Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Suwanosejima (Japan) Small ash plumes continued during January through June 2019

Great Sitkin (United States) Small steam explosions in early June 2019

Ibu (Indonesia) Frequent ash plumes and small lava flows active in the crater through June 2019

Ebeko (Russia) Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

Klyuchevskoy (Russia) Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Yasur (Vanuatu) Strong thermal activity with incandescent ejecta continues, February-May 2019

Bagana (Papua New Guinea) Infrequent thermal anomalies, no ash emissions, February-May 2019

Ambae (Vanuatu) Declining thermal activity and no explosions during February-May 2019

Sangay (Ecuador) Explosion on 26 March 2019; activity from 10 May through June produced ash plumes, lava flows, and pyroclastic flows

Kadovar (Papua New Guinea) Ash emissions and thermal anomalies during October 2018-April 2019; lava emissions at the E flank coast and summit area

Sarychev Peak (Russia) Brief ash emission reported on 16 May 2019

Nyiragongo (DR Congo) Lava lake remains active through May 2019; three new vents around the secondary cone



Suwanosejima (Japan) — July 2019 Citation iconCite this Report

Suwanosejima

Japan

29.638°N, 129.714°E; summit elev. 796 m

All times are local (unless otherwise noted)


Small ash plumes continued during January through June 2019

Suwanosejima is an active volcanic island south of Japan in the Ryuku islands with recent activity centered at Otake crater. The current eruption began in October 2004 and activity has mostly consisted of small ash plumes, ballistic ejecta, and visible incandescence at night. This report summarizes activity during January through June 2019 and is based on reports by the Japan Meteorological Agency (JMA), and various satellite data.

Thermal activity recorded by the MIROVA system was low through January and February after a decline in November (figure 36), shown in Sentined-2 thermal infrared imagery as originating at a vent in the Otake crater (figure 37). During January an explosive event was observed at 1727 on the 3rd, producing a gray plume that rose 600 m above the crater. A white gas-and-steam plume rose to 1.5 km above the crater and nighttime incandescence was observed throughout the month. Reduced activity continued through February with no reported explosive eruptions and light gray plumes up to 900 m above the crater. Incandescence continued to be recorded at night using a sensitive surveillance camera.

Figure (see Caption) Figure 36. MIROVA log radiative power plot of MODIS thermal infrared data at Suwanosejima during September 2018 through June 2019. There was reduced activity in 2019 with periods of more frequent anomalies during March and June. Courtesy of MIROVA.
Figure (see Caption) Figure 37. A Sentinel-2 thermal satellite image shows Suwanosejima with the active Otake crater in the center with elevated temperatures shown as bright orange/yellow. There is a light area next to the vent that may be a gas plume. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

There was an increase in thermal energy detected by the MIROVA system in mid-March and there was a MODVOLC thermal alert on the 15th. Occasional small explosions occurred but no larger explosive events were recorded. A white plume was noted on the 27th rising to 900 m above the crater and an event at 1048 on the 30th produced a light-gray plume that rose to 800 m. Incandescence was only observed using a sensitive camera at night (figure 38).

Figure (see Caption) Figure 38. Incandescence from the Suwanosejima Otake crater reflecting in clouds above the volcano. Courtesy of JMA (Volcanic activity of Suwanosejima March 2019).

No explosive events were observed through April. A white gas-and-steam plume rose to 1,200 m above the crater on the 19th and incandescence continued intermittently. Minor explosions were recorded on 5, 30, and 31 May, but no larger explosive events were observed during the month. The event on the 30th produced ash plume that reached 1.1 km above the crater. Similar activity continued through June with one explosive event occurring on the 2nd. Overall, there was a reduction in the number of ash plumes erupted during this period compared to previous months (figure 39).

Figure (see Caption) Figure 39. Observed activity at Suwanosejima for the year ending in July 2019. The black vertical bars represent steam, gas, or ash plume heights (scale in meters on the left axis), yellow diamonds represent incandescence observed in webcams, gray volcano symbols along the top are explosions accompanied by ash plumes, red volcano symbols represent large explosions with ash plumes. Courtesy of JMA (Volcanic activity of Suwanosejima June 2019).

Geologic Background. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Information Contacts: Japan Meteorological Agency (JMA), Otemachi, 1-3-4, Chiyoda-ku Tokyo 100-8122, Japan (URL: http://www.jma.go.jp/jma/indexe.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Great Sitkin (United States) — July 2019 Citation iconCite this Report

Great Sitkin

United States

52.076°N, 176.13°W; summit elev. 1740 m

All times are local (unless otherwise noted)


Small steam explosions in early June 2019

The Great Sitkin volcano is located about 40 km NE of Adak Island in the Aleutian Islands and has had a few short-lived eruptions over the past 100 years. Prior to the latest activity in early June 2019 described below, small phreatic explosions occurred in June and August 2018 (BGVN 43:09). An eruption in 1974 produced a lava dome in the center of the crater. The Alaska Volcano Observatory (AVO) is the primary source of information for this September 2018-June 2019 reporting period.

Low-level unrest occurred from September 2018 through February 2019 with slightly elevated seismic activity (figure 6). Small explosions were seismically detected by AVO on 30 October, 5 and 16 November, and 11 December 2018, but they were not seen in regional infrasound data and satellite data did not show an ash cloud.

On 1, 7, and 9 June 2019, AVO reported small steam explosions as well as slightly elevated seismic activity. Steam plumes and surficial evidence of an explosion were not observed during these events. On 18 June 2019 weakly elevated surface temperatures were recorded, field crews working on Adak observed some steam emissions, and a gas flight was conducted. Elevated concentrations of carbon dioxide detected above the lava dome were likely associated with the steam explosions earlier in the month (figures 7 and 8). From 23 June through the end of the month seismicity began to decline back to background levels.

Figure (see Caption) Figure 6. A steam plume was seen at the summit of Great Sitkin on 7 December 2018. Photo by Andy Lewis and Bob Boyd; courtesy of AVO/USGS.
Figure (see Caption) Figure 7. Some degassing was observed on the southern flank of the Great Sitkin during an overflight on 18 June 2019. Photo by Laura Clor; image courtesy of AVO/USGS.
Figure (see Caption) Figure 8. View of Great Sitkin with white plumes rising from the summit on 20 June 2019. Photo by Laura Clor, courtesy of AVO/USGS.

Geologic Background. The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: https://avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://dggs.alaska.gov/).


Ibu (Indonesia) — July 2019 Citation iconCite this Report

Ibu

Indonesia

1.488°N, 127.63°E; summit elev. 1325 m

All times are local (unless otherwise noted)


Frequent ash plumes and small lava flows active in the crater through June 2019

Ibu volcano on Halmahera island in Indonesia began the current eruption episode on 5 April 2008. Since then, activity has largely consisted of small ash plumes with less frequent lava flows, lava dome growth, avalanches, and larger ash plumes up to 5.5 km above the crater. This report summarizes activity during December 2018 through June 2019 and is based on Volcano Observatory Notice for Aviation (VONA) reports by MAGMA Indonesia, reports by Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) and Badan Nasional Penanggulangan Bencana (BNPB), and various satellite data.

During December PVMBG reported ash plumes ranging from 200 to 800 m above the crater. There were 11 MODVOLC thermal alerts that registered during 1-12 December. An explosion on 12 January 2019 produced an ash plume that reached 800 m above the crater and dispersed to the S (figure 15). A report released for this event by Sutopo at BNPB said that Ibu had erupted almost every day over the past three months; an example given was of activity on 10 January consisting of 80 explosions. There were four MODVOLC thermal alerts through the month.

Figure (see Caption) Figure 15. An eruption at Ibu at 1712 on 21 January 2019 produced an ash plume that rose to 800 m above the crater. Courtesy of BNPB (color adjusted).

Throughout February explosions frequently produced ash plumes as high as 800 m above the crater, and nine MODVOLC thermal alerts were issued. Daily reports showed variable plume heights of 200-800 m most days throughout the month. Wind directions varied and dispersed the plumes in all directions. A VONA released at 1850 on 6 February reported an ash plume that rose to 1,925 m altitude (around 600 m above the summit) and dispersed S. Activity continued through March with the Darwin VAAC and PVMBG reporting explosions producing ash plumes to heights of 200-800 m above the crater and dispersing in various directions. There were ten MODVOLC alerts through the month.

Similar activity continued through April, May, and June, with ash plumes reaching 200-800 m above the crater. There were 12, 6, and 15 MODVOLC Alerts in April, May, and June, respectively.

Planet Scope satellite images show activity at a two vents near the center of the crater that were producing small lava flows from February through June (figure 16). Thermal anomalies were frequent during December 2018 through June 2019 across MODVOLC, MIROVA, and Sentinel-2 infrared data (figures 17 and 18). Sentinel-2 data showed minor variation in the location of thermal anomalies within the crater, possibly indicating lava flow activity, and MIROVA data showed relatively constant activity with a few reductions in thermal activity during January and February.

Figure (see Caption) Figure 16. Planet Scope natural color satellite images showing activity in the Ibu crater during January through June 2019, with white arrows indicating sites of activity. One vent is visible in the 21 February image, and a 330-m-long (from the far side of the vent) lava flow with flow ridges had developed by 24 March. A second vent was active by 12 May with a new lava flow reaching a maximum length of 520 m. Activity was centered back at the previous vent by 23-27 June. Natural color Planet Scope Imagery, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 17. Examples of thermal activity in the Ibu crater during January through May 2019. These Sentinel-2 satellite images show variations in hot areas in the crater due to a vent producing a small lava flow. Sentinel-2 false color (urban) images (bands 12, 11, 4) courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 18. MIROVA log radiative power plot of MODIS thermal infrared at Ibu from September 2018 through June 2019. The registered energy was relatively stable through December, with breaks in January and February. Regular thermal anomalies continued with slight variation through to the end of June. Courtesy of MIROVA.

Geologic Background. The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/).


Ebeko (Russia) — July 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Continuing frequent moderate explosions though May 2019; ashfall in Severo-Kurilsk

The Ebeko volcano, located on the northern end of the Paramushir Island in the Kuril Islands, consists of many craters, lakes, and thermal features and has been frequently erupting since late February 2017. Typical activity includes ash plumes, explosive eruptions, and gas-and-steam activity. The previous report through November 2018 (BGVN 43:12) described frequent ash explosions that sometimes caused ashfall in Severo-Kurilsk (7 km E). The primary source of information is the Kamchatka Volcanic Eruptions Response Team (KVERT). This report updates the volcanic activity at Ebeko for December 2018 through May 2019.

Frequent moderate explosive activity continued after November 2018. Volcanologists in Severo-Kurilsk observed explosions sending up ash, which drifted N, NE, and E, resulting in ash falls on Severo-Kurilsk on 28 different days between December 2018 and March 2019. On 25 December 2018 an explosion sent ash up to a maximum altitude of 4.5 km and then drifted N for about 5 km. Explosions occurring on 8-10 March 2019 sent ash up to an altitude of 4 km, resulting in ashfall on Severo-Kurilsk on 9-10 March 2019. An ash plume from these explosions rose to a height of 2.5 km and drifted to a maximum distance of 30 km ENE.

Satellite data analyzed by KVERT registered 12 thermal anomalies from December 2018 through May 2019. According to satellite data analyzed by MIROVA (Middle InfraRed Observation of Volcanic Activity), only one thermal anomaly was recorded from December 2018-May 2019, and no hotspot pixels were recognized using satellite thermal data from the MODVOLC algorithm.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Klyuchevskoy (Russia) — July 2019 Citation iconCite this Report

Klyuchevskoy

Russia

56.056°N, 160.642°E; summit elev. 4754 m

All times are local (unless otherwise noted)


Weak thermal anomalies and moderate Strombolian-type eruptions in September 2018-June 2019

Klyuchevskoy has had alternating eruptive and less active periods since August 2015. Activity has included lava flows, a growing cinder cone, thermal anomalies, gas-and-steam plumes, and ash explosions. Though some eruptions occur near the summit crater, major explosive and effusive eruptions have also occurred from flank craters (BGVN 42:04 and 43:05). Intermittent moderate gas-and-steam and ash emissions were previously reported from mid-February to mid-August 2018. The Kamchatka Volcanic Eruptions Response Team (KVERT) is the primary source of information for this September 2018-June 2019 reporting period.

KVERT reported that moderate gas-and-steam activity, some of which contained a small amount of ash, and weak thermal anomalies occurred intermittently from the beginning of September 2018 through mid-April 2019. On 21-22 April 2019 webcam data showed a gas-and-steam plume extending about 160 km SE (figure 31). Moderate Strombolian-type volcanism began late April 2019 and continued intermittently through June 2019. On 11-12 June webcam data showed explosions that sent ash up to a maximum altitude of 6 km, with the resulting ash plume extending about 200 km WNW.

Figure (see Caption) Figure 31. Gas-and-steam plume containing some amount of ash rising from the summit of Klyuchevskoy on 22 April 2019. Photo by A. Klimova, courtesy of Institute of Volcanology and Seismology (IVS FEB RAS).

Thermal anomalies were noted by KVERT during two days in September 2018, six days in April 2019, eleven days in May 2019, and six days in June 2019. MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed infrequent weak thermal anomalies December 2018 through early May 2019.

Geologic Background. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).


Yasur (Vanuatu) — June 2019 Citation iconCite this Report

Yasur

Vanuatu

19.532°S, 169.447°E; summit elev. 361 m

All times are local (unless otherwise noted)


Strong thermal activity with incandescent ejecta continues, February-May 2019

Yasur volcano on Tanna Island has been characterized by Strombolian activity with large incandescent bombs, frequent explosions, lava fountaining, and ash emissions for much of its known eruptive history. Melanesians from nearby islands are believed to have settled Tanna in about 400 BCE; it is now part of the nation of Vanuatu, independent since 1980. The Kwamera language (or Tannese) spoken on the SE coast of the island is thought to be the source of the name of the island. No known oral history describes volcanic activity; the first written English-language documentation of activity dates to 5 August 1774, when Captain James Cook saw "a great fire" on Tanna Island. Cook realized that it "was a Volcano which threw up vast quantities of fire and smoak and made a rumbling noise which was heard at a good distance" (The Captain Cook Society) (figure 51).

Figure (see Caption) Figure 51. Incandescence, steam, and dark ash from Yasur fill the sky in this sketch representing Captain James Cook's landing in the 'Resolution' at Tanna Island on 5 August 1774. The form of the volcano is behind the ship, the incandescence is in the upper right next to the ship's masts. "Landing at Tanna" by William Hodges, 1775-1776, National Maritime Museum, Greenwich, London. The Maritime Museum noted that this is one of a group of panel paintings produced by Hodges of encounters with islanders during the voyage, in which the European perception of each society at the time is portrayed. Image taken from Wikimedia Commons.

Based on numerous accounts from ships logs and other sources, volcanic activity has been continuous since that time. During periods of higher activity, multiple vents within the summit crater send ejecta 100 m or more above the crater rim, with large bombs occasionally landing hundreds of meters away. Continued activity during February-May 2019 is covered in this report with information provided by the Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD) which monitors the volcano and satellite data; photographs from tourists also provide valuable information about this remote location.

VMGD has maintained Alert Level 2 at Yasur since October 2016, indicating that it is in a major state of unrest. There is a permanent exclusion zone within 395 m of the eruptive vents where access is prohibited due to multiple hazards, primarily from large incandescent bombs up to 4 m in diameter which have been ejected from the vents onto the crater rim in the past, resulting in fatalities (BGVN 20:08).

Satellite and ground based information all support high levels of thermal activity during February -May 2019. MODVOLC thermal alerts were issued 11 times in February, 27 times in March, and 20 times each in April and May. The MIROVA graph also indicated the ongoing consistently high levels of thermal energy throughout the period (figure 52). Plumes of SO2 emissions are common from Vanuatu's volcanoes; newer higher resolution data available beginning in 2019 reveal a persistent stream of SO2 from Yasur on a near-daily basis (figure 53).

Figure (see Caption) Figure 52. The MIROVA graph of thermal energy at Yasur from 3 September 2018 through May 2019 indicates the ongoing activity at the volcano. Courtesy of MIROVA.
Figure (see Caption) Figure 53. The SO2 plumes from Yasur were persistent during January-May 2019 when they were visible many days of each week throughout the period. Top left: On 12 January plumes were visible drifting E from both Ambrym (top) and Yasur (bottom). Top right: Plumes drifted W from three Vanuatu volcanoes on 7 February, Gaua (top), Ambrym (middle) and Yasur (bottom). Bottom left: On 12 March N drifting plumes could be seen from Ambae (top) and Yasur (bottom). On 27 April, only Yasur had an SO2 plume drifting W. Courtesy of Goddard Space Flight Center.

Satellite imagery confirmed that the heat sources from Yasur were vents within the summit crater of the pyroclastic cone. Both northern and southern vent areas were active. On 7 March 2019 the N vent area had a strong thermal signal. Ten days later, on 17 March, similar intensity thermal anomalies were present in both the N and S vent areas (figure 54). On 6 April the S vent area had a stronger signal, and gas emissions from both vents were drifting N (figure 55). Satellite imagery from 21 May 2019 indicated a strong thermal signal inside the crater in the area of the vents, and included a weaker signal clearly visible on the inside E crater rim. Strong Strombolian activity or spatter sending large incandescent bombs as far as the crater rim are a likely explanation for the signal (figure 56), underscoring the hazardous nature of approaching the crater rim.

Figure (see Caption) Figure 54. Strong thermal anomalies from the crater of Yasur's pyroclastic cone seen in satellite images confirmed the ongoing high level of activity. Left: 7 March 2019, a strong thermal anomaly from the N vent area, shown with "Geology" rendering (bands 12, 4, 2). Right: 17 March 2019, thermal anomalies at both the N and S vent areas, shown with "Atmospheric Penetration" rendering (bands 12, 11, 8A). The crater is about 500 m in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 55. Strong thermal anomalies (left) and gas emissions (right) at Yasur were captured with different bands in the same Sentinel-2 satellite image on 6 April 2019. Left: The thermal anomaly in the S vent area was stronger than in the N vent area, "Atmospheric Penetration" rendering (bands 12, 11, 8A). Right: Gas plumes drifted N from both vent areas, "Natural color" rendering (bands 4, 3, 2). The crater is about 500 m in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 56. Thermal activity from the crater of Yasur on 21 May 2019 produced a strong thermal signal from the center of the crater and a weaker signal on the inside E crater rim, likely the result of hazardous incandescent bombs and ejecta, frequent products of the activity at Yasur. Left: "Atmospheric Penetration" rendering (bands 12, 11, 8A). Right: "Geology" rendering (bands 12, 4, 2). The crater is about 0.5 km in diameter. Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.

Tourists visit Yasur on a regular basis. A former lake on the N side of Yasur has left ripples in the sand deposits over older volcanic rocks on the N side of the volcano (figure 57) since it drained in 2000 (BGVN 28:01). Visitors are allowed to approach the S rim of the crater where incandescence from both the N and S vents is usually visible (figure 58). Incandescent spatter from the convecting lava in the vents is highly dangerous and unpredictable and often covers the inner slopes of the rim as well as sending bombs outside the crater (figure 59).

Figure (see Caption) Figure 57. The pyroclastic cone of Yasur viewed from the north on 6 May 2019. Ripples in volcaniclastic sand in the foreground are remnants of a lake that was present on the N side of the volcano until a natural dam breached in 2000. Copyrighted photo by Nick Page, used with permission.
Figure (see Caption) Figure 58. Two glowing vents were visible from the south rim of Yasur on 6 May 2019. The S vent area is in the foreground, the N vent area is in the upper left. Copyrighted by Nick Page, used with permission.
Figure (see Caption) Figure 59. Incandescent spatter at Yasur on 6 May 2019 sent fragments of lava against the inside crater wall and onto the rim. The convecting lava in the vent can be seen in the lower foreground. Copyrighted photo by Nick Page, used with permission.

Geologic Background. Yasur, the best-known and most frequently visited of the Vanuatu volcanoes, has been in more-or-less continuous Strombolian and Vulcanian activity since Captain Cook observed ash eruptions in 1774. This style of activity may have continued for the past 800 years. Located at the SE tip of Tanna Island, this mostly unvegetated pyroclastic cone has a nearly circular, 400-m-wide summit crater. The active cone is largely contained within the small Yenkahe caldera, and is the youngest of a group of Holocene volcanic centers constructed over the down-dropped NE flank of the Pleistocene Tukosmeru volcano. The Yenkahe horst is located within the Siwi ring fracture, a 4-km-wide, horseshoe-shaped caldera associated with eruption of the andesitic Siwi pyroclastic sequence. Active tectonism along the Yenkahe horst accompanying eruptions has raised Port Resolution harbor more than 20 m during the past century.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); The Captain Cook Society (URL: https://www.captaincooksociety.com/home/detail/225-years-ago-july-september-1774); Royal Museums Greenwich (URL: https://collections.rmg.co.uk/collections/objects/13383.html); Wikimedia Commons, (URL: https://commons.wikimedia.org/wiki/File:The_Landing_at_Tana_one_of_the_New_Hebrides,_by_William_Hodges.jpg); Nick Page, Australia,Flickr: (URL: https://www.flickr.com/photos/152585166@N08/).


Bagana (Papua New Guinea) — June 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Infrequent thermal anomalies, no ash emissions, February-May 2019

With historical eruptions reported back to 1842, Papua New Guinea's Bagana volcano on the island of Bougainville has been characterized by viscous andesitic lava flows down the steep flanks of its cone, along with intermittent ash plumes and pyroclastic flows. Ongoing thermal anomalies and frequent ash plumes have been typical of activity during the current eruption since it began in early 2000. Activity declined significantly in December 2018 and remained low through May 2019, the period covered in this report (figure 33). Information for this report comes primarily from satellite images and thermal data.

Figure (see Caption) Figure 33. The MIROVA plot of radiative power at Bagana from 1 September 2018 through May 2019 shows a marked decline in thermal activity during December 2018 after ash explosions and satellite observations of flows during the previous months. Courtesy of MIROVA.

The last ash emission at Bagana was reported on 1 December 2018 by the Darwin Volcanic Ash Advisory Center (VAAC). A Sentinel-2 satellite image showed a linear thermal anomaly trending NW from the summit on 14 December (BGVN 50:01). On 8 January 2019, an image contained a dense steam plume drifting E and a very faint thermal anomaly on the N flank a few hundred meters from the summit. A more distinct thermal anomaly at the summit appeared on 22 February 2019 (figure 34). A visitor to the region photographed incandescence on the flank, likely from the volcano, at dawn around 19 February 2019 (figure 35).

Figure (see Caption) Figure 34. Sentinel-2 satellite imagery revealed thermal anomalies at Bagana in January and February 2019. Left: a very faint thermal anomaly was N of the summit at the edge of the E-drifting steam plume on 8 January 2019. Right: A thermal anomaly was located at the summit, at the base of the NE-drifting steam plume on 22 February 2019. Sentinel-2 satellite images with "Atmospheric Penetration" rendering (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 35. A visitor near Bagana spotted incandescence on the flank at dawn, possibly from a lava flow. Posted online 19 February 2019. Courtesy of Emily Stanford.

Two faint thermal anomalies were visible at the summit in satellite imagery on 19 March; a single one appeared on 29 March 2019 (figure 36). No thermal anomalies were recorded in Sentinel-2 images during April or May, but steam plumes and gas emissions were visible through cloud cover on multiple occasions (figure 37).

Figure (see Caption) Figure 36. Faint thermal anomalies at Bagana were recorded in satellite imagery twice during March 2019. Left: 19 March, two anomalies appear right of the date label. Right: 29 March, a small anomaly appears right of the date label. Sentinel-2 image rendered with "Atmospheric Penetration" (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 37. Steam and gas emissions at Bagana were recorded in satellite imagery during April and May 2019. Left: A steam plume drifted NW from the summit on 23 April, visible through dense cloud cover. Right: A gas plume drifted SW from the summit on 18 May. Sentinel-2 image with "Geology" rendering (bands 12, 4, 2). Courtesy of Sentinel Hub Playground.

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Emily Stanford (Twitter: https://twitter.com/NerdyBatLady, image posted at https://twitter.com/NerdyBatLady/status/1098052063009792001/photo/1).


Ambae (Vanuatu) — June 2019 Citation iconCite this Report

Ambae

Vanuatu

15.389°S, 167.835°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Declining thermal activity and no explosions during February-May 2019

Ambae (Aoba) is a large basaltic shield volcano in the New Hebrides arc, part of the multi-island country of Vanuatu. Its periodic phreatic and pyroclastic explosions originating in the summit crater lakes have been recorded since the 16th century. A pyroclastic cone appeared in Lake Voui during November 2005-February 2006 (BGVN 31:12, figure 30); an explosive eruption from a new pyroclastic cone in the lake began in mid-September 2017 (BGVN 43:02). Activity included high-altitude ash emissions (9.1 km), lava flows, and Strombolian activity. Intermittent pulses of ash emissions during the following months resulted in extensive ashfall and evacuations; multiple communities were affected by lahars. The most recent episode of the eruption from July to September 2018 (BGVN 44:02) resulted in 11-km-altitude ash plumes and the evacuation of the entire island due to heavy ashfall and lahars. This report covers activity from February to May 2019, with information provided by the Vanuatu Geohazards Observatory of the Vanuatu Meteorology and Geo-Hazards Department (VMGD) and satellite data from multiple sources.

Activity diminished after the extensive eruptive phase of July-September 2018 when substantial ash plumes and ashfall resulted in evacuations. An explosion with an ash plume on 30 October 2018 was the last activity reported for 2018. Thermal alerts were reported by the Hawai'i Institute of Geophysics and Planetology (HIGP) MODVOLC thermal alerts system through January 2019, and the Log Radiative Power graph prepared by the MIROVA project showed decreasing thermal anomalies into June 2019 (figure 92). Satellite images recorded in April and May 2019 (figure 93) showed the configuration of the summit lakes to be little changed from the previous November except for the color (BGVN 44:02, figure 89). No ash emissions or SO2 plumes were reported during the period. VMGD noted that the volcano remained at Alert Level 2 through May 2019 with a 2-km-radius exclusion zone around the summit.

Figure (see Caption) Figure 92. The MIROVA log radiative power plot for Ambae showed ongoing intermittent thermal anomalies from early September 2018 through May 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 93. Satellite imagery in April and May 2019 showed little change in the configuration of lakes at the summit of Ambae since November 2018 (see BGVN 44:02, figure 89). Left: 24 April 2019. Right: 29 May 2019. Sentinel-2 satellite imagery with "Natural Color" rendering (bands 4, 3, 2); courtesy of Sentinel Hub Playground.

Geologic Background. The island of Ambae, also known as Aoba, is a massive 2500 km3 basaltic shield that is the most voluminous volcano of the New Hebrides archipelago. A pronounced NE-SW-trending rift zone dotted with scoria cones gives the 16 x 38 km island an elongated form. A broad pyroclastic cone containing three crater lakes (Manaro Ngoru, Voui, and Manaro Lakua) is located at the summit within the youngest of at least two nested calderas, the largest of which is 6 km in diameter. That large central edifice is also called Manaro Voui or Lombenben volcano. Post-caldera explosive eruptions formed the summit craters about 360 years ago. A tuff cone was constructed within Lake Voui (or Vui) about 60 years later. The latest known flank eruption, about 300 years ago, destroyed the population of the Nduindui area near the western coast.

Information Contacts: Geo-Hazards Division, Vanuatu Meteorology and Geo-Hazards Department (VMGD), Ministry of Climate Change Adaptation, Meteorology, Geo-Hazards, Energy, Environment and Disaster Management, Private Mail Bag 9054, Lini Highway, Port Vila, Vanuatu (URL: http://www.vmgd.gov.vu/, https://www.facebook.com/VanuatuGeohazardsObservatory/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sangay (Ecuador) — July 2019 Citation iconCite this Report

Sangay

Ecuador

2.005°S, 78.341°W; summit elev. 5286 m

All times are local (unless otherwise noted)


Explosion on 26 March 2019; activity from 10 May through June produced ash plumes, lava flows, and pyroclastic flows

Sangay is the southernmost active volcano in Ecuador, with confirmed historical eruptions going back to 1628. The previous eruption occurred during August and December and was characterized by ash plumes reaching 2,500 m above the crater. Lava flows and pyroclastic flows descended the eastern and southern flanks. This report summarizes activity during January through July 2019 and is based on reports by Instituto Geofísico (IG-EPN), Washington Volcanic Ash Advisory Center (VAAC), and various satellite data.

After the December 2018 eruption there was a larger reduction in seismicity, down to one event per day. During January, February, and most of March there was no recorded activity and low seismicity until the Washington VAAC reported an ash plume at 0615 on 26 March. The ash plume rose to a height of around 1 km and dispersed to the SW as seen in GOES 16 satellite imagery as a dark plume within white meteorological clouds. There was no seismic data available due to technical problems with the station.

More persistent eruptive activity began on 10 May with thermal alerts (figure 30) and an ash plume at 0700 that dispersed to the W. An explosion was recorded at 1938 on 11 May, producing an ash plume and incandescent material down the flank (figure 31). Two M 2 earthquakes were detected between 3.5 and 9 km below the crater on 10 May, possibly corresponding to explosive activity. By 17 May there were two active eruptive centers, the central crater and the Ñuñurcu dome (figure 32).

Figure (see Caption) Figure 30. MIROVA log radiative power plot of MODIS thermal infrared at Sangay for the year ending June 2019. The plot shows the August to December 2018 eruption, a break in activity, and resumed activity in May 2019. Courtesy of MIROVA.
Figure (see Caption) Figure 31. An explosion at Sangay on 10 May 2019 sent ballistic projectiles up to 650 m above the crater at a velocity of over 400 km/hour, an ash plume that rose to over 600 m, and incandescent blocks that traveled over 1.5 km from the crater at velocities of around 150 km/hour. Screenshots are from video by IG-EPN.
Figure (see Caption) Figure 32. A photograph of the southern flank of Sangay on 17 May 2019 with the corresponding thermal infrared image in the top right corner. The letters correspond to: a) a fissure to the W of the lava flow; b) an active lava flow from the Ñuñurcu dome; c) the central crater producing a volcanic gas plume; d) a pyroclastic flow deposit produced by collapsing material from the front of the lava flow. Prepared by M. Almeida; courtesy of IG-EPN (special report No. 3 – 2019).

Activity at the central crater by 21 May was characterized by sporadic explosive eruptions that ejected hot ballistic ejecta (blocks) with velocities over 400 km/hour; after landing on the flanks the blocks travelled out to 2.5 km from the crater. Ash plumes reached heights between 0.9-2.3 km above the crater and dispersed mainly to the W and NW; gas plumes also dispersed to the W. The Ñuñurcu dome is located around 190 m SSE of the central crater and by 21 May had produced a lava flow over 470 m long with a maximum width of 175 m and an estimated minimum volume of 300,000 to 600,000 m3. Small pyroclastic flows and rockfalls resulted from collapse of the lava flow front, depositing material over a broad area on the E-SE flanks (figure 33). One pyroclastic flow reached 340 m and covered an area of 14,300 m2. During the 17 May observation flight the lava flow surface reached 277°C.

Figure (see Caption) Figure 33. A view of the ESE flanks of Sangay on 17 May 2019. The area within the black dotted line is the main area of pyroclastic flow deposition from the Ñuñurco Dome. Photo by M. Almeida; courtesy of IG-EPN (special report No. 4 – 2019).

At the end of June activity was continuing at the central crater and Ñuñurco Dome. At least three lava flows had been generated from the dome down the SE flank and pyroclastic flows continued to form from the flow fronts (figure 34). Pyroclastic material had been washed into the Upano river and steam was observed in the Volcán River possibly due to the presence of hot rocks. Ash plumes continued through June reaching heights of 800 m above the crater (figure 35), but no ashfall had been reported in nearby communities.

Figure (see Caption) Figure 34. Sentinel-2 natural color (left) and thermal (center) images (bands 12, 11, 4), and 1:50 000 scale maps (right) of Sangay with interpretation on the background of a 30 m numerical terrain model (WGS84; Zone 17S) (Prepared by B. Bernard). The dates from top to bottom are 17 May, 22 May, 27 May, 16 June, and 26 June 2019. Prepared by B. Bernard; courtesy IG-EPN (special report No. 4 – 2019).
Figure (see Caption) Figure 35. Plots giving the heights and dispersal direction of ash plumes at Sangay during May and June 2019. Top: Ash plume heights measures in meters above the crater. Bottom: A plot showing that the dominant dispersal direction of ash plumes is to the W during this time. Courtesy of IG-EPN (special report No. 4 – 2019).

Geologic Background. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.

Information Contacts: Instituto Geofísico (IG-EPN), Escuela Politécnica Nacional, Casilla 17-01-2759, Quito, Ecuador (URL: http://www.igepn.edu.ec); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac, archive at: http://www.ssd.noaa.gov/VAAC/archive.html); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Kadovar (Papua New Guinea) — May 2019 Citation iconCite this Report

Kadovar

Papua New Guinea

3.608°S, 144.588°E; summit elev. 365 m

All times are local (unless otherwise noted)


Ash emissions and thermal anomalies during October 2018-April 2019; lava emissions at the E flank coast and summit area

Steeply-sloped Kadovar Island is located about 25 km NNE from the mouth of the Sepik River on the mainland of Papua New Guinea. The first confirmed historical eruption with ash plumes and lava extrusion began in early January 2018, resulting in the evacuation of around 600 residents from the N side of the approximately 1.4-km-diameter island (BGVN 43:03); continuing activity from October 2018 through April 2019 is covered in this report. Information was provided by the Rabaul Volcano Observatory (RVO), the Darwin Volcanic Ash Advisory Center (VAAC), satellite sources, and photos from visiting tourists.

Activity during March-September 2018. After the first recorded explosions with ash plumes in early January 2018, intermittent ash plumes continued through March 2018. A lava flow on the E flank extended outward from the island, extruding from a vent low on the E flank and forming a dome just offshore. The dome collapsed and regrew twice during February 2018; the growth rate slowed somewhat during March. A satellite image from 21 March 2018 was one of the first showing the new dome growing off the E flank with a thermal anomaly and sediment plumes in the water drifting N and E from the area. Thermal anomalies were visible at both the summit vent and the E-flank coastal dome in in April and May 2018, along with steam and gas rising from both locations (figure 19).

Figure (see Caption) Figure 19. Sentinel-2 satellite imagery of Kadovar provided clear evidence of thermal activity at the new E-flank coastal dome during March-May 2018. Sediment plumes were visible drifting N and E in the water adjacent to the coastal dome. The summit crater also had a persistent steam plume and thermal anomaly in April and May 2018. Left: 21 March 2018. Middle 10 April 2018. Right: 15 May 2018. Images all shown with "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

A trip to Kadovar by tourists in mid-May 2018 provided close-up views of the dense steam plumes at the summit and the growing E-flank coastal dome (figures 20 and 21). The thermal anomaly was still strong at the E-flank coastal dome in a mid-June satellite image, but appeared diminished in late July. Intermittent puffs of steam rose from both the summit and the coastal dome in mid-June; the summit plume was much denser on 29 July (figure 22). Ash emissions were reported by the Darwin VAAC and photographed by tourists during June (figure 23) and September 2018 (BGVN 43:10), but thermal activity appeared to decline during that period (figure 24).

Figure (see Caption) Figure 20. A tourist photographed Kadovar and posted it online on 19 May 2018. Steam plumes rose from both the summit and the E-flank coastal dome in this view taken from the SE. Courtesy of Tico Liu.
Figure (see Caption) Figure 21. A closeup view of the E-flank coastal dome at Kadovar posted online on 19 May 2018 showed steam rising from several places on the dome, and dead trees on the flank of the volcano from recent eruptive activity. Courtesy of Tico Liu.
Figure (see Caption) Figure 22. The thermal anomaly was still strong at the E-flank coastal dome of Kadovar in a 14 June 2018 satellite image (left), but appeared diminished on 29 July 2018 (right). Intermittent puffs of steam rose from both the summit and the coastal dome on 14 June; the summit plume was much denser on 29 July. Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 23. An ash plume rose from the summit of Kadovar and drifted W while steam and gas rose from the E-flank coastal dome, posted online 27 June 2018. Courtesy of Shari Kalt.
Figure (see Caption) Figure 24. Thermal activity at Kadovar for the year ending on 26 April 2019 was consistent from late April 2018 through mid-June 2018; a quiet period afterwards through late September ended with renewed and increased thermal activity beginning in October 2018. All distances are actually within 1 km of the summit of Kadovar, a DEM georeferencing error makes some locations appear further away. Courtesy of MIROVA.

Multiple satellite images during August and early September 2018 showed little or no sign of thermal activity at the E-flank coastal dome, with only intermittent steam plumes from the summit. A new steam plume on the eastern slope appeared in a 22 September 2018 image (figure 25). The Rabaul Volcano Observatory (RVO) reported explosive activity on the afternoon of 21 September. Noises of explosions were accompanied by dark gray and brown ash clouds that rose several hundred meters above the summit crater and drifted NW. Local reports indicated that the activity continued through 26 September and ashfall was reported on Blupblup island during the period. Ground observers noted incandescence visible from both the summit and the E-flank coastal dome.

Figure (see Caption) Figure 25. Steam plumes were seen in satellite images of Kadovar during August and early September 2018, but no thermal anomalies. Intermittent steam plumes rose from the summit vent on 28 August (left). A new dense steam plume originating mid-way down the E flank appeared on 22 September 2018 (right). Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

Activity during October-December 2018. Evidence of both thermal and explosive activity reappeared in October 2018 (figure 24). The Darwin VAAC reported intermittent ash plumes rising to 2.7 km altitude and drifting W on 1 October 2018. Low-level continuous ash emissions rising less than a kilometer and drifting W were reported early on 3 October. A higher plume drifted WNW at 2.4 km altitude on 7 October. Intermittent discrete emissions of ash continued daily at that altitude through 16 October, drifting NW or W. Ash emissions drifting NW and thermal anomalies at the summit were visible in satellite imagery on 2 and 12 October (figure 26). A brief ash emission was reported on 21 October 2018 at 2.4 km altitude drifting NE for a few hours. Intermittent ash emissions also appeared on 29 October moving SE at 1.8 km altitude. For the following three days ash drifted SW, W, then NW at 2.1 km altitude, finally dissipating on 1 November; the thermal anomaly at the summit was large and intense in satellite images on 27 October and 1 November compared with previous images (figure 27).

Figure (see Caption) Figure 26. Ash emissions drifting NW and thermal anomalies at the summit of Kadovar were visible in satellite imagery on 2 and 12 October 2018; no thermal activity was noted at the E-flank coastal dome. Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 27. Strong thermal anomalies at the summit of Kadovar on 27 October and 1 November 2018 were not concealed by the steam plumes drifting SW and NW from the summit. Sentinel-2 images both show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

An ash explosion was photographed by tourists on a cruise ship on the afternoon of 6 November 2018 (figure 28). After the explosion, a dense steam plume rose from a large dome of lava near the summit at the top of the E flank (figure 29). Continuous ash emissions rising to 1.8 km altitude were reported by the Darwin VAAC beginning on 9 November 2018 moving WNW and lasting about 24 hours. A new ash plume clearly identifiable on satellite imagery appeared on 13 November at 2.4 km altitude moving E, again visible for about 24 hours. Another shipboard tourist photographed an ash plume on 18 November rising a few hundred meters above the summit (figure 30).

Figure (see Caption) Figure 28. An explosion at Kadovar photographed on the afternoon of 6 November 2018 sent a dense gray ash plume hundreds of meters above the summit drifting W; blocks of volcanic debris descended the flanks as well. View is from the S. Courtesy of Coral Expeditions, used with permission.
Figure (see Caption) Figure 29. Tourists on a cruise ship passed by Kadovar on 6 November 2018 and witnessed a steam plume drifting W from a large dome of lava near the summit at the top of the E flank after an ash explosion. Smaller steam plumes were visible in the middle and at the base of the E flank, but no activity was visible at the coastal dome off the E flank (lower right). View is from the SE. Courtesy of Coral Expeditions, used with permission.
Figure (see Caption) Figure 30. An ash plume rose at dusk from the summit of Kadovar and was witnessed by a cruise ship tourist on 18 November 2018. View is from the E; the E-flank coastal dome is a lighter area in the lower foreground. Courtesy of Philip Stern.

Low-level ash emissions were reported briefly on 28 November at about 1 km altitude moving SE. Intermittent puffs of ash were seen drifting WSW on 2 and 3 December at about 1.2 km altitude. They were the last VAAC reports for 2018. Two thermal anomalies were visible at the summit in satellite imagery on 26 November, they grew larger and more intense through 16 December when multiple anomalies appeared at the summit and on the E flank (figure 31).

Figure (see Caption) Figure 31. Multiple thermal anomalies near the summit of Kadovar grew larger and more intense between 26 November and 16 December 2018. Sentinel-2 images show "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

Activity during January-April 2019. Multiple thermal anomalies were still visible at the summit in satellite imagery on 5 January 2019 as regular puffs of steam drifted SE from the summit, leaving a long trail in the atmosphere (figure 32). Additional imagery on 10 and 30 January showed a single anomaly at the summit, even through dense meteorologic clouds. A short-lived ash emission rose to 2.4 km altitude on 11 January 2019 and drifted E; it dissipated the next day. Multiple minor intermittent discrete ash plumes extended WNW at 3.0 km altitude on 18 January; they dissipated within six hours.

Figure (see Caption) Figure 32. Multiple thermal anomalies were visible in satellite imagery of Kadovar on 5 January 2019 as regular puffs of steam drifted SE from the summit. Sentinel-2 image shows "Geology" rendering using bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.

The Royal New Zealand Air Force released images of eruptive activity on 10 February 2019 (figure 33). Satellite imagery in February was largely obscured by weather; two thermal anomalies were barely visible through clouds at the summit on 14 February. The Darwin VAAC reported an ash emission at 1.8 km altitude drifting ESE on 16 February; a similar plume appeared on 21 February that also dissipated in just a few hours.

Figure (see Caption) Figure 33. The Royal New Zealand Air Force released images of an ash plume at Kadovar on 10 February 2019. Courtesy of Brad Scott.

Satellite imagery on 1 March 2019 confirmed a strong thermal anomaly from the summit and down the E flank almost to the coast. A month later on 5 April the anomaly was nearly as strong and a dense ash and steam plume drifted N from the summit (figure 34). A tourist witnessed a dense steam plume rising from the summit on 4 April (figure 35). Multiple discrete eruptions were observed in satellite imagery by the Darwin VAAC on 9 April at 1.2-1.5 km altitude drifting SE. The thermal anomaly at the summit persisted in satellite imagery taken on 15 April 2019.

Figure (see Caption) Figure 34. A strong thermal anomaly appeared from the summit down the E flank of Kadovar on 1 March 2019 (left). A month later on 5 April the strong anomaly was still present beneath a dense plume of ash and steam (right). Sentinel-2 imagery shows "Geology" rendering with bands 12, 4, and 2. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 35. A dense steam plume is shown here rising from the summit area of Kadovar, posted online on 4 April 2019. View is from the N. Courtesy of Chaiyasit Saengsirirak.

Geologic Background. The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. Kadovar is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. The village of Gewai is perched on the crater rim. A 365-m-high lava dome forming the high point of the andesitic volcano fills an arcuate landslide scarp that is open to the south, and submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. No certain historical eruptions are known; the latest activity was a period of heightened thermal phenomena in 1976.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Tico Liu, Hong Kong (Facebook: https://www.facebook.com/tico.liu. https://www.facebook.com/photo.php?fbid=10155389178192793&set=pcb.10155389178372793&type=3&theater); Shari Kalt (Instagram user LuxuryTravelAdvisor: https://www.instagram.com/luxurytraveladviser/, https://www.instagram.com/p/BkhalnuHu2j/); Coral Expeditions, Australia (URL: https://www.coralexpeditions.com/, Facebook: https://www.facebook.com/coralexpeditions); Philip Stern (Facebook: https://www.facebook.com/sternph, https://www.facebook.com/sternph/posts/2167501866616908); Brad Scott, GNS Science Volcanologist at GNS Science, New Zealand (Twitter: https://twitter.com/Eruptn); Chaiyasit Saengsirirak, Bangkok, Thailand (Facebook: https://www.facebook.com/chaiyasit.saengsirirak, https://www.facebook.com/photo.php?fbid=2197513186969355).


Sarychev Peak (Russia) — June 2019 Citation iconCite this Report

Sarychev Peak

Russia

48.092°N, 153.2°E; summit elev. 1496 m

All times are local (unless otherwise noted)


Brief ash emission reported on 16 May 2019

Located on Matua Island in the central Kurile Islands of Russia, Sarychev Peak has historical observations of eruptions dating back to 1765. Thermal activity in October 2017 (BGVN 43:11) was the first sign of renewed activity since a major eruption with ash plumes and pyroclastic flows in June 2009 (BGVN 34:06). The following month (November 2017) there was fresh dark material on the NW flank that appeared to be from a flow of some kind. After that, intermittent thermal anomalies were the only activity reported until explosions with ash plumes took place that lasted for about a week in mid-September 2018 (figure 24). Additional explosions in mid-October were the last reported for 2018. A single ash explosion in May 2019 was the only reported activity from November 2018 to May 2019, the period covered in this report. Information is provided by the Sakhalin Volcanic Eruption Response Team (SVERT) and the Kamchatka Volcanic Eruptions Response Team (KVERT), members of the Far Eastern Branch, Russian Academy of Sciences (FEB RAS), and from satellite data.

Figure (see Caption) Figure 24. Multiple ash plumes were observed at Sarychev Peak during September 2018. Left: 13 September. Right: 18 September. Photos by S. A. Tatarenkov, courtesy of IMGG FEB RAS.

Satellite imagery in mid-September and early October 2018 showed gas emissions from the summit vent, and a weak thermal anomaly in October (figure 25). KVERT lowered the Aviation Color Code from Orange to Yellow on 1 November 2018, and SVERT released a VONA on 12 November 2018 lowering the Aviation Color Code from Yellow to Green after the ash emissions in October.

Figure (see Caption) Figure 25. Minor gas emissions were visible at Sarychev Peak in satellite imagery in mid-September and early October 2018; a possible weak thermal anomaly appeared in the summit vent in October. Top left: 13 September. Top right: 18 September. Bottom left: 8 October. Bottom right: 11 October. The 13 September image uses "Natural Color" rendering (bands 4, 3, 2) and the other images use "Geology" rendering (bands 12, 4, 2). Sentinel-2 satellite imagery courtesy of Sentinel Hub Playground.

Sentinel-2 satellite instruments in March, April, and May 2019 acquired images that showed dark streaks in the snow-covered peak radiating out from the summit vent in various directions. As the spring snows melted, more dark streaks appeared. It is unclear whether the streaks represent fresh ash, particulates from gas emissions in the snow, or concentrated material from earlier emissions that were exposed during the spring melting (figure 26). No further activity was reported until the Tokyo VAAC noted an eruption on 16 May 2019 that produced an ash plume which rose to 2.4 km altitude and drifted S. It was visible in satellite imagery for 3 or 4 hours before dissipating. SVERT reported the ash plume visible up to 50 km SE of the island. They also noted that weak thermal anomalies had been seen in satellite data on 10, 12, and 17 May 2019.

Figure (see Caption) Figure 26. Streaks of brown radiate outward from the summit vent at Sarychev Peak in Sentinel-2 satellite imagery taken during March-May 2019. The exact material and timing of deposition is unknown. Top left: 17 March. Top middle: 14 April. Top right: 19 April. Bottom left: 29 April, Bottom middle: 6 May. Bottom right: 26 May 2019. Sentinel-2 images with "Natural Color" rendering using bands 4,3, and 2. Courtesy of Sentinel Hub Playground.

Geologic Background. Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the sea.

Information Contacts: Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences, (FEB RAS IMGG), 693 022 Russia, Yuzhno-Sakhalinsk, ul. Science 1B (URL: http://imgg.ru/ru); Sakhalin Volcanic Eruption Response Team (SVERT), Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Science, Nauki st., 1B, Yuzhno-Sakhalinsk, Russia, 693022 (URL: http://www.imgg.ru/en/, http://www.imgg.ru/ru/svert/reports); Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Tokyo Volcanic Ash Advisory Center (VAAC), 1-3-4 Otemachi, Chiyoda-ku, Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Nyiragongo (DR Congo) — May 2019 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Lava lake remains active through May 2019; three new vents around the secondary cone

Since at least 1971 scientists and tourists have observed a lava lake within the Nyiragongo summit crater. Lava flows have been a hazard in the past for the nearby city of Goma (15 km S). The previous report (BGVN 43:06) of activity between November 2017 and May 2018 described nearly daily record of thermal anomalies due to the active lava lake and lava fountaining, gas-and-steam plumes, and the opening of a new vent within the crater in February 2016. Monthly reports from the Observatoire Volcanologique de Goma (OVG) disseminate information regarding the volcano's activity. This report updates the activity during June 2018-May 2019.

OVG noted that the level of the lava lake changes frequently, and was lower when observed on October 2018, 12 April 2019, and 12 May 2019. According to data from the OVG, on 15 April 2019 the secondary cone that formed in February 2016 produced lava flows and ejecta. In addition, at least three other vents formed surrounding this secondary cone. During most of April 2019 the lava lake was still active; however, beginning on 12 April 2019, seismic and lava lake activity both declined.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continues to show almost daily, strong thermal anomalies every month from June 2018 through 24 May 2019 (figure 66). Similarly, the MODVOLC algorithm reports a majority of the hotspot pixels (2,406) occurring within the lava lake at the summit crater (figure 67).

Figure (see Caption) Figure 66. Thermal anomalies at Nyiragongo for June 2018 through 24 May 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 67. Map showing the number of MODVOLC hotspot pixels at Nyiragongo from 1 June 2018 to 31 May 2019. Nyiragongo (2,423 pixels) is at the bottom center; Nyamuragira volcano (342 pixels) is about 13 km NW. Courtesy of HIGP-MODVOLC Thermal Alerts System.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Goma, North Kivu, DR Congo (URL: https://www.facebook.com/Observatoire-Volcanologique-de-Goma-OVG-180016145663568/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 38, Number 10 (October 2013)

Managing Editor: Richard Wunderman

Alaid (Russia)

Minor ash plumes on 17 and 23 October and 8 November 2012

Apoyeque (Nicaragua)

Seismic swarms in 2009 and 2012

Barren Island (India)

Ash plume drifted up to 220 km SW in February 2013

Cleveland (United States)

Dome growth and destruction during 2012-2013

Karymsky (Russia)

Seismicity and ash plumes, September 2010-December 2013

Negro, Cerro (Nicaragua)

Seismic swarm in 2013

Rabaul (Papua New Guinea)

Variable but often modest eruptions during mid-2011 through 2013



Alaid (Russia) — October 2013 Citation iconCite this Report

Alaid

Russia

50.861°N, 155.565°E; summit elev. 2285 m

All times are local (unless otherwise noted)


Minor ash plumes on 17 and 23 October and 8 November 2012

Our previous report noted weak seismicity from Alaid during November 2003, although seismologists determined it was not related to volcanic activity (BGVN 28:11). This report discusses activity from December 2003 to January 2014. Emissions were observed in May 2010 and October 2012, but ash was not detected in the plumes until 23 October 2012. The last thermal anomaly was detected in December 2012.

Alaid volcano is located on Atlasova island off the southern tip of Russia's Kamchatka peninsula and represents the northernmost Holocene volcano in the Kuril Islands (figures 2 and 3). Other names for the volcano and island include Araido, Atlasova, Oyakoba, and Uyakhuzhach (Ukviggen, 2013). Despite the islands small size, its summit (2,339 m elevation) is the highest in the Kuriles. The volcano also plays a large and colorful role in the region's folklore (Ukviggen, 2013; Svalova, 1999).

Figure (see Caption) Figure 2. A regional map showing Alaid volcano, located S of the Kamchatka Peninsula (K), S of the city Petropavlovsk-Kamchatsky (P-K), and W of Paramushir and Shumshu Islands. Alaid (red triangle) is located at Atlasora Island. The original map was in Russian with authorship information at lower right. Courtesy of Kamchatka Volcanic Eruption Response Team (KVERT).
Figure (see Caption) Figure 3. A simple map with S towards the top, illustrating Alaid on Atlasov island and some of the adjacent Holocene volcanoes in the Kuriles. Volcanoes on Kamchatka are omitted. Taken from Volcano World.

On 5 October 2012, (KVERT) changed the Aviation Color Code from Green to Yellow due to "signs of elevated unrest above known background levels." A Volcano Observatory Notification to Aviation (VONA) noted that a possible explosive eruption could produce an ash column height of 10-15 km. Because Alaid is located near many flight routes, an eruption poses hazards to aviation (Girina and others, 2013).

On 23 May a gas-and-steam plume from Alaid was seen in satellite imagery drifting 11 km ESE. No other signs of possible increasing activity were seen in imagery or noted by observers on Paramushir Island during 21-28 May. During 2012, thermal anomalies were detected on 6, 12, 14-17, 19, 23, 27-28 and 30-31 October, 1, 4, 6-9, 12, 14, 20 and 24 November, and 4 and 12 December. At times, satellites could not detect thermal anomalies over Alaid volcano because of cloud cover, for example during the end of December 2012 and the beginning of January 2013. Visual observations from the adjacent Paramushir and Shumshu islands reported steam activity on 5, 11, 16, 17, 23, 26 and 27 October 2012; steam plumes rose 200 m on 5 October and 3 km on 23 October. (KVERT) and Institute of Volcanology and Seismology (IVS) FED RAS photographs showed fumarole activity on 6, 11, 12, 16, 25 and 27 October and 29 November 2012.

Several ash plumes erupting from Alaid volcano were reported in October and November 2012. (KVERT) and (IVS) FED RAS photographs from 17 and 23 October showed steam plumes containing ash rising 700 m. During this time, a small cinder cone grew in the larger summit crater. The volcano and its summit crater can be observed during an interval of inactivity on figure 4. Observers on 8 November 2012 noted that the volcanic cone was covered by ash.

Figure (see Caption) Figure 4. Photograph of Alaid during clear viewing conditions taken by the International Space Station's Expedition 31 crew on 18 May 2012. The silver-gray appearance on the sea surface surrounding much of the volcano results from strongly reflected sunlight bounced off the sea surface (sunglint). The image was provided by the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center (Photo ID, ISS031-E-41959). Courtesy of the International Space Station, the Image Science & Analysis Laboratory at Johnson Space Center, and William L. Stefanov (Jacobs/ESCG at NASA-JSC).

Because of mechanical problems, seismicity could not be monitored for the majority of the time Alaid was at Aviation Color Code Yellow; seismic data was unavailable from January 2009 until November 2012. The seismic station was repaired on 16 November 2012, and KVERT noted moderate seismic activity. During early December, the amplitude of volcanic tremor was in the range 12.1-18.7 μm/s. After 11 December 2012, technical reasons again prevented further seismic data acquisition.

On 8 January 2013 the Aviation Color Code was reduced to Green, meaning that "volcanic activity was considered to have ceased, and the volcano reverted to its normal, non-eruptive state" (KVERT).

References: Svalova, VB, 1999, Geothermal Legends through History in Russia and the Former USSR: A Bridge to the Past, Geothermal Resources Council Transactions, v. 22 p.235-239. PDF file. (URL: http://pubs.geothermal-library.org/lib/grc/1015911.pdf)

Ukviggen, 2013, Alaid: Part 1–the Banished Beauty, Volcano Cafe, 24 April 2013. Accessed online 13 January 2014. (URL: http://volcanocafe.wordpress.com/2013/04/24/alaid-part-1-the-banished-beauty/)

Girina,O., Manevich, A., Melnikov, D., Nuzhdaev,A., Demyanchuk, Y., and Petrova, E., 2013, Explosive Eruptions of Kamchatkan Volcanoes in 2012 and Danger to Aviation, EGU General Assembly, (abstract), 2013 meeting in Vienna, Austria. (URL: http://adsabs.harvard.edu/abs/2013EGUGA..15.6760G).

Geologic Background. The highest and northernmost volcano of the Kuril Islands, 2285-m-high Alaid is a symmetrical stratovolcano when viewed from the north, but has a 1.5-km-wide summit crater that is breached widely to the south. Alaid is the northernmost of a chain of volcanoes constructed west of the main Kuril archipelago. Numerous pyroclastic cones dot the lower flanks of this basaltic to basaltic-andesite volcano, particularly on the NW and SE sides, including an offshore cone formed during the 1933-34 eruption. Strong explosive eruptions have occurred from the summit crater beginning in the 18th century. Reports of eruptions in 1770, 1789, 1821, 1829, 1843, 1848, and 1858 were considered incorrect by Gorshkov (1970). Explosive eruptions in 1790 and 1981 were among the largest in the Kuril Islands during historical time.

Information Contacts: Olga Girina, Kamchatka Volcanic Eruptions Response Team (KVERT), a cooperative program of the Institute of Volcanic Geology and Geochemistry, Far East Division, Russian Academy of Sciences, Piip Ave. 9, Petropavlovsk-Kamchatsky, 683006, Russia; Volcano World (URL: http://volcano.oregonstate.edu/alaid); and International Space Station, the Image Science & Analysis Laboratory at Nasa's Johnson Space Center, and William L. Stefanov (Jacobs Technology).


Apoyeque (Nicaragua) — October 2013 Citation iconCite this Report

Apoyeque

Nicaragua

12.242°N, 86.342°W; summit elev. 518 m

All times are local (unless otherwise noted)


Seismic swarms in 2009 and 2012

Within the last five years, Instituto Nicaragüense de Estudios Territoriales (INETER) reported at least two seismic swarms at Apoyeque, and between the Chiltepe Peninsula and the city of Managua (~15 km SE) (figure 1). Our last report also highlighted swarms which lasted several hours and days in 2001 and 2007 (BGVN 34:04). Intermittent seismicity was reported within the region during 2009-2012, but events were rarely larger than M 2.5.

Figure (see Caption) Figure 1. Regional maps showing Apoyeque and the tectonic setting. (A) Sketch map highlighting volcanic centers in Central America relative to the active subduction of Cocos Plate beneath the Caribbean Plate. In Nicaragua active volcanism is concentrated inside the Nicaragua Depression (ND). The red box labeled "B" refers to the 50 x 50 km area that includes Apoyeque on the Chiltepe Peninsula. (B) This Landsat 7 image corresponds to the extent of the red box labeled "B" in the sketch map "A"; the Nejapa-Miraflores fault (NMF) marks an offset in the main arc and frequently generates seismicity. (C) Along the NMF, mainly monogenetic volcanoes have formed W of Managua city. Modified from Pardo and others, 2009.

2009 swarm. INETER reported a seismic swarm on 29 September 2009. It began at 1800 local time in an area W of Apoyeque volcano. The main event occurred at 1817 local time, with a ML 3.1 event at a depth of 5 km. The earthquake was felt by the population in Sandino City, ~5 km W of the earthquakes. The seismic swarm lasted until 2 October 2009; the total number of detected earthquakes was not disclosed.

2012 swarm. INETER reported a swarm that began at 1727 local time on 6 September 2012. The National Seismic Network detected and located the series of earthquakes between Apoyeque and the Nejapa-Miraflores fault (figure 1).

More than 20 earthquakes were detected and the two largest had magnitudes of 2.3 and 3.8, with depths of 2.8 and 6 km respectively; the largest event occurred at 1937 (figure 2). None of these earthquakes were reportedly felt by local populations and the event was assigned an Intensity II. The swarm lasted ~2 hours.

Figure (see Caption) Figure 2. Epicenters of the largest earthquakes from the Apoyeque swarm are plotted. INETER detected ~20 earthquakes on 6 September 2012 all within 30 km depth. Courtesy of INETER.

Avellán and others (2012) described the polygenetic Apoyeque volcano as belonging to the Nejapa volcanic field (figure 1), which is bound by the Nejapa fault system. There were 23 eruptions from the field within the last ~30 ka; 13 of these events were explosive (VEI 2). The most recent eruption was dated between 2,130 ± 40 and 1,245 ± 120 years BP. With respect to hazards implications, clear vent migration patterns were seemingly absent for this volcanic field. The authors concluded that there is a high probability of future, similar eruptions, particularly phreatomagmatic ones, within this area of Nicaragua.

References: Avellán, D.R., Macías, J.L., Pardo, N., Scolamacchia, T., and Rodriguez, D., 2012, Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa Volcanic Field, western Managua, Nicaragua, Journal of Volcanology and Geothermal Research, 213-214: 51-71.

Pardo, N., Macías, J.L., Giordano, G., Cianfarra, P., Avellán, D.R., and Bellatreccia, F., 2009, The ~1245 yr BP Asososca maar eruption: The youngest event along the Nejapa-Miraflores volcanic fault, Western Managua, Nicaragua, Journal of Volcanology and Geothermal Research, 184: 292-312.

Geologic Background. The Apoyeque volcanic complex occupies the broad Chiltepe Peninsula, which extends into south-central Lake Managua. The peninsula is part of the Chiltepe pyroclastic shield volcano, one of three large ignimbrite shields on the Nicaraguan volcanic front. A 2.8-km wide, 400-m-deep, lake-filled caldera whose floor lies near sea level truncates the low Apoyeque volcano, which rises only about 500 m above the lake shore. The caldera was the source of a thick mantle of dacitic pumice that blankets the surrounding area. The 2.5 x 3 km wide lake-filled Xiloá (Jiloá) maar, is located immediately SE of Apoyeque. The Talpetatl lava dome was constructed between Laguna Xiloá and Lake Managua. Pumiceous pyroclastic flows from Laguna Xiloá were erupted about 6100 years ago and overlie deposits of comparable age from the Masaya plinian eruption.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/).


Barren Island (India) — October 2013 Citation iconCite this Report

Barren Island

India

12.278°N, 93.858°E; summit elev. 354 m

All times are local (unless otherwise noted)


Ash plume drifted up to 220 km SW in February 2013

Our last Bulletin report (BGVN 36:06) noted that Barren Island was still erupting during 2011. This report both discusses an April 2010 ash plume that recently came to our attention and reports on activity as late as October 2013. A regional map appears in the last section.

On 19 April 2010, based on analysis of satellite imagery, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that a plume from Barren Island rose to an altitude of 2.4 km and drifted 55 km N. Ash, however, could not be identified from the satellite data.

A Twitter posting included the photo in figure 20, an image apparently acquired in December 2010. The Indian Navy (via Twitter) reported seeing "smoke" and lava was also seen on the island from a surveillance plane on 16 October 2013. A large hot spot is visible on recent MODIS satellite data.

Figure (see Caption) Figure 20. A photo of Barren Island emitting a dark ash plume from its main cone. The photo's metadata indicated that it was taken on 10 December 2010. Copyrighted photo by Paul Andrew Johnson and posted on Panoramio photo display website.

VAAC reported that on 16 February 2013 during 1430 to 2000 (UTC date and time) an ash plume from Barren Island reached an altitude of 6.1 km and drifted 220 km SW. Meteorological clouds masked the ash cloud after 2000 UTC and the VAAC warned that ash could still reside at altitude. The 16 February 2013 plume height was derived from a 1530 UTC MTSAT-2 infrared image and an atmospheric sounding at Penang made at 1200 UTC. The VAAC also created a forecast of the plume's movement based on the Hysplit model data.

Darwin VAAC found that on 17 October 2013 an ash plume rose to an altitude of 3.7 km and drifted ~30 km NW. The plume was first seen in imagery at 0732 UTC and last seen at 0932 UTC. Plume height was derived from MTSAT-2 visible wavelength image, observed ash movement, and comparison to winds from both an atmospheric model and a 0600 UTC sounding.

Regional map. A regional map brings together geography and tectonics of the region centered on Barren Island (figure 21).

Figure (see Caption) Figure 21. Location map for Barren Island seen on the digital version of the wall map "This Dynamic Planet" (Simkin and others, 2005). The background image is from ER Mapper. The oceanic bathymetry and on-land topography translate for this gray-scale image, forming two independent series ranging from dark (low) to light (high). Thus, deep ocean and low land are dark, and shallow ocean and high land are light. White triangles with black borders represent Holocene volcanoes (Siebert and Simkin, 2002). Labeled volcanoes are Barren Island, Narcondam (N); Popa (P) and the Singu Plateau (SP) in Myanmar, the Tengchong pyroclastic cones (T) in southern China. The curving white line is the convergent boundary between the Indian Plate and the Eurasian Plate, including the Burma sub-plate (BP) of the Eurasian Plate.

At Barren Island's latitude, the convergent boundary is the subduction zone named the Andaman trench; to the S is the Sumatran trench, and to the N is the continental-collision zone marked by the Indo-Myanmar ranges (IMR) and still farther N and W, the Himalayan front. The large white arrow shows the NNE relative-motion vector of ~60 mm/yr for the Indian Plate and the Eurasian PlateW of Sumatra. The 26 December 2004 Sumatran earthquake (Mw 9.3) is marked by a white dot. Taken from Sanjeev Raghav (2011).

References: Luhr, J. F. and Haldar, D., 2006, Barren Island volcano (NE Indian Ocean): island-arc high-alumina basalts produced by troctolite contamination; J. Volcanol. Geotherm. Res., vol. 149, pp. 177-212.

Ray, J.S, Pande K., Awasthi, N. 2013, A minimum age for the active Barren Island volcano, Andaman Sea, Current Science; Special Section: Earth Sciences, Vol. 104, No. 7, 10 April 2013.

Sanjeev, R. 2011, Barren Volcano- A Pictorial Journey From Recorded Past To Observed Recent Part-I Earth Science India, Open Access e-Journal, Popular Issue, IV (III), July, 2011; (URL: www.earthscienceindia.info ).

Siebert, L. and Simkin, T.,2002, Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions, Smithsonian Institution Global Volcanism Program, Digital Information Series, GVP-3.

Simkin, T., Tilling, R.I., Vogt, P.R., Kirby, S., Kimberly, P., and Stewart, D.B. This Dynamic Planet: World Map of Volcanoes, Earthquakes, Impact Craters, and Plate Tectonics U.S. Geological Survey (2005).

Geologic Background. Barren Island, a possession of India in the Andaman Sea about 135 km NE of Port Blair in the Andaman Islands, is the only historically active volcano along the N-S volcanic arc extending between Sumatra and Burma (Myanmar). It is the emergent summit of a volcano that rises from a depth of about 2250 m. The small, uninhabited 3-km-wide island contains a roughly 2-km-wide caldera with walls 250-350 m high. The caldera, which is open to the sea on the west, was created during a major explosive eruption in the late Pleistocene that produced pyroclastic-flow and -surge deposits. Historical eruptions have changed the morphology of the pyroclastic cone in the center of the caldera, and lava flows that fill much of the caldera floor have reached the sea along the western coast.

Information Contacts: Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina Northern Territory 0811 Australia; Twitter (URL: https://twitter.com/twitter); and VolcanoDiscovery (URL: http://www.volcanodiscovery.com/).


Cleveland (United States) — October 2013 Citation iconCite this Report

Cleveland

United States

52.825°N, 169.944°W; summit elev. 1730 m

All times are local (unless otherwise noted)


Dome growth and destruction during 2012-2013

In the previous Bulletin report (BGVN 37:01) we discussed a cycle of lava-dome growth within the summit crater from late 2011 through early 2012. That cycle of extrusion and destruction of domes continued into 2013. The lava dome observed on 30 January 2013 persisted to the end of this reporting period, September 2013. The dynamic conditions at Cleveland caused the Alaska Volcano Observatory (AVO) to report numerous changes in the Aviation Color Code and Alert Level, fluctuating between Yellow/Advisory and Orange/Watch throughout this time period (table 5).

Table 5. During 2012-2013, AVO announced changes in the Aviation Color Code and Volcano Alert Level for Cleveland. AVO and other US Observatories use a combination color code and alert level system that addresses both airborne and ground-based hazards (Gardner and Guffanti, 2006); the lowest level in this 4-step system is Normal/Green and the highest is Warning/Red. Courtesy of USGS-AVO.

Date of Change Aviation Color Code/ Volcano Alert Level
31 Jan 2012 Orange/Watch
23 Mar 2012 Yellow/Advisory
28 Mar 2012 Orange/Watch
30 May 2012 Yellow/Advisory
19 Jun 2012 Orange/Watch
05 Sep 2012 Yellow/Advisory
10 Nov 2012 Orange/Watch
21 Nov 2012 Yellow/Advisory
06 Feb 2013 Orange/Watch
08 Mar 2013 Yellow/Advisory
04 May 2013 Orange/Watch
04 Jun 2013 Yellow/Advisory

Continued explosions during 2012-2013. Cleveland has a history of frequent, minor ash emissions particularly during 2005-2009 (McGimsey and others, 2007; Neal and others, 2011) and with more frequency during 2011-2013 (Guffanti and Miller, 2013; De Angelis and others, 2012). During 2012-2013, Cleveland remained unmonitored by ground-based seismic instrumentation; volcanic unrest was primarily detected by the seismic network located on nearby Umnak Island (figure 12). Observations were also conducted with satellites that have capabilities of distinguishing ash from meteorological clouds during clear conditions: GOES (Geostationary Operational Environmental Satellite), POES (Polar Operational Environmental Satellite which carries the AVHRR scanner), and the Terra and Aqua satellites that carry MODIS sensors.

Figure (see Caption) Figure 12. Locations of Cleveland volcano (red triangle) and the infrasound stations in Alaska. Black dots are individual infrasound sensors co-located with seismic monitoring stations, yellow dots are infrasound arrays. The inset shows Umnak Island where the Okmok volcano stations are located; this is the closest seismic network to Cleveland. Map modified from De Angelis and others, 2012.

Additional assessments of explosive activity in this period were aided by (1) direct observations from mariners or pilots (PIREPS); (2) near real-time recordings of ground-coupled airwaves that characteristically arrive at seismic stations as extremely slow velocity signals, ~1 order of magnitude smaller than typical seismic velocity in the crust (De Angelis and others, 2012); (3) new infrasound detection capabilities recently expanded to include a station on Akutan (~500 km ENE of Cleveland).

De Angelis and others (2012) determined that 20 explosions were detected between December 2011 and August 2012, particularly by infrasound sensors as far away as 1,827 km from the active vent, as well as ground-coupled acoustic waves recorded at seismic stations across the Aleutian Arc. By retrospectively examining the record of airwaves from Cleveland, those authors determined that many explosions had gone unnoticed in satellite images, likely because of poor weather conditions that obscured the signal or because these explosions were brief, small, and lofted little ash.

Significant ash explosions in April-June 2012 and May 2013. During the 2012-2013reporting period, explosions from Cleveland's summit crater were most frequently detected during April and June 2012 (figure 13). Additional explosions were reported by AVO through July 2013. Relative quiescence (which included minor thermal anomalies visible in satellite images) followed and continued through September 2013.

Figure (see Caption) Figure 13. Satellite image of Cleveland collected on 9 June 2012 by the satellite Worldview-2. Snow persisted on the flanks during this time, but recent, minor ash deposits were visible around the summit crater. In this view, N is at the top of the image and the narrow isthmus connecting Cleveland to the rest of Chuginadak Island is at the R-hand side of the image (although not visible here). Courtesy of USGS-AVO and Digital Globe.

During 2012-2013, at least two explosions were large enough to generate ash plumes that reached >4 km above the summit crater. Both were reported by the Anchorage Volcanic Ash Advisory Center (VAAC) on 7 April 2012 and 4 May 2013. The April event produced a plume that rose ~6 km a.s.l.; AVO reported that ash drifted E at 18 m/s. The 4 May 2013 event (figure 14) generated an ash plume that rose ~4.6 km a.s.l. Based on POES data and AVO observations, the ash drifted SE at ~10 m/s and dissipated within 5 hours.

Figure (see Caption) Figure 14. (A) AVHRR satellite image of Cleveland was taken at 0643 on 4 May 2013. This infrared image shows elevated temperatures that were present at Cleveland's summit and a small, low-level eruption plume containing minor amounts of ash trailed to the E. The thermal anomaly appears as a white dot in the center of the image. Courtesy of USGS-AVO/UAF-GI. (B) True-color Terra MODIS satellite image acquired at 2050 on 4 May 2013 shows an eruption plume from Cleveland. The diffuse ash plume extended from Cleveland's summit and across the SW point of Umnak Island. Courtesy of USGS-AVO and Land Atmosphere Near-real time Capability for EOS (LANCE) system operated by the NASA/GSFC/Earth Science Data and Information System (ESDIS).

During 2012-2013, AVO reported that explosions were frequently attributed to dome destruction. Those events often completely removed the new lava domes from the crater (table 6).

Table 6. Cleveland's lava dome history during 2012-2013 based on a variety of observations of the Cleveland summit crater. Note that an earlier dome was destroyed during 25-29 December 2011 and was confirmed absent by 24 January 2012. Courtesy of USGS-AVO.

New Dome Date Observations
30 Jan 2012 40 m across. Dome was gone by 11 March 2012.
26 Mar 2012 70 m across. Dome was gone by 4 April 2012.
25 Apr 2012 25 m across. Dome was gone some time before 29 April 2012.
03 May 2012 25 m wide. Dome was gone by 6 May 2012.
30 Jan 2013 100 m wide. Dome persisted through September 2013.

More on elevated surface temperatures during 2012-2013. In addition to the case shown in figure 14A, thermal anomalies in the vicinity of Cleveland's summit crater were frequently detected during this reporting period. AVO inferred that these observations reflected a variety of volcanic activity such as fresh, hot tephra from recent explosions, the hot open conduit at the bottom of the summit crater, incandescent rock such as the above mentioned domes (table 6) at the surface, or hot volcaniclastic flow deposits on the flanks (figure 15).

Figure (see Caption) Figure 15. Composite image of the Cleveland summit area compiled from Landsat-8 images acquired on 8 June 2013. N is at the top of the image. Thermal infrared data are overlain onto a visible wavelength image; the extent of lava flows erupted during early May 2013 appears bright with colors corresponding to temperatures in the key (upper-L-hand corner). Temperature values are given in Kelvin, and range from 303-312 K (86-102 °F). The longest lava flows extended to ~715 m downslope from the summit. The summit was also covered by dark ash deposits and is surrounded by a low cloud deck. Courtesy of USGS-AVO.

AVO reported that a satellite-based thermal alarm was triggered on 12 June 2012, attributed to the formation of hot lahars or rubble flows on Cleveland's flanks. While no lava dome was present at that time (see table 6), this was a significant event that transported debris to 700 m elevation on the NW flank (note that Cleveland has a summit elevation of 1,730 m). Other deposits, likely from other lahars, were mobilized on the NNW and NNE flanks. The deposits were mainly confined to drainages; deposits extended >1.5 km in length. Flowage features on the SE and SW flanks reached >1 km in length. AVO scientists also noted that all flanks had shown signs of melted snow but cautioned that the visual effect could also be attributed to non-eruptive remobilization of existing fragmental material on the steep flanks.

Volcaniclastic deposits were also noted based in satellite images on 10 November 2012. These features were located on the E flank and extended ~1 km down the slope.

References: De Angelis, S., Fee, D., Haney, M., and Schneider, D., 2012. Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-coupled airwaves, Geophysical Research Letters, 39, L21312, doi:10.1029/2012GL053635.

Gardner, C.A. and Guffanti, M.C., 2006. U.S. Geological Survey's Alert Notification System for Volcanic Activity, USGS Fact Sheet 2006-3139.

Guffanti, M., and Miller, T., 2013. A volcanic activity alert-level system for aviation: review of its development and application in Alaska: Natural Hazards, 15 p., doi:0.1007/s11069-013-0761-4.

McGimsey, R.G., Neal, C.A., Dixon, J.P., and Ushakov, Sergey, 2007. 2005 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2007-5269, 94 p., available at http://pubs.usgs.gov/sir/2007/5269/.

Neal, C.A., McGimsey, R.G., Dixon, J.P., Cameron, C.E., Nuzhaev, A.A., and Chibisova, Marina, 2011. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory: U.S. Geological Survey Scientific Investigations Report 2010-5243, 94 p., available at http://pubs.usgs.gov/sir/2010/5243.

Geologic Background. The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a)U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667, USA (URL: http://www.avo.alaska.edu/), b)Geophysical Institute, University of Alaska, PO Box 757320, Fairbanks, AK 99775-7320, USA (URL: http://www.gi.alaska.edu/), and c)Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.dggs.alaska.gov/); and Anchorage Volcanic Ash Advisory Center (VAAC), 6930 Sand Lake Road, Anchorage, AK 99502, USA (URL: http://vaac.arh.noaa.gov/list_vaas.php).


Karymsky (Russia) — October 2013 Citation iconCite this Report

Karymsky

Russia

54.049°N, 159.443°E; summit elev. 1513 m

All times are local (unless otherwise noted)


Seismicity and ash plumes, September 2010-December 2013

This report summarizes activity at Karymsky from September 2010 to 31 December 2013. This period was characterized by frequent explosions with ash plumes, and persistent thermal anomalies. During this period, explosions catapulted ash to altitudes as high as 6.5 km (and possibly higher). According to Girina and others (2013), Karymsky has been in a state of explosive eruption since 1996.

The Kamchatka Volcanic Eruptions Response Team (KVERT) monitors the volcano by seismic instruments and by satellite. Occasionally, pilots and volcanologists observe the volcano visually; however, the volcano is frequently shrouded by clouds. KVERT does not directly observe ash plumes, but infers their presence and their maximum altitudes based upon seismic data, although sometimes satellite observations are used. Occasionally, plume altitudes and directions are provided by the Tokyo Volcanic Ash Advisory Center (VAAC), based on information from Yelizovo Airport (UHPP). The Aviation Color Code was Orange (the second highest) throughout the reporting period. This report is based on weekly KVERT online reports.

Figures 27 and 28 show Kamchatka and Karymsky in the context of both geography and representative aviation flight paths. Since Karymsky sits directly below a principal flight route and close to many others, tall ash plumes from Karymsky present an acute hazard to aircraft. More than 200 flights per day occurred over the North Pacific region at the end of 2007 (Neal and others, 2007). That translated to over 10,000 passengers and millions of dollars in cargo that flew across the North Pacific every day (Neal and others, 2007).

Figure (see Caption) Figure 27. The Northern Pacific region showing major Holocene volcanoes in red and selected aeronautical flight paths across the Russian Far East and North Pacific. Karymsky lies nearly directly below the major, bidirectional flight path G583. Taken from Neal and others (2009).
Figure (see Caption) Figure 28. A smaller-scale map than the one above, centered on the Kamchataka Peninsula showing major Holocene volcanoes including Karymsky, with a more detailed view of flight routes (arrows show directions of travel). Seismically monitored volcanoes are distinguished from those unmonitored, with about 30 real-time seismometers available in the region as of 2008. Alaid volcano, just S of Kamchatka, is the subject of a separate report in this issue of the Bulletin. Taken from Neal and others (2009).

September 2010-December 2012 activity. During September 2010-December 2010, KVERT weekly reports stated that seismic activity was at or above background levels. During January 2011-December 2012, most reports characterized the seismic activity as moderate. However, KVERT stated that activity was weak and moderate between 23 August-20 September 2012, during the week before 25 October 2012, and during all of December 2012. Activity was weak during the first week of July 2012.

According to KVERT, one or more ash explosions occurred weekly, and ash plumes rose to altitudes of 2-6.5 km, with most weekly values in the altitude range of 2.5-5 km. Explosive activity apparently weakened slightly during April and May 2012, with plume altitudes decreasing to 1.8-2.5 km, and apparently weakened further between mid-July and mid-August 2012, when KVERT did not report any ash plumes.

Figure 29 shows an image captured the MODIS instrument during May 2011. A plume is discernable to the edge of the image, ~140 km ESE. Radiating from the volcano is a pattern of recent ash fall deposits contrasting with broad snow cover.

Figure (see Caption) Figure 29. Satellite image of Karymsky acquired on 7 May 2011. Evidence of frequent eruptions is visible in this natural-color satellite image. Dark gray ash extends away from Karymsky's summit covering sectors of the volcano in radial patterns. A plume of ash extends to the SE, over Kronotskiy Kroniv (Kronotsky Gulf). The image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite. Courtesy of NASA's Earth Observatory (image by Jeff Schmaltz and original descriptive material by Robert Simmon).

During mid-September 2012, ash plume altitudes reached 5.5-6 km, but had decreased to a more normal 3 km in December 2012. On 11 April 2012, instruments aboard the Terra satellite detected ash deposits about 15 km long on the E flank. According to the Tokyo VAAC, an ash plume rose to an altitude of 7.3 km and drifted N on 13 March 2011, and to an altitude of 5.5-11.9 km and drifted SW on 18 April 2011; the Tokyo VAAC reported several other ash plumes during the reporting period, but the two mentioned here represent the maximum plumes heights recorded during the reporting period.

KVERT reported Stombolian activity during October 2010. A thermal anomaly was reported every week during this period, although clouds often obscured satellite data.

On 20 November 2010, volcanologists aboard a helicopter observed moderate gas-and-steam activity. Slopes near the summit were covered with ash. According to KVERT, volcanologists also visually observed weak gas-and-steam activity on 18 December 2012.

2013 activity. During January through March 2013, seismic activity fluctuated from weak to moderate. During April through mid-August, seismic activity was not recorded for technical reasons. From mid-August through the end of 2013, activity was moderate. When satellite data was included in 2013 KVERT weekly reports (6, 14 March; 11, 18 July; 5, 12, 19 September; 3 October), the volcano was either quiet or obscured by clouds.

KVERT reports from 10 October 2013 through at least 2 January 2014 stated that Strombolian and weak Vulcanian activity probably had occurred, because satellite data sometimes showed a bright thermal anomaly over the volcano along with ash plumes (figure 30). The reports did not mention this activity during earlier portions of the reporting period (September 2010-December 2013), except for mid-October 2010; however, because thermal anomalies persisted throughout the reporting period and ash plumes were common, we suspect that Strombolian and weak Vulcanian activity probably occurred often during this time.

During 2013, ash plumes seldom exceeded an altitude of 3.5 km. However, powerful ash explosions up to an altitude of 6 km were observed on 5 August by a helicopter crew and volcanologists on the flank of nearby Tolbachik volcano.

Figure (see Caption) Figure 30. Photo of Karymsky on 30 November 2013 showing Vulcanian explosion with ash cloud billowing upward. Look direction unknown. Courtesy of Institute of Volcanology and Seismology FEB RAS, KVERT (with credit to Alexander Bichenko. NP VK).

Lopez and others (2012) used "coincident measurements of infrasound, SO2, ash, and thermal radiation collected over a ten day period at Karymsky Volcano in August 2011 to characterize the observed activity and elucidate vent processes. The ultimate goal of this project is to enable different types of volcanic activity to be identified using only infrasound data, which would significantly improve our ability to continuously monitor remote volcanoes. Four types of activity were observed. Type 1 activity is characterized by discrete ash emissions occurring every 1- 5 minutes that either jet or roil out of the vent, by plumes from 500-1500 m (above vent) altitudes, and by impulsive infrasonic onsets. Type 2 activity is characterized by periodic pulses of gas emission, little or no ash, low altitude (100 - 200 m) plumes, and strong audible jetting or roaring. Type 3 activity is characterized by sustained emissions of ash and gas, with multiple pulses lasting from ~1-3 minutes, and by plumes from 300-1500 m. Type 4 activity is characterized by periods of relatively long duration (~30 minutes to >1 hour) quiescence, no visible plume and weak SO2 emissions at or near the detection limit, followed by an explosive, magmatic eruption, producing ash-rich plumes to >2,000 m, and centimeter to meter (or greater) sized pyroclastic bombs that roll down the flanks of the edifice. Eruption onset is accompanied by high-amplitude infrasound and occasionally visible shock-waves, indicating high vent overpressure."

The above meeting abstract ultimately led to the paper Lopez and others (2013). In the abstract for that work, the authors characterized the four types of activity as: (1) ash explosions, (2) pulsatory degassing, (3) gas jetting, and (4) explosive eruption.

Ongoing eruptions, often on a near daily basis, prevailed during January-March 2014, with thermal anomalies on satellite data, ash plumes hundreds of meters over the ~1.5 km summit's elevation. The plumes were visible in imagery for over 100 km downwind (often in the sector NE-E-SE).

References: Girina, O., Manevich, A., Melnikov, D., Nuzhdaev, A., Demyanchuk, Y., and Petrova, E., 2013, Explosive Eruptions of Kamchatkan Volcanoes in 2012 and Danger to Aviation, Geophysical Research Abstracts, Vol. 15, EGU General Assembly 2013 held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-6760.

Lopez, T., Fee, D, and Prata, F., 2012, Characterization of volcanic activity using observations of infrasound, volcanic emissions, and thermal imagery at Karymsky Volcano, Kamchatka, Russia, Geophysical Research Abstracts, Vol. 14, EGU General Assembly 2012, held 22-27 April, 2012 in Vienna, Austria., p.13076.

Lopez, T., D. Fee, F. Prata, and J. Dehn, 2013, Characterization and interpretation of volcanic activity at Karymsky Volcano, Kamchatka, Russia, using observations of infrasound, volcanic emissions, and thermal imagery, Geochem. Geophys. Geosyst., 14, 5106-5127, doi:10.1002/2013GC004817

Neal C, Girina O, Senyukov S, Rybin A, Osiensky J, Izbekov P, Ferguson G, 2009, Russian eruption warning systems for aviation. Natural Hazards, 51(2), p. 245-262

Neal, C, Girina, O, Senyukov, S, Rybin, A, Osiensky, J, Hall, T, Nelson, K, and Izbekov, P, 2007, Eruption Warning Systems for Aviation in Russia: A 2007 Status Report, World Meteorological Organization (WMO), in close collaboration with the International Civil Aviation Organization (ICAO) and the Civil Aviation Authority Of New Zealand, paper at the Fourth International Workshop On Volcanic Ash, Rotorua, New Zealand, 26-30 March 2007 [VAWS/4 WP/03-01] (URL: http://www.caem.wmo.int/moodle/file.php?file=/1/VWS/6_VAWS4WP0301_1_.pdf)

Geologic Background. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far East Division, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/); Tokyo Volcanic Ash Advisory Center (VAAC), Tokyo, Japan (URL: http://ds.data.jma.go.jp/svd/vaac/data/); Kamchatka Branch of Geophysical Survey of RAS (KB GS RAS) (URL: http://www.emsd.ru/); and Jeff Schmaltz and Robert Simmon, NASA Earth Observatory (URL: http://earthobservatory.nasa.gov).


Cerro Negro (Nicaragua) — October 2013 Citation iconCite this Report

Cerro Negro

Nicaragua

12.506°N, 86.702°W; summit elev. 728 m

All times are local (unless otherwise noted)


Seismic swarm in 2013

Since our last report (BGVN 37:01), Instituto Nicaragüense de Estudios Territoriales (INETER) continued to conduct fieldwork at Cerro Negro during 2012-2013 and reported that stable conditions prevailed except for a small seismic swarm detected in 2013.

INETER reported that from Cerro Negro's activity during 2012 was considered normal. Several significant landslides occurred that year, particularly from the S-SW interior rim of the primary crater. Seismicity was variable throughout the year with some interruptions of the signal (table 5).

Table 5.Seismicity was reported in INETER monthly reports during January-June 2012. Note that representative values are presented in the RSAM column (not mathematical averages) whereas the Max RSAM column contains the highest value recorded each month. There was a station outage during part of January. Courtesy of INETER.

Month # Eqs RSAM Max RSAM Tremor (hours/day)
Jan 43 ~20 160 na
Feb 85 ~20 80 3-18
March 76 ~50 255 1-16
April 162 ~20 50 1-15
May 111 12-30 65 some
June 179 10-20 45 1

A gas measurement campaign was conducted within Cerro Negro's main crater in collaboration with the Instituto Tecnologicos de Energias Renovables (ITER) in late 2012. During the course of fieldwork, on 26 and 30 November, and 1 December, the team measured diffuse CO2 emissions from the soil at 219 points. The preliminary results showed normal levels, ~33 tons per day, compared to past results from this area.

Temperature measurements for 2012 were reported based on the four different fumarolic sites within the main crater (figure 20). The range varied between 50 and 325 degrees C.

Figure (see Caption) Figure 20. Temperature measurements from Cerro Negro's crater summarized for 2011-2013. Data were collected December 2011-May 2013. Four different fumaroles were sampled and measured (fumaroles 1, 2, 3, and 6; for locations see figure 21). The data were collected at intervals of days and many are shown here (as in the original INETER plot) connected with line segments. Courtesy of INETER.
Figure (see Caption) Figure 21. The location of the four measured fumaroles located within Cerro Negro's largest crater. The view is approximately to the N. Courtesy of INETER.

Field investigations during March-June 2013 yielded additional observations of rockfalls and slides within the main crater. INETER also measured temperatures from the four fumarolic sites and concluded that steady conditions persisted (figure 20).

INETER reported a seismic swarm on 4 June 2013. RSAM had increased 60 units; 49 earthquakes were detected but were too small to be located. INETER maintained Alert Status Green and released informational statements to the media that described their response to the escalation and they also highlighted the potential of hazardous gas emissions for the area. The Sistema Nacional para Prevención, Mitigación y Atención de Desastres (SINAPRED) suggested that local residents and tourists in the area should be cautious around the flanks of Cerro Negro due to the possibility of rockfalls triggered by seismic events.

As a response to the increased seismicity that month, INETER conducted hot spring sampling and gas measuring campaigns in the area of Cerro Negro during 6-7 June. A team of fieldworkers focused on diffuse CO2 flux from the soil in a fault area on the W side of the Las Pilas-El Hoyo complex (SE of Cerro Negro, figure 15 in BGVN 37:01). The team took measurements 5 m apart at 91 points along a fault scarp, with depths of 11 and 40 cm within the soil; those measurements indicate an average flux of 59-80 ppm/s. No additional seismic unrest was reported during the month.

Geologic Background. Nicaragua's youngest volcano, Cerro Negro, was created following an eruption that began in April 1850 about 2 km NW of the summit of Las Pilas volcano. It is the largest, southernmost, and most recent of a group of four youthful cinder cones constructed along a NNW-SSE-trending line in the central Marrabios Range. Strombolian-to-subplinian eruptions at intervals of a few years to several decades have constructed a roughly 250-m-high basaltic cone and an associated lava field constrained by topography to extend primarily NE and SW. Cone and crater morphology have varied significantly during its short eruptive history. Although it lies in a relatively unpopulated area, occasional heavy ashfalls have damaged crops and buildings.

Information Contacts: Instituto Nicaragüense de Estudios Territoriales (INETER), Apartado Postal 2110, Managua, Nicaragua (URL: http://www.ineter.gob.ni/); Instituto Tecnológico y de Energías Renovables (ITER), 38611 Granadilla, Tenerife, Canary Islands, Spain (URL: http://www.iter.es/); Hoy: El Periodico que yo quiero, Managua, Nicaragua (URL: http://www.hoy.com.ni/2013/06/05/vigilan-al-volcán-cerro-negro/); and Sistema Nacional para Prevención, Mitigación y Atención de Desastres (SINAPRED), Managua, Nicaragua (URL: http://www.sinapred.gob.ni/).


Rabaul (Papua New Guinea) — October 2013 Citation iconCite this Report

Rabaul

Papua New Guinea

4.271°S, 152.203°E; summit elev. 688 m

All times are local (unless otherwise noted)


Variable but often modest eruptions during mid-2011 through 2013

The last Bulletin report on Rabaul Caldera (BGVN 36:07) recorded dozens of explosions in the first week of August 2011. The explosions produced ash-rich clouds that drifted NW and deposited ash in areas from Rabaul Town (3-5 km NW) to Nonga Village (10 km NW) (figure 57). This report covers activity from the end of August 2011 to December 2013, using data primarily compiled from the Rabaul Volcano Observatory (RVO) and the Darwin Volcanic Ash Advisory Center (VAAC). During this time, hundreds of small earthquakes were detected, almost all of which occurred congruently with ash emissions or explosions. One notable development occurred in July 2013, when a new lava dome formed on Tavurvur in the middle of a long period of eruptive activity running from April to September of the same year. Shortly after the dome's formation, strong venting of ash at Tavurvur gave way to explosions on 10 July that continued until 5 September, 2013. A second period of explosive activity began on 13 November, 2013, and terminated at the end of November.

Figure (see Caption) Figure 57. Location maps of Rabaul and Tavurvur Cone (a and b). White boxes in a and b zoom to show maps b and c, respectively. Maps derived from Google Earth Landsat images and modified to show regional reference points in relation to Rabaul's Tavurvur Cone. (c) map of Rabaul caldera derived from work by Almond and McKee and prepared by Lyn Topinka (US Geological Survey 1998).

August 2011 to November 2012. Rabaul Caldera was generally tranquil from 12 August 2011 to November 2012. During this time, only emissions of white vapor were seen rising from the cone, which became denser with the rain and humidity or periods of cool temperatures. Seismicity was low although several high frequency earthquakes NE of Tavurvur were recorded on 6 June 2012. GPS instruments recorded at least 2 cm of inflation (greater than the long-term decadal trend in inflation) and sub-continuous tremor was recorded by four local seismic stations 17-20 September 2011. Diffuse SO2 emissions recorded in late November 2012.

January and February 2013. At 2128 on 19 January 2013, Rabaul town residents and volcanologists at RVO heard loud rumbling and roaring noises from Tavurvur, marking the beginning of a period of activity that lasted until 2 February 2013 (table 12). RVO determined on the morning of 20 January that small discrete explosions had produced ash plumes during the night. Those plumes reached a maximum height of 500 m above the crater, and the prevailing winds pushed them E and SE.

Table 12.Maximum height above the crater, date, direction, and color for plumes from Tavurvur Cone from 19 January, 2013 to 7 February 2013. Seismicity during some of the events is also described. Courtesy of RVO.

DatePlume Height (m)DirectionColorSeismicity
1/19 500 E, SE N/A N/A
1/20 200 E, SE Light Gray N/A
1/22 200 S, SSE Gray N/A
1/22 (2148) 2000 SE, ESE Gray N/A
1/23 2000 SE Light Gray Numerous, associated with ash emissions
1/24 1000 E, ESE Light Gray Numerous, associated with volcanic degassing
1/25 700 E, ESE Light Gray Low, associated with ash emissions
1/26 500 ESE Gray Low, associated with ash emissions
1/27 500 ESE White and Light Gray Low, associated with ash emissions
1/28 500 ESE White and Light Gray Low
1/29 500 E, ESE Light Gray Low
1/30 500 ESE Light Gray Low
2/1 500 E, ESE Light Gray Low
2/2 500 E, ESE Light Gray Low
2/3 2000 E, NE Dark Gray Low, associated with ash emissions
2/4 2000 E, SE Light Gray Low, associated with ash emissions
2/5 2688 E, ENE Pale Gray Low, associated with ash emissions
2/6 2000 NW Pale Gray Low, associated with ash emissions
2/7 2000 NW Pale Gray Low, associated with ash emissions

On 21 January at 0930, RVO noted an increase in emissions from Tavurvur consisting of mostly water vapor and low volumes of ash that created a plume ranging in color from white to light gray. The plume rose to a maximum height of 200 m and drifted SW. These conditions remained constant for the next 24 hours, except for a loud explosion and several minutes of roaring and rumbling at 2335 that night. The vegetation on the north side of South Daughter (also known as Turangunan, see figure 57) turned brown, suggesting the release of SO2 from the volcano.

Further increase in emissions was noted at 0930 on 22 January, and plumes rose to a maximum height of 200m drifting to the SE. That night at 2147 a large explosion ejected both a light gray plume low in ash content and small amounts of incandescent spatter. Explosive noises were heard throughout the night and continued through 23 January. Both diffuse and dense ash plumes drifted SE. RVO remarked that calm meteorological conditions allowed the plume to ascend to a maximum altitude of 2,000 m. Activity at Tavurvur through 7 February was characterized by small-to-moderate explosions producing light-to-dark-gray ash clouds of low ash content and variable plume heights, constant white vapor, and low-to-moderate levels of roaring and rumbling. Ash affected areas downwind; ABC Australia Network News reported that the ash shut down New Britain airports until 31 January.

On 5 February, the Darwin VAAC reported a pale gray plume that rose to 2,000 m a.s.l. and drifted E and ENE.

Ash fell on Turangunan on 3 February. Very fine ash fell in Rabaul Town on 6 and 7 February due to a southeasterly wind blowing the plume NW from Tavurvur. There were no other affected areas.

March 2013. RVO recorded increased ash emissions on 3 March. Those emissions were brown and continued until 7 March. Volcanologists at RVO reported that the emissions increased over time throughout the latter part of 3 March and by 6 March were occurring nearly every minute. At the same time, many small earthquakes associated with ash emissions were detected. Four regional earthquakes were felt on 5 March at 1358, 1606, and 1621, and on 6 March at 1953. These earthquakes ranged from a magnitude of 5.1 to 5.4, originating SSE from Rabaul to the east of Wide Bay (see figure 57 for reference) at depths of 50-60 km. They were felt in Rabaul Town with intensities III - IV. RVO did not report any change in volcanic activity at this time. Earthquakes on 7 March occurred with instances of ash emissions, which had declined in frequency to once every few hours.

Tavurvur remained quiet until 12 March, when an explosion at 1108 expelled a dark gray-to-black billowing ash column for 40 minutes. Afterwards, emissions changed to billowing white ash clouds that rose 300 m and drifted SE.

April 2013 to September 2013. Activity at Tavurvur from 14 April until 9 July was characterized by ongoing roaring, rumbling, and diffuse to dense white plumes, including some occasionally laden with fine ash particles (table 13). Throughout the period, some low intensity earthquakes and some explosions were detected, which ejected ash clouds to variable heights. Many ash plumes were blown to the SE until 30 April, when the wind began blowing to the NW. As a result, downwind areas including Rabaul town experienced ashfall from 30 April to 9 September.

Table 13.Table describes the height, color, direction, and plume densities from Rabaul's Tavurvur cone as well as the areas affected by ash fall from 14 April to 5 September 2013. Note that towns referenced here can be found in figure 57. Courtesy of RVO and Darwin VAAC.

Date Plume Height (m) Ash Color Direction Notes Areas affected by ash fall
4/14 - 4/17 100 White SE diffuse to dense None
4/18 5288 White 35km E   None
4/19 - 4/23 100 White SE diffuse to dense None
4/24 - 4/28 200 White SE diffuse to dense None
4/29 - 5/16 200 White NW diffuse to dense Rabaul Town
5/17 - 6/15 800 White NW to SE diffuse to dense Rabaul Town
6/16 - 6/30 1000 White to Light Gray NW to SE diffuse to dense Rabaul Town
7/1 - 7/9 2000 White to Gray NW diffuse to dense Rabaul Town
7/10 -7/14 2000 Gray NW Moderate to dense Rabaul Town
7/15 - 7/21 2000 Light to Pale Gray E, NNE, NW, W, SW, Energetic explosions, fine ashfall Between Nodup and Rapolo, Rabaul town
7/22 - 7/31 2000 Light to Pale Gray E, NNE, NW, W, SW, Energetic explosions, fine ashfall Between Namanula and Malaguna No. 1, Rabaul Town, Malaguna No. 2, Vulcan Area
8/1 - 8/24 1000 Pale Gray NW Forceful emissions east Old Rabaul, Namanula Hill, Nonga Area, Rabaul Town, Malaguna No. 1
8/29 1800 Pale Gray 150 km NW Forceful emissions east Old Rabaul, Namanula Hill, Nonga Area, Rabaul Town, Malaguna No. 2
8/26 - 8/28 1000 Pale Gray NW Forceful emissions east Old Rabaul, Namanula Hill, Nonga Area, Rabaul Town, Malaguna No. 3
8/29 2100 Pale Gray 40 km NW Forceful emissions east Old Rabaul, Namanula Hill, Nonga Area, Rabaul Town, Malaguna No. 4
8/30 - 8/31 1000 Pale Gray NW Forceful emissions east Old Rabaul, Namanula Hill, Nonga Area, Rabaul Town, Malaguna No. 5
9/1 - 9/5 50 Pale Gray NW Strong winds re-suspended old ash Rabaul Town, exposure low - moderate

On 12 June 2013 a small lava dome, estimated to be 25-30 m high, began forming on the floor of Tavurvur. Photos taken that day appear as figures 58 and 59.

Figure (see Caption) Figure 58. Photo of the new lava dome forming on 12 June 2013. Courtesy of RVO.
Figure (see Caption) Figure 59. A new lava dome in Tavurvur, taken on 12 June 2013 with estimated scale bars. Courtesy of the RVO.

On 26 June, incandescence was observed at a vent on the dome and was associated with strong venting of steam and ash, which continued to 14 July.

A few discrete explosions occurred on 10 July, producing moderate to dense gray ash clouds. This low level eruptive activity persisted until 9 September, with energetic explosions producing mostly light-to-pale-gray ash clouds that drifted NW and affected areas downwind. The eruptions occurred at a varying range of intervals from ten's of seconds to hours.

From 14 April to 14 July, several small low-frequency earthquakes occurred. The majority of these were too small to be located, but time series data suggest that they originated near Tavurvur. In early July, a recently restored seismic station near Tavurvur confirmed that earthquakes were occurring beneath Tavurvur volcano. The station also detected smaller earthquakes that other seismic stations had not recorded. On 15 July, the level of seismicity increased, with events concurrent with ash emissions. On 1 August, seismicity increased and remained elevated until 9 September; seismic events continued to be associated with ash emissions.

Ground deformation during this entire period remained relatively stable, reflecting the long-term trend of uplift. On 11 May, the base station antenna broke, resulting in a loss of GPS data. Ground measurements using water tube tilt meters showed a slight inflation recorded at Matupit Island (see figure 57). Throughout the entire month of August, ground measurements showed slight deflation, but the long term inflation trend resumed beginning on 1 September.

During 1-5 September, RVO stated that "people in Rabaul town reported an odor reflective of chlorine. The substance that caused the odor is normal output of volcanic processes but an uncommon one. Its presence does not represent anything unusual or increase in volcanic activity."

Figure (see Caption) Figure 60. This natural color image of Tavurvur Cone emitting an ash plume on 6 August 2013 was acquired by the Advanced Land Imager (ALI) on the Earth Observing-1 (EO-1) satellite, and posted on the NASA Earth Observatory website. Note scale and N arrow at far left. Courtesy of Jesse Allen and Robert Simmon (Nasa Earth Observatory).

September to November 2013. The Darwin VAAC observed one ash plume on 27 September 2013. The plume rose to an altitude of 2,400 m a.s.l. and drifted 110 km NE and NW. No other activity was recorded until mid- November.

On 13 November 2013, a moderate explosion at Tavurvur produced a dense, gray billowing plume of ash which rose 1000 m and blew NW. More explosions followed at irregular intervals, and continued until 18 November. Ash plumes from those explosions were blown E, SE, and NW at lower altitudes and rose to a maximum height of 1000 m. Between explosions, wisps of white vapor rose from the volcano. Large explosions occurred at 0738, 0851, 1308, and 1903 on 13 November, and the next day at 2044. RVO reported minor inflation at the center of the caldera. There was some roaring and rumbling, but seismicity was low with small low-frequency earthquakes occurring with explosions.

During 19-30 November, Tavurvur produced fewer explosions, accompanied by white to light gray emissions, and small traces of diffuse to dense white vapors were occasionally observed. Those plumes drifted E, SE, and NW at a maximum height of 1,000 m above the crater summit. Two small, high-frequency volcano-tectonic earthquakes were detected during 23-27 November and located NE of Tavurvur.

December 2013. Little activity occurred at Rabaul during December. Minor emissions of mainly diffuse, though occasionally dense, white vapor occurred. A blue tint to the emissions was reported on some days during the reporting periodThere were no audible noises except for two two moderate explosions at 1850 on 15 December and 0732 on 22 December. Neither explosion was ash rich. RVO noted a weak fluctuating glow visible at night on 31 December.

Geologic Background. The low-lying Rabaul caldera on the tip of the Gazelle Peninsula at the NE end of New Britain forms a broad sheltered harbor utilized by what was the island's largest city prior to a major eruption in 1994. The outer flanks of the 688-m-high asymmetrical pyroclastic shield volcano are formed by thick pyroclastic-flow deposits. The 8 x 14 km caldera is widely breached on the east, where its floor is flooded by Blanche Bay and was formed about 1400 years ago. An earlier caldera-forming eruption about 7100 years ago is now considered to have originated from Tavui caldera, offshore to the north. Three small stratovolcanoes lie outside the northern and NE caldera rims. Post-caldera eruptions built basaltic-to-dacitic pyroclastic cones on the caldera floor near the NE and western caldera walls. Several of these, including Vulcan cone, which was formed during a large eruption in 1878, have produced major explosive activity during historical time. A powerful explosive eruption in 1994 occurred simultaneously from Vulcan and Tavurvur volcanoes and forced the temporary abandonment of Rabaul city.

Information Contacts: Rabaul Volcano Observatory, Department of Mineral Policy and Geohazards Management, Volcanological Observatory Geohazards Management Division, P.O. Box 386, Kokopo, East New Britain Province, Papua New Guinea; and Darwin Volcanic Ash Advisory Centre (VAAC) (URL: http://www.bom.gov.au/info/vaac/); Nasa Earth Observatory (URL: http://earthobservatory.nasa.gov); and ABC Australia Network News (URL: http://www.abc.net.au/news-01-31/an-png-airport-reopens-after-volcano-forces-closure/4492838).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).