Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.

Recently Published Bulletin Reports

Erebus (Antarctica) Lava lake remains active; most thermal alerts recorded since 2019

Rincon de la Vieja (Costa Rica) Frequent phreatic explosions during July-December 2023

Bezymianny (Russia) Explosion on 18 October 2023 sends ash plume 8 km high; lava flows and incandescent avalanches

Kilauea (United States) Low-level lava effusions in the lava lake at Halema’uma’u during July-December 2022

Nyamulagira (DR Congo) Lava flows and thermal activity during May-October 2023

Bagana (Papua New Guinea) Explosions, ash plumes, ashfall, and lava flows during April-September 2023

Mayon (Philippines) Lava flows, pyroclastic flows, ash emissions, and seismicity during April-September 2023

Nishinoshima (Japan) Eruption plumes and gas-and-steam plumes during May-August 2023

Krakatau (Indonesia) White gas-and-steam plumes and occasional ash plumes during May-August 2023

Merapi (Indonesia) Frequent incandescent avalanches during April-September 2023

Villarrica (Chile) Strombolian activity, gas-and-ash emissions, and crater incandescence during April-September 2023

Ebeko (Russia) Moderate explosive activity with ash plumes continued during June-November 2023



Erebus (Antarctica) — January 2024 Citation iconCite this Report

Erebus

Antarctica

77.53°S, 167.17°E; summit elev. 3794 m

All times are local (unless otherwise noted)


Lava lake remains active; most thermal alerts recorded since 2019

The lava lake in the summit crater of Erebus has been active since at least 1972. Located in Antarctica overlooking the McMurdo Station on Ross Island, it is the southernmost active volcano on the planet. Because of the remote location, activity is primarily monitored by satellites. This report covers activity during 2023.

The number of thermal alerts recorded by the Hawai'i Institute of Geophysics and Planetology’s MODVOLC Thermal Alerts System increased considerably in 2023 compared to the years 2020-2022 (table 9). In contrast to previous years, the MODIS instruments aboard the Aqua and Terra satellites captured data from Erebus every month during 2023. Consistent with previous years, the lowest number of anomalous pixels were recorded in January, November, and December.

Table 9. Number of monthly MODIS-MODVOLC thermal alert pixels recorded at Erebus during 2017-2023. See BGVN 42:06 for data from 2000 through 2016. The table was compiled using data provided by the HIGP – MODVOLC Thermal Alerts System.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec SUM
2017 0 21 9 0 0 1 11 61 76 52 0 3 234
2018 0 21 58 182 55 17 137 172 103 29 0 0 774
2019 2 21 162 151 55 56 75 53 29 19 1 0 624
2020 0 2 16 18 4 4 1 3 18 3 1 6 76
2021 0 9 1 0 2 56 46 47 35 52 5 3 256
2022 1 13 55 22 15 32 39 19 31 11 0 0 238
2023 2 33 49 82 41 32 70 64 42 17 5 11 448

Sentinel-2 infrared images showed one or two prominent heat sources within the summit crater, accompanied by adjacent smaller sources, similar to recent years (see BGVN 46:01, 47:02, and 48:01). A unique image was obtained on 25 November 2023 by the OLI-2 (Operational Land Imager-2) on Landsat 9, showing the upper part of the volcano surrounded by clouds (figure 32).

Figure (see Caption) Figure 32. Satellite view of Erebus with the summit and upper flanks visible above the surrounding weather clouds on 25 November 2023. Landsat 9 OLI-2 (Operational Land Imager-2) image with visible and infrared bands. Thermal anomalies are present in the summit crater. The edifice is visible from about 2,000 m elevation to the summit around 3,800 m. The summit crater is ~500 m in diameter, surrounded by a zone of darker snow-free deposits; the larger circular summit area is ~4.5 km diameter. NASA Earth Observatory image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey.

Geologic Background. Mount Erebus, the world's southernmost historically active volcano, overlooks the McMurdo research station on Ross Island. It is the largest of three major volcanoes forming the crudely triangular Ross Island. The summit of the dominantly phonolitic volcano has been modified by one or two generations of caldera formation. A summit plateau at about 3,200 m elevation marks the rim of the youngest caldera, which formed during the late-Pleistocene and within which the modern cone was constructed. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater; other lava lakes are sometimes present. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger Strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); NASA Earth Observatory, EOS Project Science Office, NASA Goddard Space Flight Center, Goddard, Maryland, USA (URL: https://earthobservatory.nasa.gov/images/152134/erebus-breaks-through).


Rincon de la Vieja (Costa Rica) — January 2024 Citation iconCite this Report

Rincon de la Vieja

Costa Rica

10.83°N, 85.324°W; summit elev. 1916 m

All times are local (unless otherwise noted)


Frequent phreatic explosions during July-December 2023

Rincón de la Vieja is a volcanic complex in Costa Rica with a hot convecting acid lake that exhibits frequent weak phreatic explosions, gas-and-steam emissions, and occasional elevated sulfur dioxide levels (BGVN 45:10, 46:03, 46:11). The current eruption period began June 2021. This report covers activity during July-December 2023 and is based on weekly bulletins and occasional daily reports from the Observatorio Vulcanologico Sismologica de Costa Rica-Universidad Nacional (OVSICORI-UNA).

Numerous weak phreatic explosions continued during July-December 2023, along with gas-and-steam emissions and plumes that rose as high as 3 km above the crater rim. Many weekly OVSICORI-UNA bulletins included the previous week's number of explosions and emissions (table 9). For many explosions, the time of explosion was given (table 10). Frequent seismic activity (long-period earthquakes, volcano-tectonic earthquakes, and tremor) accompanied the phreatic activity.

Table 9. Number of reported weekly phreatic explosions and gas-and-steam emissions at Rincón de la Vieja, July-December 2023. Counts are reported for the week before the Weekly Bulletin date; not all reports included these data. Courtesy of OVSICORI-UNA.

OVSICORI Weekly Bulletin Number of explosions Number of emissions
28 Jul 2023 6 14
4 Aug 2023 10 12
1 Sep 2023 13 11
22 Sep 2023 12 13
29 Sep 2023 6 11
6 Oct 2023 12 5
13 Oct 2023 7 9
20 Oct 2023 1 15
27 Oct 2023 3 23
3 Nov 2023 3 10
17 Nov 2023 0 Some
24 Nov 2023 0 14
8 Dec 2023 4 16
22 Dec 2023 8 18

Table 10. Summary of activity at Rincón de la Vieja during July-December 2023. Weak phreatic explosions and gas emissions are noted where the time of explosion was indicated in the weekly or daily bulletins. Height of plumes or emissions are distance above the crater rim. Courtesy of OVSICORI-UNA.

Date Time Description of Activity
1 Jul 2023 0156 Explosion.
2 Jul 2023 0305 Explosion.
4 Jul 2023 0229, 0635 Event at 0635 produced a gas-and-steam plume that rose 700 m and drifted W; seen by residents in Liberia (21 km SW).
9 Jul 2023 1843 Explosion.
21 Jul 2023 0705 Explosion.
26 Jul 2023 1807 Explosion.
28 Jul 2023 0802 Explosion generated a gas-and-steam plume that rose 500 m.
30 Jul 2023 1250 Explosion.
31 Jul 2023 2136 Explosion.
11 Aug 2023 0828 Explosion.
18 Aug 2023 1304 Explosion.
21 Aug 2023 1224 Explosion generated gas-and-steam plumes rose 500-600 m.
22 Aug 2023 0749 Explosion generated gas-and-steam plumes rose 500-600 m.
24 Aug 2023 1900 Explosion.
25 Aug 2023 0828 Event produced a steam-and-gas plume that rose 3 km and drifted NW.
27-28 Aug 2023 0813 Four small events; the event at 0813 on 28 August lasted two minutes and generated a steam-and-gas plume that rose 2.5 km.
1 Sep 2023 1526 Explosion generated plume that rose 2 km and ejected material onto the flanks.
2-3 Sep 2023 - Small explosions detected in infrasound data.
4 Sep 2023 1251 Gas-and-steam plume rose 1 km and drifted W.
7 Nov 2023 1113 Explosion.
8 Nov 2023 0722 Explosion.
12 Nov 2023 0136 Small gas emissions.
14 Nov 2023 0415 Small gas emissions.

According to OVSICORI-UNA, during July-October the average weekly sulfur dioxide (SO2) flux ranged from 68 to 240 tonnes/day. However, in mid-November the flux increased to as high as 334 tonnes/day, the highest value measured in recent years. The high SO2 flux in mid-November was also detected by the TROPOMI instrument on the Sentinel-5P satellite (figure 43).

Figure (see Caption) Figure 43. Sulfur dioxide (SO2) maps from Rincón de la Vieja recorded by the TROPOMI instrument aboard the Sentinel-5P satellite on 16 November (left) and 20 November (right) 2023. Mass estimates are consistent with measurements by OVSICORI-UNA near ground level. Some of the plume on 20 November may be from other volcanoes (triangle symbols) in Costa Rica and Nicaragua. Courtesy of the NASA Global Sulfur Dioxide Monitoring Page.

Geologic Background. Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the "Colossus of Guanacaste," it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A Plinian eruption producing the 0.25 km3 Río Blanca tephra about 3,500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater.

Information Contacts: Observatorio Vulcanológico Sismológica de Costa Rica-Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica (URL: http://www.ovsicori.una.ac.cr/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard MD 20771, USA (URL: https://so2.gsfc.nasa.gov/).


Bezymianny (Russia) — November 2023 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Explosion on 18 October 2023 sends ash plume 8 km high; lava flows and incandescent avalanches

Bezymianny, located on Russia’s Kamchatka Peninsula, has had eruptions since 1955 characterized by dome growth, explosions, pyroclastic flows, ash plumes, and ashfall. Activity during November 2022-April 2023 included gas-and-steam emissions, lava dome collapses generating avalanches, and persistent thermal activity. Similar eruptive activity continued from May through October 2023, described here based on information from weekly and daily reports of the Kamchatka Volcano Eruptions Response Team (KVERT), notices from Tokyo VAAC (Volcanic Ash Advisory Center), and from satellite data.

Overall activity decreased after the strong period of activity in late March through April 2023, which included ash explosions during 29 March and 7-8 April 2023 that sent plumes as high as 10-12 km altitude, along with dome growth and lava flows (BGVN 48:05). This reduced activity can be seen in the MIROVA thermal detection system graph (figure 56), which was consistent with data from the MODVOLC thermal detection system and with Sentinel-2 satellite images that showed persistent hotspots in the summit crater when conditions allowed observations. A renewed period of strong activity began in mid-October 2023.

Figure (see Caption) Figure 56. The MIROVA (Log Radiative Power) thermal data for Bezymianny during 20 November 2022 through October 2023 shows heightened activity in the first half of April and second half of October 2023, with lower levels of thermal anomalies in between those times. Courtesy of MIROVA.

Activity increased significantly on 17 October 2023 when large collapses began during 0700-0830 on the E flanks of the lava dome and continued to after 0930 the next day (figure 57). Ash plumes rose to an altitude of 4.5-5 km, extending 220 km NNE by 18 October. A large explosion at 1630 on 18 October produced an ash plume that rose to an altitude of 11 km (8 km above the summit) and drifted NNE and then NW, extending 900 km NW within two days at an altitude of 8 km. Minor ashfall was noted in Kozyrevsk (45 km WNW). At 0820 on 20 October an ash plume was identified in satellite images drifting 100 km ENE at altitudes of 4-4.5 km.

Figure (see Caption) Figure 57. Sentinel-2 satellite images of Bezymianny from 1159 on 17 October 2023 (2359 on 16 October UTC) showing a snow-free S and SE flank along with thermal anomalies in the crater and down the SE flank. Left image is in false color (bands 8, 4, 3); right image is thermal infrared (bands 12, 11, 8A). Courtesy of Copernicus Browser.

Lava flows and hot avalanches from the dome down the SE flank continued over the next few days, including 23 October when clear conditions allowed good observations (figures 58 and 59). A large thermal anomaly was observed over the volcano through 24 October, and in the summit crater on 30 October (figure 60). Strong fumarolic activity continued, with numerous avalanches and occasional incandescence. By the last week of October, volcanic activity had decreased to a level consistent with that earlier in the reporting period.

Figure (see Caption) Figure 58. Daytime photo of Bezymianny under clear conditions on 23 October 2023 showing a lava flow and avalanches descending the SE flank, incandescence from the summit crater, and a small ash plume. Photo by Yu. Demyanchuk, courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 59. Night photo of Bezymianny under cloudy conditions on 23 October 2023 showing an incandescent lava flow and avalanches descending the SE flank. Photo by Yu. Demyanchuk, courtesy of IVS FEB RAS, KVERT.
Figure (see Caption) Figure 60. Sentinel-2 satellite images of Bezymianny from 1159 on 30 October 2023 (2359 on 29 October UTC) showing a plume drifting SE and thermal anomalies in the summit crater and down multiple flanks. Left image is in true color (bands 4, 3, 2); right image is thermal infrared (bands 12, 11, 8A). Courtesy of Copernicus Browser.

Aviation warnings were frequently updated during 17-20 October. KVERT issued a Volcano Observatory Notice for Aviation (VONA) on 17 October at 1419 and 1727 (0219 and 0527 UTC) raising the Aviation Color Code (ACC) from Yellow to Orange (second highest level). The next day, KVERT issued a VONA at 1705 (0505 UTC) raising the ACC to Red (highest level) but lowered it back to Orange at 2117 (0917 UTC). After another decrease to Yellow and back to Orange, the ACC was reduced to Yellow on 20 October at 1204 (0004 UTC). In addition, the Tokyo VAAC issued a series of Volcanic Ash Advisories beginning on 16 October and continuing through 30 October.

Geologic Background. The modern Bezymianny, much smaller than its massive neighbors Kamen and Kliuchevskoi on the Kamchatka Peninsula, was formed about 4,700 years ago over a late-Pleistocene lava-dome complex and an edifice built about 11,000-7,000 years ago. Three periods of intensified activity have occurred during the past 3,000 years. The latest period, which was preceded by a 1,000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large open crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Kamchatka Volcanological Station, Kamchatka Branch of Geophysical Survey, (KB GS RAS), Klyuchi, Kamchatka Krai, Russia (URL: http://volkstat.ru/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).chr


Kilauea (United States) — January 2023 Citation iconCite this Report

Kilauea

United States

19.421°N, 155.287°W; summit elev. 1222 m

All times are local (unless otherwise noted)


Low-level lava effusions in the lava lake at Halema’uma’u during July-December 2022

Kīlauea is the southeastern-most volcano in Hawaii and overlaps the E flank of the Mauna Loa volcano. Its East Rift Zone (ERZ) has been intermittently active for at least 2,000 years. An extended eruption period began in January 1983 and was characterized by open lava lakes and lava flows from the summit caldera and the East Rift Zone. During May 2018 magma migrated into the Lower East Rift Zone (LERZ) and opened 24 fissures along a 6-km-long NE-trending fracture zone that produced lava flows traveling in multiple directions. As lava emerged from the fissures, the lava lake at Halema'uma'u drained and explosions sent ash plumes to several kilometers altitude (BGVN 43:10).

The current eruption period started during September 2021 and has recently been characterized by lava effusions, spatter, and sulfur dioxide emissions in the active Halema’uma’u lava lake (BGVN 47:08). Lava effusions, some spatter, and sulfur dioxide emissions have continued during this reporting period of July through December 2022 using daily reports, volcanic activity notices, and abundant photo, map, and video data from the US Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO).

Summary of activity during July-December 2022. Low-level effusions have continued at the western vent of the Halema’uma’u crater during July through early December 2022. Occasional weak ooze-outs (also called lava break outs) would occur along the margins of the crater floor. The overall level of the active lava lake throughout the reporting period gradually increased due to infilling, however it stagnated in mid-September (table 13). During September through November, activity began to decline, though lava effusions persisted at the western vent. By 9 December, the active part of the lava lake had completely crusted over, and incandescence was no longer visible.

Table 13. Summary of measurements taken during overflights at Kīlauea that show a gradual increase in the active lava lake level and the volume of lava effused since 29 September 2021. Lower activity was reported during September-October. Data collected during July-December 2022. Courtesy of HVO.

Date: Level of the active lava lake (m): Cumulative volume of lava effused (million cubic meters):
7 Jul 2022 130 95
19 Jul 2022 133 98
4 Aug 2022 136 102
16 Aug 2022 137 104
12 Sep 2022 143 111
5 Oct 2022 143 111
28 Oct 2022 143 111

Activity during July 2022. Lava effusions were reported from the western vent in the Halema’uma’u crater, along with occasional weak ooze-outs along the margins of the crater floor. The height of the lava lake was variable due to deflation-inflation tilt events; for example, the lake level dropped approximately 3-4 m during a summit deflation-inflation event reported on 1 July. Webcam images taken during the night of 6-12 July showed intermittent low-level spattering at the western vent that rose less than 10 m above the vent (figure 519). Measurements made during an overflight on 7 July indicated that the crater floor was infilled about 130 m and that 95 million cubic meters of lava had been effused since 29 September 2021. A single, relatively small lava ooze-out was active to the S of the lava lake. Around midnight on 8 July there were two brief periods of lava overflow onto the lake margins. On 9 July lava ooze-outs were reported near the SE and NE edges of the crater floor and during 10-11 July they occurred near the E, NE, and NW edges. On 16 July crater incandescence was reported, though the ooze-outs and spattering were not visible. On 18 July overnight webcam images showed incandescence in the western vent complex and two ooze-outs were reported around 0000 and 0200 on 19 July. By 0900 there were active ooze-outs along the SW edge of the crater floor. Measurements made from an overflight on 19 July indicated that the crater floor was infilled about 133 m and 98 million cubic meters of lava had erupted since 29 September 2021 (figure 520). On 20 July around 1600 active ooze-outs were visible along the N edge of the crater, which continued through the next day. Extensive ooze-outs occurred along the W margin during 24 July until 1900; on 26 July minor ooze-outs were noted along the N margin. Minor spattering was visible on 29 July along the E margin of the lake. The sulfur dioxide emission rates ranged 650-2,800 tons per day (t/d), the higher of which was measured on 8 July (figure 519).

Figure (see Caption) Figure 519. Minor spattering rising less than 10 m was visible at the E end of the lava lake within Halema‘uma‘u, at the summit of Kīlauea on 8 July 2022. Sulfur dioxide is visible rising from the lake surface (bluish-colored fume). A sulfur dioxide emission rate of approximately 2,800 t/d was measured on 8 July. Courtesy of K. Mulliken, USGS.
Figure (see Caption) Figure 520. A helicopter overflight on 19 July 2022 allowed for aerial visible and thermal imagery to be taken of the Halema’uma’u crater at Kīlauea’s summit crater. The active part of the lava lake is confined to the western part of the crater. The scale of the thermal map ranges from blue to red, with blue colors indicative of cooler temperatures and red colors indicative of warmer temperatures. Courtesy of USGS, HVO.

Activity during August 2022. The eruption continued in the Halema’uma’u crater at the western vent. According to HVO the lava in the active lake remained at the level of the bounding levees. Occasional minor ooze-outs were observed along the margins of the crater floor. Strong nighttime crater incandescence was visible after midnight on 6 August over the western vent cone. During 6-7 August scattered small lava lobes were active along the crater floor and incandescence persisted above the western vent through 9 August. During 7-9 August HVO reported a single lava effusion source was active along the NW margin of the crater floor. Measurements from an overflight on 4 August indicated that the crater floor was infilled about 136 m total and that 102 million cubic meters of lava had been erupted since the start of the eruption. Lava breakouts were reported along the N, NE, E, S, and W margins of the crater during 10-16 August. Another overflight survey conducted on 16 August indicated that the crater floor infilled about 137 m and 104 million cubic meters of lava had been erupted since September 2021. Measured sulfur dioxide emissions rates ranged 1,150-2,450 t/d, the higher of which occurred on 8 August.

Activity during September 2022. During September, lava effusion continued from the western vent into the active lava lake and onto the crater floor. Intermittent minor ooze-outs were reported through the month. A small ooze-out was visible on the W crater floor margin at 0220 on 2 September, which showed decreasing surface activity throughout the day, but remained active through 3 September. On 3 September around 1900 a lava outbreak occurred along the NW margin of the crater floor but had stopped by the evening of 4 September. Field crews monitoring the summit lava lake on 9 September observed spattering on the NE margin of the lake that rose no higher than 10 m, before falling back onto the lava lake crust (figure 521). Overflight measurements on 12 September indicated that the crater floor was infilled a total of 143 m and 111 million cubic meters of lava had been erupted since September 2021. Extensive breakouts in the W and N part of the crater floor were reported at 1600 on 20 September and continued into 26 September. The active part of the lava lake dropped by 10 m while other parts of the crater floor dropped by several meters. Summit tiltmeters recorded a summit seismic swarm of more than 80 earthquakes during 1500-1800 on 21 September, which occurred about 1.5 km below Halema’uma’u; a majority of these were less than Mw 2. By 22 September the active part of the lava lake was infilled about 2 m. On 23 September the western vent areas exhibited several small spatter cones with incandescent openings, along with weak, sporadic spattering (figure 522). The sulfur dioxide emission rate ranged from 930 t/d to 2,000 t/d, the higher of which was measured on 6 September.

Figure (see Caption) Figure 521. Photo of spattering occurring at Kīlauea's Halema’uma’u crater during the morning of 9 September 2022 on the NE margin of the active lava lake. The spatter material rose 10 m into the air before being deposited back on the lava lake crust. Courtesy of C. Parcheta, USGS.
Figure (see Caption) Figure 522.The active western vent area at Kīlauea's Halema’uma’u crater consisted of several small spatter cones with incandescent openings and weak, sporadic spattering. Courtesy of M. Patrick, USGS.

Activity during October 2022. Activity during October declined slightly compared to previous months, though lava effusions persisted from the western vent into the active lava lake and onto the crater floor during October (figure 523). Slight variations in the lava lake were noted throughout the month. HVO reported that around 0600 on 3 October the level of the lava lake has lowered slightly. Overflight measurements taken on 5 October indicated that the crater floor was infilled a total of about 143 m and that 111 million cubic meters of lava had been effused since September 2021. During 6-7 October the lake gradually rose 0.5 m. Sulfur dioxide measurements made on 22 October had an emission rate of 700 t/d. Another overflight taken on 28 October showed that there was little to no change in the elevation of the crater floor: the crater floor was infilled a total of 143 m and 111 million cubic meters of lava had erupted since the start of the eruption.

Figure (see Caption) Figure 523. Photo of the Halema’uma’u crater at Kīlauea looking east from the crater rim showing the active lava lake, with active lava ponds to the SE (top) and west (bottom middle) taken on 5 October 2022. The western vent complex is visible through the gas at the bottom center of the photo. Courtesy of N. Deligne, USGS.

Activity during November 2022. Activity remained low during November, though HVO reported that lava from the western vent continued to effuse into the active lava lake and onto the crater floor throughout the month. The rate of sulfur dioxide emissions during November ranged from 300-600 t/d, the higher amount of which occurred on 9 November.

Activity during December 2022. Similar low activity was reported during December, with lava effusing from the western vent into the active lava lake and onto the crater floor. During 4-5 December the active part of the lava lake was slightly variable in elevation and fluctuated within 1 m. On 9 December HVO reported that lava was no longer erupting from the western vent in the Halema’uma’u crater and that sulfur dioxide emissions had returned to near pre-eruption background levels; during 10-11 December, the lava lake had completely crusted over, and no incandescence was visible (figure 524). Time lapse camera images covering the 4-10 December showed that the crater floor showed weak deflation and no inflation. Some passive events of crustal overturning were reported during 14-15 December, which brought fresh incandescent lava to the lake surface. The sulfur dioxide emission rate was approximately 200 t/d on 14 December. A smaller overturn event on 17 December and another that occurred around 0000 and into the morning of 20 December were also detected. A small seismic swarm was later detected on 30 December.

Figure (see Caption) Figure 524. Photo of Halema’uma’u crater at Kīlauea showing a mostly solidified lake surface during the early morning of 10 December 2022. Courtesy of J. Bard, USGS.

Geologic Background. Kilauea overlaps the E flank of the massive Mauna Loa shield volcano in the island of Hawaii. Eruptions are prominent in Polynesian legends; written documentation since 1820 records frequent summit and flank lava flow eruptions interspersed with periods of long-term lava lake activity at Halemaumau crater in the summit caldera until 1924. The 3 x 5 km caldera was formed in several stages about 1,500 years ago and during the 18th century; eruptions have also originated from the lengthy East and Southwest rift zones, which extend to the ocean in both directions. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1,100 years old; 70% of the surface is younger than 600 years. The long-term eruption from the East rift zone between 1983 and 2018 produced lava flows covering more than 100 km2, destroyed hundreds of houses, and added new coastline.

Information Contacts: Hawaiian Volcano Observatory (HVO), U.S. Geological Survey, PO Box 51, Hawai'i National Park, HI 96718, USA (URL: http://hvo.wr.usgs.gov/).


Nyamulagira (DR Congo) — November 2023 Citation iconCite this Report

Nyamulagira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Lava flows and thermal activity during May-October 2023

Nyamulagira (also known as Nyamuragira) is a shield volcano in the Democratic Republic of Congo with the summit truncated by a small 2 x 2.3 km caldera with walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from numerous flank fissures and cinder cones. The current eruption period began in April 2018 and has more recently been characterized by summit crater lava flows and thermal activity (BGVN 48:05). This report describes lava flows and variable thermal activity during May through October 2023, based on information from the Observatoire Volcanologique de Goma (OVG) and various satellite data.

Lava lake activity continued during May. The MIROVA (Middle InfraRed Observation of Volcanic Activity) system recorded moderate-to-strong thermal activity throughout the reporting period; activity was more intense during May and October and relatively weaker from June through September (figure 95). The MODVOLC thermal algorithm, detected a total of 209 thermal alerts. There were 143 hotspots detected during May, eight during June, nine during September, and 49 during October. This activity was also reflected in infrared satellite images, where a lava flow was visible in the NW part of the crater on 7 May and strong activity was seen in the center of the crater on 4 October (figure 96). Another infrared satellite image taken on 12 May showed still active lava flows along the NW margin of the crater. According to OVG lava effusions were active during 7-29 May and moved to the N and NW parts of the crater beginning on 9 May. Strong summit crater incandescence was visible from Goma (27 km S) during the nights of 17, 19, and 20 May (figure 97). On 17 May there was an increase in eruptive activity, which peaked at 0100 on 20 May. Notable sulfur dioxide plumes drifted NW and W during 19-20 May (figure 98). Drone footage acquired in partnership with the USGS (United States Geological Survey) on 20 May captured images of narrow lava flows that traveled about 100 m down the W flank (figure 99). Data from the Rumangabo seismic station indicated a decreasing trend in activity during 17-21 May. Although weather clouds prevented clear views of the summit, a strong thermal signature on the NW flank was visible in an infrared satellite image on 22 May, based on an infrared satellite image. On 28 May the lava flows on the upper W flank began to cool and solidify. By 29 May seismicity returned to levels similar to those recorded before the 17 May increase. Lava effusion continued but was confined to the summit crater; periodic crater incandescence was observed.

Figure (see Caption) Figure 95. Moderate-to-strong thermal anomalies were detected at Nyamulagira during May through October 2023, as shown on this MIROVA graph (Log Radiative Power). During late May, the intensity of the anomalies gradually decreased and remained at relatively lower levels during mid-June through mid-September. During mid-September, the power of the anomalies gradually increased again. The stronger activity is reflective of active lava effusions. Courtesy of MIROVA.
Figure (see Caption) Figure 96. Infrared (bands B12, B11, B4) satellite images showing a constant thermal anomaly of variable intensities in the summit crater of Nyamulagira on 7 May 2023 (top left), 21 June 2023 (top right), 21 July 2023 (bottom left), and 4 October 2023 (bottom right). Although much of the crater was obscured by weather clouds on 7 May, a possible lava flow was visible in the NW part of the crater. Courtesy of Copernicus Browser.
Figure (see Caption) Figure 97. Photo of intense nighttime crater incandescence at Nyamulagira as seen from Goma (27 km S) on the evening of 19 May 2023. Courtesy of Charles Balagizi, OVG.
Figure (see Caption) Figure 98. Two strong sulfur dioxide plumes were detected at Nyamulagira and drifted W on 19 (left) and 20 (right) May 2023. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.
Figure (see Caption) Figure 99. A map (top) showing the active vents (yellow pins) and direction of active lava flows (W) at Nyamulagira at Virunga National Park on 20 May 2023. Drone footage (bottom) also shows the fresh lava flows traveling downslope to the W on 20 May 2023. Courtesy of USGS via OVG.

Low-level activity was noted during June through October. On 1 June OVG reported that seismicity remained at lower levels and that crater incandescence had been absent for three days, though infrared satellite imagery showed continued lava effusion in the summit crater. The lava flows on the flanks covered an estimated 0.6 km2. Satellite imagery continued to show thermal activity confined to the lava lake through October (figure 96), although no lava flows or significant sulfur dioxide emissions were reported.

Geologic Background. Africa's most active volcano, Nyamulagira (also known as Nyamuragira), is a massive high-potassium basaltic shield about 25 km N of Lake Kivu and 13 km NNW of the steep-sided Nyiragongo volcano. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Documented eruptions have occurred within the summit caldera, as well as from the numerous flank fissures and cinder cones. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Recent lava flows extend down the flanks more than 30 km from the summit as far as Lake Kivu; extensive lava flows from this volcano have covered 1,500 km2 of the western branch of the East African Rift.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Charles Balagizi, Goma Volcano Observatory, Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo.


Bagana (Papua New Guinea) — October 2023 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Explosions, ash plumes, ashfall, and lava flows during April-September 2023

The remote volcano of Bagana is located in central Bougainville Island, Papua New Guinea. Recorded eruptions date back to 1842 and activity has consisted of effusive activity that has built a small lava dome in the summit crater and occasional explosions that produced pyroclastic flows. The most recent eruption has been ongoing since February 2000 and has produced occasional explosions, ash plumes, and lava flows. More recently, activity has been characterized by ongoing effusive activity and ash emissions (BGVN 48:04). This report updates activity from April through September 2023 that has consisted of explosions, ash plumes, ashfall, and lava flows, using information from the Darwin Volcanic Ash Advisory Center (VAAC) and satellite data.

An explosive eruption was reported on 7 July that generated a large gas-and-ash plume to high altitudes and caused significant ashfall in local communities; the eruption plume had reached upper tropospheric (16-18 km altitude) altitudes by 2200, according to satellite images. Sulfur dioxide plumes were detected in satellite images on 8 July and indicated that the plume was likely a mixture of gas, ice, and ash. A report issued by the Autonomous Bougainville Government (ABG) (Torokina District, Education Section) on 10 July noted that significant ash began falling during 2000-2100 on 7 July and covered most areas in the Vuakovi, Gotana (9 km SW), Koromaketo, Laruma (25 km W) and Atsilima (27 km NW) villages. Pyroclastic flows also occurred, according to ground-based reports; small deposits confined to one drainage were inspected by RVO during an overflight on 17 July and were confirmed to be from the 7 July event. Ashfall continued until 10 July and covered vegetation, which destroyed bushes and gardens and contaminated rivers and streams.

RVO reported another eruption on 14 July. The Darwin VAAC stated that an explosive event started around 0830 on 15 July and produced an ash plume that rose to 16.5 km altitude by 1000 and drifted N, according to satellite images. The plume continued to drift N and remained visible through 1900, and by 2150 it had dissipated.

Ashfall likely from both the 7 and 15 July events impacted about 8,111 people in Torokina (20 km SW), including Tsito/Vuakovi, Gotana, Koromaketo, Kenaia, Longkogari, Kenbaki, Piva (13 km SW), and Atsinima, and in the Tsitovi district, according to ABG. Significant ashfall was also reported in Ruruvu (22 km N) in the Wakunai District of Central Bougainville, though the thickness of these deposits could not be confirmed. An evacuation was called for the villages in Wakunai, where heavy ashfall had contaminated water sources; the communities of Ruruvu, Togarau, Kakarapaia, Karauturi, Atao, and Kuritaturi were asked to evacuate to a disaster center at the Wakunai District Station, and communities in Torokina were asked to evacuate to the Piva District station. According to a news article, more than 7,000 people needed temporary accommodations, with about 1,000 people in evacuation shelters. Ashfall had deposited over a broad area, contaminating water supplies, affecting crops, and collapsing some roofs and houses in rural areas. Schools were temporarily shut down. Intermittent ash emissions continued through the end of July and drifted NNW, NW, and SW. Fine ashfall was reported on the coast of Torokina, and ash plumes also drifted toward Laruma and Atsilima.

A small explosive eruption occurred at 2130 on 28 July that ejected material from the crater vents, according to reports from Torokina, in addition to a lava flow that contained two lobes. A second explosion was detected at 2157. Incandescence from the lava flow was visible from Piva as it descended the W flank around 2000 on 29 July (figure 47). The Darwin VAAC reported that a strong thermal anomaly was visible in satellite images during 30-31 July and that ash emissions rose to 2.4 km altitude and drifted WSW on 30 July. A ground report from RVO described localized emissions at 0900 on 31 July.

Figure (see Caption) Figure 47. Infrared (bands B12, B11, B4) satellite images showed weak thermal anomalies at the summit crater of Bagana on 12 April 2023 (top left), 27 May 2023 (top right), 31 July 2023 (bottom left), and 19 September 2023 (bottom right). A strong thermal anomaly was detected through weather clouds on 31 July and extended W from the summit crater. Courtesy of Copernicus Browser.

The Darwin VAAC reported that ash plumes were identified in satellite imagery at 0800 and 1220 on 12 August and rose to 2.1 km and 3 km altitude and drifted NW and W, respectively. A news report stated that aid was sent to more than 6,300 people that were adversely affected by the eruption. Photos taken during 17-19 August showed ash emissions rising no higher than 1 km above the summit and drifting SE. A small explosion generated an ash plume during the morning of 19 August. Deposits from small pyroclastic flows were also captured in the photos. Satellite images captured lava flows and pyroclastic flow deposits. Two temporary seismic stations were installed near Bagana on 17 August at distances of 7 km WSW (Vakovi station) and 11 km SW (Kepox station). The Kepox station immediately started to record continuous, low-frequency background seismicity.

Satellite data. Little to no thermal activity was detected during April through mid-July 2023; only one anomaly was recorded during early April and one during early June, according to MIROVA (Middle InfraRed Observation of Volcanic Activity) data (figure 48). Thermal activity increased in both power and frequency during mid-July through September, although there were still some short gaps in detected activity. MODVOLC also detected increased thermal activity during August; thermal hotspots were detected a total of five times on 19, 20, and 27 August. Weak thermal anomalies were also captured in infrared satellite images on clear weather days throughout the reporting period on 7, 12, and 17 April, 27 May, 1, 6, 16, and 31 July, and 19 September (figure 48); a strong thermal anomaly was visible on 31 July. Distinct sulfur dioxide plumes that drifted generally NW were intermittently captured by the TROPOMI instrument on the Sentinel-5P satellite and sometimes exceeded two Dobson Units (DUs) (figure 49).

Figure (see Caption) Figure 48. Low thermal activity was detected at Bagana during April through mid-July 2023, as shown on this MIROVA graph. In mid-July, activity began to increase in both frequency and power, which continued through September. There were still some pauses in activity during late July, early August, and late September, but a cluster of thermal activity was detected during late August. Courtesy of MIROVA.
Figure (see Caption) Figure 49. Distinct sulfur dioxide plumes rising from Bagana on 15 July 2023 (top left), 16 July 2023 (top right), 17 July 2023 (bottom left), and 17 August 2023 (bottom right). These plumes all generally drifted NW; a particularly notable plume exceeded 2 Dobson Units (DUs) on 15 July. Data is from the TROPOMI instrument on the Sentinel-5P satellite. Courtesy of NASA Global Sulfur Dioxide Monitoring Page.0

Geologic Background. Bagana volcano, in a remote portion of central Bougainville Island, is frequently active. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although occasional explosive activity produces pyroclastic flows. Lava flows with tongue-shaped lobes up to 50 m thick and prominent levees descend the flanks on all sides.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); NASA Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Autonomous Bougainville Government, P.O Box 322, Buka, AROB, PNG (URL: https://abg.gov.pg/); Andrew Tupper (Twitter: @andrewcraigtupp); Simon Carn, Geological and Mining Engineering and Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA (URL: http://www.volcarno.com/, Twitter: @simoncarn); Radio NZ (URL: https://www.rnz.co.nz/news/pacific/494464/more-than-7-000-people-in-bougainville-need-temporary-accommodation-after-eruption); USAID, 1300 Pennsylvania Ave, NW, Washington DC 20004, USA (URL: https://www.usaid.gov/pacific-islands/press-releases/aug-08-2023-united-states-provides-immediate-emergency-assistance-support-communities-affected-mount-bagana-volcanic-eruptions).


Mayon (Philippines) — October 2023 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Lava flows, pyroclastic flows, ash emissions, and seismicity during April-September 2023

Mayon is located in the Philippines and has steep upper slopes capped by a small summit crater. Historical eruptions date back to 1616 CE that have been characterized by Strombolian eruptions, lava flows, pyroclastic flows, and mudflows. Eruptions mostly originated from a central conduit. Pyroclastic flows and mudflows have commonly descended many of the approximately 40 drainages that surround the volcano. The most recent eruption occurred during June through October 2022 and consisted of lava dome growth and gas-and-steam emissions (BGVN 47:12). A new eruption was reported during late April 2023 and has included lava flows, pyroclastic density currents, ash emissions, and seismicity. This report covers activity during April through September 2023 based on daily bulletins from the Philippine Institute of Volcanology and Seismology (PHIVOLCS).

During April through September 2023, PHIVOLCS reported near-daily rockfall events, frequent volcanic earthquakes, and sulfur dioxide measurements. Gas-and-steam emissions rose 100-900 m above the crater and drifted in different directions. Nighttime crater incandescence was often visible during clear weather and was accompanied by incandescent avalanches of material. Activity notably increased during June when lava flows were reported on the S, SE, and E flanks (figure 52). The MIROVA graph (Middle InfraRed Observation of Volcanic Activity) showed strong thermal activity coincident with these lava flows, which remained active through September (figure 53). According to the MODVOLC thermal algorithm, a total of 110 thermal alerts were detected during the reporting period: 17 during June, 40 during July, 27 during August, and 26 during September. During early June, pyroclastic density currents (PDCs) started to occur more frequently.

Figure (see Caption) Figure 52. Infrared (bands B12, B11, B4) satellite images show strong lava flows descending the S, SE, and E flanks of Mayon on 13 June 2023 (top left), 23 June 2023 (top right), 8 July 2023 (bottom left), and 7 August 2023 (bottom right). Courtesy of Copernicus Browser.
Figure (see Caption) Figure 53. Strong thermal activity was detected at Mayon during early June through September, according to this MIROVA graph (Log Radiative Power) due to the presence of active lava flows on the SE, S, and E flanks. Courtesy of MIROVA.

Low activity was reported during much of April and May; gas-and-steam emissions rose 100-900 m above the crater and generally drifted in different directions. A total of 52 rockfall events and 18 volcanic earthquakes were detected during April and 147 rockfall events and 13 volcanic events during May. Sulfur dioxide flux measurements ranged between 400-576 tons per day (t/d) during April, the latter of which was measured on 29 April and between 162-343 t/d during May, the latter of which was measured on 13 May.

Activity during June increased, characterized by lava flows, pyroclastic density currents (PDCs), crater incandescence and incandescent rockfall events, gas-and-steam emissions, and continued seismicity. Weather clouds often prevented clear views of the summit, but during clear days, moderate gas-and-steam emissions rose 100-2,500 m above the crater and drifted in multiple directions. A total of 6,237 rockfall events and 288 volcanic earthquakes were detected. The rockfall events often deposited material on the S and SE flanks within 700-1,500 m of the summit crater and ash from the events drifted SW, S, SE, NE, and E. Sulfur dioxide emissions ranged between 149-1,205 t/d, the latter of which was measured on 10 June. Short-term observations from EDM and electronic tiltmeter monitoring indicated that the upper slopes were inflating since February 2023. Longer-term ground deformation parameters based on EDM, precise leveling, continuous GPS, and electronic tilt monitoring indicated that the volcano remained inflated, especially on the NW and SE flanks. At 1000 on 5 June the Volcano Alert Level (VAL) was raised to 2 (on a 0-5 scale). PHIVOLCS noted that although low-level volcanic earthquakes, ground deformation, and volcanic gas emissions indicated unrest, the steep increase in rockfall frequency may indicate increased dome activity.

A total of 151 dome-collapse PDCs occurred during 8-9 and 11-30 June, traveled 500-2,000 m, and deposited material on the S flank within 2 km of the summit crater. During 8-9 June the VAL was raised to 3. At approximately 1947 on 11 June lava flow activity was reported; two lobes traveled within 500 m from the crater and deposited material on the S (Mi-isi), SE (Bonga), and E (Basud) flanks. Weak seismicity accompanied the lava flow and slight inflation on the upper flanks. This lava flow remained active through 30 June, moving down the S and SE flank as far as 2.5 km and 1.8 km, respectively and depositing material up to 3.3 km from the crater. During 15-16 June traces of ashfall from the PDCs were reported in Sitio Buga, Nabonton, City of Ligao and Purok, and San Francisco, Municipality of Guinobatan. During 28-29 June there were two PDCs generated by the collapse of the lava flow front, which generated a light-brown ash plume 1 km high. Satellite monitors detected significant concentrations of sulfur dioxide beginning on 29 June. On 30 June PDCs primarily affected the Basud Gully on the E flank, the largest of which occurred at 1301 and lasted eight minutes, based on the seismic record. Four PDCs generated between 1800 and 2000 that lasted approximately four minutes each traveled 3-4 km on the E flank and generated an ash plume that rose 1 km above the crater and drifted N and NW. Ashfall was recorded in Tabaco City.

Similar strong activity continued during July; slow lava effusion remained active on the S and SE flanks and traveled as far as 2.8 km and 2.8 km, respectively and material was deposited as far as 4 km from the crater. There was a total of 6,983 rockfall events and 189 PDCs that affected the S, SE, and E flanks. The volcano network detected a total of 2,124 volcanic earthquakes. Continuous gas-and-steam emissions rose 200-2,000 m above the crater and drifted in multiple directions. Sulfur dioxide emissions averaged 792-4,113 t/d, the latter of which was measured on 28 July. During 2-4 July three PDCs were generated from the collapse of the lava flow and resulting light brown plumes rose 200-300 m above the crater. Continuous tremor pulses were reported beginning at 1547 on 3 July through 7 July at 1200, at 2300 on 8 July and going through 0300 on 10 July, and at 2300 on 16 July, as recorded by the seismic network. During 6-9 July there were 10 lava flow-collapse-related PDCs that generated light brown plumes 300-500 m above the crater. During 10-11 July light ashfall was reported in some areas of Mabinit, Legazpi City, Budiao and Salvacion, Daraga, and Camalig, Albay. By 18 July the lava flow advanced 600 m on the E flank as well.

During 1733 on 18 July and 0434 on 19 July PHIVOLCS reported 30 “ashing” events, which are degassing events accompanied by audible thunder-like sounds and entrained ash at the crater, which produced short, dark plumes that drifted SW. These events each lasted 20-40 seconds, and plume heights ranged from 150-300 m above the crater, as recorded by seismic, infrasound, visual, and thermal monitors. Three more ashing events occurred during 19-20 July. Short-term observations from electronic tilt and GPS monitoring indicate deflation on the E lower flanks in early July and inflation on the NW middle flanks during the third week of July. Longer-term ground deformation parameters from EDM, precise leveling, continuous GPS, and electronic tilt monitoring indicated that the volcano was still generally inflated relative to baseline levels. A short-lived lava pulse lasted 28 seconds at 1956 on 21 July, which was accompanied by seismic and infrasound signals. By 22 July, the only lava flow that remained active was on the SE flank, and continued to extend 3.4 km, while those on the S and E flanks weakened markedly. One ashing event was detected during 30-31 July, whereas there were 57 detected during 31 July-1 August; according to PHIVOLCS beginning at approximately 1800 on 31 July eruptive activity was dominated by phases of intermittent ashing, as well as increased in the apparent rates of lava effusion from the summit crater. The ashing phases consisted of discrete events recorded as low-frequency volcanic earthquakes (LFVQ) typically 30 seconds in duration, based on seismic and infrasound signals. Gray ash plume rose 100 m above the crater and generally drifted NE. Shortly after these ashing events began, new lava began to effuse rapidly from the crater, feeding the established flowed on the SE, E, and E flanks and generating frequent rockfall events.

Intensified unrest persisted during August. There was a total of 4,141 rockfall events, 2,881 volcanic earthquakes, which included volcanic tremor events, 32 ashing events, and 101 PDCs detected throughout the month. On clear weather days, gas-and-steam emissions rose 300-1,500 m above the crater and drifted in different directions (figure 54). Sulfur dioxide emissions averaged 735-4,756 t/d, the higher value of which was measured on 16 August. During 1-2 August the rate of lava effusion decreased, but continued to feed the flows on the SE, S, and E flanks, maintaining their advances to 3.4 km, 2.8 km, and 1.1 km from the crater, respectively (figure 55). Rockfall and PDCs generated by collapses at the lava flow margins and from the summit dome deposited material within 4 km of the crater. During 3-4 August there were 10 tremor events detected that lasted 1-4 minutes. Short-lived lava pulse lasted 35 seconds and was accompanied by seismic and infrasound signals at 0442 on 6 August. Seven collapses were recorded at the front of the lava flow during 12-14 August.

Figure (see Caption) Figure 54. Photo of Mayon showing a white gas-and-steam plume rising 800-1,500 m above the crater at 0645 on 25 August. Courtesy of William Rogers.
Figure (see Caption) Figure 55. Photo of Mayon facing N showing incandescent lava flows and summit crater incandescence taken at 1830 on 25 August 2023. Courtesy of William Rogers.

During September, similar activity of slow lava effusion, PDCs, gas-and-steam emissions, and seismicity continued. There was a total of 4,452 rockfall events, 329 volcanic earthquakes, which included volcanic tremor events, two ashing events, and 85 PDCs recorded throughout the month. On clear weather days, gas-and-steam emissions rose 100-1,500 m above the crater and drifted in multiple directions. Sulfur dioxide emissions averaged 609-2,252 t/d, the higher average of which was measured on 6 September. Slow lava effusion continued advancing on the SE, S, and E flanks, maintaining lengths of 3.4 km, 2.8 km, and 1.1 km, respectively. Rockfall and PDC events generated by collapses along the lava flow margins and at the summit dome deposited material within 4 km of the crater.

Geologic Background. Symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the most active volcano of the Philippines. The steep upper slopes are capped by a small summit crater. Recorded eruptions since 1616 CE range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer periods of andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic density currents and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often damaged populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); William Rogers, Legazpi City, Albay Province, Philippines.


Nishinoshima (Japan) — October 2023 Citation iconCite this Report

Nishinoshima

Japan

27.247°N, 140.874°E; summit elev. 100 m

All times are local (unless otherwise noted)


Eruption plumes and gas-and-steam plumes during May-August 2023

Nishinoshima, located about 1,000 km S of Tokyo, is a small island in the Ogasawara Arc in Japan. The island is the summit of a massive submarine volcano that has prominent submarine peaks to the S, W, and NE. Eruptions date back to 1973 and the current eruption period began in October 2022. Recent activity has consisted of small ash plumes and fumarolic activity (BGVN 48:07). This report covers activity during May through August 2023, using information from monthly reports of the Japan Meteorological Agency (JMA) monthly reports and satellite data.

Activity during May through June was relatively low. The Japan Coast Guard (JCG) did overflights on 14 and 22 June and reported white gas-and-steam emissions rising 600 m and 1,200 m from the central crater of the pyroclastic cone, respectively (figure 125). In addition, multiple white gas-and-steam emissions rose from the inner rim of the W side of the crater and from the SE flank of the pyroclastic cone. Discolored brown-to-green water was observed around almost the entire perimeter of the island; on 22 June light green discolored water was observed off the S coast of the island.

Figure (see Caption) Figure 125. A white gas-and-steam plume rising 600 m above the crater of Nishinoshima at 1404 on 14 June 2023 (left) and 1,200 m above the crater at 1249 on 22 June 2023 (right). Courtesy of JCG via JMA (monthly reports of activity at Nishinoshima, June, 2023).

Observations from the Himawari meteorological satellite confirmed an eruption on 9 and 10 July. An eruption plume rose 1.6 km above the crater and drifted N around 1300 on 9 July. Satellite images acquired at 1420 and 2020 on 9 July and at 0220 on 10 July showed continuing emissions that rose 1.3-1.6 km above the crater and drifted NE and N. The Tokyo VAAC reported that an ash plume seen by a pilot and identified in a satellite image at 0630 on 21 July rose to 3 km altitude and drifted S.

Aerial observations conducted by JCG on 8 August showed a white-and-gray plume rising from the central crater of the pyroclastic cone, and multiple white gas-and-steam emissions were rising from the inner edge of the western crater and along the NW-SE flanks of the island (figure 126). Brown-to-green discolored water was also noted around the perimeter of the island.

Figure (see Caption) Figure 126. Aerial photo of Nishinoshima showing a white-and-gray plume rising from the central crater taken at 1350 on 8 August 2023.

Intermittent low-to-moderate power thermal anomalies were recorded in the MIROVA graph (Middle InfraRed Observation of Volcanic Activity), showing an increase in both frequency and power beginning in July (figure 127). This increase in activity coincides with eruptive activity on 9 and 10 July, characterized by eruption plumes. According to the MODVOLC thermal alert algorithm, one thermal hotspot was recorded on 20 July. Weak thermal anomalies were also detected in infrared satellite imagery, accompanied by strong gas-and-steam plumes (figure 128).

Figure (see Caption) Figure 127. Low-to-moderate power thermal anomalies were detected at Nishinoshima during May through August 2023, showing an increase in both frequency and power in July, according to this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 128. Infrared (bands B12, B11, B4) satellite images showing a small thermal anomaly at the crater of Nishinoshima on 30 June 2023 (top left), 3 July 2023 (top right), 7 August 2023 (bottom left), and 27 August 2023 (bottom right). Strong gas-and-steam plumes accompanied this activity, extending NW, NE, and SW. Courtesy of Copernicus Browser.

Geologic Background. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Multiple eruptions that began in 2013 completely covered the previous exposed surface and continued to enlarge the island. The island is the summit of a massive submarine volcano that has prominent peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the ocean surface 9 km SSE.

Information Contacts: Japan Meteorological Agency (JMA), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Krakatau (Indonesia) — October 2023 Citation iconCite this Report

Krakatau

Indonesia

6.1009°S, 105.4233°E; summit elev. 285 m

All times are local (unless otherwise noted)


White gas-and-steam plumes and occasional ash plumes during May-August 2023

Krakatau is located in the Sunda Strait between Java and Sumatra, Indonesia. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan cones and left only a remnant of Rakata. The post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones; it has been the site of frequent eruptions since 1927. The current eruption period began in May 2021 and has recently consisted of Strombolian eruptions and ash plumes (BGVN 48:07). This report describes lower levels of activity consisting of ash and white gas-and-steam plumes during May through August 2023, based on information provided by the Indonesian Center for Volcanology and Geological Hazard Mitigation, referred to as Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), MAGMA Indonesia, and satellite data.

Activity was relatively low during May and June. Daily white gas-and-steam emissions rose 25-200 m above the crater and drifted in different directions. Five ash plumes were detected at 0519 on 10 May, 1241 on 11 May, 0920 on 12 May, 2320 on 12 May, and at 0710 on 13 May, and rose 1-2.5 km above the crater and drifted SW. A webcam image taken on 12 May showed ejection of incandescent material above the vent. A total of nine ash plumes were detected during 6-11 June: at 1434 and 00220 on 6 and 7 June the ash plumes rose 500 m above the crater and drifted NW, at 1537 on 8 June the ash plume rose 1 km above the crater and drifted SW, at 0746 and at 0846 on 9 June the ash plumes rose 800 m and 3 km above the crater and drifted SW, respectively, at 0423, 1431, and 1750 on 10 June the ash plumes rose 2 km, 1.5 km, and 3.5 km above the crater and drifted NW, respectively, and at 0030 on 11 June an ash plume rose 2 km above the crater and drifted NW. Webcam images taken on 10 and 11 June at 0455 and 0102, respectively, showed incandescent material ejected above the vent. On 19 June an ash plume at 0822 rose 1.5 km above the crater and drifted SE.

Similar low activity of white gas-and-steam emissions and few ash plumes were reported during July and August. Daily white gas-and-steam emissions rose 25-300 m above the crater and drifted in multiple directions. Three ash plumes were reported at 0843, 0851, and 0852 on 20 July that rose 500-2,000 m above the crater and drifted NW.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) graph of MODIS thermal anomaly data showed intermittent low-to-moderate power thermal anomalies during May through August 2023 (figure 140). Although activity was often obscured by weather clouds, a thermal anomaly was visible in an infrared satellite image of the crater on 12 May, accompanied by an eruption plume that drifted SW (figure 141).

Figure (see Caption) Figure 140. Intermittent low-to-moderate power thermal anomalies were detected at Krakatau during May through August 2023, based on this MIROVA graph (Log Radiative Power). Courtesy of MIROVA.
Figure (see Caption) Figure 141. A single thermal anomaly (bright yellow-orange) was visible at Krakatau in this infrared (bands B12, B11, B4) satellite image taken on 12 May 2023. An eruption plume accompanied the thermal anomaly and drifted SW. Courtesy of Copernicus Browser.

Geologic Background. The renowned Krakatau (frequently mis-named as Krakatoa) volcano lies in the Sunda Strait between Java and Sumatra. Collapse of an older edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of that volcano are preserved in Verlaten and Lang Islands; subsequently the Rakata, Danan, and Perbuwatan cones were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption caused more than 36,000 fatalities, most as a result of tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former Danan and Perbuwatan cones. Anak Krakatau has been the site of frequent eruptions since 1927.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Merapi (Indonesia) — October 2023 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Frequent incandescent avalanches during April-September 2023

Merapi, located just north of the major city of Yogyakarta in central Java, Indonesia, has had activity within the last 20 years characterized by pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome. The current eruption period began in late December 2020 and has more recently consisted of ash plumes, intermittent incandescent avalanches of material, and pyroclastic flows (BGVN 48:04). This report covers activity during April through September 2023, based on information from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG which specifically monitors Merapi. Additional information comes from the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), MAGMA Indonesia, the Darwin Volcanic Ash Advisory Centre (VAAC), and various satellite data.

Activity during April through September 2023 primarily consisted of incandescent avalanches of material that mainly affected the SW and W flanks and traveled as far as 2.3 km from the summit (table 25) and white gas-and-steam emissions that rose 10-1,000 m above the crater.

Table 25. Monthly summary of avalanches and avalanche distances recorded at Merapi during April through September 2023. The number of reported avalanches does not include instances where possible avalanches were heard but could not be visually confirmed as a result of inclement weather. Data courtesy of BPPTKG (April-September 2023 daily reports).

Month Average number of avalanches per day Distance avalanches traveled (m)
Apr 2023 19 1,200-2,000
May 2023 22 500-2,000
Jun 2023 18 1,200-2,000
Jul 2023 30 300-2,000
Aug 2023 25 400-2,300
Sep 2023 23 600-2,000

BPPTKG reported that during April and May white gas-and-steam emissions rose 10-750 m above the crater, incandescent avalanches descended 500-2,000 m on the SW and W flanks (figure 135). Cloudy weather often prevented clear views of the summit, and sometimes avalanches could not be confirmed. According to a webcam image, a pyroclastic flow was visible on 17 April at 0531. During the week of 28 April and 4 May a pyroclastic flow was reported on the SW flank, traveling up to 2.5 km. According to a drone overflight taken on 17 May the SW lava dome volume was an estimated 2,372,800 cubic meters and the dome in the main crater was an estimated 2,337,300 cubic meters.

Figure (see Caption) Figure 135. Photo showing an incandescent avalanche affecting the flank of Merapi on 8 April 2023. Courtesy of Øystein Lund Andersen.

During June and July similar activity persisted with white gas-and-steam emissions rising 10-350 m above the crater and frequent incandescent avalanches that traveled 300-2,000 m down the SW, W, and S flanks (figure 136). Based on an analysis of aerial photos taken on 24 June the volume of the SW lava dome was approximately 2.5 million cubic meters. A pyroclastic flow was observed on 5 July that traveled 2.7 km on the SW flank. According to the Darwin VAAC multiple minor ash plumes were identified in satellite images on 19 July that rose to 3.7 km altitude and drifted S and SW. During 22, 25, and 26 July a total of 17 avalanches descended as far as 1.8 km on the S flank.

Figure (see Caption) Figure 136. Photo showing an incandescent avalanche descending the flank of Merapi on 23 July 2023. Courtesy of Øystein Lund Andersen.

Frequent white gas-and-steam emissions continued during August and September, rising 10-450 m above the crater. Incandescent avalanches mainly affected the SW and W flanks and traveled 400-2,300 m from the vent (figure 137). An aerial survey conducted on 10 August was analyzed and reported that estimates of the SW dome volume was 2,764,300 cubic meters and the dome in the main crater was 2,369,800 cubic meters.

Figure (see Caption) Figure 137. Photo showing a strong incandescent avalanche descending the flank of Merapi on 23 September 2023. Courtesy of Øystein Lund Andersen.

Frequent and moderate-power thermal activity continued throughout the reporting period, according to a MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data (figure 138). There was an increase in the number of detected anomalies during mid-May. The MODVOLC thermal algorithm recorded a total of 47 thermal hotspots: six during April, nine during May, eight during June, 15 during July, four during August, and five during September. Some of this activity was captured in infrared satellite imagery on clear weather days, sometimes accompanied by incandescent material on the SW flank (figure 139).

Figure (see Caption) Figure 138. Frequent and moderate-power thermal anomalies were detected at Merapi during April through September 2023, as shown on this MIROVA plot (Log Radiative Power). There was an increase in the number of anomalies recorded during mid-May. Courtesy of MIROVA.
Figure (see Caption) Figure 139. Infrared (bands B12, B11, B4) satellite images showed a consistent thermal anomaly (bright yellow-orange) at the summit crater of Merapi on 8 April 2023 (top left), 18 May 2023 (top right), 17 June 2023 (middle left), 17 July 2023 (middle right), 11 August 2023 (bottom left), and 20 September 2023 (bottom right). Incandescent material was occasionally visible descending the SW flank, as shown in each of these images. Courtesy of Copernicus Browser.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2,000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequent growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.esdm.go.id/v1); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/); Øystein Lund Andersen (URL: https://www.oysteinlundandersen.com/, https://twitter.com/oysteinvolcano).


Villarrica (Chile) — October 2023 Citation iconCite this Report

Villarrica

Chile

39.42°S, 71.93°W; summit elev. 2847 m

All times are local (unless otherwise noted)


Strombolian activity, gas-and-ash emissions, and crater incandescence during April-September 2023

Villarrica, in central Chile, consists of a 2-km-wide caldera that formed about 3,500 years ago and is located at the base of the presently active cone at the NW margin of a 6-km-wide caldera. Historical eruptions eruptions date back to 1558 and have been characterized by mild-to-moderate explosive activity with occasional lava effusions. The current eruption period began in December 2014 and has recently consisted of nighttime crater incandescence, ash emissions, and seismicity (BGVN 48:04). This report covers activity during April through September 2023 and describes occasional Strombolian activity, gas-and-ash emissions, and nighttime crater incandescence. Information for this report primarily comes from the Southern Andes Volcano Observatory (Observatorio Volcanológico de Los Andes del Sur, OVDAS), part of Chile's National Service of Geology and Mining (Servicio Nacional de Geología y Minería, SERNAGEOMIN) and satellite data.

Seismicity during April consisted of long period (LP) events and tremor (TRE); a total of 9,413 LP-type events and 759 TR-type events were detected throughout the month. Nighttime crater incandescence persisted and was visible in the degassing column. Sulfur dioxide data was obtained using Differential Absorption Optical Spectroscopy Equipment (DOAS) that showed an average value of 1,450 ± 198 tons per day (t/d) during 1-15 April and 1,129 ± 201 t/d during 16-30 April, with a maximum daily value of 2,784 t/d on 9 April. Gas-and-steam emissions of variable intensities rose above the active crater as high as 1.3 km above the crater on 13 April. Strombolian explosions were not observed and there was a slight decrease in the lava lake level.

There were 14,123 LP-type events and 727 TR-type events detected during May. According to sulfur dioxide measurements taken with DOAS equipment, the active crater emitted an average value of 1,826 ± 482 t/d during 1-15 May and 912 ± 41 t/d during 16-30 May, with a daily maximum value of 5,155 t/d on 13 May. Surveillance cameras showed continuous white gas-and-steam emissions that rose as high as 430 m above the crater on 27 May. Nighttime incandescence illuminated the gas column less than 300 m above the crater rim was and no pyroclastic emissions were reported. A landslide was identified on 13 May on the E flank of the volcano 50 m from the crater rim and extending 300 m away; SERNAGEOMIN noted that this event may have occurred on 12 May. During the morning of 27 and 28 May minor Strombolian explosions characterized by incandescent ejecta were recorded at the crater rim; the last reported Strombolian explosions had occurred at the end of March.

Seismic activity during June consisted of five volcano-tectonic (VT)-type events, 21,606 LP-type events, and 2,085 TR-type events. The average value of sulfur dioxide flux obtained by DOAS equipment was 1,420 ± 217 t/d during 1-15 June and 2,562 ± 804 t/d, with a maximum daily value of 4,810 t/d on 17 June. White gas-and-steam emissions rose less than 480 m above the crater; frequent nighttime crater incandescence was reflected in the degassing plume. On 12 June an emission rose 100 m above the crater and drifted NNW. On 15 June one or several emissions resulted in ashfall to the NE as far as 5.5 km from the crater, based on a Skysat satellite image. Several Strombolian explosions occurred within the crater; activity on 15 June was higher energy and ejected blocks 200-300 m on the NE slope. Surveillance cameras showed white gas-and-steam emissions rising 480 m above the crater on 16 June. On 19 and 24 June low-intensity Strombolian activity was observed, ejecting material as far as 200 m from the center of the crater to the E.

During July, seismicity included 29,319 LP-type events, 3,736 TR-type events, and two VT-type events. DOAS equipment recorded two days of sulfur dioxide emissions of 4,220 t/d and 1,009 t/d on 1 and 13 July, respectively. Constant nighttime incandescence was also recorded and was particularly noticeable when accompanied by eruptive columns on 12 and 16 July. Minor explosive events were detected in the crater. According to Skysat satellite images taken on 12, 13, and 16 July, ashfall deposits were identified 155 m S of the crater. According to POVI, incandescence was visible from two vents on the crater floor around 0336 on 12 July. Gas-and-ash emissions rose as high as 1.2 km above the crater on 13 July and drifted E and NW. A series of gas-and-steam pulses containing some ash deposited material on the upper E flank around 1551 on 13 July. During 16-31 July, average sulfur dioxide emissions of 1,679 ± 406 t/d were recorded, with a maximum daily value of 2,343 t/d on 28 July. Fine ash emissions were also reported on 16, 17, and 23 July.

Seismicity persisted during August, characterized by 27,011 LP-type events, 3,323 TR-type events, and three VT-type events. The average value of sulfur dioxide measurements taken during 1-15 August was 1,642 ± 270 t/d and 2,207 ± 4,549 t/d during 16-31 August, with a maximum daily value of 3,294 t/d on 27 August. Nighttime crater incandescence remained visible in degassing columns. White gas-and-steam emissions rose 480 m above the crater on 6 August. According to a Skysat satellite image from 6 August, ash accumulation was observed proximal to the crater and was mainly distributed toward the E slope. White gas-and-steam emissions rose 320 m above the crater on 26 August. Nighttime incandescence and Strombolian activity that generated ash emissions were reported on 27 August.

Seismicity during September was characterized by five VT-type events, 12,057 LP-type events, and 2,058 TR-type events. Nighttime incandescence persisted. On 2 September an ash emission rose 180 m above the crater and drifted SE at 1643 (figure 125) and a white gas-and-steam plume rose 320 m above the crater. According to the Buenos Aires VAAC, periods of continuous gas-and-ash emissions were visible in webcam images from 1830 on 2 September to 0110 on 3 September. Strombolian activity was observed on 2 September and during the early morning of 3 September, the latter event of which generated an ash emission that rose 60 m above the crater and drifted 100 m from the center of the crater to the NE and SW. Ashfall was reported to the SE and S as far as 750 m from the crater. The lava lake was active during 3-4 September and lava fountaining was visible for the first time since 26 March 2023, according to POVI. Fountains captured in webcam images at 2133 on 3 September and at 0054 on 4 September rose as high as 60 m above the crater rim and ejected material onto the upper W flank. Sulfur dioxide flux of 1,730 t/d and 1,281 t/d was measured on 3 and 4 September, respectively, according to data obtained by DOAS equipment.

Figure (see Caption) Figure 125. Webcam image of a gray ash emission rising above Villarrica on 2 September 2023 at 1643 (local time) that rose 180 m above the crater and drifted SE. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 02 de septiembre de 2023, 17:05 Hora local).

Strong Strombolian activity and larger gas-and-ash plumes were reported during 18-20 September. On 18 September activity was also associated with energetic LP-type events and notable sulfur dioxide fluxes (as high as 4,277 t/d). On 19 September Strombolian activity and incandescence were observed. On 20 September at 0914 ash emissions rose 50 m above the crater and drifted SSE, accompanied by Strombolian activity that ejected material less than 100 m SSE, causing fall deposits on that respective flank. SERNAGEOMIN reported that a Planet Scope satellite image taken on 20 September showed the lava lake in the crater, measuring 32 m x 35 m and an area of 0.001 km2. Several ash emissions were recorded at 0841, 0910, 1251, 1306, 1312, 1315, and 1324 on 23 September and rose less than 150 m above the crater. The sulfur dioxide flux value was 698 t/d on 23 September and 1,097 t/d on 24 September. On 24 September the Volcanic Alert Level (VAL) was raised to Orange (the third level on a four-color scale). SENAPRED maintained the Alert Level at Yellow (the middle level on a three-color scale) for the communities of Villarrica, Pucón (16 km N), Curarrehue, and Panguipulli.

During 24-25 September there was an increase in seismic energy (observed at TR-events) and acoustic signals, characterized by 1 VT-type event, 213 LP-type events, and 124 TR-type events. Mainly white gas-and-steam emissions, in addition to occasional fine ash emissions were recorded. During the early morning of 25 September Strombolian explosions were reported and ejected material 250 m in all directions, though dominantly toward the NW. On 25 September the average value of sulfur dioxide flux was 760 t/d. Seismicity during 25-30 September consisted of five VT-type events, 1,937 LP-type events, and 456 TR-type events.

During 25-29 September moderate Strombolian activity was observed and ejected material as far as the crater rim. In addition, ash pulses lasting roughly 50 minutes were observed around 0700 and dispersed ENE. During 26-27 September a TR episode lasted 6.5 hours and was accompanied by discrete acoustic signals. Satellite images from 26 September showed a spatter cone on the crater floor with one vent that measured 10 x 14 m and a smaller vent about 35 m NE of the cone. SERNAGEOMIN reported an abundant number of bomb-sized blocks up to 150 m from the crater, as well as impact marks on the snow, which indicated explosive activity. A low-altitude ash emission was observed drifting NW around 1140 on 28 September, based on webcam images. Between 0620 and 0850 on 29 September an ash emission rose 60 m above the crater and drifted NW. During an overflight taken around 1000 on 29 September scientists observed molten material in the vent, a large accumulation of pyroclasts inside the crater, and energetic degassing, some of which contained a small amount of ash. Block-sized pyroclasts were deposited on the internal walls and near the crater, and a distal ash deposit was also visible. The average sulfur dioxide flux measured on 28 September was 344 t/d. Satellite images taken on 29 September ashfall was deposited roughly 3 km WNW from the crater and nighttime crater incandescence remained visible. The average sulfur dioxide flux value from 29 September was 199 t/d. On 30 September at 0740 a pulsating ash emission rose 1.1 km above the crater and drifted NNW (figure 126). Deposits on the S flank extended as far as 4.5 km from the crater rim, based on satellite images from 30 September.

Figure (see Caption) Figure 126. Webcam image of a gray ash plume rising 1.1 km above the crater of Villarrica at 0740 (local time) on 30 September 2023. Courtesy of SERNAGEOMIN (Reporte Especial de Actividad Volcanica (REAV), Region De La Araucania y Los Rios, Volcan Villarrica, 30 de septiembre de 2023, 09:30 Hora local).

Infrared MODIS satellite data processed by MIROVA (Middle InfraRed Observation of Volcanic Activity) showed intermittent thermal activity during April through September, with slightly stronger activity detected during late September (figure 127). Small clusters of thermal activity were detected during mid-June, early July, early August, and late September. According to the MODVOLC thermal alert system, a total of four thermal hotspots were detected on 7 July and 3 and 23 September. This activity was also intermittently captured in infrared satellite imagery on clear weather days (figure 128).

Figure (see Caption) Figure 127. Low-to-moderate power thermal anomalies were detected at Villarrica during April through September 2023, according to this MIROVA graph (Log Radiative Power). Activity was relatively low during April through mid-June. Small clusters of activity occurred during mid-June, early July, early August, and late September. Courtesy of MIROVA.
Figure (see Caption) Figure 128. Consistent bright thermal anomalies (bright yellow-orange) were visible at the summit crater of Villarrica in infrared (bands B12, B11, B4) satellite images, as shown on 17 June 2023 (top left), 17 July 2023 (top right), 6 August 2023 (bottom left), and 20 September 2023 (bottom right). Courtesy of Copernicus Browser.

Geologic Background. The glacier-covered Villarrica stratovolcano, in the northern Lakes District of central Chile, is ~15 km south of the city of Pucon. A 2-km-wide caldera that formed about 3,500 years ago is located at the base of the presently active, dominantly basaltic to basaltic andesite cone at the NW margin of a 6-km-wide Pleistocene caldera. More than 30 scoria cones and fissure vents are present on the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Eruptions documented since 1558 CE have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Information Contacts: Servicio Nacional de Geología y Minería (SERNAGEOMIN), Observatorio Volcanológico de Los Andes del Sur (OVDAS), Avda Sta María No. 0104, Santiago, Chile (URL: http://www.sernageomin.cl/); Proyecto Observación Villarrica Internet (POVI) (URL: http://www.povi.cl/); Sistema y Servicio Nacional de Prevención y Repuesta Ante Desastres (SENAPRED), Av. Beauchef 1671, Santiago, Chile (URL: https://web.senapred.cl/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Copernicus Browser, Copernicus Data Space Ecosystem, European Space Agency (URL: https://dataspace.copernicus.eu/browser/).


Ebeko (Russia) — December 2023 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Moderate explosive activity with ash plumes continued during June-November 2023

Ebeko, located on the N end of Paramushir Island in Russia’s Kuril Islands just S of the Kamchatka Peninsula, consists of three summit craters along a SSW-NNE line at the northern end of a complex of five volcanic cones. Observed eruptions date back to the late 18th century and have been characterized as small-to-moderate explosions from the summit crater, accompanied by intense fumarolic activity. The current eruptive period began in June 2022, consisting of frequent explosions, ash plumes, and thermal activity (BGVN 47:10, 48:06). This report covers similar activity during June-November 2023, based on information from the Kamchatka Volcanic Eruptions Response Team (KVERT) and satellite data.

Moderate explosive activity continued during June-November 2023 (figures 50 and 51). According to visual data from Severo-Kurilsk, explosions sent ash 2-3.5 km above the summit (3-4.5 km altitude) during most days during June through mid-September. Activity after mid-September was slightly weaker, with ash usually reaching less than 2 km above the summit. According to KVERT the volcano in October and November was, with a few exceptions, either quiet or obscured by clouds that prevented satellite observations. KVERT issued Volcano Observatory Notices for Aviation (VONA) on 8 and 12 June, 13 and 22 July, 3 and 21 August, and 31 October warning of potential aviation hazards from ash plumes drifting 3-15 km from the volcano. Based on satellite data, KVERT reported a persistent thermal anomaly whenever weather clouds permitted viewing.

Figure (see Caption) Figure 50. Ash explosion from the active summit crater of Ebeko on 18 July 2023; view is approximately towards the W. Photo provided by I. Bolshakov and M.V. Lomonosov MGU; courtesy of KVERT.
Figure (see Caption) Figure 51. Ash explosion from the active summit crater of Ebeko on 23 July 2023 with lightning visible in the lower part of the plume. Photo provided by I. Bolshakov and M.V. Lomonosov MGU; courtesy of KVERT.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 31, Number 03 (March 2006)

Managing Editor: Richard Wunderman

Chikurachki (Russia)

Following 2-year repose, several ash plumes in March-April 2005

Colima (Mexico)

Continued ash emission, including some high level ash plumes, since June 2005

Erta Ale (Ethiopia)

Molten lava lake observations as late as 3 January 2006

Galeras (Colombia)

Heightened seismicity through April 2006; increased lava dome volume noted

Lengai, Ol Doinyo (Tanzania)

Unusual activity at summit crater during late March and early April 2006

Lokon-Empung (Indonesia)

Steaming and seismically active during January-October 2005

Mayon (Philippines)

Eruptions resume in February 2006 after a 2-year hiatus

Miyakejima (Japan)

Ash emissions in February 2006; declining SO2 flux

Montagu Island (United Kingdom)

January 2006 visit documenting steam and new lava flows

Poas (Costa Rica)

Small phreatic eruption on 24 March 2006, the first since 1994

Raoul Island (New Zealand)

Eruption on 17 March 2006 preceded by 5 days of earthquakes; 1 fatality

Tinakula (Solomon Islands)

Eruption; increased thermal anomalies during February-April 2006

Ubinas (Peru)

Ash eruption beginning 25 March 2006; heightened seismicity since November 2004

Veniaminof (United States)

Modest ash emissions during September 2005-22 April 2006



Chikurachki (Russia) — March 2006 Citation iconCite this Report

Chikurachki

Russia

50.324°N, 155.461°E; summit elev. 1781 m

All times are local (unless otherwise noted)


Following 2-year repose, several ash plumes in March-April 2005

Chikurachki last erupted during April to June 2003 (BGVN 28:07) and subsequently was apparently dormant for nearly two years. On 1 March 2005, observers in Severo-Kurilsk (~ 70 km NE of Chikurachki) saw a gas-and-steam plume rise ~ 400 m above the volcano. On 12 March 2005, MODIS satellite imagery showed an ash plume extending NNW from the volcano and led KVERT to raise the concern color code from Green to Yellow. On 23 March, satellite imagery showed a weak ash plume extending ~ 70 km E. The height of the plume was unknown, and on 25 March the hazard status was raised again from Yellow to Orange. Chikurachki is not monitored with seismic instruments but KVERT has access to satellite data and occasional visual observations of the volcano. Ash from Chikurachki fell on the southern part of Paramushir Island on 29 March. Ash deposits were visible on satellite imagery on 25 and 29 March; on the 29th they extended 19 km SE. Chikurachki remained at concern color code Orange.

During April 2005, weak fumarolic activity occurred at Chikurachki. Ash deposits covered the WNW slope of the volcano. On 7 April, an ash-and-gas plume rose to ~ 500 m above Chikurachki's crater and extended ~ 10 km S. The concern color code remained Orange through 15 April 2005 and was reduced to Yellow when satellite imagery during the week of 20-26 April did not show any thermal anomalies or ash plumes. Since that time there has been no further indication of activity.

In 2005 Gurenkoa and others published a study of glass inclusions and groundmass glasses from Chikurachki explosions in an effort to better understand the relatively rare, highly explosive eruptions of basaltic composition. Such eruptions may be important in terms of atmospheric impact because of the generally much higher solubilities of S in basaltic melts compared with silicic melts. Concentrations of H2O, major, trace and volatile (S, Cl) elements by EPMA and SIMS from glass inclusions and groundmass glasses of the 1986, 1853, and prehistoric explosive eruptions of basaltic magmas were studied.

Reference. Gurenko, A.A., Belousov, A.B., Trumbull, R.B., and Sobolev, A.V., 2005, Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): Insights on pre-eruptive magmatic conditions and volatile budget revealed from phenocryst-hosted melt inclusions and groundmass glasses: Journal of Volcanology and Geothermal Research, v. 147, p. 203-232. (URL: http://www.sciencedirect.com/)

Geologic Background. Chikurachki, the highest volcano on Paramushir Island in the northern Kuriles, is a relatively small cone constructed on a high Pleistocene edifice. Oxidized basaltic-to-andesitic scoria deposits covering the upper part of the young cone give it a distinctive red color. Frequent basaltic Plinian eruptions have occurred during the Holocene. Lava flows have reached the sea and formed capes on the NW coast; several young lava flows are also present on the E flank beneath a scoria deposit. The Tatarinov group of six volcanic centers is located immediately to the south, and the Lomonosov cinder cone group, the source of an early Holocene lava flow that reached the saddle between it and Fuss Peak to the west, lies at the southern end of the N-S-trending Chikurachki-Tatarinov complex. In contrast to the frequently active Chikurachki, the Tatarinov centers are extensively modified by erosion and have a more complex structure. Tephrochronology gives evidence of an eruption around 1690 CE from Tatarinov, although its southern cone contains a sulfur-encrusted crater with fumaroles that were active along the margin of a crater lake until 1959.

Information Contacts: Olga Girina, Kamchatka Volcanic Eruptions Response Team (KVERT), a cooperative program of the Institute of Volcanic Geology and Geochemistry, Far East Division, Russian Academy of Sciences, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia, the Kamchatka Experimental and Methodical Seismological Department (KEMSD), GS RAS (Russia), and the Alaska Volcano Observatory (USA); Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), the Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and the Alaska Division of Geological and Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA.


Colima (Mexico) — March 2006 Citation iconCite this Report

Colima

Mexico

19.514°N, 103.62°W; summit elev. 3850 m

All times are local (unless otherwise noted)


Continued ash emission, including some high level ash plumes, since June 2005

Eruptive activity has continued at Colima from July 2005 through February 2006. Explosions that generated ash plumes were common during this period.

The Colima Volcano Observatory reported that ash emission continued at Colima during 29 June 2005 to 5 July 2005 and several plumes rose to 9-10 km altitude. On 30 June, lahars traveled SW down La Lumbre Ravine and SSE down Montegrande Ravine to a maximum length of ~ 10 km. The lahars did not reach populated areas. Due to the presence of new ash on the flanks of the volcano, seasonal heavy rains, and the subsequent threat of lahars forming, Universidad de Colima advised avoiding the ravines of La Lumbre, San Antonio, Monte Grande (in Colima state), and La Arena (in Jalisco state) throughout this interval.

The Washington VAAC reported that the Colima video camera and satellite imagery confirmed an explosive eruption on 5 July at 1821 (figure 80). The Mexico City Meteorological Watch Office (MWO) reported that the resultant ash plume reached an altitude of ~ 9.1 km and drifted NW. Pyroclastic flows accompanying the eruption traveled down the E flank.

Figure (see Caption) Figure 80. A photo of the explosive eruption on Colima on 5 July 2005 taken from the E. Courtesy of CVO.

Several explosions continued during 6-19 July, and small landslides traveled down the volcano's flanks during 8-9 July and 15-18 July. On 21 and 23 July, small ash emissions and lahars occurred. On the 21st during 1750-1830 a lahar traveled SSE down the Monte Grande ravine. Emissions rose to a maximum altitude of 9.1 km on 27 July. During 29 July to 1 August, steam-and-ash emissions occurred at Colima. According to the Washington VAAC, the highest-rising emission reached 6.1 km altitude on 30 July.

On 4 August the Washington VAAC reported that the Mexico City MWO observed a steam plume rising to 7.2 km altitude in imagery seen on the Colima video camera. During15-31 August, small explosions produced low-level ash plumes. The largest events, on 21 and 22 August, produced plumes that drifted W. On 31 August a 45-minute seismic signal associated with a lahar was recorded at the Monte Grande station. The lahar caused no damage.

Throughout the month of September, several small explosions occurred at Colima. On 16 September at 1045 an explosion sent an ash plume to ~ 9.8 km altitude. The local civil defense agency stated in a news report that ash fell on towns NW of the volcano. Prior to the explosion, microseismicity was recorded for several days. Universidad de Colima reported that microseismicity often precedes significant explosions. On 27 September at 0507 an explosion produced a plume to a altitude of ~ 7.6 km altitude. The plume drifted WSW, depositing small amounts of ash in the cities of Colima, Villa de álvarez, and Comala. On 28 September another explosion sent an ash plume to an altitude of ~ 6.1 km altitude and drifted NNW.

Small explosions continued to occur from October through the end of February 2006 (the end of this report), and produced visible ash plumes. Several small explosions during 16-21 November 2005 produced steam-and-ash clouds to low levels above the volcano. Explosions on 12 December 2005 resulted in small amounts of ash deposited in areas SW of the volcano.

Geologic Background. The Colima complex is the most prominent volcanic center of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the high point of the complex) on the north and the historically active Volcán de Colima at the south. A group of late-Pleistocene cinder cones is located on the floor of the Colima graben west and east of the complex. Volcán de Colima (also known as Volcán Fuego) is a youthful stratovolcano constructed within a 5-km-wide scarp, breached to the south, that has been the source of large debris avalanches. Major slope failures have occurred repeatedly from both the Nevado and Colima cones, producing thick debris-avalanche deposits on three sides of the complex. Frequent recorded eruptions date back to the 16th century. Occasional major explosive eruptions have destroyed the summit (most recently in 1913) and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth.

Information Contacts: Observatorio Vulcanológico de la Universidad de Colima, Colima, Col., 28045, México (URL: https://portal.ucol.mx/cueiv/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/).


Erta Ale (Ethiopia) — March 2006 Citation iconCite this Report

Erta Ale

Ethiopia

13.601°N, 40.666°E; summit elev. 585 m

All times are local (unless otherwise noted)


Molten lava lake observations as late as 3 January 2006

Viviane Grandjean wrote of her observations at Erta Ale during 24 December 2005-3 January 2006 in Bulletin No. 57 of the Société de Volcanologie Genève. On 26 December she saw the lava lake through clouds of gas; its surface was calm, with incandescent lava visible through the broken chilled surface. The S pit crater had an estimated diameter of 170 m and vertical walls, and the lava lake was about 80 m in diameter. It seemed to shrink during the next days, one part appearing hardened and forming almost a second terrace. The plates of cooled surface lava were seen moving and converging amidst degassing lava. Lava fountains were periodically visible and generally outlined the borders of the lava lake under the rim.

On 27 December, the walls of the crater were estimated at about 50 m high, with a crater diameter of about 300 m. Members of the group descended into the crater to inspect a series of active hornitos near the N vents. At one end of the line a vent lined with sulfur opened. In the interior cavity of a smaller vent temperatures of about 800°C were measured. Degassing occurred generally in the area. Lava fountaining continued.

The lava lake appeared lower and calmer to observers on 28 December, with a potential second terrace still forming. Some group members descended into the crater again and observed rockfall and continued lava fountaining.

Geologic Background. The Erta Ale basaltic shield volcano in Ethiopia has a 50-km-wide edifice that rises more than 600 m from below sea level in the Danakil depression. The volcano includes a 0.7 x 1.6 km summit crater hosting steep-sided pit craters. Another larger 1.8 x 3.1 km wide depression elongated parallel to the trend of the Erta Ale range is located SE of the summit and is bounded by curvilinear fault scarps on the SE side. Basaltic lava flows from these fissures have poured into the caldera and locally overflowed its rim. The summit caldera usually also holds at least one long-term lava lake that has been active since at least 1967, and possibly since 1906. Recent fissure eruptions have occurred on the N flank.

Information Contacts: Viviane Grandjean, c/o Société Volcanologique Européenne (SVE)-Société Volcanologique de Genève (SVG), Geneva, C.P.1, 1211 Geneva 17, Switzerland (URL: http://www.sveurop.org/).


Galeras (Colombia) — March 2006 Citation iconCite this Report

Galeras

Colombia

1.22°N, 77.37°W; summit elev. 4276 m

All times are local (unless otherwise noted)


Heightened seismicity through April 2006; increased lava dome volume noted

Galeras was last reported on in BGVN 31:01. During the first weeks of November 2005 seismometers recorded tornillo earthquakes (long-period events with seismic traces that look like screws in profile and are currently thought to be related to pressurized fluid flow at shallow depth). Minor deformation was also recorded at Galeras. The earthquakes were similar to those that occurred before eruptions in 1992-93. On 24 November at 0246 seismic signals indicated the beginning of an eruption. Ash fell in the towns of Fontibon, San Cayetano, Postobon, and in north Pasto. Activity decreased by the next day, so the Alert Level was reduced. Thousands of people were evacuated during the week prior to the eruption. Gas emissions continued through December 2005 and January and February 2006. During 23 January to 6 February, the lava dome in the main crater continued to grow; strong degassing occurred in several sectors of the active cone and around the lava dome. Galeras remained at Alert Level 3 ("changes in the behavior of volcanic activity have been noted") through February 2006.

During the last week of February, seismic stations detected an average of 280 small earthquakes per day. On 26 February a shallow M 4.8 volcano-tectonic earthquake below the volcano was recorded at 1009, followed by 35 smaller earthquakes. SO2 flux of about 600 metric tons per day was measured during February. Steam and gas rose to ~ 700 m above the volcano.

During 27 February to 6 March an increase in the volume of the lava dome located in the main crater was observed. During March, seismicity at Galeras decreased in comparison to the previous several weeks and deformation was measured at the volcano. Plumes of mainly steam, gas, and small amounts of ash were emitted from the volcano and rose to a maximum height of 1.2 km above the volcano.

Due to an increase in tremor at Galeras beginning on the morning of 28 March 2006, INGEOMINAS raised the Alert Level from 3 to 2 (likely eruption in days or weeks). On 28 March, energetic signals and tremor began and seismic instruments detected very shallow low-energy hybrid signals, similar to ones recorded during 1991-1993 when dome emplacement occurred on the main crater's floor.

The increase in seismic energy ended on 29 March. The number of earthquakes beneath the volcano decreased during 28 March to 3 April (an average of 66 earthquakes was recorded daily), in comparison to the previous week (an average of 89 earthquakes was recorded daily). Steam columns rose up to ~ 500 m above the volcano and the outer layer of the lava dome at the volcano's summit cooled in comparison to previous weeks.

During 5-24 April, decreases were observed in seismicity, deformation, gas emissions, and temperatures. According to INGEOMINAS, most of the explosive eruptions at Galeras in the past 17 years occurred when parameters were at similarly low levels. In addition, the current lava dome has a significantly greater volume than the dome that was destroyed during an eruption in 1992. The volume of magma in the interior of the volcanic system is greater than during 1989-1993. Galeras remained at Alert Level 2.

Geologic Background. Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. The dominantly andesitic complex has been active for more than 1 million years, and two major caldera collapse eruptions took place during the late Pleistocene. Long-term extensive hydrothermal alteration has contributed to large-scale edifice collapse on at least three occasions, producing debris avalanches that swept to the west and left a large open caldera inside which the modern cone has been constructed. Major explosive eruptions since the mid-Holocene have produced widespread tephra deposits and pyroclastic flows that swept all but the southern flanks. A central cone slightly lower than the caldera rim has been the site of numerous small-to-moderate eruptions since the time of the Spanish conquistadors.

Information Contacts: Diego Gomez Martinez, Observatorio Vulcanológico y Sismológico de Pasto (OVSP), INGEOMINAS, Carrera 31, 1807 Parque Infantil, PO Box 1795, Pasto, Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html; Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Road, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); El Pais (URL: http://elpais-cali.terra.com.co/paisonline/).


Ol Doinyo Lengai (Tanzania) — March 2006 Citation iconCite this Report

Ol Doinyo Lengai

Tanzania

2.764°S, 35.914°E; summit elev. 2962 m

All times are local (unless otherwise noted)


Unusual activity at summit crater during late March and early April 2006

Typical activity continued at Ol Doinyo Lengai from December 2005 through mid-March 2006. Unusual activity, including a large plume and significant lava overflows from the summit crater, occurred during late March and early April. Much of the following information was posted on websites maintained by Fred Belton or Chris Weber, or was contained in email from local sources or visitors relayed by Belton or Celia Nyamweru. None of the reports regarding the unusual March-April activity originated from sources close enough to describe the exact nature of the eruption.

Activity during 20 December 2005-13 March 2006. The local Masai guide William reported an eruption from hornito T49B during a visit on 20 December 2005. When David Bygott climbed the volcano on 22 December the crater was inactive. A recent narrow flow of pahoehoe lava from the NW flank of T49B had flowed across the NW crater rim overflow, and was still warm and making cracking noises. A wide pahoehoe-textured lava flow from T56B had mostly turned white and appeared to be several days to a week old.

On 4 January 2006 Bernhard Donth observed lava escaping from T49B; spatter and little flows went in all directions. One bigger lava flow had reached as far as the NW overflow. A report from Christian Mann of a climb on 10 January only noted degassing from T47. A photo taken that day from the summit showed a white and brown crater with no indication of recent activity. However, Belton noted that during the previous weeks lava had apparently filled up the large open vent of T56B and had flowed from there and possibly other locations onto the NE part of the crater floor.

Chris DeVries and a group of other students from McGill University visited during 25-26 February. Many hornitos were intermittently degassing. T58B was spattering a bit, and magma was heard sloshing around. A small ~ 10-m-long flow had erupted from this vent earlier in the day; it was still very black and hot. T57B had a large opening to its NW, but it did not appear that any recent flows had come from this opening. The base of this cone later ruptured, and the lava inside drained out quickly and violently; the flow proceeded to the E overflow.

Christoph Weber arrived with a film team at the crater on 2 February 2006. The tallest hornito (T49B) reached approximately 2,890 m elevation (measured with GPS), ~ 60 m above the crater floor at the NW overflow (figure 87). No recent eruption had occurred at T49B, but strong noisy degassing took place sometimes. Just E of T49B the hornito T56B had convecting lava deep inside and some days-old lava flows stretched from three different vents at T56B to the E overflow. After the major collapse of T56B in 2004, this hornito (at approximately 2,875 m elevation on 2 February) has nearly grown up again to its former shape and height. Also from T58C and the collapsed T58B hornito some days-old lava flows were found on the eastern slopes passing the old and weathered T37, T37B, and T45 cones.

Figure (see Caption) Figure 87. View of Ol Doinyo Lengai on 6 February 2006, looking NW at the central hornito cluster. Fresh lava flows are black. A person can be seen near the recent lava flow in front of T57B. Courtesy of C. Weber.

The caldera-shaped collapsed T58B had its flat floor at ~ 2,865 m elevation with four active vents inside. Lava convection was close to the surface of T58B and inside the tall T58C. At 1300 on 2 February a sudden increase of activity took place with two lava fountains at T58B lasting only some seconds. At the same time lava spilled from all T58B vents, a T58C flank vent, and a T56B vent. Lava spatter with lava flows inside T58B and up to ~ 150 m towards the E occurred over the following 3 days. On 6 and 7 February, higher activity occurred with lava outflow at T58C. During an observation flight on 13 February, Weber noticed new lava flows from T58B and T56B. Crater rim overflow measurements on 2 February 2006 were unchanged since August 2005 (BGVN 30:10).

Photographs taken by Michael Dalton-Smith from a plane on 13 March 2006 showed many small flows extending in all directions from the central cluster. The flow over the NW rim seemed to be confined to a channel and did not spread out until it was further down the mountain.

Unusual activity starting in late March. David Peterson saw a fairly obvious plume at the top of the mountain (figure 88) on 28 March. A day or two after that he heard reports of lava pouring down the volcano's sides with some residents moving out of Engare Sero as a result. Unconfirmed news reports in The Guardian on 1 April described a scene of "rumbling" noises with lava and ash discharges on 30 March that prompted hundreds to as many as 3,000 local residents to flee the area. Peterson also relayed that his colleague Habibu reported on 1 April that the lava flows had abated. Another friend, Achmed, noted that a river of lava extending from the crater to the base of the volcano was about the "width of a four lane highway" (12 m). An Agence France Presse news report, with quotes from Emmanuel Chausi, a conservation officer with the nearby Ngorongoro Conservation Area Authority (NCAA), claimed that "huge plumes of detritus" were ejected during the nights of both 2 and 3 April, but no lava was reported.

Figure (see Caption) Figure 88. A photograph, undated, but from the time period of the eruption, shows a white plume from Ol Doinyo Lengai. This is probably what started the rumor of a major eruption. Fred Belton saw a similar cloud on 15 July 2004 when lava vaporized a big area of plants on the E rim. Fred Belton received this photograph, taken from Basecamp Tanzania, on 9 April 2006.

Photos received from Dean Polley, taken 1 April, provide additional information about the eruption (figure 89). Based on these aerial photos, Belton's interpretation is that lava on 30 March must have erupted strongly from at or near the central cluster. A deep channel visible down the flank indicates a flow lasting some hours through a channel deepened by thermal erosion. A crater photo from Matt Jones also taken on 1 April (figure 90) confirmed that there had been recent strong activity from the T56B and T58C hornitos. C. Weber relayed that visitors who climbed the volcano later on (with guide Othman Swalehe ) reported a lava channel 5 m wide and 2.5 m deep, starting from the T58C hornito, following the flow field to the SW and then continuing outside the crater at the W overflow where there was a channel 8 m wide and 3 m deep. The collapsed hornito area at T56B and T58B measured about 30 m N-S and 15 m E-W with an active lava lake inside. The tall hornitos T58C (partly collapsed to the SE), T49B, and T57B were mostly not affected by the collapse, and the W part of T56B remained standing.

Figure (see Caption) Figure 89. Aerial photograph of Ol Doinyo Lengai looking approximately ESE showing the summit crater and lava overflows, 1 April 2006. Courtesy of Dean Polley.
Figure (see Caption) Figure 90. Photograph of the Ol Doinyo Lengai crater on 1 April 2006, looking NW at the central hornito cluster. The T58C hornito is completely split, with the south half removed. A significant portion of T56B is also missing. See figure 87 for a comparison with crater morphology on 6 February 2006 and identification of hornitos. Photo by Matt Jones, provided courtesy of F. Belton.

Michael Dalton-Smith flew over on 4 April and saw more recent black flows partially covering the gray flows from 30 March. When Dalton-Smith drove from Seronera to the crater on 4 April, he had a great cloud-free view. Using binoculars it appeared that there was a huge fountain out of one of the hornitos, and all hornitos had black plumes rising from them.

Geologic Background. The symmetrical Ol Doinyo Lengai is the only volcano known to have erupted carbonatite tephras and lavas in historical time. The prominent stratovolcano, known to the Maasai as "The Mountain of God," rises abruptly above the broad plain south of Lake Natron in the Gregory Rift Valley. The cone-building stage ended about 15,000 years ago and was followed by periodic ejection of natrocarbonatitic and nephelinite tephra during the Holocene. Historical eruptions have consisted of smaller tephra ejections and emission of numerous natrocarbonatitic lava flows on the floor of the summit crater and occasionally down the upper flanks. The depth and morphology of the northern crater have changed dramatically during the course of historical eruptions, ranging from steep crater walls about 200 m deep in the mid-20th century to shallow platforms mostly filling the crater. Long-term lava effusion in the summit crater beginning in 1983 had by the turn of the century mostly filled the northern crater; by late 1998 lava had begun overflowing the crater rim.

Information Contacts: Frederick Belton, Developmental Studies Department, PO Box 16, Middle Tennessee State University, Murfreesboro, TN 37132, USA (URL: http://oldoinyolengai.pbworks.com/); Christoph Weber, Volcano Expeditions International, Muehlweg 11, 74199 Untergruppenbach, Germany (URL: http://www.v-e-i.de/); Bernhard Donth, Waldwiese 5, 66123 Saarbruecken, Germany; Celia Nyamweru, Department of Anthropology, St. Lawrence University, Canton, NY 13617, USA; Guardian News, Arusha, Tanzania (URL: http://www.ippmedia.com/); Agence France Presse (URL: http://www.afp.com/).


Lokon-Empung (Indonesia) — March 2006 Citation iconCite this Report

Lokon-Empung

Indonesia

1.3644°N, 124.7992°E; summit elev. 1580 m

All times are local (unless otherwise noted)


Steaming and seismically active during January-October 2005

The twin volcanoes of Lokon and Empung exhibited low levels of activity during 2005. Table 9 is a summary of reported gas emissions and number of volcanic earthquakes during 2005.

Table 9. Summary of activity at Lokon-Empung during 2005, indicating the height and composition of plumes observed and the numbers of earthquakes recorded. Data courtesy of CVGHM.

Date Deep volcanic (A-type) Shallow volcanic (B-type) Plume height Plume color and composition
18 Jan-24 Jan 2005 9 75 -- --
24 Jan-30 Jan 2005 3 88 35 m white gas
02 May 2005 3 44 -- --
09 May 2005 3 139 50 m white gas
26 Sep-02 Oct 2005 6 117 15 m white gas
03 Oct-09 Oct 2005 5 126 25 m white gas

Geologic Background. The Lokong-Empung volcanic complex, rising above the plain of Tondano in North Sulawesi, includes four peaks and an active crater. Lokon, the highest peak, has a flat craterless top. The morphologically younger Empung cone 2 km NE has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century. A ridge extending 3 km WNW from Lokon includes the Tatawiran and Tetempangan peaks. All eruptions since 1829 have originated from Tompaluan, a 150 x 250 m crater in the saddle between Lokon and Empung. These eruptions have primarily produced small-to-moderate ash plumes that sometimes damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred.

Information Contacts: Dali Ahmad, Hetty Triastuty, Nia Haerani and Suswati, Center of Volcanology and Geological Hazard Mitigation (CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/).


Mayon (Philippines) — March 2006 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Eruptions resume in February 2006 after a 2-year hiatus

Since the previous report in December 2004 (BGVN 29:12) Mayon had remained quiet until 21 February 2006. On that day the Philippine Institute of Volcanology and Seismology (PHIVOLCS) reported that a minor explosion at 0941 produced an ash plume that rose ~ 500 m above the volcano's crater and drifted SW. Ash was deposited on the upper slopes of the volcano. The ash emission was accompanied by a small explosion-type earthquake, recorded only by seismographs around the volcano.

Prior to the explosion PHIVOLCS had seen an increase in seismicity at the volcano. Between 1545 on 20 February and 0520 on 21 February, there were 147 low-frequency earthquakes recorded, a number considerably above the five or fewer events per day normally detected. Seismicity also indicated some minor rockfalls, which probably resulted from lava blocks detaching from the summit. Steaming was observed. No incandescence was visible at the crater due to clouds obscuring the volcano.

PHIVOLCS reported that about nine earthquakes related to explosive activity took place at Mayon around 23 February. Cloudy conditions prevented visual observations, but the seismic events detected probably signified minor ash explosions. This was supported by reports from local residents who heard rumbling. The seismic network also recorded two low-frequency earthquakes associated with shallow magma movement. The SO2 flux averaged 1,740 metric tons per day (t/d), similar to values obtained during the last measurements on 28 November 2005. The flux was well above the usual 500 t/d measured at the volcano. Mayon remained at Alert Level 2, with a 6-km-radius Permanent Danger Zone in effect. At this point the possibility of more violent eruptions triggered warnings to tourists and the public in general to remain outside of the danger zone.

Geologic Background. Symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the most active volcano of the Philippines. The steep upper slopes are capped by a small summit crater. Recorded eruptions since 1616 CE range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer periods of andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic density currents and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often damaged populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, PHIVOLCS Building, C.P. Garcia Avenue, Univ. of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/).


Miyakejima (Japan) — March 2006 Citation iconCite this Report

Miyakejima

Japan

34.094°N, 139.526°E; summit elev. 775 m

All times are local (unless otherwise noted)


Ash emissions in February 2006; declining SO2 flux

According to a news report, there was a minor eruption at Miyake-jima on 17 February 2006 that consisted of small ash emissions. Residents of the island were warned that there could be gas emissions and mudslides. The Geological Survey of Japan (AIST) website reported that the SO2 flux at Miyake-jima averaged about 2,000-5,000 tons per day in January 2006 (figure 22). The previous activity took place in November-December 2004, ending on 9 December 2004 when minor eruptions were reported after a two-year lull. As of mid-April 2006 no further activity had been reported.

Figure (see Caption) Figure 22. Sulfur dioxide (SO2) flux monitoring of Miyake-jima by COSPEC V was conducted from 26 August 2000, peaking in early 2000 at values well over 100,000 metric tons per day and dropping off slowly after that. Daily monitoring was performed by the Japanese Meteorological Agency and Geological Survey of Japan.

Geologic Background. The circular, 8-km-wide island of Miyakejima forms a low-angle stratovolcano that rises about 1,100 m from the sea floor in the northern Izu Islands about 200 km SSW of Tokyo. The basaltic volcano is truncated by small summit calderas, one of which, 3.5 km wide, was formed during a major eruption about 2,500 years ago. Numerous craters and vents, including maars near the coast and radially oriented fissure vents, are present on the flanks. Frequent eruptions have been recorded since 1085 CE at vents ranging from the summit to below sea level, causing much damage on this small populated island. After a three-century-long hiatus ending in 1469 CE, activity has been dominated by flank fissure eruptions sometimes accompanied by minor summit eruptions. A 1.6-km-wide summit crater was slowly formed by subsidence during an eruption in 2000.

Information Contacts: Japan Meteorological Agency (JMA), Volcanological Division, 1-3-4 Ote-machi, Chiyoda-ku, Tokyo 100, Japan (URL: http://www.jma.go.jp/); A. Tomiya, Geological Survey of Japan (AIST), 1-1 Higashi, 1-Chome Tsukuba, Ibaraki 305-856, Japan (URL: https://staff.aist.go.jp/a.tomiya/miyakeE.html); Kazahaya Kohei, Geological Survey of Japan (URL: https://staff.aist.go.jp/kazahaya-k/miyakegas/COSPEC.html); Earthquake Research Institute (ERI), University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-0032, Japan.


Montagu Island (United Kingdom) — March 2006 Citation iconCite this Report

Montagu Island

United Kingdom

58.445°S, 26.374°W; summit elev. 1370 m

All times are local (unless otherwise noted)


January 2006 visit documenting steam and new lava flows

Recent volcanism on Montagu Island was discovered based on satellite information (BGVN 30:11). Thanks to a visit from the South African icebreaker MV SA Agulhas, the first photographs of the island are now available, taken from just offshore. The Agulhas is an Antarctic supply and oceanographic research vessel built in the late 1970s; it is affiliated with the South African Department of Environmental Affairs and Tourism, Antarctica and Islands Division. She left Cape Town on 1 December 2005, and her journey was the focus of several reports (e.g., Hunter, 2005). The westerly position of pack ice during the course of this voyage enabled the Agulhas to visit Penguin Bukta, an indentation (bay) in the coastal ice shelf (figure 13).

Figure (see Caption) Figure 13. A map indicating the location of Montagu island with respect to features in the region. The pack ice is mobile and the position shown refers to conditions on 10 January 2006 as mapped by satellite radar (NASA/JAXA). Courtesy of Ian Hunter, South African Weather Service.

The Agulhas departed Penguin Bukta on 8 January to deploy drifting weather buoys and to install an automatic weather station on South Thule island at the extreme S end of the South Sandwich Islands. Besides the usual hazards of Antarctic travel and navigation, the South Sandwich Islands were the scene of some severe undersea earthquakes as the Agulhas entered those waters. This was of concern because such earthquakes can cause significant bathymetric change. The US Geological Survey posted detailed information on two large 2006 earthquakes to the E of the islands. The first, on 2 January, had M 7.3 and, fortunately, a moderately deep focal depth of 46 km.

The ship reached offshore of the remote, uninhabited Montagu island in mid-January 2006 (figures 14 and 15). These pictures were forwarded to the Smithsonian by Ian Hunter who received them from Frikkie Viljoen (the ice navigator), and Dave Hall (the ship's Master) after the Agulhas returned from Antarctica on 19 February 2006.

Figure (see Caption) Figure 14. Lava from Montagu Island eruption entering the sea. The photo was taken on 13 January 2006 from the SA Agulhas while lying to the N of the Island. The geometry of the setting given here is based on the MODIS photo taken on 9 September 2005 (BGVN 30:11) that clearly indicates the lava flow streaming N into the sea. Courtesy of Dave Hall and Frikkie Viljoen, SA Agulhas, and Ian Hunter, South African Weather Service.
Figure (see Caption) Figure 15. Photo taken on 13 January 2006 from the SA Agulhas from N of Montagu Island showing the lava field formed by the recent eruption. Courtesy of Dave Hall and Frikkie Viljoen, SA Agulhas, and Ian Hunter, South African Weather Service.

In an e-mail message to Hunter on the return leg of the voyage (on 16 January), Hall noted the following. "By now you will have heard that we successfully deployed the new weather station at Thule Island and had a good look at the eruption on Montagu. We got to within 1.5 miles [2.4 km] of the lava flow, but it was strangely disappointing. Although it was during the evening it was still full daylight so the lava flow was just the same colour as the surrounding rock, not dramatic at all! The most visible feature was the steam plume as the hot lava entered the sea. The top of the island was covered in cloud but that did part long enough to get a quick sighting of the summit, emitting the smoke and ash cloud."

John Smellie of the British Antarctic Survey reported hearing from a Falklands contact that an RAF flight sent at Christmas 2005 had taken photos and reported the eruption was "over." In addition, there could also be first-hand news from a yacht that was to be in the area during January 2006.

Reference. Hunter, Ian, (12 January) 2006, International Support for the SA Agulhas's mission in Antarctica, in Ports & Ships, Shipping News?reporting from the harbours of South Africa & Southern Africa (URL: http://www.ports.co.za/didyouknow/)

Geologic Background. The largest of the South Sandwich Islands, Montagu consists of a massive shield volcano cut by a 6-km-wide ice-filled summit caldera. The summit of the 11 x 15 km island rises about 3,000 m from the sea floor between Bristol and Saunders Islands. Around 90% of the island is ice-covered; glaciers extending to the sea typically form vertical ice cliffs. The name Mount Belinda has been applied both to the high point at the southern end of the summit caldera and to the young central cone. Mount Oceanite, an isolated peak at the SE tip of the island, was the source of lava flows exposed at Mathias Point and Allen Point. There was no record of Holocene activity until MODIS satellite data, beginning in late 2001, revealed thermal anomalies consistent with lava lake activity. Apparent plumes and single anomalous pixels were observed intermittently on AVHRR images from March 1995 to February 1998, possibly indicating earlier volcanic activity.

Information Contacts: Ian T. Hunter, South African Weather Service, Private Bag X097, Pretoria 0001, South Africa (URL: http://www.weathersa.co.za/); Department of Environmental Affairs and Tourism, Antarctica and Islands Division, Private Bag X447, Pretoria 0001, South Africa; John Smellie, British Antarctic Survey, Natural Environment Research Council, High Cross, Madingly Road, Cambridge CB3 0ET, United Kingdom (URL: https://www.bas.ac.uk/).


Poas (Costa Rica) — March 2006 Citation iconCite this Report

Poas

Costa Rica

10.2°N, 84.233°W; summit elev. 2697 m

All times are local (unless otherwise noted)


Small phreatic eruption on 24 March 2006, the first since 1994

Poás was last reported on in BGVN 28:09, covering the period from September 2001 to December 2002. The focus of activity at Poás during that time was the main crater and its fumaroles, and its low-pH, variably colored lake.

A field team from Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA) visited Poás on 25 January 2006 and found that the level of the volcano's hot acidic crater lake had risen in comparison to the previous month. Sustained rainfall during the previous months caused the water level to rise by ~ 4 m. The area of the lake increased by ~ 20%. Flooding occurred in relatively flat areas to the N, E, and SE. The shoreline extended about 150 m toward the SE. Scattered fumaroles and hot spots at the N base of the lava dome were flooded. Increased steaming was visible from the National Park. The average lake temperature remained at 22°C, with hot spots near the rim reaching up to 80°C. OVSICORI-UNA staff noted that in the past an increase in lake level during a rainy period has been followed by a decrease during the drier months of February to April.

On 24 March 2006 around noon, the first eruptions since 1994 began at Poás. The small, phreatic eruptions originated from the bottom of the volcano's Caliente Lake and dispersed mud, gas, and acid rain toward the S and SW parts of the crater. Witnesses described a sudden emission of water and sediments S of the lake. Roaring was heard in a nearby tourist area and weak earthquakes were felt. The strongest eruption occurred on the night of 24 March, when ejected volcanic material reached 200 m high and acid rain showered park headquarters, located 800 m S of the crater. During 25 March at least 8 eruptions took place. Due to the likelihood of more explosions the local National Emergencies Agency temporarily closed the park.

OVSICORI-UNA staff visited the E side of the volcano on 25 March and confirmed that water, blocks, and sediments from the bottom of the lake had been ejected. Several dozens of impact craters were seen with diameters between 15 and 60 cm, extending E as far as 700 m (figure 80). During 22-27 March, harmonic tremor was recorded. On the 27th, there was a reduction in seismicity and it returned to normal levels. No deformation was measured at the volcano. A news article reported that the area around the volcano was closed to visitors.

Figure (see Caption) Figure 80. Photo of the E side of Poás, annotated with observations made by OVSICORI-UNA staff. Impact craters ranged in size from a few cm to 70 cm; blocks ranged from a few cm to 50 cm and were scattered randomly over the area investigated. Blocks of fine-grained lake sediments were also observed and collected. The material collected was interpreted as pre-existent solid material from the bottom of the lake that has been heavily altered by the action of hot acidic fluids during the last 12 years. Photo courtesy of Eliecer Duarte Gonzalez, OVSICORI-UNA.

Following the eruptions that began on 24 March, seismicity at Poás decreased by 27 March and harmonic tremor that was recorded during the heightened activity ceased.

On 1 April 2006, OVSICORI-UNA staff visited Caliente Lake and its surroundings. During this visit the widening of the lake perimeter was confirmed as well as the emplacement of lake sediments and pre-existent blocks from both the bottom of the lake and its walls. Fracturing of the dome's N wall was also confirmed. The lake temperature was 54°C, with a pH of 0.63. The water was light gray due to the great quantity of suspended sediments. The park surrounding the volcano was reopened on 1 April.

Geologic Background. The broad vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the complex stratovolcano extends to the lower N flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since an eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Information Contacts: Eliecer Duarte Gonzalez, Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Apartado 86-3000, Heredia, Costa Rica. (URL: http://www.ovsicori.una.ac.cr/); Rafael Barquero, Red Sismiológica Nacional, Sección de Sismología, Vulcanología y Exploración Geofisica, Escuela Centroamericana de Geología, Universidad de Costa Rica, Aptdo. 560-2300, Curridabat, San José, Costa Rica.


Raoul Island (New Zealand) — March 2006 Citation iconCite this Report

Raoul Island

New Zealand

29.27°S, 177.92°W; summit elev. 516 m

All times are local (unless otherwise noted)


Eruption on 17 March 2006 preceded by 5 days of earthquakes; 1 fatality

An eruption took place on 17 March 2006 at Raoul Island, killing one person. Brad Scott, New Zealand Institute of Geological and Nuclear Sciences (GNS), reported that on the evening of 12 March 2006 earthquakes began near Raoul Island. More than 200 earthquakes were recorded in the first 24 hours, with many of the larger events felt on the island. Earthquakes continued throughout the week, but the numbers gradually decreased.

An eruption from the Green Lake crater, within the Raoul caldera (figure 2), began at 0821 on 17 March. Other than the precursory seismicity, no water-level or temperature changes were observed, even only 24 hours before the eruption. Based on data from the seismograph on the island, the eruption appears to have continued for up to 30 minutes, although the most intense part of the eruption lasted for only 5 to 10 minutes. Following the eruption, the rate of earthquake activity doubled, but by 23 March the number of earthquakes was reduced to 10-20 per day. No thermal anomalies were detected by the MODIS satellite system during March 2006.

Figure (see Caption) Figure 2. Maps of Raoul Island taken from New Zealand governmental publications issued considerably prior to the 2006 eruption. A) Sketch map of the entire island (from Lloyd and Nathan, 1981). B) A second sketch map showing key areas of volcanism during the past 4,000 years (from Latter and others, 1992). C) A more detailed view of Raoul caldera and the cratered interior of the island, with contour lines at 20 m intervals (from Lloyd and Nathan, 1981). The northern caldera contains three small lakes: Blue Lake (1.17 km2, about 40% overgrown), Green Lake (160,000 m2), and Tui Lake (5,000 m2, drinking water quality). The island's high point is Moumoukai (516 m). Unfortunately, the current report mentions a few other features undisclosed on these maps. Courtesy of GNS.

The 2006 eruption blew over mature trees out to ~ 200 m and deposited dark gray mud and large ballistic blocks. Many of the steep crater margins had post-eruption collapses marked by fresh landslides.

The New Zealand Department of Conservation evacuated five staff members from the island, but one worker, taking water-temperature measurements at Green Lake at the time of the eruption, was killed. Devastation left by the eruption thwarted efforts to find the missing worker (figure 3). A news story reported that the missing man left around 0730 on 17 March to walk to Green Lake. An hour later the volcano erupted.

Figure (see Caption) Figure 3. Photo reportedly taken by the rescue helicopter pilot John Funnell of the area affected by the volcanic eruption on Raoul Island, 17 March 2006. AP Photo; photo credit to John Funnell.

Volcano monitoring of the Raoul crater lakes started after the 1964 eruption, as these lakes responded measurably before that event, consistent with a long-lived hydrothermal system. There are low-temperature (boiling-point) fumaroles in the vicinity of Green Lake and minor seepages of hydrothermal brine from the system (boiling hot springs) along Oneraki Beach, outside of the caldera. The gases have strong hydrothermal signatures (as opposed to proximal magmatic). As such, they do not suggest single-phase vapor transport directly from a magmatic source to the surface, but rather are indicative of the presence of boiling hydrothermal brine at depth. GNS has no quantitative data from Denham Bay (offshore to the W of the island, but scientists from the organization found boiling-point (100° C) steaming ground on the steep crater walls, and gas and water seeps in the sea. Historical observations of volcanic eruptions from this caldera (and Raoul caldera) point to the likely existence of a sizable active system residing there.

Still and video footage taken of the post-eruptive scene on 17 March 2006 showed many new craters and reactivation of 1964 craters. The main steam columns were derived from Crater I, Marker Bay, and Crater XI. Fumarolic activity appeared near the mouth of Crater Gully and the stream that drains from Crater V. The area NW of Bubbling Bay, where there had been a fumarole, contained a crater about 20-30 m across.

In the main body of Green Lake there were two areas of strong upwelling. One occurred near the end of the peninsula S of Crater XII (a promontory that had been explosively removed). Jagged rocks were visible in the lake where it had been 2-4 m deep. There was also a new feature about 200-300 m N of Green Lake's Crater XII (figure 2B); the new feature included a moat near the edge of the crater floor, which contained a vigorously active vent. Green Lake's surface did not appear elevated at the time of the post-eruption 17 March observations.

Sulfur dioxide (SO2) was detected by satellite about 5 hours after the 17 March eruption (figure 4). SO2 data was collected by the Aura Ozone Monitoring Instrument (OMI), which is affiliated with the University of Maryland, the US National Aeronautics and Space Administration (NASA), the Royal Netherlands Meteorological Institute (KNMI), and the Finnish Meteorological Institute (FMI). The highest SO2 values stood over and adjacent to the island and reached as high as two Dobson Units (DU, figure 4). Simon Carn noted that the total mass of SO2 in figure 4 was ~ 200 tons. Subsequent observations did not detect further SO2 discharge.

Figure (see Caption) Figure 4. Atmospheric sulfur dioxide (SO2) detected by the Aura/OMI satellite about 5.65 hours after the Raoul Island eruption's onset on 17 March 2006. (The eruption onset was at about 0821 local time and this SO2 observation was at about 1358 local time (0158 UTC).) Image courtesy of Simon Carn, the OMI SO2 group at the University of Maryland, and NASA/KNMI/FMI.

An aerial inspection on 21 March made from a Royal New Zealand Air Force Orion aircraft allowed excellent views of both the Raoul and Denham Bay calderas. Visible steam discharge from the vents had declined significantly owing to a 6-8 m rise in Green Lake's water level and the consequent drowning of most of the active vents. The lake level did not appear to have reached overflow level. Landsliding and collapse also blocked Crater I. Vigorous upwelling and gas discharge was still obvious through Green Lake, which appeared very warm.

There was no evidence of further eruptions since 17 March, nor was there any evidence that activity had occurred from the 1964 craters adjacent to Crater Gully (i.e. craters III, IV, and VI-X). However, many new craters formed at the mouth of Crater Gully where hot bare ground had been present. There was a possible NE-trend through the vents from Crater Gully to NE of Crater XII. In 1964 the craters aligned along three parallel fractures that tended NW. Heightened activity was not confined to the lake.

In Denham Bay GNS scientists observed a weak plume of discolored water approximately coincident with the vent area. There was evidence of hydrothermal seepage along most of the beach (milky discoloration indicating mixing of hydrothermal brine and seawater). There were also discharges in the rocky bay halfway between Hutchison Bluff and the NW end of Denham beach (figure 2A). If these are confirmed as hydrothermal seepages, they represent a significant rise in the surface of the hydrothermal fluids in the system, consistent with that observed in the caldera.

On 23 March 2006, the GNS reported that scientists who flew over noted that the hydrothermal system under the island showed signs of over-pressuring. GNS volcanologist Bruce Christenson stated, "From our aerial observations, it is clear that the heat, gas, and water that are discharging into Green Lake are making this part of the volcano's hydrothermal system unstable." Several new steam vents opened in and around Green Lake during the eruption and some old ones had reactivated. Many of these were drowned as a result of lake-level rise. According to Christenson, "one explanation for the increased hydrothermal activity is that it is being driven by the intrusion of magma at depth."

Steve Sherburn of GNS reported on 24 March on the GeoNet website (the New Zealand GeoNet Project provides real-time monitoring and data collection for rapid response and research into earthquake, volcano, landslide, and tsunami hazards) that over the last few days the level of earthquake activity at or close to Raoul Island had continued to decline to a current level of only 5-10 earthquakes per day, most of which were probably too small to be felt on the island. There is no unequivocal seismic evidence for magma movement (such as the strong volcanic tremor observed before the 1964 eruption). Careful seismic monitoring of Raoul Island will continue.

Brad Scott reported on 3 April 2006 that activity continued to decline in the Green Lake crater area. The most recently available photographs showed the water level continuing to rise slowly in Green Lake, but it had not reached overflow level. Over the last few days the level of earthquake activity at or close to Raoul Island continued to decline and in early April there were only 2-5 earthquakes per day being recorded.

References. Latter, J.H.; Lloyd, E.F.; Smith, I.E.M.; and Nathan, S., 1992, Volcanic hazards in the Kermadec Islands, and at submarine volcanoes between Southern Tonga and New Zealand: Volcanic Hazards Information Series, no. 4 (CD 303), New Zealand Ministry of Civil Defence, 45 p. (Booklet) ISBN 0-477-07472-3Lloyd, E.F., and Nathan, S., 1981, Geology and tephrochronology of Raoul Island, Kermadec Group, New Zealand: New Zealand Geological Survey Bulletin, no. 95, 105 p. (includes map in back pocket).

Geologic Background. Anvil-shaped Raoul Island is the largest and northernmost of the Kermadec Islands. During the past several thousand years volcanism has been dominated by dacitic explosive eruptions. Two Holocene calderas exist, the older of which cuts the center the island and is about 2.5 x 3.5 km wide. Denham caldera, formed during a major dacitic explosive eruption about 2200 years ago, truncated the W side of the island and is 6.5 x 4 km wide. Its long axis is parallel to the tectonic fabric of the Havre Trough that lies W of the volcanic arc. Historical eruptions during the 19th and 20th centuries have sometimes occurred simultaneously from both calderas, and have consisted of small-to-moderate phreatic eruptions, some of which formed ephemeral islands in Denham caldera. An unnamed submarine cone, one of several located along a fissure on the lower NNE flank, has also erupted during historical time, and satellitic vents are concentrated along two parallel NNE-trending lineaments.

Information Contacts: Brad Scott, Institute of Geological and Nuclear Sciences (GNS), Wairakei Research Centre, 114 Karetoto Road, Taupo, New Zealand (URL: http://www.geonet.org.nz/, http://www.gns.cri.nz/).


Tinakula (Solomon Islands) — March 2006 Citation iconCite this Report

Tinakula

Solomon Islands

10.386°S, 165.804°E; summit elev. 796 m

All times are local (unless otherwise noted)


Eruption; increased thermal anomalies during February-April 2006

According to Simon Carn, volcanic activity at Tinakula appears to have begun on 12 February 2006, with a small explosion followed by degassing. He noted some significant SO2 emissions on 14 February, as well as small plumes from Ambrym and Aoba. As of 16 February, there was still a small SO2 signal from Tinakula, but it was no bigger than that from Ambrym or Aoba. Andrew Tupper noted from visible MTSAT (Multi-functional Transport Satellite) images and an Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) screen shot that a plume on 14 February was moving NNE at ~ 10 km/hour and appeared to be not far above summit level; the plume did not register on the IR imagery. MTSAT is a dual-mission satellite for the Japan Ministry of Land, Infrastructure, and Transport and the Japan Meteorological Agency performing an air traffic control and navigation, as well as a meteorological, functions.

On 27 February, Thomas Toba of the Solomon Islands government wrote to Herman Patia of the Rabaul Volcano Observatory, confirming Tinakula activity. Toba contacted authorities from the Temotu Provincial Headquarters who confirmed that there were several small explosions from this volcano around early to middle February 2006.

Satellite thermal-sensor data (using the MODVOLC alert-detection algorithm) revealed a period of thermal anomalies on the uninhabited island of Tinakula during cloud-free intervals in early to mid-February 2006 (table 1). The anomalies were particularly numerous on 11 February. The information was extracted from the MODIS Thermal Alerts website maintained by the Hawai'i Institute of Geophysics and Planetology (HIGP) (see also BGVN 29:06 and 28:01). The satellites used were Aqua and Terra MODIS. Confirmation of the volcanic source of the anomalies was not broadly distributed until late March 2006.

Table 1. MODVOLC thermal anomalies at Tinakula for mid-February through mid-April 2006. Since the start of monitoring by MODIS satellite sensors on 8 May 2001, no thermal anomalies had been measured at Tinakula before 11 February 2006. Courtesy of University of Hawai'i Institute of Geophysics and Planetology MODIS Hotspot Alert website.

Date Time (UTC) Pixels Satellite
11 Feb 2006 1125 6 Terra
11 Feb 2006 1425 10 Aqua
11 Feb 2006 2350 3 Terra
12 Feb 2006 0240 4 Aqua
13 Feb 2006 2340 3 Terra
15 Feb 2006 1500 2 Aqua
18 Feb 2006 1430 2 Aqua
03 Mar 2006 2325 1 Terra
06 Mar 2006 1430 1 Aqua
08 Mar 2006 1120 1 Terra
08 Mar 2006 1420 2 Aqua
13 Mar 2006 1135 1 Terra
15 Mar 2006 1425 1 Aqua
20 Mar 2006 1145 1 Terra
09 Apr 2006 1420 1 Aqua
14 Apr 2006 1135 1 Terra
16 Apr 2006 1125 2 Terra
16 Apr 2006 1425 1 Aqua
18 Apr 2006 1410 3 Aqua
19 Apr 2006 1455 1 Aqua

Geologic Background. The small 3.5-km-wide island of Tinakula is the exposed summit of a massive stratovolcano at the NW end of the Santa Cruz islands. It has a breached summit crater that extends from the summit to below sea level. Landslides enlarged this scarp in 1965, creating an embayment on the NW coast. The Mendana cone is located on the SE side. The dominantly andesitic volcano has frequently been observed in eruption since the era of Spanish exploration began in 1595. In about 1840, an explosive eruption apparently produced pyroclastic flows that swept all sides of the island, killing its inhabitants. Recorded eruptions have frequently originated from a cone constructed within the large breached crater. These have left the upper flanks and the steep apron of lava flows and volcaniclastic debris within the breach unvegetated.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP), School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa, 1680 East-West Road, POST 602, Honolulu, HI 96822 (URL: http://modis.higp.hawaii.edu); Simon Carn, University of Maryland Baltimore County (UMBC), Joint Center for Earth Systems Technology (JCET), Total Ozone Mapping Spectrometer (TOMS) Volcanic Emissions Group, 1000 Hilltop Circle, Baltimore, MD 21250; Andrew Tupper, Darwin Volcanic Ash Advisory Centre, Bureau of Meteorology, Australia (URL: http://www.bom.gov.au/info/vaac/); Thomas Toba, Ministry of Energy, Water, and Minerals Resources, Honiara, Solomon Islands; Herman Patia, Rabaul Volcano Observatory, P.O. Box 386, Rabaul, Papua New Guinea.


Ubinas (Peru) — March 2006 Citation iconCite this Report

Ubinas

Peru

16.345°S, 70.8972°W; summit elev. 5608 m

All times are local (unless otherwise noted)


Ash eruption beginning 25 March 2006; heightened seismicity since November 2004

Ubinas began erupting ash on 25 March 2006. Since mid-2005 a small increase in fumarolic activity had been seen during visits to the crater by personnel from the Instituto Geofísico del Perú (IGP), UNSA local university, and the Instituto Geologico, Minero y Metalurgico (INGEMMET); it was also reported by local authorities. Increased fumarolic emissions described by INGEMMET were reported on 18 January 2006 by Diario Digital Sur Noticias. Fumaroles started to make strong jet noises, and seismic activity increased, in February 2006. The eruption that began on 25 March, described below, has continued through at least late April.

On 25 March farmers from Querapi village, 4 km from the crater, noted ash deposits on crops. A few millimeters of ash was deposited and quickly removed by rain. The volcano had been mostly cloud-covered during the previous few weeks, but on 27 March residents of Querapi noted a column of ash at 1430. On 30 and 31 March teams from IGP, UNSA, and INGEMMET visited the volcano (figure 2). Although there had been constant snow over the previous days, the summit was completely gray from ashfall. The ash thickness on rocks 2 km NW of the crater was 3 mm, just inside the summit crater there was about 1 cm, and at the inner pit crater edge there was 2 cm. Thick ash surrounded a new 30-m-wide vent in the crater base. This crater was emitting constant ash and gas with larger pulses approximately every 15 minutes. Near the edge of the pit crater were large numbers of flat circular mud discs up to 15 cm in diameter, many with central solid cores. These grew smaller and less frequent with distance. It is thought these are either huge accretionary lapilli, generated in storm clouds above Ubinas, or products of wet eruptions from the new vent. The crater area is dangerous and frequently smothered in ash clouds, so observations remain sketchy.

Figure (see Caption) Figure 2. Photo of Ubinas on 31 March 2006 showing an eruption plume rising from the summit crater. Photo by the Perúvian Civil Defense taken from Moquegua city, provided courtesy of the Associated Press.

Ash emissions through 10 April covered local villages and damaged crops. Clear crop damage was visible around the village of Querapi, with potato and alfalfa leaves and flowers blemished in spots. This is the critical growing time for the crop, and thus any damage is serious for the local farmers. Cattle have been seen suffering from diarrhea.

Short periods of seismic recordings have been made at a site 2,500 m NW of the crater rim. On 20 November 2004 only 16 local events were recorded over 12 hours. In February 2005 there where 96 events over the same time period. Over 12 hours on 27 March 2006 there were 115 events. During this last interval, low-amplitude tremor events lasting 3 minutes on average were recorded, as well as long-period (LP) events. Over the 12 hours of observation the following events were recorded: 62 LP, 18 LP with precursors, 10 volcano-tectonic (VT), five VT with precursors, and 20 tremor events.

Geologic Background. The truncated appearance of Ubinas, Perú's most active volcano, is a result of a 1.4-km-wide crater at the summit. It is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front. The growth and destruction of Ubinas I was followed by construction of Ubinas II beginning in the mid-Pleistocene. The upper slopes of the andesitic-to-rhyolitic Ubinas II stratovolcano are composed primarily of andesitic and trachyandesitic lava flows and steepen to nearly 45°. The steep-walled, 150-m-deep summit crater contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank about 3,700 years ago extend 10 km from the volcano. Widespread Plinian pumice-fall deposits include one from about 1,000 years ago. Holocene lava flows are visible on the flanks, but activity documented since the 16th century has consisted of intermittent minor-to-moderate explosive eruptions.

Information Contacts: Orlando Macedo, Observatorio de Cayma-Arequipa, Instituto Geofísico del Perú at Arequipa city (IGP-Arequipa), Urb. La Marina B-19, Cayma, Arequipa, Perú; Jersy Marino, Instituto Geologico, Minero y Metalurgico (INGEMMET), Perú; Benjamin van Wyk, Laboratoire Magmas et Volcans (LMV), OPGC, France; Jean-Philippe Métaxian, Laboratire de Geophysique Interne et Tectonophysique-Univ de Savoie, France; Perúvian Civil Defense (URL: http://www.indeci.gob.pe/); Diario Digital Sur Noticias, Tacna, Perú (URL: http://www.surnoticias.com/); Associated Press (URL: http://www.ap.org/).


Veniaminof (United States) — March 2006 Citation iconCite this Report

Veniaminof

United States

56.17°N, 159.38°W; summit elev. 2507 m

All times are local (unless otherwise noted)


Modest ash emissions during September 2005-22 April 2006

On 7 September 2005, the Alaska Volcano Observatory (AVO) noted several minor bursts of ash from the volcano during the afternoon. Ash bursts continued to occur through at least 9 September, with ash rising less than 3 km altitude, and with the ash confined to the caldera. Over the following 2 weeks, minor ash emission continued at a rate of 1-5 events per day based on interpretations of seismic data. AVO reported that it was likely that diffuse ash plumes rose to heights less than ~ 3 km and were confined to the summit caldera. Cloudy weather during 16-23 September prohibited web-camera and satellite observations of Veniaminof, but seismic data indicated diminishing activity. On 28 September seismicity had remained at background levels for over a week, and there was no evidence to suggest that minor ash explosions were continuing.

On 4 November 2005, a low-level minor ash emission occurred from the intracaldera cone beginning at 0929. Ash rose a few hundred meters above the cone, drifted E, and dissipated rapidly. Minor ashfall was probably confined to the summit caldera. During the previous 2 weeks, occasional steaming from the intracaldera cone was observed. Very weak seismic tremor and a few small discrete seismic events were recorded at the station closest to the active cone. However, AVO reported that there were no indications from seismic data that a significantly larger eruption was imminent.

On the morning of 3 March 2006 ash again rose a few hundred meters above the intracaldera cone, drifted E, and dissipated rapidly. Ashfall was expected to be minor and confined to the summit caldera. Seismicity was again low and did not indicate that a significantly larger eruption was imminent. Over the week of 5-10 March, seismicity was low but slightly above background.

On the morning of 10 March, AVO received a report from a pilot of low-level ash emission from the intracaldera cone. Clear web-camera views on 9 March showed small diffuse plumes of ash extending a short distance from the intracaldera cone. The Anchorage Volcanic Ash Advisory Center (VAAC) reported a steam/ash plume noted on web-cam and satellite on 13 March 2006 at 0500Z (12 March 2006 at 2000 hours local), moving NNW at 9.2 km/hr and falling to the land surface. Web-cam images on 22 March showed a very diffuse steam-and-ash plume that was confined to the summit caldera, and on 24 March showed a steam-and-ash plume drifting from the summit cone at a height of less than 2.3 km. This level of activity was similar to that on 23 March, but higher than activity on 21 and 22 March, when a very diffuse steam-and-ash plume was confined to the summit caldera.

The flow of seismic data from Veniaminof stopped on the evening of 21 March 2006, and the problem was expected to continue until AVO staff could visit the site to repair the problem. Absent seismic data, the volcano could potentially still be monitored in other ways such as using web-camera and satellite images. Imagery was obscured by cloudy weather after 21 March. On 26 March 2006, a pilot reported a small ash plume rising above the volcano. Low-altitude ash emissions from Veniaminof were visible during 31 March to 7 April. On 6 April, a pilot reported an ash plume at a height of 3 km. AVO stated in its weekly report of 14 April 2006 that the seismicity at Veniaminof remained low but above background. Internet camera and satellite views had been obscured by cloudy weather, and AVO lacked new information about ash clouds or activity.

Geologic Background. Veniaminof, on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3,700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, and Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.avo.alaska.edu/); Charles R. Holliday, Air Force Weather Agency (AFWA), Offutt Air Force Base, NE 68113.

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements  Obituaries

Misc Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subject.

Additional Reports  False Reports