Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Aira (Japan) Explosions with ejecta and ash plumes continue weekly during January-June 2019

Agung (Indonesia) Continued explosions with ash plumes and incandescent ejecta, February-May 2019

Kerinci (Indonesia) Intermittent explosions with ash plumes, February-May 2019.

Suwanosejima (Japan) Small ash plumes continued during January through June 2019

Great Sitkin (United States) Small steam explosions in early June 2019

Ibu (Indonesia) Frequent ash plumes and small lava flows active in the crater through June 2019

Ebeko (Russia) Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

Klyuchevskoy (Russia) Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Yasur (Vanuatu) Strong thermal activity with incandescent ejecta continues, February-May 2019

Bagana (Papua New Guinea) Infrequent thermal anomalies, no ash emissions, February-May 2019

Ambae (Vanuatu) Declining thermal activity and no explosions during February-May 2019

Sangay (Ecuador) Explosion on 26 March 2019; activity from 10 May through June produced ash plumes, lava flows, and pyroclastic flows



Aira (Japan) — July 2019 Citation iconCite this Report

Aira

Japan

31.593°N, 130.657°E; summit elev. 1117 m

All times are local (unless otherwise noted)


Explosions with ejecta and ash plumes continue weekly during January-June 2019

Sakurajima rises from Kagoshima Bay, which fills the Aira Caldera near the southern tip of Japan's Kyushu Island. Frequent explosive and occasional effusive activity has been ongoing for centuries. The Minamidake summit cone has been the location of persistent activity since 1955; the Showa crater on its E flank has also been intermittently active since 2006. Numerous explosions and ash-bearing emissions have been occurring each month at either Minamidake or Showa crater since the latest eruptive episode began in late March 2017. This report covers ongoing activity from January through June 2019; the Japan Meteorological Agency (JMA) provides regular reports on activity, and the Tokyo VAAC (Volcanic Ash Advisory Center) issues tens of reports each month about the frequent ash plumes.

From January to June 2019, ash plumes and explosions were usually reported multiple times each week. The quietest month was June with only five eruptive events; the most active was March with 29 (table 21). Ash plumes rose from a few hundred meters to 3,500 m above the summit during the period. Large blocks of incandescent ejecta traveled as far as 1,700 m from the Minamidake crater during explosions in February and April. All the activity originated in the Minamidake crater; the adjacent Showa crater only had a mild thermal anomaly and fumarole throughout the period. Satellite imagery identified thermal anomalies inside the Minamidake crater several times each month.

Table 21. Monthly summary of eruptive events recorded at Sakurajima's Minamidake crater in Aira caldera, January-June 2019. The number of events that were explosive in nature are in parentheses. No events were recorded at the Showa crater during this time. Data courtesy of JMA (January to June 2019 monthly reports).

Month Ash emissions (explosive) Max. plume height above crater Max. ejecta distance from crater
Jan 2019 8 (6) 2.1 km 1.1 km
Feb 2019 15 (11) 2.3 km 1.7 km
Mar 2019 29 (12) 3.5 km 1.3 km
Apr 2019 10 (5) 2.2 km 1.7 km
May 2019 15 (9) 2.9 km 1.3 km
Jun 2019 5 (2) 2.2 km 1.3 km

There were eight eruptive events reported by JMA during January 2019 at the Minamidake summit crater of Sakurajima. They occurred on 3, 6, 7, 9, 17, and 19 January (figure 76). Ash plume heights ranged from 600 to 2,100 m above the summit. The largest explosion, on 9 January, generated an ash plume that rose 2,100 m above the summit crater and drifted E. In addition, incandescent ejecta was sent 800-1,100 m from the summit. Incandescence was visible at the summit on most clear nights. During an overflight on 18 January no significant changes were noted at the crater (figure 77). Infrared thermal imaging done on 29 January indicated a weak thermal anomaly in the vicinity of the Showa crater on the SE side of Minamidake crater. The Kagoshima Regional Meteorological Observatory (KRMO) (11 km WSW) recorded ashfall there during four days of the month. Satellite imagery indicated thermal anomalies inside Minamidake on 7 and 27 January (figure 77).

Figure (see Caption) Figure 76. Incandescent ejecta and ash emissions characterized activity from Sakurajima volcano at Aira during January 2019. Left: A webcam image showed incandescent ejecta on the flanks on 9 January 2019, courtesy of JMA (Explanation of volcanic activity in Sakurajima, January 2019). Right: An ash plume rose hundreds of meters above the summit, likely also on 9 January, posted on 10 January 2019, courtesy of Mike Day.
Figure (see Caption) Figure 77. The summit of Sakurajima consists of the larger Minamidake crater and the smaller Showa crater on the E flank. Left: The Minamidake crater at the summit of Sakurajima volcano at Aira on 18 January 2019 seen in an overflight courtesy of JMA (Explanation of volcanic activity in Sakurajima, March 2019). Right: Two areas of thermal anomaly were visible in Sentinel-2 satellite imagery on 27 January 2019. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

Activity increased during February 2019, with 15 eruptive events reported on days 1, 3, 7, 8, 10, 13, 14, 17, 22, 24, and 27. Ash plume heights ranged from 600-2,300 m above the summit, and ejecta was reported 300 to 1,700 m from the crater in various events (figure 78). KRMO reported two days of ashfall during February. Satellite imagery identified thermal anomalies at the crater on 6 and 26 February, and ash plumes on 21 and 26 February (figure 79).

Figure (see Caption) Figure 78. An explosion from Sakurajima at Aira on 7 February 2019 sent ejecta up to 1,700 m from the Minamidake summit crater. Courtesy of JMA (Explanation of volcanic activity in Sakurajima, February 2019).
Figure (see Caption) Figure 79. Thermal anomalies and ash emissions were captured in Sentinel-2 satellite imagery on 6, 21, and 26 February 2019 originating from Sakurajima volcano at Aira. Top: Thermal anomalies within the summit crater were visible underneath steam and ash plumes on 6 and 26 February (closeup of bottom right photo). Bottom: Ash emissions on 21 and 26 February drifted SE from the volcano. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

The number of eruptive events continued to increase during March 2019; there were 29 events reported on numerous days (figures 80 and 81). An explosion on 14 March produced an ash plume that rose 3,500 m above the summit and drifted E. It also produced ejecta that landed 800-1,100 m from the crater. During an overflight on 26 March a fumarole was the only activity in Showa crater. KRMO reported 14 days of ashfall during the month. Satellite imagery identified an ash plume on 13 March and a thermal anomaly on 18 March (figure 82).

Figure (see Caption) Figure 80. A large ash emission from Sakurajima volcano at Aira was photographed by a tourist on the W flank and posted on 1 March 2019. Courtesy of Kratü.
Figure (see Caption) Figure 81. An ash plume from Sakurajima volcano at Aira on 18 March 2019 produced enough ashfall to disrupt the trains in the nearby city of Kagoshima according to the photographer. Image taken from about 20 km away. Courtesy of Tim Board.
Figure (see Caption) Figure 82. An ash plume drifted SE from the summit of Sakurajima volcano at Aira on 13 March (left) and a thermal anomaly was visible inside the Minamidake crater on 18 March 2019 (right). "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

A decline in activity to only ten eruptive events on days 7, 13, 17, 22, and 25 was reported by JMA for April 2019. An explosion on 7 April sent ejecta up to 1,700 m from the crater. Another explosion on 13 April produced an ash plume that rose 2,200 m above the summit. Most of the eruptive events at Sakurajima last for less than 30 minutes; on 22 April two events lasted for almost an hour each producing ash plumes that rose 1,400 m above the summit. Ashfall at KRMO was reported during seven days in April. Two distinct thermal anomalies were visible inside the Minamidake crater on both 12 and 27 April (figure 83).

Figure (see Caption) Figure 83. Two thermal anomalies were present inside Minamidake crater at the summit of Sakurajima volcano at Aira on 12 (left) and 27 (right) April 2019. "Geology" rendering (bands 12, 4, and 2) courtesy of Sentinel Hub Playground.

There were 15 eruptive events during May 2019. An event that lasted for two hours on 12 May produced an ash plume that rose 2,900 m from the summit and drifted NE (figure 84). The Meteorological Observatory reported 14 days with ashfall during the month. Two thermal anomalies were present in satellite imagery in the Minamidake crater on both 17 and 22 May.

Figure (see Caption) Figure 84. An ash plume rose 2,900 m above the summit of Sakurajima at Aira on 12 May 2019 (left); incandescent ejecta went 1,300 m from the summit crater on 13 May. Courtesy of JMA (Explanation of volcanic activity in Sakurajima, May 2019).

During June 2019 five eruptive events were reported, on 11, 13, and 24 June; the event on 11 June lasted for almost two hours, sent ash 2,200 m above the summit, and produced ejecta that landed up to 1,100 m from the crater (figure 85). Five days of ashfall were reported by KRMO.

Figure (see Caption) Figure 85. A large ash plume on 11 June 2019 rose 2,200 m above the summit of Sakurajima volcano at Aira. Courtesy of Aone Wakatsuki.

Geologic Background. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Mike Day, Minnesota, Twitter (URL: https://twitter.com/MikeDaySMM, photo at https://twitter.com/MikeDaySMM/status/1083489400451989505/photo/1); Kratü, Twitter (URL: https://twitter.com/TalesOfKratue, photo at https://twitter.com/TalesOfKratue/status/1101469595414589441/photo/1); Tim Board, Japan, Twitter (URL: https://twitter.com/Hawkworld_, photo at https://twitter.com/Hawkworld_/status/1107789108754038789); Aone Wakatsuke, Twitter (URL: https://twitter.com/AoneWakatsuki, photo at https://twitter.com/AoneWakatsuki/status/1138420031258210305/photo/3).


Agung (Indonesia) — June 2019 Citation iconCite this Report

Agung

Indonesia

8.343°S, 115.508°E; summit elev. 2997 m

All times are local (unless otherwise noted)


Continued explosions with ash plumes and incandescent ejecta, February-May 2019

After a large, deadly explosive and effusive eruption during 1963-64, Indonesia's Mount Agung on Bali remained quiet until a new eruption began in November 2017 (BGVN 43:01). Lava emerged into the summit crater at the end of November and intermittent ash plumes rose as high as 3 km above the summit through the end of the year. Activity continued throughout 2018 with explosions that produced ash plumes rising multiple kilometers above the summit, and the slow effusion of the lava within the summit crater (BGVN 43:08, 44:02). Information about the ongoing eruptive episode comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), also known as the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM), the Darwin Volcanic Ash Advisory Center (VAAC), and multiple sources of satellite data. This report covers the ongoing eruption from February through May 2019.

Intermittent but increasingly frequent and intense explosions with ash emissions and incandescent ejecta characterized activity at Agung during February through May 2019. During February, explosions were reported three times; events on seven days in March were documented with ash plumes and ashfall in surrounding villages. Five significant events occurred during April; two involved incandescent ejecta that traveled several kilometers from the summit, and ashfall tens of kilometers from the volcano. Most of the five significant events reported in May involved incandescent ejecta and ashfall in adjacent villages; air traffic was disrupted during the 24 May event. Ash plumes in May reached altitudes over 7 km multiple times. Thermal activity increased steadily during the period, according to both the MIROVA project (figure 44) and MODVOLC thermal alert data. MAGMA Indonesia reported at the end of May 2019 that the volume of lava within the summit crater remained at about 25 million m3; satellite information indicated continued thermal activity within the crater. Alert Level III (of four levels) remained in effect throughout the period with a 4 km exclusion radius around the volcano.

Figure (see Caption) Figure 44. Thermal activity at Agung from 4 September 2018 through May 2019 was variable. The increasing frequency and intensity of thermal events was apparent from February-May. Courtesy of MIROVA.

Steam plumes rose 30-300 m high daily during February 2019. The Agung Volcano Observatory (AVO) and PVMBG issued a VONA on 7 February (UTC) reporting an ash plume, although it was not visible due to meteoric cloud cover. Incandescence, however, was observed at the summit from webcams in both Rendang and Karangasem City (16 km SE). The seismic event associated with the explosion lasted for 97 seconds. A similar event on 13 February was also obscured by clouds but produced a seismic event that lasted for 3 minutes and 40 seconds, and ashfall was reported in the village of Bugbug, about 20 km SE. On 22 February a gray ash plume rose 700 m from the summit during a seismic event that lasted for 6 minutes and 20 seconds (figure 45). The Darwin VAAC reported the plume visible in satellite imagery moving W at 4.3 km altitude. It dissipated after a few hours, but a hotspot remained visible about 10 hours later.

Figure (see Caption) Figure 45. An ash plume rose from the summit of Agung on 22 February 2019, viewed from the Besakih temple, 7 km SW of the summit. Courtesy of PunapiBali.

Persistent steam plumes rose 50-500 m from the summit during March 2019. An explosion on 4 March was recorded for just under three minutes and produced ashfall in Besakih (7 km SW); no ash plume was observed due to fog. A short-lived ash plume rose to 3.7 km altitude and drifted SE on 8 March (UTC) 2019. The seismic event lasted for just under 4 minutes. Ash emissions were reported on 15 and 17 March to 4.3 and 3.7 km altitude, respectively, drifting W (figure 46). Ashfall from the 15 March event spread NNW and was reported in the villages of Kubu (6 km N), Tianyar (14 km NNW), Ban, Kadundung, and Sukadana. MAGMA Indonesia noted that two explosions on the morning of 17 March (local time) produced gray plumes; the first sent a plume to 500 m above the summit drifting E and lasted for about 40 seconds, while the second plume a few hours later rose 600 m above the crater and lasted for 1 minute and 16 seconds. On 18 March an ash plume rose 1 km and drifted W and NW. An event on 20 March was measured only seismically by PVMBG because fog prevented observations. An eruption on 28 March produced an ash plume 2 km high that drifted W and NW. The seismic signal for this event lasted for about two and a half minutes. The Darwin VAAC reported the ash plume at 5.5 km altitude, dissipating quickly to the NW. No ash was visible four hours later, but a thermal anomaly remained at the summit (figure 47). Ashfall was reported in nearby villages.

Figure (see Caption) Figure 46. Ash plumes from Agung on 15 (left) and 17 (right) March 2019 resulted in ashfall in communities 10-20 km from the volcano. Courtesy of PVMBG and MAGMA Indonesia (Information on G. Agung Eruption, 15 March 2019 and Gunung Agung Eruption Press Release March 17, 2019).
Figure (see Caption) Figure 47. A thermal anomaly was visible through thick cloud cover at the summit of Agung on 29 March 2019 less than 24 hours after a gray ash plume was reported 2,000 m above the summit. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

The first explosion of April 2019 occurred on the 3rd (UTC); PVMBG reported the dense gray ash plume 2 km above the summit drifting W. A few hours later the Darwin VAAC raised the altitude to 6.1 km based on infrared temperatures in satellite imagery. The seismic signal lasted for three and a half minutes and the explosion was heard at the PGA Post in Rendang (12 km SW). Incandescent material fell within a radius of 2-3 km, mainly on the S flank (figure 48). Ashfall was reported in the villages of Telungbuana, Badeg, Besakih, Pempatan, Teges, and Puregai on the W and S flanks (figure 49). An explosion on 11 April also produced a dense gray ash plume that rose 2 km above the summit and drifted W. A hotspot remained about six hours later after the ash dissipated.

Figure (see Caption) Figure 48. Incandescent ejecta appeared on the flanks of Agung after an eruption on 4 April 2019 (local time) as viewed from the observation post in Rendang (8 km SW). Courtesy of Jamie Sincioco.
Figure (see Caption) Figure 49. Ashfall in a nearby town dusted mustard plants on 4 April 2019 from an explosion at Agung the previous day. Courtesy of Pantau.com (Photo: Antara / Nyoman Hendra).

PVMBG reported an eruption visible in the webcam early on 21 April (local time) that rose to 5.5 km altitude and drifted SW. The ash spread W and S and ash fell around Besakih (7 km SW), Rendang (8 km SW), Klungkung (25 km S), Gianyar (20 km WSW), Bangli (17 km WNW), Tabanan (50 km WSW), and at the Ngurah Rai-Denpasar Airport (60 km SW). About 15 hours later a new explosion produced a dense gray ash plume that rose to 3 km above the summit and produced incandescent ejecta in all directions as far as 3 km away (figure 50). The ash spread to the S and ashfall was reported in Besakih, Rendang, Sebudi (6 km SW), and Selat (12 km SSW). Both of the explosions were heard in Rendang and Batulompeh. The incandescent ejecta from the explosions remained within the 4-km exclusion zone. A satellite image on 23 April showed multiple thermal anomalies within the summit crater (figure 51). A dense gray plume drifted E from Agung on 29 April (30 April local time) at 4.6 km altitude. It was initially reported by ground observers, but was also visible in multispectral satellite imagery for about six hours before dissipating.

Figure (see Caption) Figure 50. An explosion at Agung on 21 April 2019 sent incandescent eject 3,000 m from the summit. Courtesy of MAGMA Indonesia (Gunung Agung Eruption Press Release April 21, 2019).
Figure (see Caption) Figure 51. Multiple thermal anomalies were still present within the summit crater of Agung on 23 April 2019 after two substantial explosions produced ash and incandescent ejecta around the summit two days earlier. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

PVMBG reported an eruption on 3 May 2019 that was recorded on a seismogram with a signal that lasted for about a minute. Satellite imagery reported by the Darwin VAAC showed a growing hotspot and possible ash near the summit at 4.3 km altitude moving NE. A few days later, on 6 May, a gray ash plume rose to 5.2 km altitude and drifted slowly W before dissipating; it was accompanied by a seismic signal that lasted for about two minutes. Explosions on 12 and 18 May produced significant amounts of incandescent ejecta (figure 52). The seismic signal for the 12 May event lasted for about two minutes; no plume was observed due to fog, but incandescent ejecta was visible on the flanks and the explosion was heard at Rendang. The Darwin VAAC reported an ash plume from the explosion on 17 May (18 May local time) at 6.1 km altitude in satellite imagery moving E. They revised the altitude a short while later to 7.6 km based on IR temperature and movement; the plume drifted N, NE, and E in light and variable winds. A few hours after that it was moving NE at 7.6 km altitude and SE at 5.5 km altitude; this lasted for about 12 hours until it dissipated. Ashfall was reported in villages downwind including Cutcut, Tongtongan, Bonyoh (20 km WNW), and Temakung.

Figure (see Caption) Figure 52. Explosions on 12 (left) and 18 (right) May (local time) 2019 produced substantial ejecta on the flanks of Agung visible from a distance of 10 km or more in PVMBG webcams. The ash plume from the 18 May event resulted in ashfall in numerous communities downwind. Courtesy of PVMBG (Information Eruption G. Agung, May 13, 2019, Information Eruption G. Agung, May 18, 2019).

The initial explosion on 18 May was captured by a webcam at a nearby resort and sent incandescent ejecta hundreds of meters down the NE flank within 20 seconds (figure 53). Satellite imagery on 3, 8, 13, and 18 May indicated multiple thermal anomalies growing stronger at the summit. All of the images were captured within 24 hours of an explosive event reported by PVMBG (figure 54).

Figure (see Caption) Figure 53. The 18 May 2019 explosion at Agung produced an ash plume that rose to over 7 km altitude and large bombs of incandescent material that traveled hundreds of meters down the NE flank within the first 20 seconds of the explosion. Images taken from a private webcam located 12 km NE. Courtesy of Volcanoverse, used with permission.
Figure (see Caption) Figure 54. Satellite images from 3, 8, 13, and 18 May 2019 at Agung showed persistent and increasing thermal anomalies within the summit crater. All images were captured within 24 hours of explosions reported by PVMBG. "Atmospheric Penetration" rendering (bands 12, 11, and 8A) courtesy of Sentinel Hub Playground.

PVMBG issued a VONA on 24 May 2019 reporting a new ash emission. They indicated that incandescent fragments were ejected 2.5-3 km in all directions from the summit, and the seismic signal lasted for four and a half minutes (figure 55). A dense gray ash plume was observed from Tulamben on the NE flank rising 2 km above the summit. Satellite imagery indicated that the plume drifted SW and ashfall was reported in the villages of Besakih, Pempatan, Menanga, Sebudi, Muncan, Amerta Bhuana, Nongan, Rendang, and at the Ngurah Rai Airport in Denpassar. Additionally, ashfall was reported in the districts of Tembuku, Bangli, and Susut (20 km SW). The Darwin VAAC reported an ash plume visible in satellite imagery at 4.6 km altitude along with a thermal anomaly and incandescent lava visible in webcam imagery. The remains of the ash plume were about 170 km S of the airport in Denpasar (60 km SW) and had nearly dissipated 18 hours after the event. According to a news article several flights to and from Australia were cancelled or diverted, though the International Gusti Ngurah Rai (IGNR) airport was not closed. On 31 May another large explosion produced the largest ash plume of the report period, rising more than 2 km above the summit (figure 56). The Darwin VAAC reported its altitude as 8.2 km drifting ESE visible in satellite data. It split into two plumes, one drifted E at 8.2 km and the other ESE at 6.1 km altitude, dissipating after about 20 hours.

Figure (see Caption) Figure 55. A large explosion at Agung on 24 May 2019 produced incandescent ejecta that covered all the flanks and dispersed ash to many communities to the SW. Courtesy of PVMBG (Gunung Agung Eruption Press Release 24 May 2019 20:38 WIB, Kasbani, Ir., M.Sc.).
Figure (see Caption) Figure 56. An explosion at Agung on 31 May 2019 sent an ash plume to 8.2 km altitude, the highest for the report period. Courtesy of Sutopo Purwo Nugroho, BNPB.

Geologic Background. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); The Jakarta Post, Mount Agung eruption disrupts Australian flights, (URL: https://www.thejakartapost.com/news/2019/05/25/mount-agung-eruption-disrupts-australian-flights.html); PunapiBali (URL: http://punapibali.com/, Twitter: https://twitter.com/punapibali, image at https://twitter.com/punapibali/status/1098869352588288000/photo/1); Jamie S. Sincioco, Phillipines (URL: Twitter: https://twitter.com/jaimessincioco. Image at https://twitter.com/jaimessincioco/status/1113765842557104130/photo/1); Pantau.com (URL: https://www.pantau.com/berita/erupsi-gunung-agung-sebagian-wilayah-bali-terpapar-hujan-abu?utm_source=dlvr.it&utm_medium=twitter); Volcanoverse (URL: https://www.youtube.com/channel/UCi3T_esus8Sr9I-3W5teVQQ); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN ).


Kerinci (Indonesia) — June 2019 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent explosions with ash plumes, February-May 2019.

Frequently active, Indonesia's Mount Kerinci on Sumatra has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838. Intermittent explosions with ash plumes, usually multiple times per month, have characterized activity since April 2018. Similar activity continued during February-May 2019, the period covered in this report with information provided primarily by the Indonesian volcano monitoring agency, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), MAGMA Indonesia, notices from the Darwin Volcano Ash Advisory Center (Darwin VAAC), and satellite data. PVMBG has maintained an Alert Level II (of 4) at Kerinci for several years.

On 13 February 2019 the Kerinci Volcano Observatory (KVO), part of PVMBG, noted a brownish-white ash emission that was drifting NE about 400 m above the summit. The seismicity during the event was dominated by continuous volcanic tremor. A brown ash emission was reported on 7 March 2019 that rose to 3.9 km altitude and drifted NE. Ash also drifted 1,300 m down the SE flank. Another ash plume the next morning drifted W at 4.5 km altitude, according to KVO. On 10, 11, and 13 March KVO reported brown ash plumes drifting NE from the summit at about 4.0-4.3 km altitude. The Darwin VAAC observed continuous ash emissions in satellite imagery on 15 March drifting W at 4.3 m altitude that dissipated after about 3 hours (figure 10). A gray ash emission was reported on 19 March about 600 m above the summit drifting NE; local news media noted that residents of Kayo Aro reported emissions on both 18 and 19 March (figure 11). An ash emission appeared in satellite imagery on 25 March (figure 10). On 30 March the observatory reported two ash plumes; a brown emission at 0351 UTC and a gray emission at 0746 UTC that both drifted NE at about 4.4 km altitude and dissipated within a few hours. PVMBG reported another gray ash plume the following day at a similar altitude.

Figure (see Caption) Figure 10. Sentinel-2 satellite imagery of Kerinci from 15 (left) and 25 (right) March 2019 showed evidence of ash plumes rising from the summit. Kerinci's summit crater is about 500 m wide. "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 11. Dense ash plumes from Kerinci were reported by local news media on 18 and 19 March 2019. Courtesy of Nusana Jambi.

Activity continued during April with a brown ash emission reported on 3 April by several different agencies; the Darwin VAAC and PVMBG daily reports noted that the plume was about 500 m above the summit (4.3 km altitude) drifting NE. KVO observed two brown ash emissions on 13 April (UTC) that rose to 4.2 km altitude and drifted NE. Satellite imagery showed minor ash emissions from the summit on 14 April; steam plumes 100-500 m above the summit characterized activity for the remainder of April (figure 12).

Figure (see Caption) Figure 12. A dilute ash emission rose from the summit of Kerinci on 14 April 2019 (left); only steam emissions were present on a clear 29 April in Sentinel-2 imagery (right). "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.

Ashfall on the NE and S flanks within 7 km of the volcano was reported on 2 May 2019. According to a news article, at least five villages were affected late on 2 May, including Tanjung Bungo, Sangir, Sangir Tengah, Sungai Rumpun, and Bendung Air (figures 13 and 14). The smell of sulfur was apparent in the villages. Brown ash emissions were observed on 3 and 4 May that rose to 4.6 and 4.1 km altitude and drifted SE. The Darwin VAAC reported an emission on 5 May, based on a pilot report, that rose to 6.7 km altitude and drifted NE for about an hour before dissipating. A brown ash emission on 10 May rose 700 m above the summit and drifted SE. Satellite imagery captured ash emissions from the summit on 14 and 24 May (figure 15). For the remainder of the month, 300-700-m-high dense steam plumes were noted daily until PVMBG reported white and brown plumes on 26 and 27 May rising 500-1,000 m above the summit. Although thermal anomalies were not reported during the period, persistent weak SO2 emissions were identified in TROPOMI instrument satellite data multiple times per month (figure 16).

Figure (see Caption) Figure 13. Ashfall was reported from five villages on the flanks of Kerinci on 2 May 2019. Courtesy of Uzone.
Figure (see Caption) Figure 14. An ash plume at Kerinci rose hundreds of meters on 2 May 2019; ashfall was reported in several nearby villages. Courtesy of Kerinci Time.
Figure (see Caption) Figure 15. Ash emissions from Kerinci were captured in Sentinel-2 satellite imagery on 14 (left) and 24 (right) May 2019. The summit crater is about 500 m wide. "Geology" rendering (bands 12, 4, 2), courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 16. Weak SO2 anomalies from Kerinci emissions were captured by the TROPOMI instrument on the Sentinel-5P satellite multiple times each month from February to May 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Nuansa Jambi, Informasi Utama Jambi: (URL: https://nuansajambi.com/2019/03/20/gunung-kerinci-semburkan-asap-tebal/); Kerinci Time (URL: https://kerincitime.co.id/gunung-kerinci-semburkan-abu-vulkanik.html); Uzone.id (URL: https://news.uzone.id/gunung-kerinci-erupsi-5-desa-tertutup-abu-tebal).


Suwanosejima (Japan) — July 2019 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Small ash plumes continued during January through June 2019

Suwanosejima is an active volcanic island south of Japan in the Ryuku islands with recent activity centered at Otake crater. The current eruption began in October 2004 and activity has mostly consisted of small ash plumes, ballistic ejecta, and visible incandescence at night. This report summarizes activity during January through June 2019 and is based on reports by the Japan Meteorological Agency (JMA), and various satellite data.

Thermal activity recorded by the MIROVA system was low through January and February after a decline in November (figure 36), shown in Sentined-2 thermal infrared imagery as originating at a vent in the Otake crater (figure 37). During January an explosive event was observed at 1727 on the 3rd, producing a gray plume that rose 600 m above the crater. A white gas-and-steam plume rose to 1.5 km above the crater and nighttime incandescence was observed throughout the month. Reduced activity continued through February with no reported explosive eruptions and light gray plumes up to 900 m above the crater. Incandescence continued to be recorded at night using a sensitive surveillance camera.

Figure (see Caption) Figure 36. MIROVA log radiative power plot of MODIS thermal infrared data at Suwanosejima during September 2018 through June 2019. There was reduced activity in 2019 with periods of more frequent anomalies during March and June. Courtesy of MIROVA.
Figure (see Caption) Figure 37. A Sentinel-2 thermal satellite image shows Suwanosejima with the active Otake crater in the center with elevated temperatures shown as bright orange/yellow. There is a light area next to the vent that may be a gas plume. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

There was an increase in thermal energy detected by the MIROVA system in mid-March and there was a MODVOLC thermal alert on the 15th. Occasional small explosions occurred but no larger explosive events were recorded. A white plume was noted on the 27th rising to 900 m above the crater and an event at 1048 on the 30th produced a light-gray plume that rose to 800 m. Incandescence was only observed using a sensitive camera at night (figure 38).

Figure (see Caption) Figure 38. Incandescence from the Suwanosejima Otake crater reflecting in clouds above the volcano. Courtesy of JMA (Volcanic activity of Suwanosejima March 2019).

No explosive events were observed through April. A white gas-and-steam plume rose to 1,200 m above the crater on the 19th and incandescence continued intermittently. Minor explosions were recorded on 5, 30, and 31 May, but no larger explosive events were observed during the month. The event on the 30th produced ash plume that reached 1.1 km above the crater. Similar activity continued through June with one explosive event occurring on the 2nd. Overall, there was a reduction in the number of ash plumes erupted during this period compared to previous months (figure 39).

Figure (see Caption) Figure 39. Observed activity at Suwanosejima for the year ending in July 2019. The black vertical bars represent steam, gas, or ash plume heights (scale in meters on the left axis), yellow diamonds represent incandescence observed in webcams, gray volcano symbols along the top are explosions accompanied by ash plumes, red volcano symbols represent large explosions with ash plumes. Courtesy of JMA (Volcanic activity of Suwanosejima June 2019).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Great Sitkin (United States) — July 2019 Citation iconCite this Report

Great Sitkin

United States

52.076°N, 176.13°W; summit elev. 1740 m

All times are local (unless otherwise noted)


Small steam explosions in early June 2019

The Great Sitkin volcano is located about 40 km NE of Adak Island in the Aleutian Islands and has had a few short-lived eruptions over the past 100 years. Prior to the latest activity in early June 2019 described below, small phreatic explosions occurred in June and August 2018 (BGVN 43:09). An eruption in 1974 produced a lava dome in the center of the crater. The Alaska Volcano Observatory (AVO) is the primary source of information for this September 2018-June 2019 reporting period.

Low-level unrest occurred from September 2018 through February 2019 with slightly elevated seismic activity (figure 6). Small explosions were seismically detected by AVO on 30 October, 5 and 16 November, and 11 December 2018, but they were not seen in regional infrasound data and satellite data did not show an ash cloud.

On 1, 7, and 9 June 2019, AVO reported small steam explosions as well as slightly elevated seismic activity. Steam plumes and surficial evidence of an explosion were not observed during these events. On 18 June 2019 weakly elevated surface temperatures were recorded, field crews working on Adak observed some steam emissions, and a gas flight was conducted. Elevated concentrations of carbon dioxide detected above the lava dome were likely associated with the steam explosions earlier in the month (figures 7 and 8). From 23 June through the end of the month seismicity began to decline back to background levels.

Figure (see Caption) Figure 6. A steam plume was seen at the summit of Great Sitkin on 7 December 2018. Photo by Andy Lewis and Bob Boyd; courtesy of AVO/USGS.
Figure (see Caption) Figure 7. Some degassing was observed on the southern flank of the Great Sitkin during an overflight on 18 June 2019. Photo by Laura Clor; image courtesy of AVO/USGS.
Figure (see Caption) Figure 8. View of Great Sitkin with white plumes rising from the summit on 20 June 2019. Photo by Laura Clor, courtesy of AVO/USGS.

Geologic Background. The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ibu (Indonesia) — July 2019 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash plumes and small lava flows active in the crater through June 2019

Ibu volcano on Halmahera island in Indonesia began the current eruption episode on 5 April 2008. Since then, activity has largely consisted of small ash plumes with less frequent lava flows, lava dome growth, avalanches, and larger ash plumes up to 5.5 km above the crater. This report summarizes activity during December 2018 through June 2019 and is based on Volcano Observatory Notice for Aviation (VONA) reports by MAGMA Indonesia, reports by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and Badan Nasional Penanggulangan Bencana (BNPB), and various satellite data.

During December PVMBG reported ash plumes ranging from 200 to 800 m above the crater. There were 11 MODVOLC thermal alerts that registered during 1-12 December. An explosion on 12 January 2019 produced an ash plume that reached 800 m above the crater and dispersed to the S (figure 15). A report released for this event by Sutopo at BNPB said that Ibu had erupted almost every day over the past three months; an example given was of activity on 10 January consisting of 80 explosions. There were four MODVOLC thermal alerts through the month.

Figure (see Caption) Figure 15. An eruption at Ibu at 1712 on 21 January 2019 produced an ash plume that rose to 800 m above the crater. Courtesy of BNPB (color adjusted).

Throughout February explosions frequently produced ash plumes as high as 800 m above the crater, and nine MODVOLC thermal alerts were issued. Daily reports showed variable plume heights of 200-800 m most days throughout the month. Wind directions varied and dispersed the plumes in all directions. A VONA released at 1850 on 6 February reported an ash plume that rose to 1,925 m altitude (around 600 m above the summit) and dispersed S. Activity continued through March with the Darwin VAAC and PVMBG reporting explosions producing ash plumes to heights of 200-800 m above the crater and dispersing in various directions. There were ten MODVOLC alerts through the month.

Similar activity continued through April, May, and June, with ash plumes reaching 200-800 m above the crater. There were 12, 6, and 15 MODVOLC Alerts in April, May, and June, respectively.

Planet Scope satellite images show activity at a two vents near the center of the crater that were producing small lava flows from February through June (figure 16). Thermal anomalies were frequent during December 2018 through June 2019 across MODVOLC, MIROVA, and Sentinel-2 infrared data (figures 17 and 18). Sentinel-2 data showed minor variation in the location of thermal anomalies within the crater, possibly indicating lava flow activity, and MIROVA data showed relatively constant activity with a few reductions in thermal activity during January and February.

Figure (see Caption) Figure 16. Planet Scope natural color satellite images showing activity in the Ibu crater during January through June 2019, with white arrows indicating sites of activity. One vent is visible in the 21 February image, and a 330-m-long (from the far side of the vent) lava flow with flow ridges had developed by 24 March. A second vent was active by 12 May with a new lava flow reaching a maximum length of 520 m. Activity was centered back at the previous vent by 23-27 June. Natural color Planet Scope Imagery, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 17. Examples of thermal activity in the Ibu crater during January through May 2019. These Sentinel-2 satellite images show variations in hot areas in the crater due to a vent producing a small lava flow. Sentinel-2 false color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. MIROVA log radiative power plot of MODIS thermal infrared at Ibu from September 2018 through June 2019. The registered energy was relatively stable through December, with breaks in January and February. Regular thermal anomalies continued with slight variation through to the end of June. Courtesy of MIROVA.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/).


Ebeko (Russia) — July 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

The Ebeko volcano, located on the northern end of the Paramushir Island in the Kuril Islands, consists of many craters, lakes, and thermal features and has been frequently erupting since late February 2017. Typical activity includes ash plumes, explosive eruptions, and gas-and-steam activity. The previous report through November 2018 (BGVN 43:12) described frequent ash explosions that sometimes caused ashfall in Severo-Kurilsk (7 km E). The primary source of information is the Kamchatka Volcanic Eruptions Response Team (KVERT). This report updates the volcanic activity at Ebeko for December 2018 through May 2019.

Frequent moderate explosive activity continued after November 2018. Volcanologists in Severo-Kurilsk observed explosions sending up ash, which drifted N, NE, and E, resulting in ash falls on Severo-Kurilsk on 28 different days between December 2018 and March 2019. On 25 December 2018 an explosion sent ash up to a maximum altitude of 4.5 km and then drifted N for about 5 km. Explosions occurring on 8-10 March 2019 sent ash up to an altitude of 4 km, resulting in ashfall on Severo-Kurilsk on 9-10 March 2019. An ash plume from these explosions rose to a height of 2.5 km and drifted to a maximum distance of 30 km ENE.

Satellite data analyzed by KVERT registered 12 thermal anomalies from December 2018 through May 2019. According to satellite data analyzed by MIROVA (Middle InfraRed Observation of Volcanic Activity), only one thermal anomaly was recorded from December 2018-May 2019, and no hotspot pixels were recognized using satellite thermal data from the MODVOLC algorithm.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Klyuchevskoy (Russia) — July 2019 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Klyuchevskoy has had alternating eruptive and less active periods since August 2015. Activity has included lava flows, a growing cinder cone, thermal anomalies, gas-and-steam plumes, and ash explosions. Though some eruptions occur near the summit crater, major explosive and effusive eruptions have also occurred from flank craters (BGVN 42:04 and 43:05). Intermittent moderate gas-and-steam and ash emissions were previously reported from mid-February to mid-August 2018. The Kamchatka Volcanic Eruptions Response Team (KVERT) is the primary source of information for this September 2018-June 2019 reporting period.

KVERT reported that moderate gas-and-steam activity, some of which contained a small amount of ash, and weak thermal anomalies occurred intermittently from the beginning of September 2018 through mid-April 2019. On 21-22 April 2019 webcam data showed a gas-and-steam plume extending about 160 km SE (figure 31). Moderate Strombolian-type volcanism began late April 2019 and continued intermittently through June 2019. On 11-12 June webcam data showed explosions that sent ash up to a maximum altitude of 6 km, with the resulting ash plume extending about 200 km WNW.

Figure (see Caption) Figure 31. Gas-and-steam plume containing some amount of ash rising from the summit of Klyuchevskoy on 22 April 2019. Photo by A. Klimova, courtesy of Institute of Volcanology and Seismology (IVS FEB RAS).

Thermal anomalies were noted by KVERT during two days in September 2018, six days in April 2019, eleven days in May 2019, and six days in June 2019. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed infrequent weak thermal anomalies December 2018 through early May 2019.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Yasur (Vanuatu) — June 2019 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Strong thermal activity with incandescent ejecta continues, February-May 2019

Yasur volcano on Tanna Island has been characterized by Strombolian activity with large incandescent bombs, frequent explosions, lava fountaining, and ash emissions for much of its known eruptive history. Melanesians from nearby islands are believed to have settled Tanna in about 400 BCE; it is now part of the nation of Vanuatu, independent since 1980. The Kwamera language (or Tannese) spoken on the SE coast of the island is thought to be the source of the name of the island. No known oral history describes volcanic activity; the first written English-language documentation of activity dates to 5 August 1774, when Captain James Cook saw "a great fire" on Tanna Island. Cook realized that it "was a Volcano which threw up vast quantities of fire and smoak and made a rumbling noise which was heard at a good distance" (The Captain Cook Society) (figure 51).

Figure (see Caption) Figure 51. Incandescence, steam, and dark ash from Yasur fill the sky in this sketch representing Captain James Cook's landing in the 'Resolution' at Tanna Island on 5 August 1774. The form of the volcano is behind the ship, the incandescence is in the upper right next to the ship's masts. "Landing at Tanna" by William Hodges, 1775-1776, National Maritime Museum, Greenwich, London. The Maritime Museum noted that this is one of a group of panel paintings produced by Hodges of encounters with islanders during the voyage, in which the European perception of each society at the time is portrayed. Image taken from Wikimedia Commons.

Based on numerous accounts from ships logs and other sources, volcanic activity has been continuous since that time. During periods of higher activity, multiple vents within the summit crater send ejecta 100 m or more above the crater rim, with large bombs occasionally landing hundreds of meters away. Continued activity during February-May 2019 is covered in this report with information provided by the Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD) which monitors the volcano and satellite data; photographs from tourists also provide valuable information about this remote location.

VMGD has maintained Alert Level 2 at Yasur since October 2016, indicating that it is in a major state of unrest. There is a permanent exclusion zone within 395 m of the eruptive vents where access is prohibited due to multiple hazards, primarily from large incandescent bombs up to 4 m in diameter which have been ejected from the vents onto the crater rim in the past, resulting in fatalities (BGVN 20:08).

Satellite and ground based information all support high levels of thermal activity during February -May 2019. MODVOLC thermal alerts were issued 11 times in February, 27 times in March, and 20 times each in April and May. The MIROVA graph also indicated the ongoing consistently high levels of thermal energy throughout the period (figure 52). Plumes of SO2 emissions are common from Vanuatu's volcanoes; newer higher resolution data available beginning in 2019 reveal a persistent stream of SO2 from Yasur on a near-daily basis (figure 53).

Figure (see Caption) Figure 52. The MIROVA graph of thermal energy at Yasur from 3 September 2018 through May 2019 indicates the ongoing activity at the volcano. Courtesy of MIROVA.
Figure (see Caption) Figure 53. The SO2 plumes from Yasur were persistent during January-May 2019 when they were visible many days of each week throughout the period. Top left: On 12 January plumes were visible drifting E from both Ambrym (top) and Yasur (bottom). Top right: Plumes drifted W from three Vanuatu volcanoes on 7 February, Gaua (top), Ambrym (middle) and Yasur (bottom). Bottom left: On 12 March N drifting plumes could be seen from Ambae (top) and Yasur (bottom). On 27 April, only Yasur had an SO2 plume drifting W. Courtesy of Goddard Space Flight Center.

Satellite imagery confirmed that the heat sources from Yasur were vents within the summit crater of the pyroclastic cone. Both northern and southern vent areas were active. On 7 March 2019 the N vent area had a strong thermal signal. Ten days later, on 17 March, similar intensity thermal anomalies were present in both the N and S vent areas (figure 54). On 6 April the S vent area had a stronger signal, and gas emissions from both vents were drifting N (figure 55). Satellite imagery from 21 May 2019 indicated a strong thermal signal inside the crater in the area of the vents, and included a weaker signal clearly visible on the inside E crater rim. Strong Strombolian activity or spatter sending large incandescent bombs as far as the crater rim are a likely explanation for the signal (figure 56), underscoring the hazardous nature of approaching the crater rim.

Figure (see Caption) Figure 54. Strong thermal anomalies from the crater of Yasur's pyroclastic cone seen in satellite images confirmed the ongoing high level of activity. Left: 7 March 2019, a strong thermal anomaly from the N vent area, shown with "Geology" rendering (bands 12, 4, 2). Right: 17 March 2019, thermal anomalies at both the N and S vent areas, shown with "Atmospheric Penetration" rendering (bands 12, 11, 8A). The crater is about 500 m in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 55. Strong thermal anomalies (left) and gas emissions (right) at Yasur were captured with different bands in the same Sentinel-2 satellite image on 6 April 2019. Left: The thermal anomaly in the S vent area was stronger than in the N vent area, "Atmospheric Penetration" rendering (bands 12, 11, 8A). Right: Gas plumes drifted N from both vent areas, "Natural color" rendering (bands 4, 3, 2). The crater is about 500 m in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Thermal activity from the crater of Yasur on 21 May 2019 produced a strong thermal signal from the center of the crater and a weaker signal on the inside E crater rim, likely the result of hazardous incandescent bombs and ejecta, frequent products of the activity at Yasur. Left: "Atmospheric Penetration" rendering (bands 12, 11, 8A). Right: "Geology" rendering (bands 12, 4, 2). The crater is about 0.5 km in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.

Tourists visit Yasur on a regular basis. A former lake on the N side of Yasur has left ripples in the sand deposits over older volcanic rocks on the N side of the volcano (figure 57) since it drained in 2000 (BGVN 28:01). Visitors are allowed to approach the S rim of the crater where incandescence from both the N and S vents is usually visible (figure 58). Incandescent spatter from the convecting lava in the vents is highly dangerous and unpredictable and often covers the inner slopes of the rim as well as sending bombs outside the crater (figure 59).

Figure (see Caption) Figure 57. The pyroclastic cone of Yasur viewed from the north on 6 May 2019. Ripples in volcaniclastic sand in the foreground are remnants of a lake that was present on the N side of the volcano until a natural dam breached in 2000. Copyrighted photo by Nick Page, used with permission.
Figure (see Caption) Figure 58. Two glowing vents were visible from the south rim of Yasur on 6 May 2019. The S vent area is in the foreground, the N vent area is in the upper left. Copyrighted by Nick Page, used with permission.
Figure (see Caption) Figure 59. Incandescent spatter at Yasur on 6 May 2019 sent fragments of lava against the inside crater wall and onto the rim. The convecting lava in the vent can be seen in the lower foreground. Copyrighted photo by Nick Page, used with permission.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Captain Cook Society (URL: https://www.captaincooksociety.com/home/detail/225-years-ago-july-september-1774); Royal Museums Greenwich (URL: https://collections.rmg.co.uk/collections/objects/13383.html); Wikimedia Commons, (URL: https://commons.wikimedia.org/wiki/File:The_Landing_at_Tana_one_of_the_New_Hebrides,_by_William_Hodges.jpg); Nick Page, Australia,Flickr: (URL: https://www.flickr.com/photos/152585166@N08/).


Bagana (Papua New Guinea) — June 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Infrequent thermal anomalies, no ash emissions, February-May 2019

With historical eruptions reported back to 1842, Papua New Guinea's Bagana volcano on the island of Bougainville has been characterized by viscous andesitic lava flows down the steep flanks of its cone, along with intermittent ash plumes and pyroclastic flows. Ongoing thermal anomalies and frequent ash plumes have been typical of activity during the current eruption since it began in early 2000. Activity declined significantly in December 2018 and remained low through May 2019, the period covered in this report (figure 33). Information for this report comes primarily from satellite images and thermal data.

Figure (see Caption) Figure 33. The MIROVA plot of radiative power at Bagana from 1 September 2018 through May 2019 shows a marked decline in thermal activity during December 2018 after ash explosions and satellite observations of flows during the previous months. Courtesy of MIROVA.

The last ash emission at Bagana was reported on 1 December 2018 by the Darwin Volcanic Ash Advisory Center (VAAC). A Sentinel-2 satellite image showed a linear thermal anomaly trending NW from the summit on 14 December (BGVN 50:01). On 8 January 2019, an image contained a dense steam plume drifting E and a very faint thermal anomaly on the N flank a few hundred meters from the summit. A more distinct thermal anomaly at the summit appeared on 22 February 2019 (figure 34). A visitor to the region photographed incandescence on the flank, likely from the volcano, at dawn around 19 February 2019 (figure 35).

Figure (see Caption) Figure 34. Sentinel-2 satellite imagery revealed thermal anomalies at Bagana in January and February 2019. Left: a very faint thermal anomaly was N of the summit at the edge of the E-drifting steam plume on 8 January 2019. Right: A thermal anomaly was located at the summit, at the base of the NE-drifting steam plume on 22 February 2019. Sentinel-2 satellite images with "Atmospheric Penetration" rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 35. A visitor near Bagana spotted incandescence on the flank at dawn, possibly from a lava flow. Posted online 19 February 2019. Courtesy of Emily Stanford.

Two faint thermal anomalies were visible at the summit in satellite imagery on 19 March; a single one appeared on 29 March 2019 (figure 36). No thermal anomalies were recorded in Sentinel-2 images during April or May, but steam plumes and gas emissions were visible through cloud cover on multiple occasions (figure 37).

Figure (see Caption) Figure 36. Faint thermal anomalies at Bagana were recorded in satellite imagery twice during March 2019. Left: 19 March, two anomalies appear right of the date label. Right: 29 March, a small anomaly appears right of the date label. Sentinel-2 image rendered with "Atmospheric Penetration" (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 37. Steam and gas emissions at Bagana were recorded in satellite imagery during April and May 2019. Left: A steam plume drifted NW from the summit on 23 April, visible through dense cloud cover. Right: A gas plume drifted SW from the summit on 18 May. Sentinel-2 image with "Geology" rendering (bands 12, 4, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Emily Stanford (Twitter: https://twitter.com/NerdyBatLady, image posted at https://twitter.com/NerdyBatLady/status/1098052063009792001/photo/1).


Ambae (Vanuatu) — June 2019 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Declining thermal activity and no explosions during February-May 2019

Ambae (Aoba) is a large basaltic shield volcano in the New Hebrides arc, part of the multi-island country of Vanuatu. Its periodic phreatic and pyroclastic explosions originating in the summit crater lakes have been recorded since the 16th century. A pyroclastic cone appeared in Lake Voui during November 2005-February 2006 (BGVN 31:12, figure 30); an explosive eruption from a new pyroclastic cone in the lake began in mid-September 2017 (BGVN 43:02). Activity included high-altitude ash emissions (9.1 km), lava flows, and Strombolian activity. Intermittent pulses of ash emissions during the following months resulted in extensive ashfall and evacuations; multiple communities were affected by lahars. The most recent episode of the eruption from July to September 2018 (BGVN 44:02) resulted in 11-km-altitude ash plumes and the evacuation of the entire island due to heavy ashfall and lahars. This report covers activity from February to May 2019, with information provided by the Vanuatu Geohazards Observatory of the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data from multiple sources.

Activity diminished after the extensive eruptive phase of July-September 2018 when substantial ash plumes and ashfall resulted in evacuations. An explosion with an ash plume on 30 October 2018 was the last activity reported for 2018. Thermal alerts were reported by the Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC thermal alerts system through January 2019, and the Log Radiative Power graph prepared by the MIROVA project showed decreasing thermal anomalies into June 2019 (figure 92). Satellite images recorded in April and May 2019 (figure 93) showed the configuration of the summit lakes to be little changed from the previous November except for the color (BGVN 44:02, figure 89). No ash emissions or SO2 plumes were reported during the period. VMGD noted that the volcano remained at Alert Level 2 through May 2019 with a 2-km-radius exclusion zone around the summit.

Figure (see Caption) Figure 92. The MIROVA log radiative power plot for Ambae showed ongoing intermittent thermal anomalies from early September 2018 through May 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 93. Satellite imagery in April and May 2019 showed little change in the configuration of lakes at the summit of Ambae since November 2018 (see BGVN 44:02, figure 89). Left: 24 April 2019. Right: 29 May 2019. Sentinel-2 satellite imagery with "Natural Color" rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sangay (Ecuador) — July 2019 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Explosion on 26 March 2019; activity from 10 May through June produced ash plumes, lava flows, and pyroclastic flows

Sangay is the southernmost active volcano in Ecuador, with confirmed historical eruptions going back to 1628. The previous eruption occurred during August and December and was characterized by ash plumes reaching 2,500 m above the crater. Lava flows and pyroclastic flows descended the eastern and southern flanks. This report summarizes activity during January through July 2019 and is based on reports by Instituto Geofísico (IG-EPN), Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

After the December 2018 eruption there was a larger reduction in seismicity, down to one event per day. During January, February, and most of March there was no recorded activity and low seismicity until the Washington VAAC reported an ash plume at 0615 on 26 March. The ash plume rose to a height of around 1 km and dispersed to the SW as seen in GOES 16 satellite imagery as a dark plume within white meteorological clouds. There was no seismic data available due to technical problems with the station.

More persistent eruptive activity began on 10 May with thermal alerts (figure 30) and an ash plume at 0700 that dispersed to the W. An explosion was recorded at 1938 on 11 May, producing an ash plume and incandescent material down the flank (figure 31). Two M 2 earthquakes were detected between 3.5 and 9 km below the crater on 10 May, possibly corresponding to explosive activity. By 17 May there were two active eruptive centers, the central crater and the Ñuñurcu dome (figure 32).

Figure (see Caption) Figure 30. MIROVA log radiative power plot of MODIS thermal infrared at Sangay for the year ending June 2019. The plot shows the August to December 2018 eruption, a break in activity, and resumed activity in May 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 31. An explosion at Sangay on 10 May 2019 sent ballistic projectiles up to 650 m above the crater at a velocity of over 400 km/hour, an ash plume that rose to over 600 m, and incandescent blocks that traveled over 1.5 km from the crater at velocities of around 150 km/hour. Screenshots are from video by IG-EPN.
Figure (see Caption) Figure 32. A photograph of the southern flank of Sangay on 17 May 2019 with the corresponding thermal infrared image in the top right corner. The letters correspond to: a) a fissure to the W of the lava flow; b) an active lava flow from the Ñuñurcu dome; c) the central crater producing a volcanic gas plume; d) a pyroclastic flow deposit produced by collapsing material from the front of the lava flow. Prepared by M. Almeida; courtesy of IG-EPN (special report No. 3 – 2019).

Activity at the central crater by 21 May was characterized by sporadic explosive eruptions that ejected hot ballistic ejecta (blocks) with velocities over 400 km/hour; after landing on the flanks the blocks travelled out to 2.5 km from the crater. Ash plumes reached heights between 0.9-2.3 km above the crater and dispersed mainly to the W and NW; gas plumes also dispersed to the W. The Ñuñurcu dome is located around 190 m SSE of the central crater and by 21 May had produced a lava flow over 470 m long with a maximum width of 175 m and an estimated minimum volume of 300,000 to 600,000 m3. Small pyroclastic flows and rockfalls resulted from collapse of the lava flow front, depositing material over a broad area on the E-SE flanks (figure 33). One pyroclastic flow reached 340 m and covered an area of 14,300 m2. During the 17 May observation flight the lava flow surface reached 277°C.

Figure (see Caption) Figure 33. A view of the ESE flanks of Sangay on 17 May 2019. The area within the black dotted line is the main area of pyroclastic flow deposition from the Ñuñurco Dome. Photo by M. Almeida; courtesy of IG-EPN (special report No. 4 – 2019).

At the end of June activity was continuing at the central crater and Ñuñurco Dome. At least three lava flows had been generated from the dome down the SE flank and pyroclastic flows continued to form from the flow fronts (figure 34). Pyroclastic material had been washed into the Upano river and steam was observed in the Volcán River possibly due to the presence of hot rocks. Ash plumes continued through June reaching heights of 800 m above the crater (figure 35), but no ashfall had been reported in nearby communities.

Figure (see Caption) Figure 34. Sentinel-2 natural color (left) and thermal (center) images (bands 12, 11, 4), and 1:50 000 scale maps (right) of Sangay with interpretation on the background of a 30 m numerical terrain model (WGS84; Zone 17S) (Prepared by B. Bernard). The dates from top to bottom are 17 May, 22 May, 27 May, 16 June, and 26 June 2019. Prepared by B. Bernard; courtesy IG-EPN (special report No. 4 – 2019).
Figure (see Caption) Figure 35. Plots giving the heights and dispersal direction of ash plumes at Sangay during May and June 2019. Top: Ash plume heights measures in meters above the crater. Bottom: A plot showing that the dominant dispersal direction of ash plumes is to the W during this time. Courtesy of IG-EPN (special report No. 4 – 2019).

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 24, Number 11 (November 1999)

Managing Editor: Richard Wunderman

Bezymianny (Russia)

Frequent fumarolic plumes, but no seismicity

Etna (Italy)

Vigorous eruptions at Bocca Nuova send lava flows 5 km down the W flank

False Report of Sea of Marmara Eruption (Turkey)

UFO adherent claims new volcano in Sea of Marmara

Gorely (Russia)

Shallow earthquake swarm in October

Guagua Pichincha (Ecuador)

Dome growth and explosive eruptions; dramatic increase in LP earthquakes

Karymsky (Russia)

Eruptive activity gradually decreases, then stops in late December

Klyuchevskoy (Russia)

Variable fumarolic plumes and episodes of increased seismicity

Lengai, Ol Doinyo (Tanzania)

Very active hornito in the N part of the crater

Negro, Cerro (Nicaragua)

Explosive eruptions starting on 5 August

San Salvador (El Salvador)

Minor volcano-tectonic seismicity detected

Sheveluch (Russia)

Intermittent explosions from the dome; fumarolic plumes

Tungurahua (Ecuador)

Explosions continue; 1998-99 summary; ~25,000 people displaced for months

White Island (New Zealand)

Fumarolic activity continues; new crater lake



Bezymianny (Russia) — November 1999 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Frequent fumarolic plumes, but no seismicity

Fumarolic plumes generally rising 50-300 m above the volcano were often observed during clear weather in August-December 1999, but views were frequently obscured by meteorological clouds. Weak fumarolic activity without a significant plume was detected on a few other occasions during this period. Plumes were observed on the following days: 9-10, 16, and 20-23 August; 2, 12, 22, 26, and 28 September; 22-24, 25-27, and 29-31 October; 1, 5, 11-12, 19, 22-23, 26, and 29 November; 2-3, 24, 25, and 28 December. Depending on local conditions, the plumes often extended 5-10 km downwind, usually E and SE. Others were blown S, NW, or NE. The longest plume during this period was on 26 August when it extended 15 km NE. No seismicity was registered under the volcano from 10 August through the end of December 1999. On October 6, a shallow earthquake was registered under the volcano.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Etna (Italy) — November 1999 Citation iconCite this Report

Etna

Italy

37.748°N, 14.999°E; summit elev. 3295 m

All times are local (unless otherwise noted)


Vigorous eruptions at Bocca Nuova send lava flows 5 km down the W flank

Following the gradual reactivation of the summit craters since June 1999 and eruptive episodes at the Voragine on 4 September and at the Bocca Nuova (BN) on 20 September, the activity shifted to the Northeast Crater (NEC) and then to the BN in early October. During the second half of October, the BN crater produced spectacular Strombolian activity, episodes of high lava fountaining, and lava overflows onto the W flank of the volcano, the first flows in that area since 1964. Lava flows on the W flank interrupted two dirt roads and burned a small portion of forest, but presented no threat to inhabited areas downslope. After 3 November, the activity declined to low levels.

The information for the following report, covering October-November 1999, was compiled by Boris Behncke at the University of Catania (DSGUC), Marco Fulle, Roberto Carniel, and Jürg Alean. Additional information was provided by Jean-Claude Tanguy. The compilation is based on personal visits to the summit, observations from Catania, and many other sources cited in the text.

Vigorous Strombolian activity occurred at the NEC during the first week of October. When the summit area was visited by Behncke, Roberto Scandone and Lisetta Giacomelli (Dipartimento di Fisica, Università "Roma Tre"), and Angelo Amara (Catania University) on 1 October, strong explosions ejected bombs up to 100 m above the crater rim, and ash emissions were frequent. Similar activity was observed during a summit visit by Behncke and others on 6 October. Brownish-gray ash plumes were frequent, and some of the Strombolian bursts were densely charged with small bombs.

Eruptive activity resumed within the BN on the afternoon of 5 October, after about two weeks of relative calm. After nightfall, Giuseppe Scarpinati (Italian correspondent of L'Association Volcanologique Européenne, LAVE) observed strong explosions from his home in Acireale (~18 km SE from the summit). Huge incandescent bombs were ejected to halfway down the S flank of the main summit cone. Scarpinati noted fluctuating glow at the NEC and increased effusion at the ESE base of the Southeast Crater (SEC) cone. Powerful explosions from the BN were continuing the next morning as Behncke and two students from the University of Trier visited Piano Provenzana on the N flank (~6 km from the BN). Explosions occurred at intervals of ~10 minutes, with minor activity between the explosions. Many bombs were ejected far beyond the crater rim. The source of this activity was probably at the SE eruptive center, which had been buried under lava on 20-21 September.

Vigorous eruptive activity continued at NEC and BN through 11 October. Dark ash-laden plumes commonly rose every few minutes from the NEC. Bombs were ejected from the BN to a distance of several hundred meters, and some bursts rose more than 300 m above the crater. Eruptive activity resumed within the Voragine and continued at least through the following day (information from Sandro Privitera, DSGUC, and Jean-Claude Tanguy).

On the afternoon of 12 October Behncke and Amara were ~250 m from the W rim of the BN, where activity was vigorous, with ejections of dense jets of bombs to hundreds of meters above the crater rim. Eruptive activity occurred from at least four locations within the crater. At 1830 there was the first in a series of powerful detonations that ejected abundant lithics along with incandescent bombs and a tephra-laden plume to ~500 m above the crater rim. The explosions initiated about 30 minutes of more intense activity from three locations in the W and NW part of the crater.

NEC emitted dark dense ash plumes almost continuously. After nightfall only ~10 percent of the emissions ejected incandescent bombs; other emissions appeared to eject mainly lithics. While near the front of the 22 July 1998 lava flow on the dirt road that connects the N and S routes to the summit (named "summit road" in the following paragraphs), several explosions from the Voragine were heard. At the ESE base of SEC cone lava was still issuing quietly after more than 8 months. The effusion rate was estimated at ~1 m3/s; during the previous four weeks, ~2.5 x 106 m3 had been added to the more than 40 x 106 m3 of lava emitted between 4 February and early September 1999.

Strong ash emission from the NEC on the morning of 13 October continued in a pulsating manner into the early afternoon of the following day. At the BN, however, near-continuous ejections of incandescent bombs caused rapid filling of the crater. On the evening of 15 October, vigorous eruptive activity occurred at the Voragine and loud detonations were audible as far as Catania.

Lava was fountaining in BN on the evening of 16 October, but strong explosions resumed the next morning (17 October). Fulle watched the activity from the summit road and reported that continuous lava jetting to several hundred meters above the crater rim occurred from several vents, and bombs dropped onto the outer flanks of the main summit cone. Sometime around 2015 a small portion of the W rim collapsed, allowing lava to move rapidly down the steep slope, crossing the summit road. On the early morning of 18 October, the farthest flow front had reached ~1,900 m elevation and stopped before reaching the Forestale dirt road (figure 82). Lava was reported to flow vigorously through the breach on the W side of the BN on the evening of 18 October, but the fronts did not extend as far downslope as the first major flows.

Figure (see Caption) Figure 82. Sketch map of the lava flows emitted from the Bocca Nuova during October-November 1999, based on photographs taken after the end of the activity from various locations. Main vents of the Bocca Nova (BN) are shown as dots. The other summit craters are the Northeast Crater (NE), Voragine (V), and Southeast Crater (SE). Inset at upper left shows the entire Etna area with the location of the new lavas and the towns of Bronte and Catania. VDB in the inset is Valle del Bove. Courtesy of Boris Behncke.

At about noon on 19 October, Behncke and Scarpinati reached the summit area and observed near-continuous ejections of large bombs high above the rim of the BN. Movement of the lava flow on the W flank had slowed significantly, and only the central portion of the flow was moving. The lava field had many overlapping flow units with a total width of ~100 m at the summit road crossing. Between 1200 and 1230 activity increased until fountaining from the more southerly of the two vents became virtually continuous; frequent large blasts from the other vent dropped bombs up to 150 m beyond the crater rim. A short time later a new flow with a front ~3 m high advanced rapidly through the central flow channel, on top of the still-moving earlier lava. From points along the N margin of the lava field the summit of a pyroclastic cone growing within the BN could be seen rising above the crater rim. Explosive activity consisted of only a few ash-rich emissions between 1630 and 1730. After sunset the active flows were brightly incandescent over their entire length, and BN produced bursts of huge incandescent bombs every 2-10 seconds.

After continuing vigorously until the early morning of 20 October, the activity from the eruptive vents in the W and NW part of the BN ceased, and the lava overflow through the notch in the W crater rim stopped. Sometime near dawn, forceful expulsions of ash began from the SE vent, which had shown little activity the previous week. The low levels of activity permitted volcanologists from the U.K. to reach the rim of the BN and observe at least three vents with mild Strombolian activity and sizeable pyroclastic cones around them. On 21 October at 0300, intense eruptive activity apparently resumed, with renewed lava overflow onto the W flank. A new lobe on the S margin of the flow-field covered more of the summit road and extended to ~2,400 m elevation.

On the morning of 22 October, Scarpinati, from his home in Acireale, observed mild Strombolian activity (one explosion every 15-20 seconds) at the BN and more vigorous spattering at the vents on the ESE base of the SEC cone. By 1130 another episode of high lava fountaining and overflow from BN was in progress. From Catania jets of incandescent material to several hundred meters above the crater rim were visible, and a dense, ash-poor column of yellowish gas rose at least 4 km above the summit. Fulle witnessed the activity from a distance of a few hundred meters, and reported that a N-S fissure ~200 m long in the W part of the BN ejected a virtually continuous sheet of very fluid lava with jets rising up to 500 m high. A torrent of lava ran halfway down the W flank of the main summit cone at a speed of ~50 m/minute, carrying incandescent blocks more than 10 m across. An overflow may have also occurred on the NNW side of the BN. After 1230 the activity and the volume of overflowing lava diminished, but sporadic explosions threw large bombs hundreds of meters beyond the crater rim until 1700. Between 2000 and 2100 Behncke and Scarpinati visited the ESE base of the SEC cone where lava emission from at least three vents continued, and incandescent gas was emitted forcefully from two large hornitos that had grown earlier that day. Flowing lava was seen ~500 m NE and E from the active vents.

On 23 October another episode of high lava fountaining at the BN and overflow onto the W flank began at about 1000. This activity culminated at about 1045 but was less intense than the episode of the previous day. Relatively mild Strombolian activity persisted through the evening of 24 October, and small volumes of lava flowed onto the W flank. During the afternoon, Fulle and Carniel observed explosions (mostly ash) from four vents on the fissure in BN, and from a vent in the SE sector of the BN. During the night loud explosions at intervals of several minutes rattled windows and doors in towns 24 and 28 km NE.

On the morning of 25 October ash was emitted sporadically from BN until by about 1130 continuous fountaining was in progress. Broad jets of lava generally rose 100-200 m above the crater rim, but occasional jets soared to 500 m height. Lava again descended the W flank. A large pyroclastic cone near the vent that produced most of the fountaining (in the NW part of the BN) was ~30 m above the NW crater rim. Fulle and Carniel observed that the activity occurred from a number of vents along a N-S trending fissure in the W part of the BN. At 1145 Fulle observed that lava was overflowing the rim near the SW vent, covering the southern edge of the previous lava field.

From 1235 to 1300 the flank of the BN was affected by intense deformation, with the opening of several fractures and a series of collapses. Within a few minutes (peaking around 1320) a wide sector of the WNW crater rim was pushed up and out by lava within the crater. Minor collapses occurred for about 30 minutes while vigorous lava fountaining continued. The avalanches resulting from the collapses spilled several hundred meters down the W flank and produced brownish plumes. Movie clips taken by Carniel of the deformation and avalanches are available at Stromboli On-line. Lava flowing through the new breach was repeatedly covered with debris but continued to flow, carrying boulders up to 20 m in diameter. On the N side of the BN the mass of fluid bombs transformed into a rootless lava flow that advanced along the flow emplaced on 22 October, but extended farther downslope. The episode ended by about 1630, but was followed by a series of strong isolated explosions. By 1900, the main vent in the BN produced frequent Strombolian bursts, and lava flow through the breach in the crater rim continued at a reduced rate.

Observations made that evening revealed that a new lava flow with at least seven active branches had descended the W flank, and the farthest flow front had extended to ~1,900 m elevation. By about 1810 the front of the longest branch began moving through a small patch of forest a few hundred meters above the Forestale Road. The new lava flow was slightly N of the flows produced during the preceding week, with the longest branch extending almost 5 km from the BN, thus being one of the longest flows ever produced by a summit eruption.

On the morning of 26 October, the activity consisted mostly of isolated ash-rich explosions from the southernmost fissure vent in the W part of the BN. Towards the evening the activity became more continuous and there was mild Strombolian activity. Fulle and Carniel reported that up to five vents along the fissure were active. Explosions also occurred from two vents in the SE part of the BN where little activity had been observed the previous week.

On 27 October jets of lava rose tens of meters above two main vents in the W part of the BN, and a new large pyroclastic cone was growing around the northernmost vent. Lava continued to overflow on the W side of the crater, with active flow fronts to ~2,600 m elevation. Between 0015 and 1045, Fulle, Carniel, and Tom Pfeiffer (University of Arhus) observed intense activity, mostly in the NW sector of the BN. From 1230 onwards the explosions of the NW vent of the BN became increasingly stronger. Between 1400 and 1415 some of the largest explosions showered bombs over the whole main summit cone, and a scoria fall was noticed at the Torre del Filosofo mountain hut. At 1433 strong explosions of dark ash occurred at the NEC. The activity of the BN remained strong all afternoon. New lava spilled down the W flank, and at about 1700, the farthest flow front cut the Forestale road at about 1,800 m elevation, immediately S of Monte Nunziata (the main scoria cone of the 1843 eruption), and entered a patch of dense forest. Early the next morning the front of the main flow had extended ~200 m below the Forestale road, to ~1,730 m elevation; by 29 October the flow had stopped.

Vigorous lava jetting from the BN was observed at about 0600 on 29 October by Giovanni Sturiale (DSGUC). Activity observed by Sturiale, Behncke, Pfeiffer, and Vincenzo Polizotto (University of Catania) later that day included incandescent bombs from the NW vent, forceful ejections of dark gray ash and blocks from the SE vents, and vigorous Strombolian activity at the NW vent where the top of the new pyroclastic cone was projecting a few tens of meters above the crater rim. A variety of lava flows were seen on the W flank. Vigorous pulsating lava jetting from the NW vent was continuing at about 2230.

On 30 October, Pfeiffer revisited the summit area and reported that relatively mild Strombolian activity continued throughout the day. The entire Voragine area was covered with bombs, and the Voragine itself "had ceased to exist" because the 4 September 1999 crater was filled to within ~40 m of its rim. The active cone at the NW vent in the BN was very close to the location of the former "diaframma," of which no trace was visible. Emission of blocks and ash from the SE vents in the BN continued. During an overflight by Tanguy at about 1300, a bright red vent lay in the middle of the NW-trending BN fissure. Small lava flows were seen on the upper W slopes and a scoria cone was being built around the NW vent. NEC and SEC emitted a moderate white plume. After sunset a large red glow on the W flank indicated renewed strong effusive activity.

On the evening of 31 October, Scarpinati observed from Acireale that vigorous lava spattering had resumed at the ESE base of the SEC cone, while Strombolian activity at the BN was continuing. Scarpinati visited the area on 1 November and described voluminous lava flows running towards the Valle del Bove, and spattering from a group of hornitos. Effusive activity at the ESE base of the SEC cone showed a marked decrease after 2 November. On the 6th, Scarpinati observed trickles of lava flowing from these vents, but none thereafter.

On 1 November, Behncke and others climbed to the SW side of the BN where vigorous Strombolian activity continued from the NW vent, and occasional weak Strombolian bursts occurred from a vent farther S. Lava again extruded from below the uplifted block of 25 October. The southernmost of the three active lava lobes ran along the S margin of the lava field, cutting another 10 m of the summit road. Explosive activity at the NW vent produced jets up to 300 m high, but ~90 percent of the bombs fell back into the crater, enlarging the pyroclastic cone. On the evening of 3 November BN produced continuous jets of lava up to 300 m high, the last major eruptive episode of the sequence initiated on 5 October. Activity ceased after 0400 on 4 November, and after that the BN produced only weak intermittent Strombolian activity through about 15 November.

The volume of lava erupted from the BN between 17 October and 3 November is probably in the range of 15-20 x 106 m3. Tanguy estimated that the lava flows of 27 October alone amounted to ~5 x 106 m3, and similar flows were erupted on at least three other occasions. This places the October-November activity from the BN among the largest summit eruptions recorded at Etna during the past 200 years. The BN, which had been a 400-m-diameter pit about 150 m deep in 1995, was completely filled, and a sizeable pyroclastic cone was built in its N part, partly burying the "diaframma," the former wall separating this crater from the Voragine. Post-eruption collapse and subsidence caused the partial destruction of this cone and the formation of two pits at the main NW and SE vents of the BN, and the lava-covered plateau filling the former crater subsided by several meters towards its center. On the W side of the main summit cone, the accumulation of new lava caused a considerable buildup of this flank. The Voragine was largely filled by pyroclastics from the NW vent of the BN, with only a shallow depression remaining in its central part.

Geologic Background. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello stratovolcano, truncated by several small calderas, was constructed during the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur, sometimes simultaneously. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more summit craters. Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by Strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank.

Information Contacts: Boris Behncke, Dipartimento di Scienze Geologiche, Palazzo delle Scienze, Università di Catania (DSGUC), Corso Italia 55, 95129 Catania, Italy; Roberto Carniel, Dipartimento di Georisorse e Territorio, Università di Udine, Via Cotonificio 114, 33100 Udine, Italy (URL: http://www.swisseduc.ch/stromboli/); Jürg Alean, Kantonsschule Zürcher Unterland, CH-8180 Bülach, Switzerland; Marco Fulle, Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34131 Trieste, Italy; Jean-Claude Tanguy, Université Paris 6 and IPGP, Observatoire de Saint-Maur, 4, avenue de Neptune, 94107 Saint-Maur des Fossés Cedex, France.


False Report of Sea of Marmara Eruption (Turkey) — November 1999 Citation iconCite this Report

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Gorely (Russia) — November 1999 Citation iconCite this Report

Gorely

Russia

52.559°N, 158.03°E; summit elev. 1799 m

All times are local (unless otherwise noted)


Shallow earthquake swarm in October

At 1832 on 22 October, a 10-minute series of shallow earthquakes was recorded at the volcano. The last Gorely eruptive activity occurred in 1980-81 (SEAN 05:07) and 1984-86 (SEAN 10:01).

Geologic Background. Gorely volcano consists of five small overlapping stratovolcanoes constructed along a WNW-ESE line within a large 9 x 13.5 km caldera. The caldera formed about 38,000-40,000 years ago accompanied by the eruption of about 100 km3 of tephra. The massive complex includes 11 summit and 30 flank craters, some of which contain acid or freshwater crater lakes; three major rift zones cut the complex. Another Holocene stratovolcano is located on the SW flank. Activity during the Holocene was characterized by frequent mild-to-moderate explosive eruptions along with a half dozen episodes of major lava extrusion. Early Holocene explosive activity, along with lava flows filled in much of the caldera. Quiescent periods became longer between 6000 and 2000 years ago, after which the activity was mainly explosive. About 600-650 years ago intermittent strong explosions and lava flow effusion accompanied frequent mild eruptions. Historical eruptions have consisted of moderate Vulcanian and phreatic explosions.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Guagua Pichincha (Ecuador) — November 1999 Citation iconCite this Report

Guagua Pichincha

Ecuador

0.171°S, 78.598°W; summit elev. 4784 m

All times are local (unless otherwise noted)


Dome growth and explosive eruptions; dramatic increase in LP earthquakes

This report covers 22 November through 24 December 1999, an interval when long-period earthquakes increased precipitously. The dome in the caldera's western sector continued to produce explosions, lava extrusions, and rockfalls. November 1999 marked the 32nd month since the unrest began; occasional ashfalls and associated disruptions (minor ashfall, airport closures, hundreds of evacuated refugees) have had a significant impact on Quito residents.

Seismicity. Earthquake hypocenter maps appearing on the Geophysical Institute's website showed the vast majority of earthquakes clustering beneath the crater area; in some cases these clusters also spread W with gradually decreasing density. The website also included a diagrammatic cross section through the crater (figure 20) illustrating the inferred plumbing system, including some typical depths for various kinds of earthquakes. On the inset, the diagram shows an inferred shallow aquifer within the edifice that intersects the active conduit and presumably contributes to the repeated phreatic eruptions.

Figure (see Caption) Figure 20. A diagrammatic E-W cross-section through the crater at Guagua Pichincha. The cross-section is intended to show the overall internal structure and the zones where the main kinds of earthquakes seen during the crisis have typically originated. The scale across the bottom of the main diagram corresponds to a local coordinate system; the one along the left side of the main diagram indicates depth with respect to sea level (0 km). The inset contains an enlarged view of the crater area. Courtesy of the Geophysical Institute.

During November 1999 phreatic explosions took place 41 times. Many months during the crisis had fewer than 20 explosions per month, and the November 1999 value was the second highest of the crisis. The highest monthly total occurred during October 1999, a count of 53 explosions.

Seismicity had been escalating rapidly during September-October 1999 (see plot, BGVN 24:10). A precipitous climb in long-period (LP) earthquakes continued during November, reaching dramatic levels (table 7); in September long-period earthquakes occurred ~12,000 times, in October ~15,000 times, and in November ~44,000 times. For another comparison, LP counts earlier in the crisis (July 1998-August 1999) generally remained below 200 earthquakes per month. Thus, compared to this broader interval, the November 1999 count of LP events reflected more than a 200-fold increase. In addition, November's LP earthquakes exceeded the sum for LP events during the previous 16 months.

Table 7. Monthly earthquake counts at Guagua Pichincha representing two key time intervals. The "upper threshold" refers to the highest values registered during the earlier parts of the crisis, July 1998-August 1999. The next three columns indicate the monthly counts during September-November 1999, an interval with the highest numbers of earthquakes yet seen during the current crisis. Courtesy of the Geophysical Institute.

Earthquake Type Earlier upper threshold Sep 1999 Oct 1999 Nov 1999
Long-period (LP) 200 11,972 15,075 43,738
Multi-phase (MP) 2,099 130 15,024 6,182
Volcano-tectonic (VT) 160 1,331 1,701 104
Sum (LP + MP) 12,102 30,099 49,920 --

A change in the relative numbers of events appears to have occurred beginning in September 1999. From then on, LP events occurred with either similar abundance to MP events, or in some cases LP events became dominant. The total of MP plus LP events (table 2) continued to increase through November 1999.

On the other hand, the escalation in Multiphase (MP) and volcano-tectonic (VT) earthquakes has diminished since the anomalously high values seen in September and October 1999 (table 7, and BGVN 24:10). Compared to earlier in this crisis, MP earthquake counts underwent a sudden peak in October at ~15,000 events; in November there were ~6,000 MP events. VT earthquake counts underwent a less pronounced peak in September and October with ~1,300 and ~1,700 respective events. November VT earthquakes totaled only 104, a value still within the upper end of the monthly counts seen for the bulk of the crisis.

As a result of ongoing dome growth, rockfall-associated seismicity increased. The highest days in September-November had daily LP counts of 250-300 per day. Peaks in dome-growth events approached or exceeded 100 events/day for sustained intervals both during early October and late November 1999.

Daily observations. Tens of daily phreatic explosions were common. Counted seismically, these events appeared so numerous that generally only large ones received much mention in the daily reports (summarized in table 8). On many days visibility into the caldera remained limited because of clouds and fog.

Table 8. Summary of the more important explosions reported at Guagua Pichincha during 22 November-22 December 1999. The explosions discussed here were selected by choosing the Institute's daily reports where the seismically determined parameter of reduced displacement (RD) was reported. Courtesy of the Geophysical Institute.

Date Reduced displacement (RD) and related activity and impacts
24 Nov 1999 Two important explosions, the first of which at 0328 led to ashfall in N Quito visible on clean surfaces such as the exteriors of vehicles. The second explosion took place at 1233 with a RD of 17.7 cm2. The second sent a column to 10 km altitude blowing E (towards Quito). Ash fell (see text). The 1233 explosion vented from the W caldera margin; the associated seismic signal was shallow, 0.9 km. An additional four disturbances occurred between 0840 and 0906 associated with collapse of rocks and consequent emissions in the new dome's W sector; the plumes related to these events rose ~2 km. Still other explosions noted this day had variable RDs: 12.9, 11.8, 2.4, and 1.0 cm2.
25 Nov 1999 Ash fell on N Quito after explosions at 0528 and 2027 with respective RDs of 15 and 25 cm2.
26 Nov 1999 An emission with RD of 4.6 cm2 issued an ash-laden column that rose 2 km and dispersed to the SE.
27 Nov 1999 An emission at 2114 had a RD of 19.6 cm2 and sent an ash column more than 2 km upward; it blew to the W and SW. Heavy cloud cover made it hard to observe the plume, however. Some ash fall was reported in Quito.
29 Nov 1999 An eruption at 1134 had a RD of 18.9 cm2 and sent an ash column to ~8 km. The next day field crews found block-and-ash flows and mud flows deposited by this eruption on the W flank in the Rio Cristal.
02 Dec 1999 Two series of explosions took place, the first during 1723-1800 and the second, 2013-2200. An explosion at 2200 had the larger RD, 27.2 cm2. Although clouds obscured the crater, these explosions were thought to have been very destructive to the new dome.
09 Dec 1999 An eruption with RD of 12 cm2 was termed small; it followed a 10.5-hour interval with 15 eruption signals.
10 Dec 1999 An explosion with a RD of 26.6 cm2 and subsequent discovery of new pyroclastic flow deposits along the Rio Cristal. Later, at 1713, an explosion with RD of 18 cm2 sent a column to ~7.6 km altitude that was blown to the W and SW.
11 Dec 1999 Three RDs reported, 15, 16, and 12 cm2, produced by explosions in the early morning hours. Portions of the collapsed dome descended the Rio Cristal and there was some fracturing within the crater's older and newer domes.
14 Dec 1999 Several small explosions with RDs under 6 cm2. Rockfall seismic signals were common.
15-16 Dec 1999 Comparatively low-energy explosions with RDs under 4 cm2.
17 Dec 1999 Three morning explosions after 0730 with successive RDs of 15.5, 23, and 20 cm2. A white mushroom cloud rose to ~8 km altitude above the volcano. Beginning about 1000 a light rain of ash fell on Quito, particularly the north and central parts of the city. The airport shut down in the morning but reopened after 1310. On the W flank mudflows had been spotted carrying blocks up to 3 m in diameter. An additional press release noted a large eruption at 1504 with an RD of 24 cm2 and a resulting column to 8 km above the summit. This was followed by a larger eruption at 1627 with an RD of 28 cm2. By a small margin, this ranked as the largest RD of the reporting interval. After the former eruption close to 14 hours of continuous tremor began. Available wind data around the time of these eruptions suggested that some ash would fall on the Capital, and the next day's report noted light ashfall (thickness unstated but probably under a few millimeters) of fine pumiceous ash in Quito's northern and central zones; on the flanks of the edifice there were tephra clasts of 2-5 cm diameter.
19 Dec 1999 Minor explosions with RDs under 3 cm2.

Two explosions on 24 November resulted in significant ashfall on inhabited areas. The latter explosion, around noon, sent a plume to 10 km altitude. Fine ash fell in areas N of Quito, blanketing zones that included the airport, which closed. The ash also affected numerous settlements within a few tens of kilometers N to NE of the summit (including Carcelén, 14.5 km NE; Cotocollao, 9.4 km N; Quito Tenis, 13.5 km NE; and at locations not found on available maps, at la Roldós, La Carolina, Mariscal, and el Ejido). The greatest thicknesses of ash reportedly fell between Jipijapa (unlocated) and la Mariana de Jesús (20.9 km NE).

More events took place the next day, and in the morning ashfalls were reported in Quito's northwestern neighborhoods. The ash lingered in the air well into the next day as a result of disturbances by traffic and cleanup.

An inspection of the W flank on 24 November revealed that during the past week the Cristal river had been inundated by lahars 400 m wide and 10 m deep, although the point of measurement was at an unstated distance from the summit. They were still hot, at least in places, and contained some component of pyroclastic flows bearing carbonized tree-trunks in addition to blocks from the dome. On 30 November observers visiting the Cristal river noted a 1-day-old block-and-ashflow deposit. In the same sector on 8 and 10 December field crews again linked observed zones of burned and singed leaves to probable pyroclastic flows.

On 17 December a white mushroom cloud preceded a dark, ash-bearing one that rose 8-9 km above the volcano. On 18 December, light ash again fell on Quito landing mainly in its central and northern zones. Portions of the cone's flanks received pumice 2-5 cm in diameter. Strong sulfur smells were noted by S-flank residents in Lloa.

An overflight on 21 December enabled the dome height to be estimated at 50-100 m from the base of the caldera. On the dome's W side observers identified a spine, possibly the same one as seen in November. Dark coffee-colored rocks were observed along the E margin of the new dome.

GOES-8 satellite imagery captured plumes on several occasions. For example, it recorded an explosion at about 1140 on 29 November. NOAA analysts estimated the ash plume rose to an altitude of 10-12 km and drifted S toward Tungurahua volcano (which was also producing a faint ash plume). The same ash plume was noted using the "split window" technique, wherein infrared channel 5 (13 µm) is subtracted from infrared channel 4 (11 µm), which often discriminates airborne silicates such as dust and volcanic ash from other features in an image.

During comparatively passive intervals with adequate visibility, daily reports typically described several distinct plumes emitted from the following sources: a) the "aligned" fumaroles (in Spanish, "las alineadas"), b) the fumaroles on the caldera's W border near the head of the Cristal river, c) fumaroles escaping from the 1981 crater, and d) emissions from the top of the new dome. Fumaroles designated as "a" and "b" had plumes that typically reached several hundred meters from base to top; "c" fumaroles typically had plumes that reached tens of meter from base to top.

Radiosondes. According to the Washington Volcanic Ash Advisory Center at NOAA's Satellite Analysis Branch (SAB), during late 1999 and early 2000 authorities in Quito have been launching weather balloons twice a day. The resulting upper atmospheric air movements generally appear on the Geophysical Institute's website. Because these data have been occasionally internally inconsistent in azimuth, they have not yet been incorporated into the modeled data nor the plume trajectory modeling. The SAB has repeatedly seen highly variable winds in the region.

News reports. A brief review of news reports during the past few months revealed numerous stories, some of which were listed on an Ecuadorian Embassy website. ABC News discussed the effects on the explosions of 5-7 October (BGVN 24:09); previously unmentioned in the Bulletin was that the explosion of 5 October caused respiratory problems for many area residents and the death of one man. Four others were injured clearing ash from the roofs of their homes. Quito's Marshal Sucre airport closed for multiple days during the crisis. This not only causes travel problems, but inevitably some commercial aircraft that remain on the ground require cleaning to regain flight worthiness. ABC News also reported that the 24-26 November eruptions that forced one closure of the airport had also caused the Ministry of Education to shut down schools for a few days.

A series of 17-22 November articles in the online Diario Hoy newspaper discussed conditions confronted by 500 refugees from Lloa and neighboring areas living in the largest of several tent cities in a pass above their town. The tent city's amenities included electrical power, water, bathroom facilities, and trash collection; tents came equipped with stoves and beds. The city also provided medical and dental services. Other tent cities provided refuge for ~300 more people. Guards limited access into Lloa, and the town itself was patrolled by the military.

Hoy Digital reported that Quito's mayor, Roque Sevilla, delivered Motorola radios to each one of the leaders of the 35 neighborhoods located on the volcano's slopes as a means of maintaining constant communication with the emergency system locally referred to as "911." The article also mentioned a project developed with the support of the German embassy and the firm Siemens that consists of a system of warning sirens intended to alert citizens of impending danger.

Geologic Background. Guagua Pichincha and the older Pleistocene Rucu Pichincha stratovolcanoes form a broad volcanic massif that rises immediately to the W of Ecuador's capital city, Quito. A lava dome is located at the head of a 6-km-wide breached caldera that formed during a late-Pleistocene slope failure ~50,000 years ago. Subsequent late-Pleistocene and Holocene eruptions from the central vent in the breached caldera consisted of explosive activity with pyroclastic flows accompanied by periodic growth and destruction of the central lava dome. One of Ecuador's most active volcanoes, it is the site of many minor eruptions since the beginning of the Spanish era. The largest historical eruption took place in 1660, when ash fell over a 1000 km radius, accumulating to 30 cm depth in Quito. Pyroclastic flows and surges also occurred, primarily to then W, and affected agricultural activity, causing great economic losses.

Information Contacts: Geophysical Institute (Instituto Geofísico), Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador; Embassy of Ecuador, 2535 15th Street NW, Washington, D.C. 20009 USA (URL: http://www.ecuador.org/); Washington Volcanic Ash Advisory Center, NOAA Satellite Services Division, NESDIS E/SP23, NOAA Science Center, Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/); ABC News (URL: http://abcnews.go.com/); Diario Hoy, Ecuador (URL: http://www.hoy.com.ec/).


Karymsky (Russia) — November 1999 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Eruptive activity gradually decreases, then stops in late December

The low-level strombolian eruptive activity that has characterized the volcano for more than three years gradually decreased after August until seismicity returned to background levels, and by late December there were no explosions. The eruption began on 2 January 1996 (BGVN 21:01) following an eruption from the Akademia Nauk caldera lake the previous day.

During the week of 9-15 August, steam-and-ash plumes were observed in satellite imagery extending as far as 75 km downwind at an altitude of 500-1,000 m above the crater. The number of gas-and-ash explosions was still more than 300/day the next week, with the plume rising 300-600 m above the volcano. During the last week of August through 5 September, the number of explosions was more than 75/day, with plumes to heights of 300-1,000 m above the volcano. Visual observations by KVERT staff on 1 and 5 September confirmed that explosive activity occurred every 10-20 minutes.

The number of gas-and-ash explosions decreased from 130 on 6 September to 80 on the 12th, but the plumes continued to rise 300-1,000 m above the volcano. That rate continued until the week of 20-26 September, when the average number of daily explosions decreased to 60. The number of explosions was 60-75/day during the next two-week reporting periods, through 10 October. During the week of 11-17 October the explosion rate decreased once again, to 20-35/day, although plume heights remained at 300-1,000 m. The number of explosions increased slightly, to 20-50/day, during 5-18 November, but then dropped the following week to 10-20/day and then only 2-5/day. During the week ending on 2 December, gas and ash explosions numbered 1-10/day.

The nearest seismic station (KRY) was out of order during 4-18 December. According to the regional seismic network, no strong events occurred during that period. The station was restored to operation on 19 December. As of 30 December seismicity at the volcano had decreased to background levels. About 1-2 local earthquakes occur every day and the volcano has returned to its normal state. At the end of December seismicity was at background levels of about 1-2 local earthquakes/day.

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Klyuchevskoy (Russia) — November 1999 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Variable fumarolic plumes and episodes of increased seismicity

Highly variable activity continued throughout August-December 1999. Typical daily activity observed during clear weather consisted of a small fumarolic plume rising 50-200 m above the crater and extending a few kilometers downwind, usually E or SE. Seismicity was generally at background levels, consisting of shallow earthquakes with some periods of tremor. However, higher gas-and-steam plumes were frequently seen and two episodes of increased seismicity were detected. The volcano was frequently obscured by clouds.

Tremors and shallow earthquakes were registered during 9-15 August. Typical small fumarolic plumes were seen on 9-10, 13-14, 16, 21-26, and 28 August, and 2, 4-5, 7-8, and 12 September. On 30-31 August a gas-and-steam plume rose 500-1,500 m above the crater. On 15 September a gas-and-steam plume rose 600 m, and on 16 September the plume rose 200 m extending 5 km E. Mainly shallow earthquakes were registered from 19 September through 24 October. Gas-and-steam plumes rose up to 500 m during 19-26 and 28 September, and 3, 5, 7, 11, 20-21, and 24 October, extending as far as 5 km E or SE. During the afternoon of 15 October there was a 6.5-hour-long series of shallow earthquakes. On 22-23 October a fumarolic plume rose 700-1,000 m and extended 5-20 km to the E and SE.

Seismicity, consisting of shallow earthquakes and tremor, was above background levels during much of the period from 25 October until 17 December. Only small fumarolic plumes 50-300 m high were seen on 25 and 27 October, but on 26 October a plume rose 1,000 m above the volcano and extended 40 km NE. Small fumarolic plumes to 300 m extending 5 km SE were seen on 29-31 October and 4 November, with smaller typical plumes on 5, 7-8, and 10-11 November. Shallow earthquakes and volcanic tremor were recorded especially on 15, 21, and 25 November, when a gas-and-steam plume rose 1,000 m and extended more than 7 km NE. Typical smaller fumarolic plumes were seen on 12, 16, 18-19, 22-24, 26, and 28 November, and on 1, 3, and 10 December. On 29 November and 1 December gas-and-steam plumes rose 1,500 m above the volcano and extended more than 20 km SE. A fumarolic plume on 8 December rose 2,500 m.

During December 17-29 seismicity at the volcano returned to background levels. Small plumes were recorded on 17, 19-21, 25, and 28 December. Another plume on the 23rd rose 700 m.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Ol Doinyo Lengai (Tanzania) — November 1999 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Very active hornito in the N part of the crater

The following report resulted from a visit to the crater of Ol Doinyo Lengai during 23 July-7 August. Prior to the visit and according to a local source (Burra Ami Gadiye), lava breaching the NW crater rim on 18 July flowed down the flank of the volcano and was visible at night from Ngare Sero village, ~10 km N. When the visitor's crater observations began at 1100 on 23 July, this lava flow from the NW crater rim breach had cooled and was becoming white from weathering, but it was clearly the most recent lava in the crater. Its source was hornito T40 (figure 63) based on comparisons of 1998 and 1999 photographs by C. Weber. From 2 to 6 August, an intermittent lava lake 3 m in diameter also existed inside T37N1 at a depth of 20 m.

Figure (see Caption) Figure 63. Sketch map of the crater at Ol Doinyo Lengai for the period 23 July-7 August 1999. Courtesy of Christoph Weber.

The conical part of T40 was 85 m around at its base and 12 m tall. The N side of the hornito's cone was walled by a low overhanging rim and its S side was covered by a high half-dome. The hornito also included a large, 6-m-deep crater. A small lava pond at the N end of the crater ejected 16-20 spatters per minute through 24-25 July. Twice on 26 July parts of the half-dome and the cone's summit collapsed into the crater.

During 27-28 July lava gradually rose inside the crater of T40 and formed a 4 x 6 m lake and several ponds. By 29 July the lake was ~12 m long and 7 m wide. In a pattern repeating every 15-20 minutes a surge of fresh lava boiled up from the NE corner of the lake, raising the level by 0.5 m. Lava flowed out of the lake to the NW through a subterranean tunnel but did not escape onto the main crater floor.

Although this pattern persisted for some time, at 1400 on 30 July an abrupt increase in activity produced high lava spatters that fell on the N flank of T40. Fresh lava swept into the lake from the N like breaking ocean waves and strong ground tremor shook the N flank of the cone. This activity continued through 31 July, when the lake rose to ~60 cm below the lowest point along the vent rim. Spatter gradually built up the N wall of the crater by more than 1 m and formed a large hood overhanging the area of most intense degassing.

At 0045 on 1 August, a hole developed in the hornito's new crater wall. Lava escaped and moved N as short aa flows up to 60 cm thick. Lava ceased to escape by 0600 but similar eruptions recurred through 1300 on 2 August. Intense degassing later destroyed the hood covering the N part of the lake, but splashing built a thick covering of spatter on the N flank of the cone and reconstructed the hood. Around 0300 on 3 August a new vent opened low on the NW flank of T40 where the strongest tremor had been during the previous few days. An aa lava flow 20 cm thick moved 73 m NW. By 0800 the eruption had ended and the lake level dropped by 2 m. By 0600 on 4 August the lake temporarily disappeared, leaving a solid crater floor 2.5 m below the rim. Lava reappeared about noon but only occupied a 2 m2 area at the crater's N end; the lava frequently overflowed from the pond and produced many small lava flows that covered most of the hornito's crater floor. At 2345 solid lava covering the new vent on the NW flank of T40 blew off; explosions occurred at a rate of 18-20/minute and constructed a new spatter cone. During repose periods, the activity shifted to the lava lake, creating high spatters that reached the summit of T40. After explosions ended at 0800 on 5 August, the new cone was 3 m tall with a circular summit vent 60 cm in diameter. Lava was bubbling in the vent at a depth of 1 m (figure 64).

Figure (see Caption) Figure 64. Photograph taken in the crater at Ol Doinyo Lengai showing a local guide in front of T40 during formation of the new spatter cone taken at about 0700 on 5 August 1999. Courtesy of Frederick Belton.

At 2000 on 5 August pahoehoe lava flowed rapidly across the NE rim of T40 and moved E for 55 m. At 0645 the next morning, more lava escaped the lake through a hole in the NE rim of T40 and covered much of the previous night's flow. Beginning at 1800 on 6 August the lake repeatedly overflowed the hornito's NE rim, later overflowing the NW rim. Around 0400 on 7 August a hole that opened 1 m below the NE rim of T40 gradually enlarged and drained ~60 m3 of lava from the lake forming an open NE-directed lava channel 60 cm wide. By 0800 on 7 August the hole was 1 m high and 0.5 m wide. When observations ended at 0815, lava was nearing the NE crater wall and subsequent reporting noted that lava never reached the breach in the E crater rim, stopping short by 70 m. It was later learned from Guillaume Delpech, a French geology student, that during his visit to T40 on 9 August, the lava lake level inside the hornito varied between 3 and 4 m below its rim. No lava flowed outside of T40 and the spatter cone was inactive.

Christoph Weber made temperature measurements using a digital thermometer (TM 914C with a stab feeler standard K-type) during the crater visit (table 2). The instrument was used in the 0-1200 Celsius mode, taking readings by inserting the feeler 15 cm into the lava. Calibration was made by the Delta-T method: values are ± 6°C in the 0-750°C range. Most values shown were maxima recorded from a series of at least five repeat measurements.

Table 2. Temperature estimates from 60 measurements at Ol Doinyo Lengai made during 23 July-7 August 1999. See text for method used. Courtesy of Christoph Weber.

Date Location Estimated temperature (°C)
28 Aug 1999 T40 lava lake 529
01 Sep 1999 Pahoehoe (in open channel, 3 m below the lava lake) 519
01 Sep 1999 End of a 60-cm-thick aa flow 516
28 Aug 1999 Fumarole near base of T49 82

Activity during early September 1999. Bruno Hermier visited the crater in early September and made the following observations. On the afternoon of 6 September only the northernmost hornito (T40) seemed to be active. A lava flow was estimated to be about two days old. Two E-W fissures cross the western half of the crater emitting fumaroles that deposit sulfur. The fissures are perpendicular to the N-S trend of the volcano and radiate from the hornitos. On 7 September at 0900 some spatter came from the top of the 7-m-high T40 hornito. The spatter became larger, creating a pond of lava visible at the top of the hornito. It began to overflow on all sides of the hornito for 15 minutes before the lava level dropped. This cycle repeated until 1300, after which only a low hissing noise was perceptible. Interestingly, a foam filled the hornito. The spatter that splashed on the sides of the chimney and the fluid that overflowed the rim instantaneously lost 75 percent of their volume as gas exsolved. The remaining 25 percent cooled or flowed as black carbonatite. The extremely fluid flows (consistency of oil or hot tar) were only a few centimeters thick, but extended 50-100 m. No additional activity was seen through the evening of 9 September.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: Frederick Belton, 3555 Philsdale Ave., Memphis, TN 38111 USA (URL: http://oldoinyolengai.pbworks.com/); Celia Nyamweru, Department of Anthropology, St. Lawrence University, Canton, NY 13617 USA (URL: http://blogs.stlawu.edu/lengai/); Christoph Weber, Friesenstrasse 20, 42107 Wuppertal, Germany; Bruno Hermier, France.


Cerro Negro (Nicaragua) — November 1999 Citation iconCite this Report

Cerro Negro

Nicaragua

12.506°N, 86.702°W; summit elev. 728 m

All times are local (unless otherwise noted)


Explosive eruptions starting on 5 August

During the night of 4-5 August 1999, strong seismic activity occurred near Cerro Negro and the earthquakes with magnitudes up to 4.8 were felt throughout NW Nicaragua, especially in the big cities of León (20 km away, where many people could not sleep because of the seismic events) and Chinandega (40 km away). The strongest event was even felt 70 km away in Managua. The Nicaraguan seismic network recorded hundreds of earthquakes and strong seismic tremor at the seismic station at the volcano and at the MIRAMAR station (7 km away).

Three notices were received from the GOES alarm network concerning Cerro Negro. Distinct hot spots, indicating small plumes over the volcano, were detected on infrared satellite imagery at 0055, 0155, and 0235 on 5 August.

Explosive eruptions began at about 1000 on 5 August 1999. Ash clouds at heights of about 7,000 m were reported by aircraft. Ashfall was reported from some places SW of the volcano. The activity issued from four new vents outside the main crater, very near to the parasitic crater Cristo Rey, on the S flank of Cerro Negro. The vents formed cones ~40 m high during the day.

Wilfried Strauch visited the volcano that afternoon and observed explosions every few seconds, sometimes generating lava fountains ~300 m high. The activity alternated among the different new cones. No significant amounts of volcanic ash were emitted at this time. Local residents ~1 km from the volcano reported that seismicity was extremely strong during the night. Fissures appeared in the soil near their houses, releasing vapor.

INETER informed Civil Defense and other institutions on the night of 4 August about the seismic activity. Civil Defense officers visited the volcano early in the morning of 5 August, but could not yet detect signs of volcanic activity. When they got the information about the beginning of the eruption they proceeded with the evacuation of nearby villages, involving several hundreds of people.

Volcanic ash advisory statements on 6 August indicated that well-defined hot spots were still occasionally visible on GOES-8 multi-spectral imagery through 1615. No ash was visible in the imagery at that time, and thick clouds moved over the area later in the day. Imagery obtained under clear skies at 1015 on 7 August revealed no ash or hot spot.

Geologic Background. Nicaragua's youngest volcano, Cerro Negro, was created following an eruption that began in April 1850 about 2 km NW of the summit of Las Pilas volcano. It is the largest, southernmost, and most recent of a group of four youthful cinder cones constructed along a NNW-SSE-trending line in the central Marrabios Range. Strombolian-to-subplinian eruptions at intervals of a few years to several decades have constructed a roughly 250-m-high basaltic cone and an associated lava field constrained by topography to extend primarily NE and SW. Cone and crater morphology have varied significantly during its short eruptive history. Although it lies in a relatively unpopulated area, occasional heavy ashfalls have damaged crops and buildings.

Information Contacts: Wilfried Strauch, Instituto Nicaraguense de Estudios Territoriales (INETER), Division of Geophysics, Apartado 2110, Managua, Nicaragua; Benjamin van Wyk de Vries, Magmas et volcans Observatoire du Physique du Globe, Departement des Sciences de la Terre, Université Blaise Pascal, 5 Rue Kessler, 63038 Clermont-Ferrand, France (URL: http://modis.higp.hawaii.edu/); Washington Volcanic Ash Advisory Center, NOAA Satellite Services Division, NESDIS E/SP23, NOAA Science Center, Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ssd.noaa.gov/).


San Salvador (El Salvador) — November 1999 Citation iconCite this Report

San Salvador

El Salvador

13.734°N, 89.294°W; summit elev. 1893 m

All times are local (unless otherwise noted)


Minor volcano-tectonic seismicity detected

In August, several stations of the seismic network at San Salvador volcano recorded a few volcano-tectonic events 5 km from the crater. Local scientists investigated a fumarolic field, but nothing abnormal was found.

Geologic Background. The massive compound San Salvador volcano dominates the landscape W of El Salvador's capital city of San Salvador. The dominantly andesitic Boquerón stratovolcano has grown within a 6-km-wide caldera whose rim is partially exposed at Picacho and Jabalí peaks, which themselves were formed by collapse of an older edifice about 40,000 years ago. The summit of Boquerón is truncated by a steep-walled crater 1.5 km wide and ~500 m deep that formed during a major eruption around 800 years ago. It contained a crater lake prior to an eruption during 1917 that formed a small cinder cone on the crater floor; a major N-flank lava flow also erupted in this year. Three fracture zones that extend beyond the base of the volcano have been the locus for numerous flank eruptions, including two that formed maars on the WNW and SE sides. Most of the four historical eruptions recorded since the 16th century have originated from flank vents, including two in the 17th century from the NW-flank cone of El Playón, during which explosions and a lava flow damaged inhabited areas.

Information Contacts: Douglas Hernandez, Centro de Investigaciones Geotecnicas, Apartado Postal 109, San Salvador, El Salvador.


Sheveluch (Russia) — November 1999 Citation iconCite this Report

Sheveluch

Russia

56.653°N, 161.36°E; summit elev. 3283 m

All times are local (unless otherwise noted)


Intermittent explosions from the dome; fumarolic plumes

The volcano was frequently obscured by clouds during August-December 1999, but small fumarolic gas-and-steam plumes rising 50-200 m were often observed during clear weather. Higher fumarolic plumes were seen on three days in late November-early December. Four short explosions generated ash-bearing plumes during August-December that were confirmed visually. As many as five additional dome explosions were identified seismically.

On 11 and 13-14 August, fumarolic plumes rose 50-200 m above the crater. On 15 August a 5-minute ash explosion sent a plume to 800 m above the crater. On 17 and 23 August, fumarolic plumes rose 200-600 m; on the 30th a similar plume rose 1,200 m. On 4-5, 12, and 23-25 September, fumarolic plumes rose 50-200 m, extending 5 km E or SE. Similar plumes were seen on 7, 11, 23, and 25-26 October. On the morning of 27 October a short-lived ash explosion was observed, with an accompanying 20-minute burst of seismic activity. According to a Japanese satellite image taken about 3.5 hours later, an ash plume extended NE at an altitude of 6,900 m. Overall seismicity remained about at background levels until the end of October.

Seismicity was above background levels in late October through mid-November, when the hazard status was increased to "Yellow." On the morning of 31 October a 20-minute series of shallow earthquakes and tremor may have been associated with explosions on the dome; however, at daylight only a small fumarolic plume was seen. According to visual reports from Klyuchi town, on the late morning of 1 November a short explosive eruption sent an ash plume to an altitude of 5.5-6.0 km and extended S; an accompanying increase in seismicity occurred. On 2 November a fumarolic plume rose 50 m. On 8 and 10 November, three 20-50-minute-long series of shallow earthquakes and tremor were recorded that may have been associated with dome explosions. On 11 November a fumarolic plume rose 200 m.

A 5-minute-long series of shallow earthquakes and tremor was recorded on the morning of 17 November that may have been associated with an explosion on the dome. On 12, 16, 19, and 22 November fumarolic plumes rose 200 m. On the morning of 24 November a gas-and-ash plume rose 3 km above the crater. Plumes rising 1-2 km above the crater were also observed on the evening of 27 November and the afternoon of 2 December. All three of these larger plumes disappeared within one hour. Smaller fumarolic plumes, to 50-200 m above the crater, were seen again on 26 and 29-30 November, and 1-2, 10, 17, and 20-21 December. On the morning of 27 December a possible gas-and-ash plume was registered.

Geologic Background. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Information Contacts: Olga Chubarova, Kamchatka Volcanic Eruptions Response Team (KVERT), Institute of Volcanic Geology and Geochemistry, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Tom Miller, Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Tungurahua (Ecuador) — November 1999 Citation iconCite this Report

Tungurahua

Ecuador

1.467°S, 78.442°W; summit elev. 5023 m

All times are local (unless otherwise noted)


Explosions continue; 1998-99 summary; ~25,000 people displaced for months

Frequent explosive eruptions continued at Tungurahua volcano through 30 November (figure 1 and table 2). Ash plumes rose to maximum heights of about 5 km above the summit. Daily explosions increased during the month, reaching a peak during 16-25 November before decreasing slightly (figures 2 and 3). On 19 November 0.5 mm of ash fell on Baños, 9 km NNE of the summit at an elevation of ~1,850 m. Two millimeters of ash fell on the town of Runtún farther up slope at ~2,350 m elevation and ~6.2 km NE of the summit.

Figure (see Caption) Figure 1. An aerial oblique photograph of Tungurahua taken from the W during July 1974 shows the morphology of the snow-and-ice-covered summit crater prior to the current eruption. Courtesy of the Geophysical Institute.

Table 2. Explosions and other activity at Tungurahua as described in daily reports, 31 October to 30 November 1999. Courtesy of the Geophysical Institute.

Date Number of Explosions Observations
31 Oct 1999 28 Night observations of incandescent emissions falling on upper cone; an ash-bearing plume rose ~3 km about the summit.
01 Nov 1999 21 A 3 km plume deposited ash in Banos and 31 km SW of the summit in Riobamba.
02 Nov 1999 22 On two occasions, plumes rose to ~5 km above the summit; windows vibrated 12 km from the summit.
03 Nov 1999 34 Ash deposited 32 km NW of the summit in Ambato.
04 Nov 1999 25 Plumes up to 5-km tall were produced; vibrations and explosions continued; sulfur smell noted in the city of Banos; harmonic tremor recorded.
05 Nov 1999 22 Weather clouds covered the plumes.
06 Nov 1999 32 Dense, 3-5 km plumes were seen during the day.
07 Nov 1999 27 ~1.5 km plume dispersed to the N and S.
08 Nov 1999 24 Blocky pyroclastic flows with over 1 km runout distances.
09 Nov 1999 19 --
10 Nov 1999 27 --
11 Nov 1999 29 Ash columns to 1.5 km height.
12 Nov 1999 28 Ash column to ~10 km altitude (~5 km above the summit); blowing E.
13 Nov 1999 15 Plume to about 2 km produced containing minor ash and directed NW.
14 Nov 1999 25 Plume heights unstated but plume visible to NNW on satellite imagery.
15 Nov 1999 37 Morning eruptions discharged ash plumes that moved NNW.
16 Nov 1999 43 Airborne observations of an ash-rich plume ascending to 5-km above the summit and blowing NW; a satellite image also showed the plume at ~5 km altitude.
17 Nov 1999 55 A consistent 1-km-tall ash plume directed to the N.
18 Nov 1999 83 Loud booming noises; continuous series of ~5-km-tall, W-directed plumes.
19 Nov 1999 64 Morning eruptions, plume blowing SW; in the past few days there was ~0.5 mm of ash deposited in Banos and up to ~2 mm deposited in Runtun (see text).
20 Nov 1999 47 A strong rain produced mud flows; some crossed roads; reports stated one mudflow was 20 m wide (see text).
21 Nov 1999 67 --
22 Nov 1999 55 A large quantity of blocks and incandescent material found on sides of volcano; 1-2 km plume produced and inclined to the NE.
23 Nov 1999 96 Emissions rose to 1 km over the summit.
24 Nov 1999 102 Up to ~2-km-tall plumes of vapor and ash directed to the E.
25 Nov 1999 97 Taller plumes reached 3-4 km height; ~3,300 tons/day SO2 emitted in an interval with a constant 1-km-tall plume.
26 Nov 1999 35 An explosion of vapor and ash rose 1 km above the summit of the volcano; a ~5-km-tall plume formed; 1 cm ash accumulated in one sector during the past weeks.
27 Nov 1999 16 4 km ash-bearing column rose after the explosion.
28 Nov 1999 13 A 500-m-tall vapor column was seen.
29 Nov 1999 46 An explosion produced a 4-km-tall column; loud noises heard.
30 Nov 1999 62 Observers noted strong thunder sounds; vibrations felt ~10 km away.
Figure (see Caption) Figure 2. A dark ash plume rises from Tungurahua's formerly snow-covered summit crater on 16 November 1999. Courtesy of the Geophysical Institute.
Figure (see Caption) Figure 3. A histogram indicating the number of daily explosions at Tungurahua during 24 October to 30 December 1999. Explosions were most frequent during 22-25 November. Courtesy of the Geophysical Institute.

A pronounced peak in monthly earthquakes during August-September diminished rapidly in October and still farther in November (figure 4). The greatest number of monthly earthquakes were volcano-tectonic, in a pattern that became prominent in September 1998 and prevailed until October 1999. The ratio of multiphase to long-period earthquakes showed significant variability. In some months (eg., February, March, May, June, and September 1999) the multiphase events dominated. August 1999 showed the extreme reversal of this pattern with 436 long-period and 58 multiphase events. The last two months shown on figure 4, October and November, portrayed a similar though less pronounced reversal in their relative abundance of the multiphase events. These months also displayed a comparative scarcity of volcano-tectonic events.

Figure (see Caption) Figure 4. A histogram for Tungurahua showing three types of monthly earthquakes occurring between April 1998 and November 1999. For any given month, from left to right the earthquakes shown are long-period (LP), hybrid or multiphase (MP), and volcano-tectonic (VT). All three types plot on the same scale, shown on the left side of the histogram. Courtesy of the Geophysical Institute.

SO2 flux during the crisis (figure 5) showed wide variability. Comparatively high fluxes were measured prior to the eruption. On the eruptions first day, 5 October, measured SO2-flux values reached 9,000-10,000 metric tons/day (t/d) (BGVN 24:09). The highest fluxes, seen during mid-September through early November, also showed rough, though inexact correlations with the seismic and explosion patterns.

Figure (see Caption) Figure 5. SO2 flux measured at Tungurahua during 11 July-8 December 1999. Although error bars were not provided they are typically on the order of plus or minus 10-20%. Courtesy of the Geophysical Institute.

Two mud flows were reported on 20 November. They occurred after a strong rain that washed large tree trunks and rocks into a main highway in Baños. One of these mudflows was 20 m wide; another earlier in the day blocked part of a different highway in Baños.

1998-99 activity divided into five stages. In January 2000 the Geophysical Institute issued a summary report that divided 1998-99 activity into five stages. The first stage, December-May 1998, included swarms of small predominantly volcano-tectonic earthquakes. Tremor also continued, presumably associated with a phreatic source; this kind of tremor has been detected since 1993 and is thus here referred to as persistent or long-lived tremor.

The second stage, May 1998-15 July 1999, was an interval when seismic swarms (including volcano-tectonic (VT), long period (LP), and hybrid or multiphase (MP) earthquakes) became more energetic. Small explosion signals began to register from greater-than-shallow depths. The preponderance of VT earthquakes was interpreted as a result of stress beneath the edifice due to intruding magma. Stable-frequency tremor at that time underwent a slight increase in amplitude.

In the third stage, which began after 15 July 1999, tremor included higher frequency signals. Geophysicists noted a series of many small earthquakes of all kinds that continued until mid-December. At the end of July came the first reports of strong sulfurous odors in the vicinity of the crater. In the meantime, SO2 fluxes rose from essentially zero to 3,200 t/d (figure 5).

During 24-28 July and 8-10 September LP earthquake swarms struck with significant energy. Seismicity continued to rise considerably during August and early September. An alert was declared on 8 September 1999.

The fourth stage began 14 September 1999 when low-frequency tremor appeared, presumably associated with degassing and ascending magma. The persistent tremor increased in amplitude. On 14 September a column of vapor 2 km tall was observed. On 15 September the alert status rose to yellow. Later and until 25 October tremor reached extraordinarily high amplitudes and contained three dominant frequencies: 1, 1.7, and 2-2.5 Hz.

The first explosive activity was reported on 5 October (BGVN 24:09), when blocks and ash were ejected at 0721, 0738, and 0743 hours. This emission was associated with a comparatively big explosive seismic signal with a reduced displacement of 25 cm2 and high SO2 fluxes. The next day an ash plume rose to 2 km above the summit; small airfall ash deposits were found in Quero, Bilbao (where the thickness was given as 2 mm), and probably in Ambato. Subsequent Geophysical Institute reports described small ash-bearing or "dark" plumes to 0.5-5 km above the summit.

On 13 October observers first noted incandescence. SO2 fluxes rose to over 10,000 t/d (figure 5). Deformation at one of the tilt stations on the SW underwent significant changes. Activity increased on 16 October when an ash plume reached ~5 km above the summit and blew W. During the previous night's darkness observers saw incandescent ash and blocks deposited on the upper flanks of the volcano. On 16 October the alert status was raised from yellow to orange, prompting evacuations of Baños and settlements along Tungurahua's W and SW flanks (see below).

During the fifth stage, which began after 25 October, the persistent tremor remained near the levels seen in the third stage. Low-frequency tremor also continued. SO2 fluxes dropped to 3,500-4,000 tons/day in mid-November. Magmatic explosions became common in this stage. At night observers saw pyroclasts descending 1-2 km below the summit. Ash-charged plumes rose 3-5 km above the summit. During 1999 the Geophysical Institute tallied 2,030 explosions and emissions, 2,542 VT earthquakes, 4,086 LP earthquakes, and 1,038 MP earthquakes.

Geography and hazards. Baños sits in a narrow valley on the N margin of the volcano 75 miles S of Quito and 9 km NE of Tungurahua's summit. Baños lies along the Pastaza river (draining the N flanks) below the Chambo river (draining the W flanks over the NW to SW sector). This geography leaves Baños open to "high hazard for directed blasts and fallback pyroclastic flows" as well as lahars (Hall and others, 1999). Within this hazard zone, ~4.5 km downstream, sits the Agoyan dam, an important source of hydroelectric power.

Tungurahua is very dangerous because it has 3 km of vertical relief, 30°slopes, a record of previous sector collapses and a comparatively high propensity for future collapses, a pre-evacuation at-risk population of ~25,000 people, a major hydroelectric dam on its NNE margin, and a record of relatively violent, sudden andesitic eruptions with pyroclastic flows (Hall and others, 1999). The same authors noted that the volume of magma emitted by Tungurahua during the last 2,300 years has been ~3.45 km3. This gives it a magma flux rate similar to that at Merapi during the last century and 2- to 3-fold larger than the estimated rates seen in the Central Andes during the Late Cenozoic.

Evacuations. The newspaper El Universo reported that on 16 October when Tungurahua's volcanic activity increased and its hazard status first rose to orange, evacuations followed at cities closest to the volcano, including Baños. On 21 October the United Nations (UN) reported that the evacuations relocated "22,000 persons from some 60 locations." El Universo noted that at one point nearing the end of the evacuation one hundred buses were used.

As of late October some of the residents had moved to Ambato, 32 km NW of the volcano. Official sources indicated that 1,200-1,500 evacuees went to temporary shelters in the provinces of Tungurahua, Chimborazo, and Pastaza. Besides Ambato, individual cities that took refugees included Puyo (45 km E of the summit) and Shell (41 km E). About 100 families found shelter in a religious foundation and 200 families on a farm belonging to the Polytechnic Institute of Chimborazo. The UN further reported that ~600 military police and personnel have been deployed to the affected region to protect abandoned property. Access into this area was to be strictly prohibited.

The UN reported that 4,000 livestock, 100,000 fowl, and the animals from the zoological garden in Baños had also been evacuated. According to the Associated Press, a government census found that 40,000 chickens died from respiratory infections during early October.

According to the Associated Press, Baños had been evacuated for two months when on 13 December a caravan of residents briefly returned. During this brief visit, one resident entered his home and found it intact, although most parts of the house lay covered in ash. Residents faced an uncertain future because they did not know exactly when they would be able to return. The governor of Tungurahua province, Ignacio Vargas said, "This won't be permanent. We will have to wait until the eruption ends so that everyone can return to his normal activities."

Because of economic problems associated with leaving their homes and livelihoods, Baños area residents have been bypassing the military to plant crops and tend their farms. According to early January ABC News reports there have even been skirmishes between residents and the military. The eruptions are occurring in the context of tension and conflict between the military and some Unions and other groups as the country's economy has worsened.

Reference.: Hall, M., Robin, C., Beate, B., Mothes, P., Monzier, M., 1999. Tungurahua Volcano, Ecuador: structure, eruptive history and hazards: Journal of Volcanology and Geothermal Research, v. 91, p. 1-21.

Geologic Background. Tungurahua, a steep-sided andesitic-dacitic stratovolcano that towers more than 3 km above its northern base, is one of Ecuador's most active volcanoes. Three major edifices have been sequentially constructed since the mid-Pleistocene over a basement of metamorphic rocks. Tungurahua II was built within the past 14,000 years following the collapse of the initial edifice. Tungurahua II itself collapsed about 3000 years ago and produced a large debris-avalanche deposit and a horseshoe-shaped caldera open to the west, inside which the modern glacier-capped stratovolcano (Tungurahua III) was constructed. Historical eruptions have all originated from the summit crater, accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. Prior to a long-term eruption beginning in 1999 that caused the temporary evacuation of the city of Baños at the foot of the volcano, the last major eruption had occurred from 1916 to 1918, although minor activity continued until 1925.

Information Contacts: Instituto Geofísico, Escuela Politécnica Nacional, Apartado 17-01-2759, Quito, Ecuador; Embassy of Ecuador, 2535 15th Street NW, Washington, DC 20009 USA (URL: http//www.ecuador.org/); United Nations Office for the Coordination of Humanitarian Affairs (OCHA), Palais des Nations, 1211 Geneva 10, Switzerland; El Universo, Quito, Ecuador (URL: http://www.eluniverso.com/); Associated Press, International Headquarters, 50 Rockefeller Plaza, New York, NY 10020 USA (URL: http://www.ap.org/); ABC News (URL: http://abcnews.go.com/).


White Island (New Zealand) — November 1999 Citation iconCite this Report

White Island

New Zealand

37.52°S, 177.18°E; summit elev. 321 m

All times are local (unless otherwise noted)


Fumarolic activity continues; new crater lake

No eruptions have occurred at White Island since the minor ash emissions in July-August 1999 from the PeeJay vent area. This report includes observations following a visit on 23 November to service the seismic installation, conduct a deformation survey, collect volcanic gas samples, and assess the general status of volcanic activity on the island.

During the visit a weak steam-and-gas plume was rising 300-500 m. This plume originated from fumarolic vents NW of the former PeeJay vents. Since the last surveillance visit in July a crater lake has developed on the floor of 1978/90 Crater Complex, inundating Metra Crater and parts of the PeeJay vent area. A series of strand lines around the crater lake edge indicated a recent drop in the lake level. Small collapse pits had recently formed near the lakeshore, below the Sag area, and may have accompanied the recent drop in lake level. The lake is a lime green color, with minor convection evident. A temperature of 45°C was measured, down slightly from the previous measurements.

The strongest fumarolic vents were on the NW side of the PeeJay vents area, emerging from the vent wall, which is ~10-15 m high. There were three prominent vents, which were emitting steam and gas that were weakly transparent at the vent. At times the steam and gas plume appeared a yellow color. The emissions were audible from 2-300 m distance. Temperatures of Main Crater fumaroles ranged from 103-115°C, and are similar to previous measurements this year.

A ground-deformation survey was also made. Eight pegs were replaced, as these were damaged during the April-July 1999 eruptions. The survey results showed that subsidence continued at the E-SE margin of the 1978/90 Crater Complex, but at a lesser rate than observed in 1998. Over the remainder of the Main Crater floor weak subsidence was also apparent at many of the marks.

Geologic Background. Uninhabited 2 x 2.4 km White Island, one of New Zealand's most active volcanoes, is the emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes; the summit crater appears to be breached to the SE, because the shoreline corresponds to the level of several notches in the SE crater wall. Volckner Rocks, four sea stacks that are remnants of a lava dome, lie 5 km NNE. Intermittent moderate phreatomagmatic and strombolian eruptions have occurred throughout the short historical period beginning in 1826, but its activity also forms a prominent part of Maori legends. Formation of many new vents during the 19th and 20th centuries has produced rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project.

Information Contacts: Brad Scott, Wairakei Research Center, Institute of Geological and Nuclear Sciences (IGNS), Private Bag 2000, Wairakei, New Zealand (URL: http://www.gns.cri.nz/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).