atmospheric Effects (1995-2001)

Unknown

Unknown, Unknown; summit elev. m

All times are local (unless otherwise noted)


Lidar data from Germany and Virginia

Lidar data from Germany for July and August (table 4) again revealed the presence of a volcanic aerosol layer centered at 17-19 km altitude. Backscattering ratios have decreased since the last reports (Bulletin v. 20, nos. 2 and 7). October lidar data from Hampton, Virginia, showed an aerosol layer at 18-19 km altitude; these values are similar to the previous report (Bulletin v. 19, no. 11). Backscatter data declined to the range of 1.22-1.25 from 1.38-1.50.

Table 4. Lidar data from Germany and Virginia, USA, showing altitudes of aerosol layers. Backscattering ratios are for the ruby wavelength of 0.69 microns. The integrated value shows total backscatter, expressed in steradians^-1, integrated over 300-m intervals from the tropopause to 30 km.

DATE LAYER ALTITUDE (km) (peak) BACKSCATTERING RATIO BACKSCATTERING INTEGRATED
Garmisch-Partenkirchen, Germany (47.5°N, 11.0°E)
07 Jul 1995 11-27 (19.7) 1.12 (1.3) --
19 Jul 1995 12-26 (19.8) 1.13 (1.3) --
21 Jul 1995 13-29 (18.0) 1.12 (1.3) --
26 Jul 1995 11-28 (19.1) 1.13 (1.3) --
31 Jul 1995 13-24 (18.8) 1.09 (1.2) --
03 Aug 1995 12-27 (17.5) 1.12 (1.3) --
Hampton, Virginia (37.1°N, 76.3°W)
23 Mar 1995 12-25 (17.8) 1.36 0.135 x 10-3
04 May 1995 12-25 (18.7) 1.3 0.104 x 10-3
19 Oct 1995 15-30 (18.1) 1.22 0.059 x 10-3
23 Oct 1995 15-30 (18.8) 1.25 0.065 x 10-3

Geologic Background. The enormous aerosol cloud from the March-April 1982 eruption of Mexico''s El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin thorugh 1989. Lidar data and other atmospheric observations were again published intermittently between 1995 and 2001; those reports are included here.

Information Contacts: Horst Jager, Fraunhofer -- Institut fur Atmospharische Umweltforschung, Kreuzeckbahnstrasse 19, D-8100 Garmisch-Partenkirchen, Germany; Mary Osborn, NASA Langley Research Center (LaRC), Hampton VA 23665, USA.


Dukono (Indonesia) — October 1995 Citation iconCite this Report

Dukono

Indonesia

1.6992°N, 127.8783°E; summit elev. 1273 m

All times are local (unless otherwise noted)


Pilot report of plume on 25 September

A pilot report from a Qantas flight on the morning of 25 September described a plume to 6 km altitude that was drifting ESE. Visible satellite imagery failed to detect volcanic ash, but weather clouds in the SE sector were identified with infrared imagery.

Geologic Background. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, have occurred since 1933. During a major eruption in 1550 CE, a lava flow filled in the strait between Halmahera and the N-flank Gunung Mamuya cone. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Information Contacts: BOM Darwin, Australia.


Etna (Italy) — October 1995 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3357 m

All times are local (unless otherwise noted)


Frequent Strombolian explosions and ash emissions from Northeast Crater and Bocca Nuova

The Istituto Internazionale di Vulcanologia (IIV) report below provides an overview of activity during October. IIV reports generally summarize the temporal evolution of volcanic phenomena during the whole month, skipping some trivial details, and frame the ongoing activity in the context of phenomena over a period of years.

Reports detailing activity during short visits made by visiting volcanologists provide a different perspective on the volcanism. One such report for some days in October was provided by a team led by Open University (OU) volcanologists conducting routine deformation measurements during 9 September-14 October. Short visits to the summit craters on 7, 12, and 14 October were also made by Boris Behncke, with additional observations from Carmelo Monaco and Marcello Bianca (University of Catania), Maria Felicia Monaco (Bari University), and others.

Review of July-September 1995 activity. Strombolian activity resumed at Bocca Nuova on 30 July and in Northeast Crater on 2 August (BGVN 20:08). On 30 July spatter was observed inside Bocca Nuova from a new pit crater on the N part of the crater floor. The activity climaxed on 2 and 3 August, when lava jets rose above the crater rim, then stopped on the night of 4 August. Strombolian explosions during 2-3 August issued from a small vent in the lowest part of the crater. Two more Strombolian episodes occurred on 18 and 29 August. A strong explosion from Northeast Crater on 13 September sent an ash plume 100 m above the rim. Ash emissions from Bocca Nuova and Northeast Crater continued until about 20 September, but explosions were heard throughout the month (BGVN 20:09). The OU team noted light ashfall 2-3 km away in the third week of September, and heavier ashfall 50 m from the Bocca Nuova rim on 27 September.

Overview of October 1995 activity from IIV. After a short period of Strombolian activity at Bocca Nuova and Northeast Crater at the beginning of October, alternating mild Strombolian activity and ash emission characterized their activity for the rest of the month. On 8 October almost continuous rumbling noises (like roaring jets) were heard from both craters. On the morning of 12 October intense ash emissions took place from both craters. Bocca Nuova displayed small short-lived ash puffs (5-7/hour), while from the Northeast Crater a dense ash column rising as high as 900 m developed repeatedly (2/hour). IIV field parties working in the summit area reported that the ash emission were accompanied by falling rock noises. However, successive surveys observed neither juvenile nor lithic blocks on the crater rims.

After 12 October Strombolian activity progressively resumed at Northeast Crater and continued with variable intensity until the end of the month. On 19 October Strombolian activity was relatively vigorous and the scoria ejections, up to few tens of meters from the crater rim, were almost continuous. A survey on 25 October revealed an appreciable decrease of the explosion frequency. Bocca Nuova exhibited intermittent ash emissions after 12 October. As during previous activity, they originated in a depressed area of the NW crater floor. Explosions observed on 19 October were accompanied by ejection of a black (lithic?) block to a few tens of meters above the crater floor, but neither glowing at the vent or ejection of incandescent bombs were observed. After 19 October intermittent ash emission progressively decreased, and in the last week of the month weak Strombolian activity resumed at Bocca Nuova. Significant eruptions on 9 and 14 November will be reported in the next Bulletin.

Deformation measurements. Preliminary results from the OU team indicate little ground deformation since October 1994 over most of the network. Summit levelling showed insignificant movement (-5 mm near the summit, +7 mm on the N flank) apart from the area above the 1991-93 dike, which between the W side of Cisternazza and Belvedere showed a fairly consistent subsidence of 17-24 mm. Preliminary GPS computations suggested a radial expansion about the summit of ~15 mm. Dry-tilt stations showed no large tilts.

Details of 1-7 October activity. Observations from the Northeast Crater rim on the afternoon of 1 October by the OU team revealed two faintly glowing vents, ~3-5 m across, on the crater floor. The following night, bright summit glow was seen from Nicolosi (15 km S), and on the morning of 3 October loud explosions from Northeast Crater were heard from the trail 800 m W, which had been covered with a thin layer of red ash overnight. Explosions were again heard late in the afternoon from ~7 km away, and light ash fell near Monte Corbara (5 km NW). While approaching the crater at 1815 on 3 October, two guides and an Italian TV camera crew returning from the rim warned of bombs falling outside the crater. As the OU team moved towards the high ground behind the crater, a large explosion sent brightly-glowing juvenile bombs just over the rim, rolling toward them. A few seconds later a single bomb ~20 cm across landed 10 m away, 100-200 m from the rim. Similar bomb ejections to smaller distances occurred about every 2 minutes until the team descended at 1845. On 7 October, Behncke noted a dense steam-and-gas plume from Northeast Crater. Most of the plume and occasionally some ash rose from the SSE part of the crater floor; falling stones were frequently heard.

Detonations from within Bocca Nuova heard by the OU team on 1 October were only audible from the rim. One vent on 4 October was explosively exhaling gas, and the other was collapsing, producing brownish ash clouds. Behncke observed small Strombolian explosions from Bocca Nuova on 6 October, but only ash emissions the next day. On the 7 October visit, Behncke observed frequent ash plumes from Bocca Nuova accompanied by rumbling noises and the sound of falling stones; Strombolian explosions were frequent.

The Chasm (La Voragine) quietly emitted fumes on 1 October. On 4 October the OU team climbed into Southeast Crater to the edge of the vents, which emitted gas quietly and not under pressure, apart from one area just below the S rim. On 7 October, Behncke heard small explosions, but no ejections or incandescence were seen after sunset.

Details of 12-14 October activity. Between 0800 and 0900 on 12 October a series of collapses within Northeast Crater generated a thick ash cloud. Pulses of rapidly rising ash plumes resulted in a vertical column 800-1,000 m above the summit. After 0900, a dilute gas plume rose from Northeast Crater while Bocca Nuova sent frequent ash emissions 200-300 m above the summit. When Behncke reached the crater rim shortly after 1230, there were vigorous steam emission and explosions from Northeast Crater.

Behncke saw incandescent spots in the central Northeast Crater floor that gradually increased in number and intensity. Pyroclastic ejections became more frequent and vigorous, and soon the incandescent areas were hidden by gas and dilute ash plumes. The ash plumes first rose slowly to ~100 m above the crater floor, but gradually rose higher and became more heavily ash-laden. About 5 minutes after the onset of ash venting, dense convoluting ash clouds began to rise above the rim. Bomb and ash emission steadily increased. The high-pressure gas emission noise at the beginning of this activity changed to a dull rumbling connected with the ash emission. Short pulses of bomb emissions every 5-10 seconds were followed by a dark ash puff. After ~10 minutes, the ash puffs merged into a continuous column that rose hundreds of meters above the rim. Around 1345 vigorous emissions ejected black ash plumes ~1 km above the summit. Periodic ash emissions from Northeast Crater gradually became less vigorous before ceasing that evening.

On 12 October (0800-0900), the OU team heard detonations from Bocca Nuova, mainly from a vent on the E side of the floor, but the larger vent on the NW side occasionally threw 20-cm-diameter lithic blocks 30-50 m high. Ash emissions seen by Behncke after 1230 occurred every 2-5 minutes from the pit on the NW crater floor. Each emission began with block and/or bomb ejections followed by a dense ash plume. The bombs and blocks rose out of the ~50-m-deep pit but remained ~100 m below the rim, whereas the ash plumes rose 100-500 m above the summit. An open vent in the SE crater floor displayed continuous gas emission with occasional explosions that ejected dense gas clouds.

Shortly after 1700 on 14 October Behncke saw a central glowing vent in Northeast Crater. Vigorous high-pressure gas emission produced a roaring noise, and the plume was almost vapor-free. During the first 30 minutes of the visit, glowing spatter was occasionally ejected from the vent. As degassing increased, numerous incandescent spots became visible, aligned more or less concentrically around the vent. After the first half hour, Strombolian bursts became more vigorous, ejecting bombs ~50 m above the pit. About 10 minutes later, the explosions again intensified, and the crater floor around the vent, which appeared more funnel-shaped, was covered with incandescent bombs. Ejections rose ~100 m above the vent but remained far below the crater rim.

Geologic Background. Mount Etna, towering above Catania on the island of Sicily, has one of the world's longest documented records of volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Massimo Pompilio, CNR Istituto Internazionale di Vulcanologia, Piazza Roma 2, 95123 Catania, Italy; John B. Murray and Fiona McGibbon, Dept. of Earth Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; Nicki Stevens, NUTIS, Reading University, Whiteknights, P.O. Box 227, Reading RG6 2AB, United Kingdom; Phil. Sargent, Sue Elwell, and Sarah Cooper, Civil Engineering Dept., Nottingham Trent University, Burton Street, Nottingham NG1 4BU, United Kingdom; Boris Behncke, Dept. of Volcanology and Petrology, GEOMAR, Wischhofstr. 1-3, 24148 Kiel, Germany.


Galeras (Colombia) — October 1995 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Minor seismicity and fumarolic emissions

Activity during August-October remained low. Fumarolic emissions continued from areas near the active cone, with a concentration of fumaroles on the W part of the summit. SO2 concentrations, obtained by the COSPEC method, remained generally low at 53-170 metric tons/day in August and < 100 t/d in September. No deformation was detected by electronic tiltmeters during August-October. Temperature measurements at La Joya and Chavas fumaroles, as well as radon measurements, have begun in order to improve the surveillance.

High-frequency seismicity during August was centered NNE of the active crater, and consisted of events of M < 2.2 Seismic activity in September was characterized by volcano-tectonic events, located mainly in three seismogenic regions: W, SW, and NNE of the active crater. Most active was the NNE source, which has shown signs of reactivation since last March. Most earthquakes had magnitudes < 1.5. Four events during September were felt by local residents, on 3, 12, 15, and 16 September, with magnitudes of 2.5, 2.0, 2.7, and 2.7, and depths of 12, 5, 8, and 8 km, respectively. The 16 September earthquake occurred in the SW region and the other three events in the NNE region.

The most significant October seismicity consisted of high-frequency events NNE of the active cone at depths of 3-7 km; magnitudes were < 3. The largest earthquake, on the morning of 15 October, was centered ~3 km NNE of the cone at 7 km depth. It had a magnitude of 3 and was felt in Pasto, Jenoy, Narino, and in other local towns.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large open caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate eruptions since the time of the Spanish conquistadors.

Information Contacts: Pablo Chamorro and Diego Gomez, INGEOMINAS - Observatorio Vulcanologico y Sismologico de Pasto, A.A. 1795, San Juan de Pasto, Narino, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html).


Iwatesan (Japan) — October 1995 Citation iconCite this Report

Iwatesan

Japan

39.853°N, 141.001°E; summit elev. 2038 m

All times are local (unless otherwise noted)


Short tremor episode

Tohoku University seismometers near Iwate volcano continued to register tremor (BGVN 20:09). Beginning at 0009 on 20th October, the tremor lasted ~25 minutes.

Geologic Background. Viewed from the east, Iwatesan volcano has a symmetrical profile that invites comparison with Fuji, but on the west an older cone is visible containing an oval-shaped, 1.8 x 3 km caldera. After the growth of Nishi-Iwate volcano beginning about 700,000 years ago, activity migrated eastward to form Higashi-Iwate volcano. Iwate has collapsed seven times during the past 230,000 years, most recently between 739 and 1615 CE. The dominantly basaltic summit cone of Higashi-Iwate volcano, Yakushidake, is truncated by a 500-m-wide crater. It rises well above and buries the eastern rim of the caldera, which is breached by a narrow gorge on the NW. A central cone containing a 500-m-wide crater partially filled by a lake is located in the center of the oval-shaped caldera. A young lava flow from Yakushidake descended into the caldera, and a fresh-looking lava flow from the 1732 eruption traveled down the NE flank.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Izu-Oshima (Japan) — October 1995 Citation iconCite this Report

Izu-Oshima

Japan

34.724°N, 139.394°E; summit elev. 746 m

All times are local (unless otherwise noted)


Minor tremor and 48 earthquakes

On 4 October, local instruments recorded volcanic tremor of short duration and small amplitude. Throughout the month a significant but undisclosed number of earthquakes occurred in the adjacent N and W coastal areas. During October there were 48 earthquakes beneath the cone.

Geologic Background. Izu-Oshima volcano in Sagami Bay, east of the Izu Peninsula, is the northernmost of the Izu Islands. The broad, low stratovolcano forms an 11 x 13 km island constructed over the remnants of three older dissected stratovolcanoes. It is capped by a 4-km-wide caldera with a central cone, Miharayama, that has been the site of numerous recorded eruptions datining back to the 7th century CE. More than 40 cones are located within the caldera and along two parallel rift zones trending NNW-SSE. Although it is a dominantly basaltic volcano, strong explosive activity has occurred at intervals of 100-150 years throughout the past few thousand years. A major eruption in 1986 produced spectacular lava fountains up to 1,600 m high and a 16-km-high eruption column; more than 12,000 people were evacuated from the island.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Izu-Tobu (Japan) — October 1995 Citation iconCite this Report

Izu-Tobu

Japan

34.9°N, 139.098°E; summit elev. 1406 m

All times are local (unless otherwise noted)


Tremor observed again

Mid- and late-September micro-earthquake swarms occurred offshore near Capes Kawana-zaki and Shiofuki-zaki (BGVN 20:09), an area adjacent Ito City on the E coast of the Izu Peninsula. In late September and early October pulses of seismicity continued off these Capes, trailing off toward mid-October (figure 16). Located ~5 km SW of the epicenters, Kamala Seismic Station recorded 5,881 October earthquakes. The largest earthquake struck at 1142 on 1 October with M 4.8; nearby Into City sustained a JMA-scale intensity of IV. Small-amplitude tremors occurred on both 4 October (four times), and 12 October (one time); low-frequency earthquakes took place on 4 October (four times) and 6 October (one time). Volumetric strain at Higashi-Izu and Ajiro acted in the sense of compression.

Figure (see Caption) Figure 16. Hourly earthquakes at Izu-Tobu recorded ~5 km SW of the seismic sources, September-October 1995. Courtesy of JMA.

Geologic Background. The Izu-Tobu volcano group (Higashi-Izu volcano group) is scattered over a broad, plateau-like area of more than 400 km2 on the E side of the Izu Peninsula. Construction of several stratovolcanoes continued throughout much of the Pleistocene and overlapped with growth of smaller monogenetic volcanoes beginning about 300,000 years ago. About 70 subaerial monogenetic volcanoes formed during the last 140,000 years, and chemically similar submarine cones are located offshore. These volcanoes are located on a basement of late-Tertiary volcanic rocks and related sediments and on the flanks of three Quaternary stratovolcanoes: Amagi, Tenshi, and Usami. Some eruptive vents are controlled by fissure systems trending NW-SE or NE-SW. Thirteen eruptive episodes have been documented during the past 32,000 years. Kawagodaira maar produced pyroclastic flows during the largest Holocene eruption about 3,000 years ago. The latest eruption occurred in 1989, when a small submarine crater was formed NE of Ito City.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Kozushima (Japan) — October 1995 Citation iconCite this Report

Kozushima

Japan

34.219°N, 139.153°E; summit elev. 572 m

All times are local (unless otherwise noted)


Earthquake swarm ends in mid-October

As reported in BGVN 20:09, on 6 October a M 5.6 earthquake occurred adjacent to Kozu-shima and a seismic swarm followed for the next few days. After that, seismic events continued but decreased toward the end of October; in total, during October there were 246 felt earthquakes.

Geologic Background. A cluster of rhyolitic lava domes and associated pyroclastic deposits form the 4 x 6 km island of Kozushima in the northern Izu Islands. The island is the exposed summit of a larger submarine edifice more than 20 km long that lies along the Zenisu Ridge, one of several en-echelon ridges oriented NE-SW, transverse to the trend of the northern Izu arc. The youngest and largest of the 18 lava domes, Tenjosan, occupies the central portion of the island. Most of the older domes, some of which are Holocene in age, flank Tenjosan to the north, although late-Pleistocene domes are also found at the southern end of the island. A lava flow may have reached the sea during an eruption in 832 CE. The Tenjosan dome was formed during a major eruption in 838 CE that also produced pyroclastic flows and surges. Earthquake swarms took place during the 20th century.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Kujusan (Japan) — October 1995 Citation iconCite this Report

Kujusan

Japan

33.086°N, 131.249°E; summit elev. 1791 m

All times are local (unless otherwise noted)


Additional data on the sudden aseismic eruption of 11 October

On 11 October, aseismic phreatic eruptions started within the Kuju volcanic group, on Hosho (Hosyo) dome's E side (BGVN 20:09). On 12 October observers found an E-W trending line of vents ~300-m long; also, at that time an ash-bearing plume rose to ~1 km above the crater.

The eruption deposited a 100 m2 blanket of fist-sized volcanic clasts; it also emitted mud that flowed down an adjacent valley. After that, the volume and height of the plume gradually decreased until finally ash-bearing eruptions ceased at the month's end. Seismicity stayed low during October.

Geologic Background. Kujusan is a complex of stratovolcanoes and lava domes lying NE of Aso caldera in north-central Kyushu. The group consists of 16 andesitic lava domes, five andesitic stratovolcanoes, and one basaltic cone. Activity dates back about 150,000 years. Six major andesitic-to-dacitic tephra deposits, many associated with the growth of lava domes, have been recorded during the Holocene. Eruptive activity has migrated systematically eastward during the past 5000 years. The latest magmatic activity occurred about 1600 years ago, when Kurodake lava dome at the E end of the complex was formed. The first reports of historical eruptions were in the 17th and 18th centuries, when phreatic or hydrothermal activity occurred. There are also many hot springs and hydrothermal fields. A fumarole on Hosho lava dome was the site of a sulfur mine for at least 500 years. Two geothermal power plants are in operation at Kuju.

Information Contacts: Volcanological Division, Seismological and Volcanological Department, Japan Meteorological Agency (JMA), 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100 Japan.


Langila (Papua New Guinea) — October 1995 Citation iconCite this Report

Langila

Papua New Guinea

5.525°S, 148.42°E; summit elev. 1330 m

All times are local (unless otherwise noted)


Ash-bearing eruption columns rise hundreds of meters

The increased eruptive activity at Crater 2 that began during late September continued throughout October. The activity was marked by intermittent audible explosions. The bigger explosions developed plumes that rose several hundred meters above the summit crater, resulting in ashfalls on the volcano's N-NW side. Langila produced steady but weak crater glow on most nights during October; it threw incandescent lava fragments on 23-24, 26, and 31 October. Crater 3 was quiet, only giving off weak white emissions towards late October. Seismic recording restarted on 5 October after both seismographs had been inoperative since January 1995. October seismic activity was moderate.

Geologic Background. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower E flank of the extinct Talawe volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the N and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.

Information Contacts: Ben Talai, RVO.


Ol Doinyo Lengai (Tanzania) — October 1995 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


New hornitos and lava flows observed in July

Intermittent explosive activity and extrusion of carbonititic lava on the crater floor began in January 1983 and continued for over ten years. Vigorous effusive and explosive activity in June 1993, perhaps the strongest of that eruptive episode, covered most of the crater floor and upper W flank with fresh lava flows and deposited ash on the flanks (BGVN 18:07-18:10). In September 1994 a deep central depression contained a hornito from which highly vesicular brown lava was erupting (BGVN 19:09).

Activity observed in mid-July 1995 was the first reported since September 1994, although the appearance of the recent flows indicated that they were a few months old. Members of the Societe de Volcanologie Geneve (SVG) visited the summit on 15 July 1995. A visit to the summit crater was also made by Celia Nyamweru on 19 July.

Activity on 15 July 1995. SVG observers reported a new active hornito (T36), ~4 m high, close to the S foot of T20 (figure 35). Fluid carbonatitic lava flows were emitted from its base through a channel in the direction of a rounded collapsed new opening ~15 m in diameter, close to T5/T9. The lava in the channel was pale brown and frothy, with a velocity estimated at 1.5 m/second; temperature was ~550 degrees C. At the end of the channel, the flow moved N through different tubes. Lava breakouts from some downstream openings were still very fluid and completely black. Both small pahoehoe and aa lava fronts were observed. Ejecta were rare from the summit vent of T36. The new lava field was mainly directed N, with one branch passing W of T20 and the other going through and filling the oval-shaped depression first noted in October 1993 (see BGVN 19:04).

Figure (see Caption) Figure 35. Sketch of the Ol Doinyo Lengai crater (~300 m wide) looking SW from the NE rim, 19 July 1995. Courtesy of Celia Nyamweru.

Activity on 19 July. At 1000 the crater was full of cloud, hiding features on the crater floor, but frequent sharp cracks, bangs, and thumps were heard, as well as bubbling noises. Conditions improved so that activity could be observed after 1115. White to brown steam was escaping continuously from the top of T20, and a little from T5T9. Sulfurous fumes were emitted from cracks on the E crater rim and wall. The lower slopes of T23 were made up of many small parallel pahoehoe flows, now soft and pale brown; T23 was not emitting steam. The new cones, T34 to T37, lay W of the depression that had been virtually filled by lava flows from these centers. T34 was a double cone, pale gray, with an open vent on its upper slope from which no steam or heat was being emitted. T35 was light brown to white, with no sign of fresh lava. T37 was a shallow circular crater W of and close to the base of T5/T9; it appeared fresh but showed no activity on 19 July.

T36 was a compound cone of which T36A was the largest component; it was composed of cascades of pahoehoe lava, some whitened and others black and very fresh. T36B was a rounded dome with a small vent at its base from which lava was emitted. T36C appeared to have a crack along its crest that emitted gas-rich lava. T36B and T36C were ~5 m apart and very close in elevation. Activity from hornito cluster T36 (figure 36) consisted of clots of lava thrown ~1 m above T36B, gas-rich lava escaping from the top of hornito T36C and flowing down its N slope, and very fluid, black shiny lava escaping from a small crack (T36E) on the lower slopes of this feature and flowing N across very recent pahoehoe. At 1137 a small spray of gas-rich lava escaped from hornito T36D, on the W side of T36. Warm pahoehoe flows on the W slope of T36,

Figure (see Caption) Figure 36. Details of hornito cluster at Ol Doinyo Lengai. 19 July 1995. Asterisks indicate areas of active lava emission. Courtesy of Celia Nyamweru.

Crater morphology. Features from June 1993 and earlier (see map in BGVN 19:04) were still visible, but major new cones had formed in the area between T5/T9, T20, and T23 (figure 35). T5/T9 remained a very prominent feature, and the tops of the T8, T14, and T15 cones remained visible, although all were surrounded by many younger lava flows. T24, T26, and T30 were not inspected closely, but there seemed to be no change in these large features in the S part of the crater; they were gray and white, with no sign of recent activity. West of T36 were two low lava domes with pale brown open craters, now inactive. To the W of them, on the edge of F34, was a low wide feature, possibly a collapsed cone, probably the features identified as T22, T31, and T32 in September 1993 (BGVN 18:09). There was also a rather new hornito in this area.

Recent pahoehoe flows ~10 cm thick had reached the base of the E, N, and NW walls. Crater walls appeared lowest to the NW. The rugged F34 and F35 lava flows of June 1993 were heavily weathered and beginning to soften and crumble. They were quite dark gray; a great contrast to the flows that had formed over the last several months (thin pahoehoe flows that whiten within a few weeks of eruption). No recent ash was observed on the outer slopes of the cone, the crater rim, or the inner walls; the vegetation was green and healthy. Brown vegetation was observed in a few areas near the base of the inner wall, probably due to contact with hot lava reaching the wall, and on part of the S wall below the summit.

This symmetrical stratovolcano in the African Rift Valley rises abruptly above the plain S of Lake Natron. It is the only volcano known to have erupted carbonatite tephra and lavas in historical time. The cone-building stage of Ol Doinyo Lengai ended about 15,000 years ago and was followed by periodic Holocene ejections. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatite lava flows on the floor of the summit crater.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: Celia Nyamweru, Department of Anthropology, St. Lawrence University, Canton NY 13617, USA; M. Vigny and P. Vetsch, Societe de Volcanologie Geneve, B.P. 298, CH-1225 Chenebourg, Switzerland.


Llaima (Chile) — October 1995 Citation iconCite this Report

Llaima

Chile

38.692°S, 71.729°W; summit elev. 3125 m

All times are local (unless otherwise noted)


Minor eruption just after a M 4.0 earthquake 160 km to the east

Beginning on 13 October 1995 Llaima started emitting gases and occasional ash; in addition, during the night the northern principal crater glowed a rose color. Dominant winds dispersed the eruptive columns toward the SE on 13 October. Three days later, Llaima started emitting a continuous, strong blast of steam that occasionally also contained dark-gray scrolls bearing fine-grained ash. The resulting plume blew NE.

On the night of 20-21 October, the principal crater discharged a strong explosion. Wind carried ash toward the SW, depositing it on the alpine ice. Some ash fell over the Trufultruful valley and the valley's most eastern flanking hills, forming a band or stripe up to 12 km in length.

On 21 October between 1600 and 1800 the volcano gave off a continuous, intense column of vapor and ash. That night, between 2300 and 0100 in the town of Conguillio, residents heard an explosion accompanied by subterranean noises. The following night, observers saw a "ring of fire" over the principal crater, an effect thought to indicate the presence of lava within the crater.

The Servicio Sismologico de la Universidad de Chile reported that seismic activity one day before the eruption, on 12 October, included a M 4.0 earthquake that struck the region; its depth was 70 km; its epicenter fell at the extreme S end of Lake Lieulleu in the Cordillera de Nahuelbuta (38.28°S, 73.408°W), a spot about 160 km E of Llaima. During 20 and 22 October, portable seismometers picked up 1.0-1.5 Hz tremor; on 20 October the tremor appeared about 15-20 seconds before the above-mentioned explosion. It should be noted that such sub-continuous episodes of 1.0-1.5 Hz tremor are relatively rare at Llaima.

The 13-22 October eruptions followed fumarolic activity (BGVN 20:02) and, before that, an outbreak of ash-bearing eruptions in late August 1994 (BGVN 19:08). On the basis of the above behavior, the 24 October SERNAGEOMIN report stated that the volcano had been assigned an alert status of yellow. Llaima, an ice- and snow-covered stratovolcano, is one of the largest and most active in Chile; it erupted in 1990, 1992, and 1994.

Geologic Background. Llaima, one of Chile's largest and most active volcanoes, contains two main historically active craters, one at the summit and the other, Pichillaima, to the SE. The massive, dominantly basaltic-to-andesitic, stratovolcano has a volume of 400 km3. A Holocene edifice built primarily of accumulated lava flows was constructed over an 8-km-wide caldera that formed about 13,200 years ago, following the eruption of the 24 km3 Curacautín Ignimbrite. More than 40 scoria cones dot the volcano's flanks. Following the end of an explosive stage about 7200 years ago, construction of the present edifice began, characterized by Strombolian, Hawaiian, and infrequent subplinian eruptions. Frequent moderate explosive eruptions with occasional lava flows have been recorded since the 17th century.

Information Contacts: Hugo Moreno1, Gustavo Fuentealba, and Paola Pena, Observatorio Volcanologico de los Andes del Sur, SERNAGEOMIN, Temuco, Chile.


Manam (Papua New Guinea) — October 1995 Citation iconCite this Report

Manam

Papua New Guinea

4.08°S, 145.037°E; summit elev. 1807 m

All times are local (unless otherwise noted)


Passive degassing

Activity was low during October. During the month, both summit craters released only white vapors at low to moderate rates and both audible sounds and summit-crater night glow were absent. During the first three weeks of October, the daily totals of low-frequency earthquakes were at 200-500, but by month's end they increased to 800-1,300. Coincident with the increase, earthquake amplitudes also rose by ~50%. No visual changes accompanied the increase in seismicity. However, data from tiltmeters (4 km SW of the summit) showed a deflation of approximately 1.5 m µrad beginning around the second half of the month.

Geologic Background. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical basaltic-andesitic stratovolcano to its lower flanks. These valleys channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most observed eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Information Contacts: Ben Talai, RVO.


Merapi (Indonesia) — October 1995 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Pyroclastic flows travel down two river drainages

During August-October 1995 pyroclastic flows ("glowing avalanches") continued flowing down the Boyong River; others entered the Krasak River and reached ~1-1.5 km from the source. Seismic activity was dominated by multiphase and lava-avalanche (rockfall) earthquakes. The number of multiphase earthquakes increased in October to 793 events, compared to 186 in September. Earthquakes associated with lava avalanches or rock falls gradually decreased from 1,195 events in August to 806 in September and 605 in October (figure 16). Shallow volcanic (B-type) earthquakes (~1 km depth) were recorded on 25 October and a deep volcanic (A-type) earthquake (2.7 km depth) was detected on 30 October. Observations in October indicated an inflation associated with 40 µrad of tilt. Measurement of SO2 by COSPEC indicated that the emission rate during October fluctuated between 18 and 112 t/d (average 63).

Figure (see Caption) Figure 16. Seismicity at Merapi, June-October 1995. Courtesy of VSI.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Information Contacts: W. Tjetjep, VSI.


Poas (Costa Rica) — October 1995 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2697 m

All times are local (unless otherwise noted)


High seismicity

During October, tremor at Poás reached 101 hours; the last time tremor rose over 12 hours/month was May-September 1994, an interval when tremor ranged between 49 and 307 hours/month. The number of minor earthquakes, which were predominantly of low frequency, continued to climb during the month of October, reaching 9,838 events. This was a value ~8% larger than the total for September, the previous month with the most seismic activity in 1995.

The crater lake has risen consistently: by ~5 m during June-October (ICE), and by ~30 cm in the last month (OVSICORI-UNA). During October 1995, the fumarole on the W terrace appeared to have decreased its emissions compared to recent months (< 50-m-high steam plumes), and others on the lake's NW and SW sides also had diminished output. Fumaroles on the S and SW crater wall produced steam columns reaching 100 m tall. During October, bubbling in the lake still continued. During October OVSICORI-UNA scientists measured the temperatures at several sites: pyroclastic cone, 93°C; fumaroles on the S and SW sides of the crater, 95-97°C; the lake in the inactive crater (Lake Botos), 15°C; and the lake in the active crater, 30°C.

Head scarps of landslides that emanate from the dome and flow toward the lake displayed ongoing mass wasting; ICE workers mentioned that this mass wasting may have been triggered by recent heavy rains. In addition, ICE reported that on 17 September (at 0548) a M 3.9 earthquake struck; it had a depth of 5 km and an epicenter 1.6 km SW of the main crater. At the summit, the earthquake's intensity was MM III-IV.

Geologic Background. The broad vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the complex stratovolcano extends to the lower N flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since an eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: E. Fernandez, E. Duarte, and V. Barboza, Observatorio Vulcanologico y Sismologico de Costa Rica, Universidad Nacional (OVSICORI-UNA); Mauricio Mora, Escuela Centroamericana de Geologia, Universidad de Costa Rica; G.J. Soto, Oficina de Sismologia y Vulcanologia del Arenal y Miravalles: OSIVAM, Instituto Costarricense de Electricidad (ICE).


Rabaul (Papua New Guinea) — October 1995 Citation iconCite this Report

Rabaul

Papua New Guinea

4.2459°S, 152.1937°E; summit elev. 688 m

All times are local (unless otherwise noted)


Minor seismicity and vapor emission

The volcanoes at Rabaul Caldera continued to remain quiet in October. Tavurvur's summit area released bluish white vapors at very low rates; however, the emission rates rose during rainy days at the end of the month. No emissions came from Vulcan.

Only 19 earthquakes were recorded in October. Two of the 13 low-frequency earthquakes originated from Tavurvur while the rest came from either within or just outside the caldera's N sector. The six high-frequency earthquakes took place on the 20th (2 earthquakes), 23rd (2), 26th (1), and 29th (1). Most of these high-frequency earthquakes occurred in the caldera's NE sector (Namanula area). One high-frequency earthquake (ML 1.9, on the 23rd) originated near Tavurvur at about 1 km depth. October ground deformation remained very low.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the asymmetrical shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1,400 years ago. An earlier caldera-forming eruption about 7,100 years ago is thought to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the N and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and W caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Ben Talai, RVO.


Raung (Indonesia) — October 1995 Citation iconCite this Report

Raung

Indonesia

8.119°S, 114.056°E; summit elev. 3260 m

All times are local (unless otherwise noted)


Aviation report of a plume, but not seen on satellite imagery

An aviation report stated that at 1705 on 15 August "smoke" from Raung at an altitude of 6 km was drifting W. Following this report, aviation notices were posted in Indonesia, New Zealand, and Australia for the next 24 hours. No plume was observed by Australian meteorologists on satellite imagery from 1800 on 15 August through 2050 the next day.

The last reported eruption, which occurred sometime between January and June 1993, generated an ash column 600 m above the rim and caused ashfall in the surrounding area.

Geologic Background. Raung, one of Java's most active volcanoes, is a massive stratovolcano in easternmost Java that was constructed SW of the rim of Ijen caldera. The unvegetated summit is truncated by a dramatic steep-walled, 2-km-wide caldera that has been the site of frequent historical eruptions. A prehistoric collapse of Gunung Gadung on the W flank produced a large debris avalanche that traveled 79 km, reaching nearly to the Indian Ocean. Raung contains several centers constructed along a NE-SW line, with Gunung Suket and Gunung Gadung stratovolcanoes being located to the NE and W, respectively.

Information Contacts: BOM Darwin, Australia.


Rincon de la Vieja (Costa Rica) — October 1995 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


New eruption; lahars damage a bridge and lead to evacuations

A new phreatomagmatic eruption followed three months of declining seismicity. During 1995 the number of local earthquakes peaked in July and then progressively decreased (figure 10). Prior to the eruption, during October, OVSICORI-UNA reported that park rangers who ascended to the main summit saw increased degassing and noted the appearance of fumaroles along cracks at the E and NE crater margins. Rangers described the crater lake's color as green and the smell as strong and sulfurous.

Figure (see Caption) Figure 10. The number of monthly earthquakes at Rincón de la Vieja volcanic complex recorded 5 km SW of the active crater (station RIN3), January-October 1995. The seismic system failed to operate on 29 October; the three events recorded during the rest of the month were all of low frequency (

ICE described the eruption as phreatomagmatic, beginning at 1504 on 6 November, and climaxing on 8 November with 25 explosions. They noted the ash-bearing and steam-rich columns rose to 1 and 4 km, respectively, above the crater. Ash blew WSW; medium- to fine-grained ash reached up to 30 km from the volcano (Santa Rosa National Park).

According to ICE, on 9 November the eruption entered a steam-rich phase. Columns typically rose 200 m, but sometimes as much as 1.5 km after some steam explosions.

During the course of the eruption, ballistic ejecta were thrown over a zone extending to ~1 km N. Ejecta formed lahars that followed two key rivers (Penjamo and Azul rivers) and their tributaries. Heavy rains beginning on 10 and continuing on 11 November triggered secondary lahars and associated floods; a bridge 7 km N of the crater (Penjamo bridge) was damaged but not destroyed, interrupting traffic flow. During this episode, lahars along a tributary of the Penjamo river produced a gully 8-m deep and 25-m wide, isolating some inhabitants.

Initial inspections of ash and the lahar matrix indicated that they mainly consisted of hydrothermally altered fragments, lake-sediment mud, and vesiculated glassy andesite fragments.

Some residents living near the volcano were evacuated to a safe village 9 km NW of the crater. News reports on 8 November by both Associated Press and Deutsche Presse-Agentur stated that about 100 families were evacuated. Two days later Enrique Coen reported relocation of 300 families.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: E. Fernandez, E. Duarte, and V. Barboza, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica; G.J. Soto, Oficina de Sismologia y Vulcanologia del Arenal y Miravalles: OSIVAM, Instituto Costarricense de Electricidad (ICE), Apartado 10032-1000, San José, Costa Rica; Enrique Coen, Departamento de Fisica, University Nacional, Heredia, Costa Rica; Associated Press; Deutsche Presse-Agentur.


Rinjani (Indonesia) — October 1995 Citation iconCite this Report

Rinjani

Indonesia

8.42°S, 116.47°E; summit elev. 3726 m

All times are local (unless otherwise noted)


Small ash plume seen on 12 September

A NOTAM about volcanic activity from Rinjani was issued by the Bali Flight Information Region on the morning of 12 September. An ash cloud was reportedly drifting SW with the cloud top around 4 km altitude. As of 1200 that day, Australian meteorologists had not observed a significant plume on satellite imagery. Synoptic Analysis Branch analysts detected no ash cloud on either visible or infrared GMS imagery. However, at 1600 the Bureau of Meteorology in Darwin advised aviators that a weak low-level plume was intermittently evident on satellite imagery as far as 28 km SW of the volcano.

Geologic Background. Rinjani volcano on the island of Lombok rises to 3726 m, second in height among Indonesian volcanoes only to Sumatra's Kerinci volcano. Rinjani has a steep-sided conical profile when viewed from the east, but the west side of the compound volcano is truncated by the 6 x 8.5 km, oval-shaped Segara Anak (Samalas) caldera. The caldera formed during one of the largest Holocene eruptions globally in 1257 CE, which truncated Samalas stratovolcano. The western half of the caldera contains a 230-m-deep lake whose crescentic form results from growth of the post-caldera cone Barujari at the east end of the caldera. Historical eruptions dating back to 1847 have been restricted to Barujari cone and consist of moderate explosive activity and occasional lava flows that have entered Segara Anak lake.

Information Contacts: BOM Darwin, Australia; SAB.


Ruapehu (New Zealand) — October 1995 Citation iconCite this Report

Ruapehu

New Zealand

39.28°S, 175.57°E; summit elev. 2797 m

All times are local (unless otherwise noted)


Late September-early October eruptions rival those in 1945

Ruapehu's current eruptive period began with a vent-clearing blast on 29 June 1995 and a series of larger eruptions began on 23 September (BGVN 20:09). More recently available information (in Immediate Report RUA 95/06) highlighted 18 and 20 September observations summarized below. These are followed by brief comments on eruptions during October.

Activity during 18-20 September. An eruption at 0805 on 18 September was accompanied by a ML 3.6 earthquake; the eruption produced the largest lahar down the ESE flank since 1975. The ESE drainage is called the Whangaehu River. Two days later, at 0122 on 20 September, another eruption associated with a smaller earthquake (ML 3.2) also sent a smaller lahar down the Whangaehu River.

At roughly 0800 on 18 September the ski field manager heard what he initially thought was wind noise while he was inside a ski lodge building on Ruapehu's flanks, a spot 400 m N of the Whangaehu channel (Aorangi lodge at Tukino). He went closer to the river and saw a 12-18 m deep lahar in the narrow channel.

Later that day, a flood warning gauge 27 km downstream was triggered at 1123, suggesting the lahar moved at an average speed of roughly 2.3 m/s (8.3 km/hour). By around noon at Tukino the lahar was 40-m wide and had covered the snow up to 20-30 m above the Whangaehu valley floor. The lahar's surface rose about 11 m on the outside of one turn. A preliminary estimate of peak flow was >1,000 m3/s; the local velocity, 15 m/s. An early phase of the lahar had cut out 2-3 m of ice and snow formerly filling the valley.

The 18 September lahar arrived at a point 57 km downstream from Crater Lake (Karioi) at 1515, 7 hours after the eruption. Volume of the lahar at this point was estimated (by groups identified as NUWA Wanganui and ECNZ) at ~2 x 105 m3; the peak flow, at ~34 m3/s. The lahar destroyed a hiking bridge, leaving only its 0.2-m-high concrete abutments on either side of the river.

The smaller 20 September lahar arrived at 57 km downstream (Karioi) 8 hours after the eruption; its size there was estimated at ~0.9 x 105 m3; its peak flow, at ~21 m3/s. In an area above ~2,000 m elevation, the 18 and 20 September lahar deposits were separated by an intervening snow layer. Still higher, above ~2,400 m elevation, both lahars had emerged from the upper Whangaehu valley's snow and ice tunnel system. Lahars passing through and over the uppermost part of this system had produced considerable new crevasses and collapse features in the snow and ice. On 20 September, collapsed holes downstream of the large ice cave (located below the crater lake's drainage point at Outlet, figure 19) were filled with non-steaming water that had apparently cooled. The ice cave itself appeared largely intact.

Figure (see Caption) Figure 19. (above) Survey points for deformation studies at Ruapehu (prior to the disappearance of Crater Lake). (below) Summary of deformation between stated stations and given time intervals. Courtesy of IGNS.

A helicopter was used to visit the crater on 20 September. A large column of steam rose from the waterfall immediately below Outlet. A large volume of lake water continued to spill over the waterfall even though recent eruptions through the lake had expelled substantial lahar-forming discharges. Ash from the 18 September eruption was plastered on some steep slopes. Ash from the 20 September eruption was plastered on the new snow around the lake margins. On the E side of the lake there was a N-trending, 100-m-long lobe of ash on the glacier surface. Scoria clasts found near Outlet (the largest, 20-50 cm across) formed a continuous layer trapped behind a low lava ridge. Their distribution suggested they were deposited by a passing surge rather than as impacting ballistics. Absence of snow on the surface of the scoria indicated they had probably arrived during the 20 September eruption and some clasts still had warm interiors. Sampled clasts were black in color, and consisted of an unaltered plagioclase-, augite-, orthopyroxene-bearing andesite. The lack of Fe-Ti oxides makes them similar to 1966 ejecta; in contrast, ejecta from 1971 and 1975 did contain minor amounts of Fe-Ti oxides. Three ash samples collected from within the crater contained lapilli up to 25 mm in diameter and composed of angular lithic material. Ash finer than 2-mm diameter was dominated by gray shiny spheroids and globules of sulfur with lesser amounts of gray comminuted lake bed material.

In the interval 15 August-20 September the deformation of the area about Crater lake was significant and indicated moderate inflation (figures 19 and 20). The deformation survey was hampered by snow and ice, which deeply buried most survey stations. Survey mark D had been bent 70 mm out of position immediately prior to the August survey, but eccentricity corrections enable a valid comparison with all former observations at D. Maximum changes took place in the E-W direction. These changes were similar to those computed by comparing the mean of the five surveys made earlier this year to the September survey (first column, bottom of figure 19).

Non-elastic inflation of the style seen was previously noted as much as 2 weeks prior to eruptions on 8 May 1971 and 24 April 1975. This short-term inflation (lasting weeks) was also seen on 12 occasions during 1980-91; these occasions were tentatively correlated with intense heating and minor eruptions. Still, the relation between inflation magnitude and the corresponding eruption remains uncertain.

The 20 September crater visit yielded the following lake observations. The lake's temperature was 48.5°C (on 15 August it had been roughly 20 degrees C cooler, figure 20). There was a strong smell of SO2. The volume of water escaping at Outlet was estimated visually at 1 m3/s (on 15 August it was only ~50 l/s). This exceptional output was the largest seen in 24 years.

Figure (see Caption) Figure 20. Plots of Ruapehu's cross-crater deformation, crater lake temperature, and Mg/Cl ratio for 1976 through late-1995. The cross-crater deformation is approximately E-W (between stations I and J, figure 19). Courtesy of IGNS.

Lake water sampled on 20 September showed clear increases in the concentrations of Mg, Cl, and SO4 ions, and in the ratio of Mg/Cl (figure 20). The observed concentrations for 15 August and 20 September, respectively, were as follows: Mg, 584 and 713 ppm; Cl, 8,154 and 8,619 ppm; and SO4, 26,600 and 30,600 ppm. Increases in Mg began in May and pointed to dissolution of fresh andesitic material into the hydrothermal system. Although previously it was not clear if the source of Mg was juvenile or older andesites, the increased amounts of Cl and SO4 firmly established the input of fresh magmatic material.

SO4 concentrations stand at the highest levels ever recorded at Ruapehu. In the absence of synchronous increases in K, and noting that Ca continues to be controlled by gypsum solubility, it is clear that the increases in SO4 were not attributable to dissolution of secondary hydrothermal minerals. Instead the SO4 increases indicated greater SO2 flux into the lake. Assuming a lake of 9 x 106 m3, the increase in SO4 from 15 August to 20 September equates to a minimum input of ~700 metric tons/day of SO2 into the lake. This behavior differs from that observed prior to the 1971 eruptions: The indication is that the quantity of magma involved in the current activity is larger than in the 1971. Taken with the rather moderate degree of cross-crater deformation seen, the quantity of SO2 discharged into the lake indicates connection to larger volumes of degassing magma at depth.

Volcanic tremor remained at background from early July until early September; its amplitude was ~1 µm/s for signals centered around 7 Hz, and at this value or slightly lower for signals centered around 2 Hz. During a five day interval starting on 6 September, the amplitude of 2-Hz tremor increased. During the 24 hours prior to the 18 September eruption and earthquake (BGVN 20:09), predominantly 7-Hz tremor occurred, at one point doubling in amplitude. Later, ~80 minutes prior to the eruption and earthquake, tremor again increased by a factor of 2-3, with 2-Hz tremor becoming dominant. Although dramatic, Ruapehu often displays wide-ranging shifts in tremor amplitude and, in retrospect, the increased amplitudes seen would not have been a useful way to predict the eruption.

The 18 September earthquake took place at 0805, continuing for 6 minutes. Analog seismograms from the three local stations (Dome, Chateau, and Ngāuruhoe) were pegged, and the M 3.6 estimate was made based on amplitude recorded by the tremor-monitoring system. After the earthquake, predominantly 2-Hz tremor prevailed, remaining at or above the pre-earthquake amplitude. Later the same day (18 September), strong 1-Hz tremor occurred--for the first time at Ruapehu since the early 1970s.

Further minor earthquakes were recorded during the next few days. On 19 September seismometers registered a ML 2.2 earthquakes as well as four other discrete earthquakes; on 20 September there were ML 3.1 and 3.2 earthquakes followed by another interval of strong 1-Hz tremor until 0900.

October eruptions. At the time of this writing, IGNS reports for October are incomplete, but a brief survey of available "Science Alert Bulletins" and aviation reports suggested that minor eruptions continued and in mid-October moderate ash-rich eruptions took place. On 11 October a plume was seen in satellite imagery; on 12 and 14 October, pilot and associated aviation reports indicated ash to at least ~10 km altitude.

The 11 October eruption was described as near-continuous moderate eruptive activity that included hot ballistic blocks and lightning. Subsequent lower intensity eruptions presumably fed the plume so that its proximal end remained attached to the volcano. The eruption deposited ash in a blanket with a tentative volume between 0.01 and 0.05 km3. Thus, the steam-rich plumes seen in the 3 weeks prior to 11 October gave way to more ash-rich plumes during this eruption. A thin blanket of ash was also deposited during the 14 October eruption.

The absence of a crater lake was confirmed on 14 October. By 17 October, partly impeded views into the crater revealed steam and ash emitted from at least three vents, and a still-dry crater floor. COSPEC measurements around this time suggested the SO2 flux was over 10,000 metric tons/day. A COSPEC flight on 21 October gave viewers their first look at a possible new lava dome, however, there were no subsequent confirmations of the dome in available reports.

Geologic Background. Ruapehu, one of New Zealand's most active volcanoes, is a complex stratovolcano constructed during at least four cone-building episodes dating back to about 200,000 years ago. The dominantly andesitic 110 km3 volcanic massif is elongated in a NNE-SSW direction and surrounded by another 100 km3 ring plain of volcaniclastic debris, including the NW-flank Murimoto debris-avalanche deposit. A series of subplinian eruptions took place between about 22,600 and 10,000 years ago, but pyroclastic flows have been infrequent. The broad summait area and flank contain at least six vents active during the Holocene. Frequent mild-to-moderate explosive eruptions have been recorded from the Te Wai a-Moe (Crater Lake) vent, and tephra characteristics suggest that the crater lake may have formed as recently as 3,000 years ago. Lahars resulting from phreatic eruptions at the summit crater lake are a hazard to a ski area on the upper flanks and lower river valleys.

Information Contacts: C.J.N. Wilson, B.J. Scott, P.M. Otway, and I.A. Nairn, Institute of Geological & Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand; Bureau of Meteorology, Northern Territory Regional Office, P.O. Box 735, Darwin, NT 0801, Australia.

Correction: The most recent analysis indicates that there were 18 hydrothermal eruptions recorded between 0600 and 1640 on 20 September. Table 7 indicated "15 small phreatic eruptions witnessed."


Ruby (United States) — October 1995 Citation iconCite this Report

Ruby

United States

15.605°N, 145.572°E; summit elev. 174 m

All times are local (unless otherwise noted)


Submarine eruption

Ruby is a prominent, active submarine volcano in the Mariana Arc (2,300 km S of Tokyo) located NW of the Island of Saipan (figure 1). Although signs of an eruption were first noted by fishermen about 11 October, initial attempts to confirm their early observations failed. On 23 October fishermen reported that they could hear submarine explosions in that vicinity. A vessel from the Wildlife and Emergency Management Office of the Commonwealth of the Northern Mariana Islands confirmed these reports. An Associated Press news report stated that early on 25 October observers had seen dead fish and bubbles, and had smelled a sulfurous odor. On 27 October the Pacific Daily News reported the eruption site as 15°36'22"N, 145°34'33"E (15.6061°N, 145.5758°E). This spot clearly lies on the edifice identified by Bloomer and others (1989, p. 215) as Ruby....

Figure (see Caption) Figure 1. Index map and bathymetric map (depths in meters) showing seamounts near Saipan Island, including the known active centers Esmeralda Bank and Ruby (after Bloomer and others, 1989).

Prior to the eruption, published estimates of the summit elevation suggested a 230-m depth, a refinement an earlier estimate of 549 m (Bloomer and others, 1989, p. 215). On 6 October 1995, the Pacific Daily News report stated the summit was measured at 185-m depth. This newly reported depth remains unconfirmed. According to Mike Blackford, on 23 October a marine depth finder reportedly measured a depth of ~60 m. Although this could be a reflection off the eruptive plume, in the absence of any discussion of instrument type and calibration, this depth remains equivocal.

According to Koyanagi and others (1993), the two seismic stations nearest the eruption were on Saipan (~50 km SE of Ruby) and Pagan islands (~130 km N of Saipan), both too distant to detect subtle seismic effects. Despite the lack of a nearby seismic station, tremor appeared on seismic records at the time of the eruption and the next day. Given the temporal coincidence between the eruption and the tremor, the two were probably associated.

A fish recovered at the eruption site was found to have small particles of ash in its gills and HVO researchers planned to analyze this ash. News of the eruption caused concern about a possible local tsunami and on 25 October, the Commonwealth of the Northern Mariana Islands issued an alert.

Evidence for Ruby's active status came from 1966 hydrophone data, followed later by dredging of extremely fresh volcanic rocks bearing plagioclase, clinopyroxene, and olivine (Bloomer and others, 1989).

References. Bloomer, S.H., Stern, R.J., and Smoot, N.C., 1989, Physical volcanology of the submarine Mariana and Volcano arcs: Bull. Volcanol., no. 51, p. 210-234.

Koyanagi, R., Kojima, G., Chong, F., and Chong, R., 1993, Seismic monitoring of earthquakes and volcanoes in the Northern Mariana Islands: 1993 summary report: Prepared for the Office of the Governor, Commonwealth of the Northern Mariana Islands, Capitol Hill, Saipan MP 96950 (revised 21 February 1993), 34 p.

Geologic Background. Ruby is a basaltic submarine volcano that rises to within about 200 m of the ocean surface near the southern end of the Mariana arc NW of Saipan. An eruption was detected in 1966 by sonar signals (Norris and Johnson, 1969). Submarine explosions were heard in 1995, accompanied by a fish kill, sulfurous odors, bubbling water, and the detection of volcanic tremor.

Information Contacts: Robert J. Stern, Center for Lithospheric Studies, University of Texas at Dallas, Box 830688, Dallas, TX 75083-0688 USA; Robert Koyanagi, USGS Hawaiian Volcano Observatory, Hawaii Volcanoes National Park, HI 96718, USA; Ramon C. Chong, Commonwealth of the Northern Mariana Islands (CNMI), Disaster Control Office, Capitol Hill, Saipan, MP 96950 USA; Mike Blackford, Pacific Tsunami Warning Center, 91-270 Fort Weaver Road, Ewa Beach HI 96706, USA; Associated Press; Pacific Daily News.


Semeru (Indonesia) — October 1995 Citation iconCite this Report

Semeru

Indonesia

8.108°S, 112.922°E; summit elev. 3657 m

All times are local (unless otherwise noted)


Explosions and pyroclastic flows continue

The VSI reported that by 3 August a tongue of glowing lava had reached 300 m long; at 1932 that evening the lava collapsed to feed lava avalanches. Qantas airlines reported additional activity at 1510 on 8 August, describing volcanic "smoke" near Semeru to above 4 km. Two days later, around 1530 on 10 August, a Qantas flight reported an ash cloud to 9 km altitude with a SW drift.

VSI noted that during August-October small-to-moderate explosions and avalanches continued from the Jonggring Seloko summit crater. Plumes rose to a maximum of 600 m above the summit; the average plume height was 300-500 m. In August and September, pyroclastic flows often traveled down the Kember River, then descended the Kobokan River, reaching a distance of 1-3 km. The frequency of lava avalanches increased in September, extending along the Kember River for up to 500 m from the summit.

Earthquakes associated with the pyroclastic flows were variable, with 1-16 events/day through early October; after that the frequency of earthquakes decreased. Increasing numbers of volcanic earthquakes (both A-and B-type) started on 11 October and continued until the end of the month, fluctuating at 1-14 events/day (figure 8). The number of explosion earthquakes was typically 45-109/day (figure 8), except on 26 and 27 September, when there were only 33 and 24 events, respectively.

Figure (see Caption) Figure 8. Eruptive activity at Semeru as detected by seismograph, August-October 1995: pyroclastic flows and volcanic earthquakes (top), explosions and avalanche events (bottom). Courtesy of VSI.

Geologic Background. Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Information Contacts: W. Tjetjep, VSI; BOM Darwin, Australia.


Soufriere Hills (United Kingdom) — October 1995 Citation iconCite this Report

Soufriere Hills

United Kingdom

16.72°N, 62.18°W; summit elev. 915 m

All times are local (unless otherwise noted)


Small ash explosions continue; three new vents form; September dome grows

The observatory was moved on 1 October from the Vue Pointe Hotel to Eifel House on Bishop View Road in Old Towne. A phreatic eruption that day deposited ash across a large area, including the capital city of Plymouth. This eruption was followed by a volcano-tectonic (VT) earthquake swarm, with 70 events located beneath the volcano at depths of 1-6 km. Two of the earthquakes, at 2257 and 2319, had magnitudes of ~2.5 and were felt at the observatory; several were felt in the Long Ground area. After about 0500 on 2 October, the number of located earthquakes dropped to ~5/day. Two episodes of low-amplitude broadband tremor recorded during 1-3 October were related to steam emission. Electronic tiltmeter and EDM observations during that time revealed no significant deformation.

EDM measurements at Tar River completed on 3-4 October continued to show a shortening trend, signaling minor inflation. Shallow VT (12 located events) and long-period (2 events) seismicity continued. Moderate levels of seismicity prevailed during 4-8 October, with 30-40 shallow (< 6 km depth) VT earthquakes each day, rare felt events (M 2-2.5), and a few long-period events. No deformation was detected by electronic tiltmeter.

An explosion around 2355 on 5 October caused heavy ashfall in Plymouth and in the SW part of the island. On 5 October the government announced that over the next two days they would evacuate Plymouth's home for elderly people and the hospital, sending residents to the N part of the island.

Two eruption signals were recorded at 0235 and 0347 on 8 October, and the EDM line at Tar River continued to show minor inflation. Seismicity began decreasing on 8-9 October, when 24 earthquakes were located beneath the volcano, with a few in the Centre Hills area. A small eruption at 1356 on 9 October generated light ashfall in Amersham and Upper Gages. Vent 2 was emitting a small amount of steam again during 7-9 October. Several episodes of broadband tremor may have been caused by increased steam emission. There were only 6 located earthquakes during 9-10 October, but several episodes of broadband tremor. Another minor eruption around 0012 on 10 October caused light ashfall in Plymouth. Visual helicopter inspection of the crater revealed significant steam emission and an increase in the size of the 25 September dome (20:9).

Formation of Vent 5 on 11 October. An ash eruption at 0021 on 11 October came from a new vent on the Tar River side of the Castle Peak dome, and damaged the EDM reflector at Tar River. A small earthquake swarm accompanied this vent formation. There were two more small ash eruptions later that day at 1540 and 1700. Although no significant changes to the dome were noted, steaming continued from its top; Vent 1 was also steaming, and appeared to be larger and deeper. Scientists noted that steam emissions from the crater had generally increased.

Three more ash eruptions occurred on 12 October, at 0901, 0955, and 1114. Continuous steam emission came from several areas in the crater and Vent 5. Two episodes of broadband tremor during 12-13 October were attributed to increased steam emission. Seismicity was low, with only 22 events during 11-13 October. No deformation was detected following this latest series of explosions.

Formation of Vent 6 on 14 October. An eruption at 0708 on 14 October created another vent on the NE flank of Castle Peak dome, generated a significant amount of ash, and ejected blocks as far as the edge of Long Ground, ~1 km E of the vent. A pilot reported that the plume may have reached ~2 km altitude. Another eruption at 1058 caused no reported ashfall. Two gas venting episodes at 2200 and 2345 on the 14th were associated with a small earthquake swarm and broadband tremor episodes. Vent 2 again emitted moderate amounts of steam, accompanied by a loud roaring sound, and Vent 5 continued to emit small amounts of steam. Seismicity decreased from 18 events on 13-14 October to five events accompanied by broadband tremor on 15-16 October.

Seismicity increased again on 16-17 October with 22 events clustered in two areas: one beneath the volcano and the other just E of Windy Hill. Steam-and-ash eruptions were recorded by the seismic network at 1757 and 2245 on 16 October, and at 1150 and 1522 on the 17th. There were also several episodes of broadband tremor and ~30 minutes of low-frequency harmonic tremor starting around 0414 on 17 October. Later that morning an aerial inspection of the crater showed no significant changes and little steaming. During a second flight at 1145, a large mudflow originating within the crater moat beyond Vent 2 was seen running rapidly down the Hot River and reaching the sea. This was probably the largest mudflow (in terms of volume of material) since the current activity began.

During 17-18 October there were 12 scattered earthquakes, several periods of broadband tremor, and some intermediate-frequency tremor. Ash eruptions were recorded at 1739 on the 17th and at 0530 on the 18th. The dome area continued to emit steam, but did not increase in size.

Formation of Vent 7 on 18 October. The 31 earthquakes during 18-19 October were clustered beneath the volcano. Several broadband tremor episodes and one period of low-frequency tremor were also detected. An eruption at 1621 on the 18th was associated with the formation of a new vent within the moat area of English's Crater, just SW of Vent 1. Another eruption was recorded at 2207 on the 18th. An explosive event around 1516 on 19 October generated a mudflow down the Hot River. During 19-20 October there were 28 earthquakes located; the events were scattered throughout S Montserrat, with some clustered beneath Soufriere Hills and St. Georges Hill.

There were 15 VT earthquakes on 20-21 October concentrated around the Long Ground/Soufriere Hills area. Several eruption episodes on 21 October resulted in ashfall that affected villages in the E. Ash fell at the airport for the first time, closing it briefly. No deformation was detected at the Tar River EDM or Long Ground tilt stations. Helicopter observations revealed that Vent 1 had extended E and was responsible for the previous ashfall. There was a small mud flow down the Tar River.

An average of 35 earthquakes/day occurred during 21-23 October. They were scattered throughout S Montserrat with some concentrations in the Long Ground-Tar River area and beneath the volcano. Some broadband tremor was also recorded. Visual observation of English's Crater both from helicopter and Tar River on 22 October revealed light steam emission from vents 2 and 5. When observed on the morning of 23 October, the September dome continued to steam, and was covered with sulfur deposits; it may also have grown since last observed on 20 October. Only one other small area SE of the dome was steaming. An eruption at 1337 on 23 October produced ash deposits within the summit crater and at Tar River. Steam emission increased after this eruption.

Seismicity decreased following this eruption to 10-14 events/day through 29 October, except for 22 events on the 27th. Locations were mainly beneath the volcano, although some were centered in the Windy Hill area and other parts of S Montserrat. An eruption at 1325 on 25 October caused ashfall in the Tar River area. Eruption signals were again recorded at 2314, 2321, and 2347 on 25 October, and at 0447 on the 26th; no ashfall was reported. Several episodes of low-amplitude broadband tremor were recorded during 25-26 October. EDM measurements at Tar River on 26 October indicated a continuation of the minor inflation observed during the past several weeks.

A steam-and-ash eruption at 1317 on 27 October from Vent 1 was followed by more than 30 minutes of low-frequency tremor. Eruption signals were recorded at 0855 and 2018 on 28 October, but no ashfall was reported. Steam emission from Vent 2 was observed that afternoon. Eruptions occurred again at 0326 and 0857 on the 29th, both followed by broadband tremor. An ash-and-steam plume was seen from the observatory following the 0857 event. Steam was seen coming from Vent 1 during a helicopter flight, but no major changes were noted.

Seismicity increased on 29-30 October to 55 events; most were clustered in a region just W of Windy Hill, with some scattered in the Centre Hills and Soufriere Hills areas. Eruption signals were recorded at 2110 on the 29th, and at 0244 and 1310 on the 30th. Two small long-period events were recorded after the first eruption. Ash from the first two of these eruptions was observed in English's Crater by helicopter. The third eruption, witnessed by scientists at the Tar River EDM site, produced a high column that caused ashfall over a wide area. This ashfall was the most significant since 21 August, and was accompanied by a density current of ash in the Gages valley. The morning of 31 October visual observations revealed a significant increase in Vent 1's size, but the 25 September dome appeared unchanged.

Seismicity decreased again the next day to 23 events, but they were located in clusters in the Tar River-Long Ground area and W of Windy Hill. There were also four long-period events and several episodes of broadband tremor. One eruption at 1118 on 31 October had no reported associated ashfall. EDM measurements at Tar River again showed a slight shortening, associated with continued slow inflation of the upper part of the volcanic edifice.

Only 14 seismic events were recorded during 31 October-1 November; most were located beneath the volcano with a few in the Windy Hill and Fox's Bay area. There were three long-period events and several episodes of broadband tremor. A small eruption at 1129 on 1 November caused ashfall within the summit crater.

Geologic Background. The complex, dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. The volcano is flanked by Pleistocene complexes to the north and south. English's Crater, a 1-km-wide crater breached widely to the east by edifice collapse, was formed about 2000 years ago as a result of the youngest of several collapse events producing submarine debris-avalanche deposits. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits, including those from an eruption that likely preceded the 1632 CE settlement of the island, allowing cultivation on recently devegetated land to near the summit. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but no historical eruptions were recorded until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption.

Information Contacts: Montserrat Volcano Observatory (MVO), Olde Towne.


Tengger Caldera (Indonesia) — October 1995 Citation iconCite this Report

Tengger Caldera

Indonesia

7.942°S, 112.95°E; summit elev. 2329 m

All times are local (unless otherwise noted)


Eruption from Bromo sends dark ash plume 700 m above the rim

On 9 September, dark gray emissions were observed reaching a height of 70 m above the rim of Bromo Crater. Volcanic tremor associated with the emission events (maximum amplitude of 1-3 mm) was recorded continuously beginning on 8 September, using a PS-2 seismograph installed 750 m from the active crater. After 10 September the plume was denser than during the March-May 1995 activity (20:03). An international Notice to Airmen (NOTAM) on the morning of 22 September reported an ash cloud with a top at ~3 km altitude and a SW drift. The height of the ash column gradually increased, peaking at 700 m (~3 km altitude) on 25 September (figure 2); during the emission, maximum tremor amplitude was 49 mm. A thick dark gray ash cloud caused ashfall in nearby villages, reported as far away as ~20 km E (around the area of Sukapura). The eruption vent, with a diameter of ~25 m, was located on the N part of the crater floor, similar to the last eruption. Ash eruptions were continuing at the end of October, but the activity was gradually decreasing. In October the maximum plume height was 200-450 m above the crater rim; the maximum tremor amplitude was 8-40 mm.

Figure (see Caption) Figure 2. Height of ash plume and maximum tremor amplitude at Bromo, Tengger Caldera, September-October 1995. Courtesy of VSI.

Geologic Background. The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java's most active and most frequently visited volcanoes.

Information Contacts: W. Tjetjep, VSI; BOM Darwin, Australia.


Vulcano (Italy) — October 1995 Citation iconCite this Report

Vulcano

Italy

38.404°N, 14.962°E; summit elev. 500 m

All times are local (unless otherwise noted)


Fumarolic activity notably diminished from previous years

Fumarolic activity, vigorous in the late 1980s and through 1994, notably diminished in 1995 (BGVN 20:04 and 20:06). During observations in September, the steam and gas output of the most conspicuous fumaroles, at the N rim of the Fossa Grande crater, was back to pre-1985 levels, and no longer formed sizeable gas plumes. Some of the formerly most vigorous fumaroles and steaming cracks were no longer active. Strong gas emission still occurred from fumaroles in the oversteepened and unstable Forgia Vecchia area, below the N rim of the Fossa Grande, and hydrothermal alteration continued to weaken the rock. Several blocks of strongly altered rock with volumes of ~100-500 m3 each had already detached and subsided by 10-20 cm, and may fall. However, it was uncertain whether they would reach the S margin of the village below the Fossa cone. Fumarolic activity also continued from numerous places on the beach N of the "Faraglione" and on the low isthmus connecting Vulcanello to the main body of Vulcano island. During a visit to the western-most (and most recent) crater of Vulcanello on 13 September, no evidence of recent fumarolic activity was found in its NE part where intense fumarolic activity took place until the mid-19th century.

Geologic Background. The word volcano is derived from Vulcano stratovolcano in Italy's Aeolian Islands. Vulcano was constructed during six stages over the past 136,000 years. Two overlapping calderas, the 2.5-km-wide Caldera del Piano on the SE and the 4-km-wide Caldera della Fossa on the NW, were formed at about 100,000 and 24,000-15,000 years ago, respectively, and volcanism has migrated north over time. La Fossa cone, active throughout the Holocene and the location of most historical eruptions, occupies the 3-km-wide Caldera della Fossa at the NW end of the elongated 3 x 7 km island. The Vulcanello lava platform is a low, roughly circular peninsula on the northern tip of Vulcano that was formed as an island beginning more than 2,000 years ago and was connected to the main island in about 1550 CE. Vulcanello is capped by three pyroclastic cones and was active intermittently until the 16th century. Explosive activity took place at the Fossa cone from 1898 to 1900.

Information Contacts: Boris Behncke and Giada Giuntoli, Department of Volcanology and Petrology, GEOMAR, Wischhofstr. 1-3, 24148 Kiel, Germany.


Yellowstone (United States) — October 1995 Citation iconCite this Report

Yellowstone

United States

44.43°N, 110.67°W; summit elev. 2805 m

All times are local (unless otherwise noted)


New mud volcano, minor mud flow, and associated thermal features

On the SW flank of Sour Creek resurgent dome W of Astringent Creek in the 0.6 Ma Yellowstone caldera, is an extensive, unnamed acid sulfate hydrothermal system (figures 2 and 3). Surface expression of the ~3 km2 thermal area consists of discontinuous high temperature altered ground, turbid springs, pools, seeps, fumaroles, mud pots, a large gas- and sulfur-rich acid lake, and numerous sublimated sulfur mound deposits interspersed among low-temperature forest-covered ground.

Figure (see Caption) Figure 2. Index map of the western United States showing the location of Yellowstone Caldera.
Figure (see Caption) Figure 3. Sketch map of Yellowstone Caldera indicating the location of the recent thermal features described in this and an earlier report.

During early 1990, a significant rise in temperature in the upper NW end of the hydrothermal system began killing old-growth pine trees. Within a year, a new super-heated fumarole emerged, blanketing the downed trees and roots with a layer of hydrothermally altered coarse sand from a directed blast to the N.

The temperature and volume of dry steam venting from the deep "shaft-like" vent steadily increased over the next three years, with the temperature reaching a maximum of 104.3°C on 8 October 1994, ~11°C higher than the local boiling point. The dynamic activity of the fumarole and surrounding hot ground was only monitored about twice a year over the three years following its 1990 inception due to its remote location and restricted access.

A similar progression was previously seen during 1985 in an area ~4.5 km to the E. This area, the upper E margin of the Mushpots thermal area, sits on the W flanks of Pelican Cone (BGVN 17:03). The progression went from new hot ground and dying mature forests, to the vigorous breakout of a dry, super-heated fumarole with progressively hotter temperatures over time, followed by sudden emergence of a large and violent mud volcano. Both the 1985 and recent thermal features had similar fluid compositions.

During 1992-94 the unnamed thermal area W of Astringent Creek developed a series of seven large craters that evolved as the Mushpots thermal area did in 1985. The craters were progressively younger towards the SW, ending at the site of the current new hot ground and fumarole (figure 4). In December 1993, National Park Service research geologist R. Hutchinson predicted that the newest superheated fumarole would soon evolve into a large mud volcano.

Figure (see Caption) Figure 4. Sketch map (scale approximate) showing the surface expression of an unnamed thermal area W of Astringent Creek in Yellowstone Caldera. Coordinates for map's center are at about 44°38'06"N, 110°16'44"W. Courtesy of R. Hutchinson.

As a part of routine monitoring, the thermal area W of Astringent Creek was inspected on 7 June 1995. The former 104.3°C fumarole was replaced by a large vigorous mud pot with ejecta extensively scattered around it. In addition, two new smaller roaring fumaroles at or slightly above boiling point, three new moderate-sized churning caldrons (pits containing hot, agitated aqueous fluids), numerous smaller muddy pools, collapse pits, and frying-pan springs (audibly degassing springs) were apparent then. Extensive areas of unstable quicksand-like saturated ground made up of scalding mud were found under the fallen trees. Some regions were heavily encrusted with sulfate minerals or sulfur crystals; others were covered by baked organic matter on the pine forest's floor.

Extending NW from the largest parasitic churning caldron, below the new mud volcano crater, was a spectacular white kaoline clay mud flow (figure 4, dark shading and arrow showing flow direction). It spread rapidly to reach an average width of 13.8 m in the first 55 meters of its length in dead forest grove and eventually terminated 114 m from its source on the open, acid thermal-basin floor.

The relative freshness of the ejected mud and incorporated semi-coarse sandy material indicated that the super-heated fumarole transformed into the powerful mud volcano between mid-April and mid-May. The distribution of large mud bombs suggested that their trajectories reached 20-30 m above the crater rim. Ejecta were seen along the following compass bearings with the stated maximum distances from the crater: N, 13.6 m; E, 30.2 m; S, 25.4 m; and W, 12.1 m.

When visited on both 7 June and 9 September, the mud volcano still continued to throw mud 0.5-1.5 m high from dozens of points around the crater floor. The mud volcano crater was 13.5-m long, 11.3-m wide, and 3.9-4.9 m deep. A conservative estimate of the crater volume was 315 m3. The total area covered by the ejecta and crater was ~2,100 m2. In the SW quarter of the crater a large, slightly elevated projection was visible with an arcuate line of dry, white, probably super-heated fumarole vents.

The largest parasitic caldron had numerous points of ebullition in its irregularly shaped pool (maximum dimensions of 10.8 x 7.9 m), with a water level 0.7-1.4 m below the former forest floor. The churning water was near boiling, opaque, light tan in color, and partially covered with brown organic-rich foam derived from cooked plant material.

Each of the caldrons were interpreted as being parasitic to the mud volcano crater because they appeared to have evolved shortly after the initial fumarole collapse and then subsequently drained much of its fluids. This relationship seems to have rapidly lowered the crater floor, preventing the accumulation of a thick ejecta cone on the crater rim.

The mud volcano crater, parasitic features, vents, and the associated hot ground remain extremely dangerous and unstable. Additional alterations in the creation of new or enlarged springs, and perhaps even another mud volcano crater are anticipated. With respect to geologic hazards, the acid sulfate thermal area should be checked again in the near future. Photographs were taken on 7 June.

The Yellowstone Plateau volcanic field developed through three volcanic cycles spanning two million years and included some of the world's largest known eruptions. Eruption of the > 2,500 km3 Huckleberry Ridge Tuff ~2.1 million years ago (Ma) created a caldera more than 75 km long. The Mesa Falls Tuff erupted around 1.3 Ma, forming the 25-km-wide Island Park Caldera at the first caldera's W end. A 0.6 Ma eruption deposited the 1,000 km3 Lava Creek Tuff and associated caldera collapse created the rest of the present 45 x 75 km caldera (figure 3). Resurgent doming then occurred; voluminous (1,000 km3) intercaldera rhyolitic lava flows were erupted between 150,000 and 70,000 years ago. Phreatic eruptions produced local tephra layers during the early Holocene. Distinctive geysers, mud pots, hot springs, and other hydrothermal features within Yellowstone caldera helped lead to the establishment of the National Park in 1872.

Geologic Background. The Yellowstone Plateau volcanic field developed through three volcanic cycles spanning two million years that included some of the world's largest known eruptions. Eruption of the over 2,450 km3 Huckleberry Ridge Tuff about 2.1 million years ago created the more than 75-km-long Island Park caldera. The second cycle concluded with the eruption of the Mesa Falls Tuff around 1.3 million years ago, forming the 16-km-wide Henrys Fork caldera at the western end of the first caldera. Activity subsequently shifted to the present Yellowstone Plateau and culminated 640,000 years ago with the eruption of the over 1,000 km3 Lava Creek Tuff and the formation of the present 45 x 85 km caldera. Resurgent doming subsequently occurred at both the NE and SW sides of the caldera and voluminous (1000 km3) intracaldera rhyolitic lava flows were erupted between 150,000 and 70,000 years ago. No magmatic eruptions have occurred since the late Pleistocene, but large hydrothermal events took place near Yellowstone Lake during the Holocene. Yellowstone is presently the site of one of the world's largest hydrothermal systems, including Earth's largest concentration of geysers.

Information Contacts: Roderick A. Hutchinson, National Park Service, P.O. Box 168, Yellowstone National Park, Wyoming 82190, USA.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports