Logo link to homepage

Bulletin of the Global Volcanism Network

All reports of volcanic activity published by the Smithsonian since 1968 are available through a monthly table of contents or by searching for a specific volcano. Until 1975, reports were issued for individual volcanoes as information became available; these have been organized by month for convenience. Later publications were done in a monthly newsletter format. Links go to the profile page for each volcano with the Bulletin tab open.

Information is preliminary at time of publication and subject to change.


Recently Published Bulletin Reports

Nyiragongo (DR Congo) Lava lake persists during June-November 2019

Ebeko (Russia) Frequent moderate explosions, ash plumes, and ashfall continue through November 2019

Nevado del Ruiz (Colombia) Intermittent ash plumes with significant gas and steam emissions during January 2016-December 2017

Sabancaya (Peru) Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Karangetang (Indonesia) Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Ulawun (Papua New Guinea) New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Nyamuragira (DR Congo) Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Bagana (Papua New Guinea) Intermittent gas-and-steam emissions and thermal anomalies during June-November 2019

Kerinci (Indonesia) Intermittent gas-and-steam and ash plumes during June-early November 2019

Bezymianny (Russia) Lava dome growth, ongoing thermal anomalies, moderate gas-steam emissions, June-November 2019

Mayon (Philippines) Gas-and-steam plumes and summit incandescence during May-October 2019

Merapi (Indonesia) Low-volume dome growth continues during April-September 2019 with rockfalls and small block-and-ash flows



Nyiragongo (DR Congo) — December 2019 Citation iconCite this Report

Nyiragongo

DR Congo

1.52°S, 29.25°E; summit elev. 3470 m

All times are local (unless otherwise noted)


Lava lake persists during June-November 2019

Nyiragongo is a stratovolcano with a 1.2 km-wide summit crater containing an active lava lake that has been present since at least 1971. It is located the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo, part of the western branch of the East African Rift System. Typical volcanism includes strong and frequent thermal anomalies, primarily due to the lava lake, incandescence, gas-and-steam plumes, and seismicity. This report updates activity during June through November 2019 with the primary source information from monthly reports by the Observatoire Volcanologique de Goma (OVG) and satellite data.

In the July 2019 monthly report, OVG stated that the lava lake level had dropped during the month, with incandescence only visible at night (figure 68). In addition, the small eruptive cone within the crater, which has been active since 2014, decreased in activity during this timeframe. A MONUSCO (United Nations Stabilization Mission in the Democratic Republic of the Congo) helicopter overflight took photos of the lava lake and observed that the level had begun to rise on 27 July. Seismicity was relatively moderate throughout this reporting period; however, on 9-16 July and 21 August strong seismic swarms were recorded.

Figure (see Caption) Figure 68. Webcam images of Nyiragongo on 20 July 2019 where incandescence is not visible during the day (left) but is observed at night (right). Incandescence is accompanied by gas-and-steam emissions. Courtesy of OVG.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data continued to show frequent and strong thermal anomalies within 5 km of the crater summit through November 2019 (figure 69). Similarly, the MODVOLC algorithm reported almost daily thermal hotspots (more than 600) within the summit crater between June 2019 through November. These data are corroborated with Sentinel-2 thermal satellite imagery and a photo from OVG on 19 December 2019 showing the active lava lake (figures 70 and 71).

Figure (see Caption) Figure 69. Thermal anomalies at Nyiragongo from 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent and strong. Courtesy of MIROVA.
Figure (see Caption) Figure 70. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) showed ongoing thermal activity (bright yellow-orange) at Nyiragongo during June through November 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 71. Photo of the active lava lake in the summit crater at Nyiragongo on 19 December 2019. Incandescence is accompanied by a gas-and-steam plume. Courtesy of OVG via Charles Balagizi.

Geologic Background. One of Africa's most notable volcanoes, Nyiragongo contained a lava lake in its deep summit crater that was active for half a century before draining catastrophically through its outer flanks in 1977. The steep slopes of a stratovolcano contrast to the low profile of its neighboring shield volcano, Nyamuragira. Benches in the steep-walled, 1.2-km-wide summit crater mark levels of former lava lakes, which have been observed since the late-19th century. Two older stratovolcanoes, Baruta and Shaheru, are partially overlapped by Nyiragongo on the north and south. About 100 parasitic cones are located primarily along radial fissures south of Shaheru, east of the summit, and along a NE-SW zone extending as far as Lake Kivu. Many cones are buried by voluminous lava flows that extend long distances down the flanks, which is characterized by the eruption of foiditic rocks. The extremely fluid 1977 lava flows caused many fatalities, as did lava flows that inundated portions of the major city of Goma in January 2002.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Charles Balagizi (Twitter: @CharlesBalagizi, https://twitter.com/CharlesBalagizi).


Ebeko (Russia) — December 2019 Citation iconCite this Report

Ebeko

Russia

50.686°N, 156.014°E; summit elev. 1103 m

All times are local (unless otherwise noted)


Frequent moderate explosions, ash plumes, and ashfall continue through November 2019

Activity at Ebeko includes frequent explosions that have generated ash plumes reaching altitudes of 1.5-6 km over the last several years, with the higher altitudes occurring since mid-2018 (BGVN 43:03, 43:06, 43:12, 44:07). Ash frequently falls in Severo-Kurilsk (7 km ESE), which is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT). This activity continued during June through November 2019; the Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Explosive activity during December 2018 through November 2019 often sent ash plumes to altitudes between 2.2 to 4.5 km, or heights of 1.1 to 3.4 km above the crater (table 8). Eruptions since 1967 have originated from the northern crater of the summit area (figure 20). Webcams occasionally captured ash explosions, as seen on 27 July 2019(figure 21). KVERT often reported the presence of thermal anomalies; particularly on 23 September 2019, a Sentinel-2 thermal satellite image showed a strong thermal signature at the crater summit accompanied by an ash plume (figure 22). Ashfall is relatively frequent in Severo-Kurilsk (7 km ESE) and can drift in different direction based on the wind pattern, which can be seen in satellite imagery on 30 October 2019 deposited NE and SE from the crater(figure 23).

Table 8. Summary of activity at Ebeko, December 2018-November 2019. S-K is Severo-Kurilsk (7 km ESE of the volcano). TA is thermal anomaly in satellite images. Data courtesy of KVERT.

Date Plume Altitude (km) Plume Distance Plume Directions Other Observations
30 Nov-07 Dec 2018 3.6 -- E Explosions. Ashfall in S-K on 1, 4 Dec.
07-14 Dec 2018 3.5 -- E Explosions.
25 Jan-01 Feb 2019 2.3 -- -- Explosions. Ashfall in S-K on 27 Jan.
02-08 Feb 2019 2.3 -- -- Explosions. Ashfall in S-K on 4 Feb.
08-15 Feb 2019 2.5 -- -- Explosions. Ashfall in S-K on 11 Feb.
15-22 Feb 2019 3.6 -- -- Explosions.
22-26 Feb 2019 2.5 -- -- Explosions. Ashfall in S-K on 23-26 Feb.
01-02, 05 Mar 2019 -- -- -- Explosions. Ashfall in S-K on 1, 5 Mar.
08-10 Mar 2019 4 30 km ENE Explosions. Ashfall in S-K on 9-10 Mar.
15-19, 21 Mar 2019 4.5 -- -- Explosions. Ashfall in S-K on 15-16, 21 Mar.
22, 24-25, 27-28 Mar 2019 4.2 -- -- Explosions. Ashfall in S-K on 24-25, 27 Mar.
29-31 Mar, 01, 04 Apr 2019 3.2 -- -- Explosions. Ashfall in S-K on 31 Mar. TA on 31 Mar.
09 Apr 2019 2.2 -- -- Explosions.
12-15 Apr 2019 3.2 -- -- Explosions. TA on 13 Apr.
21-22, 24 Apr 2019 -- -- -- Explosions.
26 Apr-03 May 2019 3 -- -- Explosions.
04, 06-07 May 2019 3.5 -- -- Explosions. TA on 6 May.
12-13 May 2019 2.5 -- -- Explosions. TA 12-13 May.
16-20 May 2019 2.5 -- -- Explosions. TA on 16-17 May.
25-28 May 2019 3 -- -- Explosions. TA on 27-28 May.
03 Jun 2019 3 -- E Explosions.
12 Jun 2019 -- -- -- TA.
14-15 Jun 2019 2.5 -- NW, NE Explosions.
21-28 Jun 2019 -- -- -- TA on 23 June.
28 Jun-05 Jul 2019 4.5 -- Multiple Explosions. TA on 29 Jun, 1 Jul.
05-12 Jul 2019 3.5 -- S Explosions. TA on 11 Jul.
15-16 Jul 2019 2 -- S, SE Explosions. TA on 13-16, 18 Jul.
20-26 Jul 2019 4 -- Multiple Explosions. TA on 18, 20, 25 Jul
25-26, 29 Jul, 01 Aug 2019 2.5 -- Multiple Explosions.
02, 04 Aug 2019 3 -- SE Explosions. TA on 2, 4 Aug.
10-16 Aug 2019 3 -- SE Explosions. TA on 10, 12 Aug.
17-23 Aug 2019 3 -- SE Explosions. TA on 16 Aug.
23, 27-28 Aug 2019 3 -- E Explosions. TA on 23 Aug.
30-31 Aug, 03-05 Sep 2019 3 -- E, SE Explosions on 30 Aug, 3-5 Sep. TA on 30-31 Aug.
07-13 Sep 2019 3 -- S, SE, N Explosions. Ashfall in S-K on 6 Sep. TA on 8 Sep.
13-15, 18 Sep 2019 2.5 -- E Explosions. TA on 15 Sep.
22-23 Sep 2019 3 -- E, NE Explosions. Ashfall in S-K.
27 Sep-04 Oct 2019 4 -- SE, E, NE Explosions.
07-08, 10 Oct 2019 2.5 -- E, NE Explosions. Ashfall in S-K on 4-5 Oct. Weak TA on 8 Oct.
11-18 Oct 2019 4 -- NE Explosions. Ashfall in S-K on 15 Oct. Weak TA on 12 Oct.
18, 20-21, 23 Oct 2019 3 -- N, E, SE Explosions. Weak TA on 20 Oct.
25-26, 29-30 Oct 2019 2.5 -- E, NE Explosions. Weak TA on 29 Oct.
02-06 Nov 2019 3 -- N, E, SE Explosions.
11-12, 14 Nov 2019 3 -- E, NE Explosions.
15-17, 20 Nov 2019 3 -- SE, NE Explosions.
22-23, 28 Nov 2019 2.5 -- SE, E Explosions. Ashfall in S-K on 23 Nov.
Figure (see Caption) Figure 20. Satellite image showing the summit crater complex at Ebeko, July 2019. Monthly mosaic image for July 2019, copyright 2019 Planet Labs, Inc.
Figure (see Caption) Figure 21. Webcam photo of an explosion and ash plume at Ebeko on 27 July 2019. Videodata by IMGG FEB RAS and KB GS RAS (color adjusted and cropped); courtesy of Institute of Volcanology and Seismology FEB RAS, KVERT.
Figure (see Caption) Figure 22. Satellite images showing an ash explosion from Ebeko on 23 September 2019. Top image is in natural color (bands 4, 3, 2). Bottom image is using "Atmospheric Penetration" rendering (bands 12, 11, 8A) to show a thermal anomaly in the northern crater visible around the rising plume. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 23. A satellite image of Ebeko from Sentinel-2 (LC1 natural color, bands 4, 3, 2) on 30 October 2019 showing previous ashfall deposits on the snow going in multiple directions. Courtesy of Sentinel Hub Playground.

The MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data detected four low-power thermal anomalies during the second half of July, and one each in the months of June, August, and October; no activity was recorded in September or November MODVOLC thermal alerts observed only one thermal anomaly between June through November 2019.

Geologic Background. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Planet Labs, Inc. (URL: https://www.planet.com/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Nevado del Ruiz (Colombia) — December 2019 Citation iconCite this Report

Nevado del Ruiz

Colombia

4.892°N, 75.324°W; summit elev. 5279 m

All times are local (unless otherwise noted)


Intermittent ash plumes with significant gas and steam emissions during January 2016-December 2017

Nevado del Ruiz is a glaciated volcano in Colombia (figure 86). It is known for the 13 November 1985 eruption that produced an ash plume and associated pyroclastic flows onto the glacier, triggering a lahar that approximately 25,000 people in the towns of Armero (46 km west) and Chinchiná (34 km east). Since 1985 activity has intermittently occurred at the Arenas crater. The eruption that began on 18 November 2014 included ash plumes dominantly dispersed to the NW of Arenas crater (BGVN 42:06). This bulletin summarizes activity during January 2016 through December 2017 and is based on reports by Servicio Geologico Colombiano and Observatorio Vulcanológico y Sismológico de Manizales, Washington Volcanic Ash Advisory Center (VAAC) notices, and satellite data.

Figure (see Caption) Figure 86. A satellite image of Nevado del Ruiz showing the location of the active Arenas crater. September 2019 Monthly Mosaic image copyright Planet Labs 2019.

Activity during 2016. Throughout January 2016 ash and steam plumes were observed reaching up to a few kilometers. Significant water vapor and volcanic gases, especially SO2, were detected throughout the month. Thermal anomalies were detected in the crater on the 27th and 31st. Significant water vapor and volcanic gas plumes, in particular SO2, were frequently detected by the SCAN DOAS (Differential Optical Absorption Spectroscopy) station and satellite data (figure 87). A M3.2 earthquake was felt in the area on 18 January. Similar activity continued through February with notable ash plumes up to 1 km, and a M3.6 earthquake was felt on the 6th. Ash and gas-and-steam plumes were reported throughout March with a maximum of 3.5 km on the 31st (figure 88). Significant water vapor and gas plumes continued from the Arenas crater throughout the month, and a thermal anomaly was noted on the 28th. An increase in seismicity was reported on the 29th.

Figure (see Caption) Figure 87. Examples of SO2 plumes from Nevado del Ruiz detected by the Aura/OMI instrument on 10, 26, and 31 January 2019. Courtesy of Goddard Space Flight Center.
Figure (see Caption) Figure 88. Ash plumes at Nevado del Ruiz during March. Webcam images courtesy of Servicio Geologico Colombiano, various 2016 reports.

The activity continued into April with a M 3.0 earthquake felt by nearby inhabitants on the 8th, an increase in seismicity reported in the week of 12-18, and another significant increase on the 28th with earthquakes felt around Manizales. Thermal anomalies were noted during 12-18 April with the largest on the 16th. Ash plumes continued through the month as well as significant steam-and-gas plumes. Ashfall was reported in Murillo on the 29th.

The elevated activity continued through May with significant steam plumes up to 1.7 km above the crater during the week of 10-16. Thermal anomalies were reported on the 11th and 12th. Steam, gas, and ash plumes reached 2.5 km above the crater and dispersed to the W and NW. Ashfall was reported in La Florida on the 20th (figure 89) and multiple ash plumes on the 22nd reached 2.5 km and resulted in the closure of the La Nubia airport in Manizales. Ash and gas-and-steam emission continued during June (figure 90).

Figure (see Caption) Figure 89. Ash plumes at Nevado del Ruiz on 17, 18, and 20 May 2016 with fine ash deposited on a car in La Florida, Manizales on the 20th. Webcams located in the NE Guali sector of the volcano, courtesy of Servicio Geologico Colombiano 20 May 2016 report.
Figure (see Caption) Figure 90. Examples of gas-and-steam and ash plumes at Nevado del Ruiz during June and July 2016. Courtesy of Servicio Geologico Colombiano (7 July 2016 report).

Similar activity was reported in July with gas-and-steam and ash plumes often dispersing to the NW and W. Ashfall was reported to the NW on 16 July (figure 91). Drumbeat seismicity was detected on 13, 15, 16, and 17 July, with two hours on the 16th being the longest duration episode do far. Drumbeat seismicity was noted by SGC as indicating dome growth. Significant water vapor and gas emissions continued through August. Ash plumes were reported through the month with plumes up to 1.3 km above the crater on 28 and 2.3 km on 29. Similar activity was reported through September as well as a thermal anomaly and ash deposition apparent in satellite data (figure 92). Drumbeat seismicity was noted again on the 17th.

Figure (see Caption) Figure 91. The location of ashfall resulting from an explosion at Nevado del Ruiz on 16 July 2016 and a sample of the ash under a microscope. The ash is composed of lithics, plagioclase and pyroxene crystals, and minor volcanic glass. Courtesy of Servicio Geologico Colombiano (16 July 2016 report).
Figure (see Caption) Figure 92. This Sentinel-2 thermal infrared satellite image shows elevated temperatures in the Nevado del Ruiz Arenas crater (yellow and orange) on 16 September 2016. Ash deposits are also visible to the NW of the crater. In this image blue is snow and ice. False color (urban) satellite image (bands 12, 11, 4) courtesy of Sentinel Hub Playground.

During the week of 4-10 October it was noted that activity consisting of regular ash plumes had been ongoing for 22 months. Ash plumes continued with reported plumes reaching 2.5 above the crater throughout October (figure 93), accompanied by significant steam and water vapor emissions. A M 4.4 earthquake was felt nearby on the 7th. Similar activity continued through November and December 2016 with plumes consisting of gas and steam, and sometimes ash reaching 2 km above the crater.

Figure (see Caption) Figure 93. An ash plume rising above Nevado del Ruiz on 27 October 2016. Courtesy of Servicio Geologico Colombiano.

Activity during 2017. Significant steam and gas emissions, especially SO2, continued into early 2017. Ash plumes detected through seismicity were confirmed in webcam images and through local reports; the plumes reached a maximum height of 2.5 km above the volcano on the 6th (figure 94). Drumbeat seismicity was recorded during 3-9, and on 22 January. Inflation was detected early in the month and several thermal anomalies were noted.

Intermittent deformation continued into February. Significant steam-and-gas emissions continued with intermittent ash plumes reaching 1.5-2 km above the volcano. Thermal anomalies were noted throughout the month and there was a significant increase in seismicity during 23-26 February.

Figure (see Caption) Figure 94. Ash plumes at Nevado del Ruiz on 6 January 2017. Courtesy of Servicio Geologico Colombiano.

Thermal anomalies continued to be detected through March. Ash plumes continued to be observed and recorded in seismicity and maximum heights of 2 km above the volcano were noted. Deflation continued after the intermittent inflation the previous month. On 10-11 April a period of short-duration and very low-energy drumbeat seismicity was recorded. Significant gas and steam emission continued through April with intermittent ash plumes reaching 1.5 km above the volcano. Thermal anomalies were detected early in the month.

Unrest continued through May with elevated seismicity, significant steam-and-gas emissions, and ash plumes reaching 1.7 km above the crater. Five episodes of drumbeat seismicity were recorded on 29 May and intermittent deformation continued. There were no available reports for June and July.

Variable seismicity was recorded during August and deflation was measured in the first week. Gas-and-steam plumes were observed rising to 850 m above the crater on the 3rd, and 450 m later in the month. A thermal anomaly was noted on the 14th. There were no available reports for September through December.

On 18 December 2017 the Washington VAAC issued an advisory for an ash plume to 6 km that was moving west and dispersing. The plume was described as a "thin veil of volcanic ash and gasses" that was seen in visible satellite imagery, NOAA/CIMSS, and supported by webcam imagery.

Geologic Background. Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers more than 200 km2. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the caldera of an older edifice. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. The prominent La Olleta pyroclastic cone located on the SW flank may also have been active in historical time. Steep headwalls of massive landslides cut the flanks. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption.

Information Contacts: Servicio Geologico Colombiano (SGC), Diagonal 53 No. 34-53 - Bogotá D.C., Colombia (URL: https://www2.sgc.gov.co/volcanes/index.html); Observatorio Vulcanológico y Sismológico de Manizales (URL: https://www.facebook.com/ovsmanizales); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS OSPO, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: www.ospo.noaa.gov/Products/atmosphere/vaac); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://so2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Sabancaya (Peru) — December 2019 Citation iconCite this Report

Sabancaya

Peru

15.787°S, 71.857°W; summit elev. 5960 m

All times are local (unless otherwise noted)


Explosions, ash and SO2 plumes, thermal anomalies, and lava dome growth during June-November 2019

Sabancaya is an andesitic stratovolcano located in Peru. The most recent eruptive episode began in early November 2016, which is characterized by gas-and-steam and ash emissions, seismicity, and explosive events (BGVN 44:06). The ash plumes are dispersed by wind with a typical radius of 30 km, which occasionally results in ashfall. Current volcanism includes high seismicity, gas-and-steam emissions, ash and SO2 plumes, numerous thermal anomalies, and explosive events. This report updates information from June through November 2019 using information primarily from the Instituto Geofisico del Peru (IGP) and Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico) (OVI-INGEMMET).

Table 5. Summary of eruptive activity at Sabancaya during June-November 2019 based on IGP weekly reports, the Buenos Aires VAAC advisories, the HIGP MODVOLC hotspot monitoring algorithm, and Sentinel-5P/TROPOMI satellite data.

Month Avg. Daily Explosions by week Max plume Heights (km above crater) Plume drift MODVOLC Alerts Min Days with SO2 over 2 DU
Jun 2019 12, 13, 16, 17 2.6-3.8 30 km S, SW, E, SE, NW, NE 15 20
Jul 2019 23, 22, 16, 13 2.3-3.7 E, SE, S, NE 7 25
Aug 2019 12, 30, 25, 26 2-4.5 30 km NW, W S, NE, SE, SW 7 25
Sep 2019 29, 32, 24, 15 1.5-2.5 S, SE, E, W, NW, SW 14 26
Oct 2019 32, 36, 44, 48, 28 2.5-3.5 S, SE, SW, W 11 25
Nov 2019 58, 50, 47, 17 2-4 W, SW, S, NE, E 13 22

Explosions, ash emissions, thermal signatures, and high concentrations of SO2 were reported each week during June-November 2019 by IGP, the Buenos Aires Volcanic Ash Advisory Centre (VAAC), HIGP MODVOLC, and Sentinel-2 and Sentinel-5P/TROPOMI satellite data (table 5). Thermal anomalies were visible in the summit crater, even in the presence of meteoric clouds and ash plumes were occasionally visible rising from the summit in clear weather (figure 68). The maximum plume height reached 4.5 km above the crater drifting NW, W, and S the week of 29 July-4 August, according to IGP who used surveillance cameras to visually monitor the plume (figure 69). This ash plume had a radius of 30 km, which resulted in ashfall in Colca (NW) and Huambo (W). On 27 July the SO2 levels reached a high of 12,814 tons/day, according to INGEMMET. An average of 58 daily explosions occurred in early November, which is the largest average of this reporting period.

Figure (see Caption) Figure 68. Sentinel-2 satellite imagery detected ash plumes, gas-and-steam emissions, and multiple thermal signatures (bright yellow-orange) in the crater at Sabancaya during June-November 2019. Sentinel-2 atmospheric penetration (bands 12, 11, 8A) images courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 69. A webcam image of an ash plume rising from Sabancaya on 1 August 2019 at least 4 km above the crater. Courtesy of IGP.

Seismicity was also particularly high between August and September 2019, according to INGEMMET. On 14 August, roughly 850 earthquakes were detected. There were 280 earthquakes reported on 15 September, located 6 km NE of the crater. Both seismic events were characterized as seismic swarms. Seismicity decreased afterward but continued through the reporting period.

In February 2017, a lava dome was established inside the crater. Since then, it has been growing slowly, filling the N area of the crater and producing thermal anomalies. On 26 October 2019, OVI-INGEMMET conducted a drone overflight and captured video of the lava dome (figure 70). According to IGP, this lava dome is approximately 4.6 million cubic meters with a growth rate of 0.05 m3/s.

Figure (see Caption) Figure 70. Drone images of the lava dome and degassing inside the crater at Sabancaya on 26 (top) and 27 (bottom) October 2019. Courtesy of INGEMMET (Informe Ténico No A6969).

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, consistent thermal anomalies occurring all throughout June through November 2019 (figure 71). In conjunction with these thermal anomalies, the October 2019 special issue report by INGEMMET showed new hotspots forming along the crater rim in July 2018 and August 2019 (figure 72).

Figure (see Caption) Figure 71. Thermal anomalies at Sabancaya for 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) were frequent, strong, and consistent. Courtesy of MIROVA.
Figure (see Caption) Figure 72. Thermal hotspots on the NW section of the crater at Sabancaya using MIROVA images. These images show the progression of the formation of at least two new hotspots between February 2017 to August 2019. Courtesy of INGEMMET, Informe Técnico No A6969.

Sulfur dioxide emissions also persisted at significant levels from June through November 2019, as detected by Sentinel-5P/TROPOMI satellite data (figure 73). The satellite measurements of the SO2 emissions exceeded 2 DU (Dobson Units) at least 20 days each month during this time. These SO2 plumes sometimes occurred for multiple consecutive days (figure 74).

Figure (see Caption) Figure 73. Consistent, large SO2 plumes from Sabancaya were seen in TROPOMI instrument satellite data throughout June-November 2019, many of which drifted in different directions based on the prevailing winds. Courtesy of NASA Goddard Space Flight Center.
Figure (see Caption) Figure 74. Persistent SO2 plumes from Sabancaya appeared daily during 13-16 September 2019 in the TROPOMI instrument satellite data. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Information Contacts: Instituto Geofisico del Peru (IGP), Calle Badajoz N° 169 Urb. Mayorazgo IV Etapa, Ate, Lima 15012, Perú (URL: https://www.gob.pe/igp); Observatorio Volcanologico del INGEMMET (Instituto Geológical Minero y Metalúrgico), Barrio Magisterial Nro. 2 B-16 Umacollo - Yanahuara Arequipa, Peru (URL: http://ovi.ingemmet.gob.pe); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Buenos Aires Volcanic Ash Advisory Center (VAAC), Servicio Meteorológico Nacional-Fuerza Aérea Argentina, 25 de mayo 658, Buenos Aires, Argentina (URL: http://www.smn.gov.ar/vaac/buenosaires/inicio.php); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Karangetang (Indonesia) — December 2019 Citation iconCite this Report

Karangetang

Indonesia

2.781°N, 125.407°E; summit elev. 1797 m

All times are local (unless otherwise noted)


Lava flows, strong thermal anomalies, gas-and-steam emissions, and ash plumes during May-November 2019

Karangetang (also known as Api Siau), located on the island of Siau in the Sitaro Regency, North Sulawesi, Indonesia, has experienced more than 40 recorded eruptions since 1675 in addition to many smaller undocumented eruptions. In early February 2019, a lava flow originated from the N crater (Kawah Dua) traveling NNW and reaching a distance over 3 km. Recent monitoring showed a lava flow from the S crater (Kawah Utama, also considered the "Main Crater") traveling toward the Kahetang and Batuawang River drainages on 15 April 2019. Gas-and-steam emissions, ash plumes, moderate seismicity, and thermal anomalies including lava flow activity define this current reporting period for May through November 2019. The primary source of information for this report comes from daily and weekly reports by the Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM, or the Center of Volcanology and Geological Hazard Mitigation), the Darwin Volcanic Ash Advisory Center (VAAC), and satellite data.

PVMBG reported that white gas-and-steam emissions were visible rising above both craters consistently between May through November 2019 (figures 30 and 31). The maximum altitude for these emissions was 400 m above the Dua Crater on 27 May and 700 m above the Main Crater on 12 June. Throughout the reporting period PVMBG noted that moderate seismicity occurred, which included both shallow and deep volcanic earthquakes.

Figure (see Caption) Figure 30. A Sentinel-2 image of Karangetang showing two active craters producing gas-and-steam emissions with a small amount of ash on 7 August 2019. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 31. Webcam images of gas-and-steam emissions rising from the summit of Karangetang on 14 (top) and 25 (bottom) October 2019. Courtesy of PVMBG via Øystein Lund Andersen.

Activity was relatively low between May and June 2019, consisting mostly of gas-and-steam emissions. On 26-27 May 2019 crater incandescence was observed above the Main Crater; white gas-and-steam emissions were rising from both craters (figures 32 and 33). At 1858 on 20 July, incandescent avalanches of material originating from the Main Crater traveled as far as 1 km W toward the Pangi and Kinali River drainages. By 22 July the incandescent material had traveled another 500 m in the same direction as well as 1 km in the direction of the Nanitu and Beha River drainages. According to a Darwin VAAC report, discreet, intermittent ash eruptions on 30 July resulted in plumes drifting W at 7.6 km altitude and SE at 3 km, as observed in HIMAWARI-8 satellite imagery.

Figure (see Caption) Figure 32. Photograph of summit crater incandescence at Karangetang on 12 May 2019. Courtesy of Dominik Derek.
Figure (see Caption) Figure 33. Photograph of both summit crater incandescence at Karangetang on 12 May 2019 accompanied by gas-and-steam emissions. Courtesy of Dominik Derek.

On 5 August 2019 a minor eruption produced an ash cloud that rose 3 km and drifted E. PVMBG reported in the weekly report for 5-11 August that an incandescent lava flow from the Main Crater was traveling W and SW on the slopes of Karangetang and producing incandescent avalanches (figure 34). During 12 August through 1 September lava continued to effuse from both the Main and Dua craters. Avalanches of material traveled as far as 1.5 km SW toward the Nanitu and Pangi River drainages, 1.4-2 km to the W of Pangi, and 1.8 km down the Sense River drainage. Lava fountaining was observed occurring up to 10 m above the summit on 14-20 August.

Figure (see Caption) Figure 34. Photograph of summit crater incandescence and a lava flow from Karangetang on 7 August 2019. Courtesy of MAGMA Indonesia.

PVMBG reported that during 2-22 September lava continued to effuse from both craters, traveling SW toward the Nanitu, Pangi, and Sense River drainages as far as 1.5 km. On 24 September the lava flow occasionally traveled 0.8-1.5 km toward the West Beha River drainage. The lava flow from the Main Crater continued through at least the end of November, moving SW and W as far as 1.5 km toward the Nanitu, Pangi, and Sense River drainages. In late October and onwards, incandescence from both summit craters was observed at night. The lava flow often traveled as far as 1 km toward the Batang and East Beha River drainage on 12 November, the West Beha River drainage on 15, 22, 24, and 29 November, and the Batang and West Beha River drainages on 25-27 November (figure 35). On 30 November a Strombolian eruption occurred in the Main Crater accompanied by gas-and-steam emissions rising 100 m above the Main Crater and 50 m above the Dua Crater. Lava flows traveled SW and W toward the Nanitu, Sense, and Pangi River drainages as far as 1.5 km, the West Beha and Batang River drainages as far as 1 km, and occasionally the Batu Awang and Kahetang River drainages as far as 2 km. Lava fountaining was reported occurring 10-25 m above the Main Crater and 10 m above the Dua Crater on 6, 8-12, 15, 21-30 November.

Figure (see Caption) Figure 35. Webcam image of gas-and-steam emissions rising from the summit of Karangetang accompanied by incandescence and lava flows at night on 27 November 2019. Courtesy of MAGMA Indonesia via Øystein Lund Andersen.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed consistent and strong thermal anomalies within 5 km of the summit craters from late July through November 2019 (figure 36). Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies and lava flows originating from both craters during this same timeframe (figure 37). In addition to these lava flows, satellite imagery also captured intermittent gas-and-steam emissions from May through November (figure 38). MODVOLC thermal alerts registered 165 thermal hotspots near Karangetang's summit between May and November.

Figure (see Caption) Figure 36. Frequent and strong thermal anomalies at Karangetang between 3 January through November 2019 as recorded by the MIROVA system (Log Radiative Power) began in late July and were recorded within 5 km of the summit craters. Courtesy of MIROVA.
Figure (see Caption) Figure 37. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity (bright orange) at Karangetang from July into November 2019. The lava flows traveled dominantly in the W direction from the Main Crater. Courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 38. Sentinel-2 satellite imagery showing gas-and-steam emissions with a small amount of ash (middle and right) rising from both craters of Karangetang during May through November 2019. Courtesy of Sentinel Hub Playground.

Sentinel-5P/TROPOMI satellite data detected multiple sulfur dioxide plumes between May and November 2019 (figure 39). These emissions occasionally exceeded 2 Dobson Units (DU) and drifted in different directions based on the dominant wind pattern.

Figure (see Caption) Figure 39. SO2 emissions from Karangetang (indicated by the red box) were seen in TROPOMI instrument satellite data during May through November 2019, many of which drifted in different directions based on the prevailing winds. Top left: 27 May 2019. Top middle: 26 July 2019. Top right: 17 August 2019. Bottom left: 27 September 2019. Bottom middle: 3 October 2019. Bottom right: 21 November 2019. Courtesy of NASA Goddard Space Flight Center.

Geologic Background. Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, about 125 km NNE of the NE-most point of Sulawesi island. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia's most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts have produced pyroclastic flows.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Hawai'i Institute of Geophysics and Planetology (HIGP) - MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Øystein Lund Andersen (Twitter: @OysteinLAnderse, https://twitter.com/OysteinLAnderse, URL: https://www.oysteinlundandersen.com); Dominik Derek (URL: https://www.facebook.com/07dominikderek/).


Ulawun (Papua New Guinea) — December 2019 Citation iconCite this Report

Ulawun

Papua New Guinea

5.05°S, 151.33°E; summit elev. 2334 m

All times are local (unless otherwise noted)


New vent, lava fountaining, lava flow, and ash plumes in late September-October 2019

Ulawun is a basaltic-to-andesitic stratovolcano located in West New Britain, Papua New Guinea, with typical activity consisting of seismicity, gas-and-steam plumes, and ash emissions. The most recent eruption began in late June 2019 involving ash and gas-and-steam emissions, increased seismicity, and a pyroclastic flow (BGVN 44:09). This report includes volcanism from September to October 2019 with primary source information from the Rabaul Volcano Observatory (RVO) and the Darwin Volcanic Ash Advisory Centre (VAAC).

Activity remained low through 26 September 2019, mainly consisting of variable amounts of gas-and-steam emissions and low seismicity. Between 26 and 29 September RVO reported that the seismicity increased slightly and included low-level volcanic tremors and Real-Time Seismic Amplitude Measurement (RSAM) values in the 200-400 range on 19, 20, and 22 September. On 30 September small volcanic earthquakes began around 1000 and continued to increase in frequency; by 1220, they were characterized as a seismic swarm. The Darwin VAAC advisory noted that an ash plume rose to 4.6-6 km altitude, drifting SW and W, based on ground reports.

On 1 October 2019 the seismicity increased, reaching RSAM values up to 10,000 units between 0130 and 0200, according to RVO. These events preceded an eruption which originated from a new vent that opened on the SW flank at 700 m elevation, about three-quarters of the way down the flank from the summit. The eruption started between 0430 and 0500 and was defined by incandescence and lava fountaining to less than 100 m. In addition to lava fountaining, light- to dark-gray ash plumes were visible rising several kilometers above the vent and drifting NW and W (figure 21). On 2 October, as the lava fountaining continued, ash-and-steam plumes rose to variable heights between 2 and 5.2 km (figures 22 and 23), resulting in ashfall to the W in Navo. Seismicity remained high, with RSAM values passing 12,000. A lava flow also emerged during the night which traveled 1-2 km NW. The main summit crater produced white gas-and-steam emissions, but no incandescence or other signs of activity were observed.

Figure (see Caption) Figure 21. Photographs of incandescence and lava fountaining from Ulawun during 1-2 October 2019. A) Lava fountains along with ash plumes that rose several kilometers above the vent. B) Incandescence and lava fountaining seen from offshore. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 22. Photographs of an ash plume rising from Ulawun on 1 October 2019. In the right photo, lava fountaining is visible. Courtesy of Christopher Lagisa.
Figure (see Caption) Figure 23. Photograph of lava fountaining and an ash plume rising from Ulawun on 1 October 2019. Courtesy of Joe Metto, WNB Provincial Disaster Office (RVO Report 2019100101).

Ash emissions began to decrease by 3 October 2019; satellite imagery and ground observations showed an ash cloud rising to 3 km altitude and drifting N, according to the Darwin VAAC report. RVO reported that the fissure eruption on the SW flank stopped on 4 October, but gas-and-steam emissions and weak incandescence were still visible. The lava flow slowed, advancing 3-5 m/day, while declining seismicity was reflected in RSAM values fluctuating around 1,000. RVO reported that between 23 and 31 October the main summit crater continued to produce variable amounts of white gas-and-steam emissions (figure 24) and that no incandescence was observed after 5 October. Gas-and-steam emissions were also observed around the new SW vent and along the lava flow. Seismicity remained low until 27-29 October; it increased again and peaked on 30 October, reaching an RSAM value of 1,700 before dropping and fluctuating around 1,200-1,500.

Figure (see Caption) Figure 24. Webcam photo of a gas-and-steam plume rising from Ulawun on 30 October 2019. Courtesy of the Rabaul Volcano Observatory (RVO).

In addition to ash plumes, SO2 plumes were also detected between September and October 2019. Sentinel-5P/TROPOMI data showed SO2 plumes, some of which exceeded 2 Dobson Units (DU) drifting in different directions (figure 25). MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed strong, frequent thermal anomalies within 5 km of the summit beginning in early October 2019 and throughout the rest of the month (figure 26). Only one thermal anomaly was detected in early December.

Figure (see Caption) Figure 25. Sentinel-5P/TROPOMI data showing a high concentration of SO2 plumes rising from Ulawun between late September-early October 2019. Top left: 11 September 2019. Top right: 1 October 2019. Bottom left: 2 October 2019. Bottom right: 3 October 2019. Courtesy of the NASA Space Goddard Flight Center.
Figure (see Caption) Figure 26. Frequent and strong thermal anomalies at Ulawun for February through December 2019 as recorded by the MIROVA system (Log Radiative Power) began in early October and continued throughout the month. Courtesy of MIROVA.

Activity in November was relatively low, with only a variable amount of white gas-and-steam emissions visible and low (less than 200 RSAM units) seismicity with sporadic volcanic earthquakes. Between 9-22 December, a webcam showed intermittent white gas-and-steam emissions were observed at the main crater, accompanied by some incandescence at night. Some gas-and-steam emissions were also observed rising from the new SW vent along the lava flow.

Geologic Background. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the N coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1,000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Information Contacts: Rabaul Volcano Observatory (RVO), Geohazards Management Division, Department of Mineral Policy and Geohazards Management (DMPGM), PO Box 3386, Kokopo, East New Britain Province, Papua New Guinea; Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/); Christopher Lagisa, West New Britain Province, Papua New Guinea (URL: https://www.facebook.com/christopher.lagisa, images posted at https://www.facebook.com/christopher.lagisa/posts/730662937360239 and https://www.facebook.com/christopher.lagisa/posts/730215604071639).


Nyamuragira (DR Congo) — December 2019 Citation iconCite this Report

Nyamuragira

DR Congo

1.408°S, 29.2°E; summit elev. 3058 m

All times are local (unless otherwise noted)


Strong thermal anomalies and fumaroles within the summit crater during June-November 2019

Nyamuragira (also known as Nyamulagira) is a high-potassium basaltic shield volcano located in the Virunga Volcanic Province (VVP) in the Democratic Republic of the Congo. Previous volcanism consisted of the reappearance of a lava lake in the summit crater in mid-April 2018, lava emissions, and high seismicity (BGVN 44:05). Current activity includes strong thermal signatures, continued inner crater wall collapses, and continued moderate seismicity. The primary source of information for this June-November 2019 report comes from the Observatoire Volcanologique de Goma (OVG) and satellite data and imagery from multiple sources.

OVG reported in the July 2019 monthly that the inner crater wall collapses that were observed in May continued to occur. During this month, there was a sharp decrease in the lava lake level, and it is no longer visible. However, the report stated that lava fountaining was visible from a small cone within this crater, though its activity has also decreased since 2014. In late July, a thermal anomaly and fumaroles were observed originating from this cone (figure 85). Seismicity remained moderate throughout this reporting period.

Figure (see Caption) Figure 85. Photograph showing the small active cone within the crater of Nyamuragira in late July 2019. Fumaroles are also observed within the crater originating from the small cone. Courtesy of Sergio Maguna.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data shows strong, frequent thermal anomalies within 5 km of the summit between June through November (figure 86). The strength of these thermal anomalies noticeably decreases briefly in September. MODVOLC thermal alerts registered 54 thermal hotspots dominantly near the N area of the crater during June through November 2019. Satellite imagery from Sentinel-2 corroborated this data, showing strong thermal anomalies within the summit crater during this same timeframe (figure 87).

Figure (see Caption) Figure 86. The MIROVA graph of thermal activity (log radiative power) at Nyamuragira during 30 January through November 2019 shows strong, frequent thermal anomalies through November with a brief decrease in activity in late April-early May and early September. Courtesy of MIROVA.
Figure (see Caption) Figure 87. Sentinel-2 thermal satellite imagery (bands 12, 11, 8A) confirmed ongoing thermal activity at Nyamuragira into November 2019. Courtesy of Sentinel Hub Playground.

Geologic Background. Africa's most active volcano, Nyamuragira, is a massive high-potassium basaltic shield about 25 km N of Lake Kivu. Also known as Nyamulagira, it has generated extensive lava flows that cover 1500 km2 of the western branch of the East African Rift. The broad low-angle shield volcano contrasts dramatically with the adjacent steep-sided Nyiragongo to the SW. The summit is truncated by a small 2 x 2.3 km caldera that has walls up to about 100 m high. Historical eruptions have occurred within the summit caldera, as well as from the numerous fissures and cinder cones on the flanks. A lava lake in the summit crater, active since at least 1921, drained in 1938, at the time of a major flank eruption. Historical lava flows extend down the flanks more than 30 km from the summit, reaching as far as Lake Kivu.

Information Contacts: Observatoire Volcanologique de Goma (OVG), Departement de Geophysique, Centre de Recherche en Sciences Naturelles, Lwiro, D.S. Bukavu, DR Congo; Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sergio Maguna (Facebook: https://www.facebook.com/sergio.maguna.9, images posted at https://www.facebook.com/sergio.maguna.9/posts/1267625096730837).


Bagana (Papua New Guinea) — December 2019 Citation iconCite this Report

Bagana

Papua New Guinea

6.137°S, 155.196°E; summit elev. 1855 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam emissions and thermal anomalies during June-November 2019

Bagana volcano is found in a remote portion of central Bougainville Island in Papua New Guinea. The most recent eruptive phase that began in early 2000 has produced ash plumes and thermal anomalies (BGVN 44:06, 50:01). Activity has remained low between January-July 2019 with rare thermal anomalies and occasional steam plumes. This reporting period updates information for June-November 2019 and includes thermal anomalies and intermittent gas-and-steam emissions. Thermal data and satellite imagery are the primary sources of information for this report.

MIROVA (Middle InfraRed Observation of Volcanic Activity) analysis of MODIS satellite data showed an increased number of thermal anomalies within 5 km from the summit beginning in late July-early August (figure 38). Two Sentinel-2 thermal satellite images showed faint, roughly linear thermal anomalies, indicative of lava flows trending EW and NS on 7 July 2019 and 6 August, respectively (figure 39). Weak thermal hotspots were briefly detected in late September-early October after a short hiatus in September. No thermal anomalies were recorded in Sentinel-2 past August due to cloud cover; however, gas-and-steam emissions were visible on 7 July and in September (figures 39, 40, and 41).

Figure (see Caption) Figure 38. Thermal anomalies near the crater summit at Bagana during February-November 2019 as recorded by the MIROVA system (Log Radiative Power) increased in frequency and power in early August. A small cluster was detected in early October after a brief pause in activity in early September. Courtesy of MIROVA.
Figure (see Caption) Figure 39. Sentinel-2 thermal satellite imagery showing small thermal anomalies at Bagana between July-August 2019. Left: A very faint thermal anomaly and a gas-and-steam plume is seen on 7 July 2019. Right: Two small thermal anomalies are faintly seen on 6 August 2019. Both Sentinel-2 satellite images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 40. A gas-and-steam plume rising from the summit of Bagana on 18 September 2019. Courtesy of Brendan McCormick Kilbride (University of Manchester).

The Deep Carbon Observatory (DCO) scientific team partnered with the Rabaul Volcano Observatory and the Bougainville Disaster Office to observe activity at Bagana and collect gas data using drone technology during two weeks of field work in mid-September 2019. For this field work, the major focus was to understand the composition of the volcanic gas emitted at Bagana and measure the concentration of these gases. Since Bagana is remote and difficult to climb, research about its gas emissions has been limited. The recent advancements in drone technology has allowed for new data collection at the summit of Bagana (figure 41). Most of the emissions consisted of water vapor, according to Brendan McCormick Kilbride, one of the volcanologists on this trip. During 14-19 September there was consistently a strong gas-and-steam plume from Bagana (figure 42).

Figure (see Caption) Figure 41. Degassing plumes seen from drone footage 100 m above the summit of Bagana. Top: Zoomed out view of the summit of Bagana degassing. Bottom: Closer perspective of the gases emitted from Bagana. Courtesy of Kieran Wood (University of Bristol) and the Bristol Flight Laboratory.
Figure (see Caption) Figure 42. Photos of gas-and-steam plumes rising from Bagana between 14-19 September 2019. Courtesy of Brendan McCormick Kilbride (University of Manchester).

Geologic Background. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.

Information Contacts: MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Brendan McCormick Kilbride, University of Manchester, Manchester M13 9PL, United Kingdom (URL: https://www.research.manchester.ac.uk/portal/brendan.mccormickkilbride.html, Twitter: https://twitter.com/BrendanVolc); Kieran Wood, University of Bristol, Bristol BS8 1QU, United Kingdom (URL: http://www.bristol.ac.uk/engineering/people/kieran-t-wood/index.html, Twitter: https://twitter.com/DrKieranWood, video posted at https://www.youtube.com/watch?v=A7Hx645v0eU); University of Bristol Flight Laboratory, Bristol BS8 1QU, United Kingdom (Twitter: https://twitter.com/UOBFlightLab).


Kerinci (Indonesia) — December 2019 Citation iconCite this Report

Kerinci

Indonesia

1.697°S, 101.264°E; summit elev. 3800 m

All times are local (unless otherwise noted)


Intermittent gas-and-steam and ash plumes during June-early November 2019

Kerinci, located in Sumatra, Indonesia, is a highly active volcano characterized by explosive eruptions with ash plumes and gas-and-steam emissions. The most recent eruptive episode began in April 2018 and included intermittent explosions with ash plumes. Volcanism continued from June-November 2019 with ongoing intermittent gas-and-steam and ash plumes. The primary source of information for this report comes from Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), the Darwin Volcanic Ash Advisory Centre (VAAC), and MAGMA Indonesia.

Brown- to gray-colored ash clouds drifting in different directions were reported by PVMBG, the Darwin VAAC, and MAGMA Indonesia between June and early November 2019. Ground observations, satellite imagery, and weather models were used to monitor the plume, which ranged from 4.3 to 4.9 km altitude, or about 500-1,100 m above the summit. On 7 June 2019 at 0604 a gray ash emission rose 800 m above the summit, drifting E, according to a ground observer. An ash plume on 12 July rose to 4 km altitude and drifted SW, as determined by satellite imagery and weather models. An eruption produced a gray ash cloud on 31 July that rose to 4.6 km altitude and drifted NE and E, according to PVMBG and the Darwin VAAC (figure 17). Another ash cloud rose up to 4.3 km altitude on 3 August. On 2 September a possible ash plume rose to a maximum altitude of 4.9 km and drifted WSW, according to the Darwin VAAC advisory.

Figure (see Caption) Figure 17. A gray ash plume at Kerinci rose roughly 800 m above the summit on 31 July 2019 and drifted NE and E. Courtesy of MAGMA Indonesia.

Brown ash emissions rose to 4.4 km altitude at 1253 on 6 October, drifting WSW. Similar plumes reached 4.6 km altitude twice on 30 October and moved NE, SE, and E at 0614 and WSW at 1721, based on ground observations. On 1-2 November, ground observers saw brown ash emissions rising up to 4.3 km drifting ESE. Between 3 and 5 November the brown ash plumes rose 100-500 m above the summit, according to PVMBG.

Gas emissions continued to be observed through November, as reported by PVMBG and identified in satellite imagery (figure 18). Seismicity that included volcanic earthquakes also continued between June and early November, when the frequency decreased.

Figure (see Caption) Figure 18. Sentinel-2 thermal satellite imagery showing a typical white gas-and-steam plume at Kerinci on 9 August 2019. Sentinel-2 satellite image with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.

Geologic Background. Gunung Kerinci in central Sumatra forms Indonesia's highest volcano and is one of the most active in Sumatra. It is capped by an unvegetated young summit cone that was constructed NE of an older crater remnant. There is a deep 600-m-wide summit crater often partially filled by a small crater lake that lies on the NE crater floor, opposite the SW-rim summit. The massive 13 x 25 km wide volcano towers 2400-3300 m above surrounding plains and is elongated in a N-S direction. Frequently active, Kerinci has been the source of numerous moderate explosive eruptions since its first recorded eruption in 1838.

Information Contacts: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); Darwin Volcanic Ash Advisory Centre (VAAC), Bureau of Meteorology, Northern Territory Regional Office, PO Box 40050, Casuarina, NT 0811, Australia (URL: http://www.bom.gov.au/info/vaac/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Bezymianny (Russia) — December 2019 Citation iconCite this Report

Bezymianny

Russia

55.972°N, 160.595°E; summit elev. 2882 m

All times are local (unless otherwise noted)


Lava dome growth, ongoing thermal anomalies, moderate gas-steam emissions, June-November 2019

The long-term activity at Bezymianny has been dominated by almost continuous thermal anomalies, moderate gas-steam emissions, dome growth, lava flows, and an occasional ash explosion (BGVN 44:06). The volcano is monitored by the Kamchatka Volcanic Eruptions Response Team (KVERT. Throughout the reporting period of June to November 2019, the Aviation Colour Code remained Yellow (second lowest of four levels).

According to KVERT weekly reports, lava dome growth continued in June through mid-July 2019. Thereafter the reports did not mention dome growth, but indicated that moderate gas-and-steam emissions (figure 32) continued through November. The MIROVA (Middle InfraRed Observation of Volcanic Activity) volcano hotspot detection system, based on analysis of MODIS data, detected hotspots within 5 km of the summit almost every day. KVERT also reported a thermal anomaly over the volcano almost daily, except when it was obscured by clouds. Infrared satellite imagery often showed thermal anomalies generated by lava flows or dome growth (figure 33).

Figure (see Caption) Figure 32. Photo of Bezymianny showing fumarolic activity on 4 July 2019. Photo by O. Girina (IVS FEB RAS, KVERT); courtesy of KVERT.
Figure (see Caption) Figure 33. Typical infrared satellite images of Bezymianny showing thermal anomalies in the summit crater, including a lava flow to the WNW. Top: 21 August 2019 with SWIR filter (bands 12, 8A, 4). Bottom: 17 September 2019 with Atmospheric Penetration filter (bands 12, 11, 8A). Courtesy of Sentinel Hub Playground.

Geologic Background. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Information Contacts: Kamchatka Volcanic Eruptions Response Team (KVERT), Far Eastern Branch, Russian Academy of Sciences, 9 Piip Blvd., Petropavlovsk-Kamchatsky, 683006, Russia (URL: http://www.kscnet.ru/ivs/kvert/); Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences (IVS FEB RAS), 9 Piip Blvd., Petropavlovsk-Kamchatsky 683006, Russia (URL: http://www.kscnet.ru/ivs/eng/); MIROVA (Middle InfraRed Observation of Volcanic Activity), a collaborative project between the Universities of Turin and Florence (Italy) supported by the Centre for Volcanic Risk of the Italian Civil Protection Department (URL: http://www.mirovaweb.it/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground).


Mayon (Philippines) — November 2019 Citation iconCite this Report

Mayon

Philippines

13.257°N, 123.685°E; summit elev. 2462 m

All times are local (unless otherwise noted)


Gas-and-steam plumes and summit incandescence during May-October 2019

Mayon, located in the Philippines, is a highly active stratovolcano with recorded historical eruptions dating back to 1616. The most recent eruptive episode began in early January 2018 that consisted of phreatic explosions, steam-and-ash plumes, lava fountaining, and pyroclastic flows (BGVN 43:04). The previous report noted small but distinct thermal anomalies, gas-and-steam plumes, and slight inflation (BGVN 44:05) that continued to occur from May into mid-October 2019. This report includes information based on daily bulletins from the Philippine Institute of Volcanology and Seismology (PHIVOLCS) and Sentinel-2 satellite imagery.

Between May and October 2019, white gas-and-steam plumes rose to a maximum altitude of 800 m on 17 May. PHIVOLCS reported that faint summit incandescence was frequently observed at night from May-July and Sentinel-2 thermal satellite imagery showed weaker thermal anomalies in September and October (figure 49); the last anomaly was identified on 12 October. Average SO2 emissions as measured by PHIVOLCS generally varied between 469-774 tons/day; the high value of the period was on 25 July, with 1,171 tons/day. Small SO2 plumes were detected by the TROPOMI satellite instrument a few times during May-September 2019 (figure 50).

Figure (see Caption) Figure 49. Sentinel-2 thermal satellite imagery of Mayon between May-October 2019. Small thermal anomalies were recorded in satellite imagery from the summit and some white gas-and-steam plumes are visible. Top left: 30 May 2019. Top right: 9 June 2019. Bottom left: 22 September 2019. Bottom right: 12 October 2019. Sentinel-2 satellite images with "Atmospheric penetration" (bands 12, 11, 8A) rendering; courtesy of Sentinel Hub Playground.
Figure (see Caption) Figure 50. Small SO2 plumes rising from Mayon during May-September 2019 recorded in DU (Dobson Units). Top left: 28 May 2019. Top right: 26 July 2019. Bottom left: 16 August 2019. Bottom right: 23 September 2019. Courtesy of NASA Goddard Space Flight Center.

Continuous GPS data has shown slight inflation since June 2018, corroborated by precise leveling data taken on 9-17 April, 16-25 July, and 23-30 October 2019. Elevated seismicity and occasional rockfall events were detected by the seismic monitoring network from PHIVOLCS from May to July; recorded activity decreased in August. Activity reported by PHIVOLCS in September-October 2019 consisted of frequent gas-and-steam emissions, two volcanic earthquakes, and no summit incandescence.

Geologic Background. Beautifully symmetrical Mayon, which rises above the Albay Gulf NW of Legazpi City, is the Philippines' most active volcano. The structurally simple edifice has steep upper slopes averaging 35-40 degrees that are capped by a small summit crater. Historical eruptions date back to 1616 and range from Strombolian to basaltic Plinian, with cyclical activity beginning with basaltic eruptions, followed by longer term andesitic lava flows. Eruptions occur predominately from the central conduit and have also produced lava flows that travel far down the flanks. Pyroclastic flows and mudflows have commonly swept down many of the approximately 40 ravines that radiate from the summit and have often devastated populated lowland areas. A violent eruption in 1814 killed more than 1,200 people and devastated several towns.

Information Contacts: Philippine Institute of Volcanology and Seismology (PHIVOLCS), Department of Science and Technology, University of the Philippines Campus, Diliman, Quezon City, Philippines (URL: http://www.phivolcs.dost.gov.ph/); Sentinel Hub Playground (URL: https://www.sentinel-hub.com/explore/sentinel-playground); Global Sulfur Dioxide Monitoring Page, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (NASA/GSFC), 8800 Greenbelt Road, Goddard, Maryland, USA (URL: https://SO2.gsfc.nasa.gov/).


Merapi (Indonesia) — October 2019 Citation iconCite this Report

Merapi

Indonesia

7.54°S, 110.446°E; summit elev. 2910 m

All times are local (unless otherwise noted)


Low-volume dome growth continues during April-September 2019 with rockfalls and small block-and-ash flows

Merapi is an active volcano north of the city of Yogyakarta (figure 79) that has a recent history of dome growth and collapse, resulting in block-and-ash flows that killed over 400 in 2010, while an estimated 10,000-20,000 lives were saved by evacuations. The edifice contains an active dome at the summit, above the Gendol drainage down the SE flank (figure 80). The current eruption episode began in May 2018 and dome growth was observed from 11 August 2018-onwards. This Bulletin summarizes activity during April through September 2019 and is based on information from Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG, the Center for Research and Development of Geological Disaster Technology, a branch of PVMBG), Sutopo of Badan Nasional Penanggulangan Bencana (BNPB), MAGMA Indonesia, along with observations by Øystein Lund Andersen and Brett Carr of the Lamont-Doherty Earth Observatory.

Figure (see Caption) Figure 79. Merapi volcano is located north of Yogyakarta in Central Java. Photo courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 80. A view of the Gendol drainage where avalanches and block-and-ash flows are channeled from the active Merapi lava dome. The Gendol drainage is approximately 400 m wide at the summit. Courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

At the beginning of April the rate of dome growth was relatively low, with little morphological change since January, but the overall activity of Merapi was considered high. Magma extrusion above the upper Gendol drainage resulted in rockfalls and block-and-ash flows out to 1.5 km from the dome, which were incandescent and visible at night. Five block-and-ash flows were recorded on 24 April, reaching as far as 1.2 km down the Gendol drainage. The volume of the dome was calculated to be 466,000 m3 on 9 April, a slight decrease from the previous week. Weak gas plumes reached a maximum of 500 m above the dome throughout April.

Six block-and-ash flows were generated on 5 May, lasting up to 77 seconds. Throughout May there were no significant changes to the dome morphology but the volume had decreased to 458,000 by 4 May according to drome imagery analysis. Lava extrusion continued above the Gendol drainage, producing rockfalls and small block-and-ash flows out to 1.2 km (figure 81). Gas plumes were observed to reach 400 m above the top of the crater.

Figure (see Caption) Figure 81. An avalanche from the Merapi summit dome on 17 May 2019. The incandescent blocks traveled down to 850 m away from the dome. Courtesy of Sutopo, BNPB.

There were a total of 72 avalanches and block-and-ash flows from 29 January to 1 June, with an average distance of 1 km and a maximum of 2 km down the Gendol drainage. Photographs taken by Øystein Lund Andersen show the morphological change to the lava dome due to the collapse of rock and extruding lava down the Gendol drainage (figures 82 and 83). Block-and-ash flows were recorded on 17 and 20 June to a distance of 1.2 km, and a webcam image showed an incandescent flow on 26 June (figure 84). Throughout June gas plumes reached a maximum of 250 m above the top of the crater

Figure (see Caption) Figure 82. The development of the Merapi summit dome from 2 June 2018 to 17 June 2019. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 83. Photos taken of the Merapi summit lava dome in June 2019. Top: This nighttime time-lapse photograph shows incandescence at the south-facing side of the dome on the 16 June. Middle: A closeup of a small rockfall from the dome on 17 June. Bottom: A gas plume accompanying a small rockfall on 17 June. Courtesy of Øystein Lund Andersen.
Figure (see Caption) Figure 84. Blocks from an incandescent rockfall off the Merapi dome reached out to 1 km down the Gendol drainage on 26 June 2019. Courtesy of MAGMA Indonesia.

Analysis of drone images taken on 4 July gave an updated dome volume of 475,000 m3, a slight increase but with little change in the morphology (figure 85). Block-and-ash flows traveled 1.1 km down the Gendol drainage on 1 July, 1 km on the 13th, and 1.1 km on the 14th, some of which were seen at night as incandescent blocks fell from the dome (figure 86). During the week of 19-25 July there were four recorded block-and-ash flows reaching 1.1 km, and flows traveled out to around 1 km on the 24th, 27th, and 31st. The morphology of the dome continued to be relatively stable due to the extruding lava falling into the Gendol drainage. Gas plumes reached 300 m above the top of the crater during July.

Figure (see Caption) Figure 85. The Merapi dome on 30 July 2019 producing a weak plume. Courtesy of MAGMA Indonesia.
Figure (see Caption) Figure 86. Incandescent rocks from the hot lava dome at the summit of Merapi form rockfalls down the Gendol drainage on 14 July 2019. Courtesy of Øystein Lund Andersen.

During the week of 5-11 August the dome volume was calculated to be 461,000 m3, a slight decrease from the week before with little morphological changes due to the continued lava extrusion collapsing into the Gendol drainage. There were five block-and-ash flows reaching a maximum of 1.2 km during 2-8 August. Two flows were observed on the 13th and 14th reaching 950 m, out to 1.9 km on the 20th and 22nd, and to 550 m on the 24th. There were 16 observed flows that reached 500-1,000 m on 25-27 August, with an additional flow out to 2 km at 1807 on the 27th (figure 87). Gas plumes reached a maximum of 350 m through the month.

Figure (see Caption) Figure 87. An incandescent rockfall from the Merapi dome that reached 2 km down the Gendol drainage on 27 August 2019. Courtesy of BPPTKG.

Brett Carr was conducting field work at Merapi during 12-26 September. During this time the lava extrusion was low (below 1 m3 per second). He observed small rockfalls with blocks a couple of meters in size, traveling about 50-200 m down the drainage every hour or so, producing small plumes as they descended and resulting in incandescence on the dome at night. Small dome collapse events produced block-and-ash flows down the drainage once or twice per day (figure 88) and slightly larger flows just over 1 km long a couple of times per week.

Figure (see Caption) Figure 88. A rockfall on the Merapi dome, towards the Gendol drainage at 0551 on 20 September 2019. Courtesy of Brett Carr, Lamont-Doherty Earth Observatory.

The dome volume was 468,000 m3 by 19 September, a slight increase from the previous calculation but again with little morphological change. Two block-and-ash flows were observed out to 600 m on 9 September and seven occurred on the 9th out to 500-1,100 m. Two occurred on the 14th down to 750-900 m, three occurred on 17, 20, and 21 September to a maximum distance of 1.2 km, and three more out to 1.5 km through the 26th. A VONA (Volcano Observatory Notice for Aviation) was issued on the 22nd due to a small explosion producing an ash plume up to approximately 3.8 km altitude (about 800 m above the summit) and minor ashfall to 15 km SW. This was followed by a block-and-ash flow reaching as far as 1.2 km and lasting for 125 seconds (figure 89). Preceding the explosion there was an increase in temperature at several locations on the dome. Weak gas plumes were observed up to 100 m above the crater throughout the month.

Figure (see Caption) Figure 89. An explosion at Merapi on 22 September 2019 was followed by a block-and-ash flow that reached 1.2 km down the Gendol drainage. Courtesy of BPPTKG.

Geologic Background. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Information Contacts: Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi (BPPTKG), Center for Research and Development of Geological Disaster Technology (URL: http://merapi.bgl.esdm.go.id/, Twitter: @BPPTKG); Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as Indonesian Center for Volcanology and Geological Hazard Mitigation, CVGHM), Jalan Diponegoro 57, Bandung 40122, Indonesia (URL: http://www.vsi.esdm.go.id/); MAGMA Indonesia, Kementerian Energi dan Sumber Daya Mineral (URL: https://magma.vsi.esdm.go.id/); Badan Nasional Penanggulangan Bencana (BNPB), National Disaster Management Agency, Graha BNPB - Jl. Scout Kav.38, East Jakarta 13120, Indonesia (URL: http://www.bnpb.go.id/, Twitter: https://twitter.com/BNPB_Indonesia); Øystein Lund Andersen? (Twitter: @OysteinLAnderse, URL: http://www.oysteinlundandersen.com); Sutopo Purwo Nugroho, BNPB (Twitter: @Sutopo_PN, URL: https://twitter.com/Sutopo_PN); Brett Carr, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, USA (URL: https://www.ldeo.columbia.edu/user/bcarr).

Search Bulletin Archive by Publication Date

Select a month and year from the drop-downs and click "Show Issue" to have that issue displayed in this tab.

   

The default month and year is the latest issue available.

Bulletin of the Global Volcanism Network - Volume 40, Number 04 (April 2015)

Managing Editor: Richard Wunderman

Pavlof (United States)

Spatter-fed lava interacting with ice, spawning clastogenic lava flows, lahars, and pyroclastic flows

Tangkuban Parahu (Indonesia)

West Java volcano issues very small eruption in March 2013; months of tremor and few volcanic earthquakes

Tofua (Tonga)

Five thermal alerts detected, 28 September-30 June 2015

Turrialba (Costa Rica)

29 October 2014 magmatic eruption, the first such event in 150 years



Pavlof (United States) — April 2015 Citation iconCite this Report

Pavlof

United States

55.417°N, 161.894°W; summit elev. 2493 m

All times are local (unless otherwise noted)


Spatter-fed lava interacting with ice, spawning clastogenic lava flows, lahars, and pyroclastic flows

This report discusses Pavlof's behavior during May 2014 through 26 December 2014, a time period with two clear eruptive intervals that included lava fountaining, spatter, fragmental (agglutinate-rich, clastogenic) lava flows, lahars, pyroclastic flows, and diverse plumes. On 30 May 2014, an eruption began that continued intermittently through the first week of June. A thermal image taken from a satellite on 24 June 2014 showed warm areas ~5 km down the N flank interpreted as the signature of an earlier, still-warm lava flow. (This flow was perhaps similar to (fountain- and spatter-fed, fragmental, agglutinate-rich, clastogenic) lava flows and possible associated lahars seen during 2013; Waythomas and others, 2014; Wolf and Sumner, 2000.) Another eruption took placed during 12-16 November 2014. Besides the previously mentioned characteristics, common observations during eruptions included strombolian emissions, multiple-kilometer-long zones of incandescent lava, plumes ranging from those dominated by steam and gas to others that were rich in ash. Diagnostics from distant instruments included acoustical signals of eruption received with infrasonics and lightning from inferred ash plumes detected with a lightning detection array.

Background. In BGVN 38:05 we reported on the then most recent eruption at Pavlof, which occurred during May-June 2013. Waythomas and others (2014) summarized Pavlof's eruptive behavior during 2013. This is relevant, in part, because similar ice-spatter interactions also prevailed during 2014. "The 2013 eruption of Pavlof Volcano, Alaska began on13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of clastogenic lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove."

The reports by the AVO also announced Volcano Alert Levels and Aviation Color Codes. The four Alert Levels apply to conditions in vicinity to the volcano (of greatest concern to residents). The Levels consist of Normal, typical background or noneruptive state; Advisory, exhibiting signs of unrest or possible renewed increase; Watch, exhibiting escalating or heightened unrest; and Warning, hazardous eruption is eminent or underway. The respective Color Codes address risks to aircraft from ash plumes. The Codes consist, in increasing order of concern, Green, Yellow, Orange, and Red.

Pavlof is monitored by satellite imagery, observers, several in-situ and remote instruments, and by a Federal Aviation Administration (FAA) web camera. Figure 9 shows Pavlof as seen from the FAA web camera, which resides in Cold Bay. The photo shows conditions on a clear day when the volcano was quiet. The camera produces still images sometimes used to convey the volcano's behavior ('FAA supplementary weather products').

Figure (see Caption) Figure 9. A NE view that features snow- and ice-clad Pavlof as seen from the FAA web camera in Cold Bay (Alaska) on a clear day, date unknown. MSL stands for elevation (in this case with respect to MSL, mean sea level, here expressed in feet, 1 foot = 0.305 m). SM stands for statue miles, used to describe the distance from the camera to a building and to Pavlof (~56 km away; 1 SM = 1.61 km). Courtesy of FAA (US Federal Aviation Administration).

Eruption of 30 May to 4 June 2014. The AVO weekly report issued on 6 June 2014 summarized conditions during the 30 May-4 June eruption period as follows: "Pavlof Volcano is experiencing a typical Strombolian eruption, characterized by lava fountaining, minor explosions, and the accumulation of spatter on the upper north flank of the volcano. Accumulations of spatter have occasionally built up and collapsed, forming hot, ashy, particle-rich flows that generate high-rising steam plumes on the lower north flank of the volcano. As these flows interact with ice and snow on the volcano, they produce meltwater and steam plumes. Spatter-fed lava flows also are likely forming".

According to AVO's 6 June 2014 weekly summary, Pavlof began erupting on 30 May 2014. On the morning of 31 May 2014 elevated surface temperatures were detected at the summit of Pavlof, suggesting a low-level eruption with extruding lava. Campers near the volcano confirmed this detection, and noted lava flows originating from a vent on the NE flank. As those lava flows interacted with glacier ice, low-altitude ash clouds and plumes were created. The plumes were detected in satellite imagery, as well as by pilots and with the Cold Bay FAA web camera.

On the evening of 31 May 2014, small explosion signals were detected by a distant infrasound sensor. The eruption continued, followed by incandescence. The FAA web camera in Cold Bay detected weak incandescence glowing at the summit on the evenings of 31 May and 1 June. Clouds obscured views of the volcano by web camera although no ash clouds were detected in satellite imagery. Weak seismic activity was detected on the Pavlof network of seismometers near the volcano. An increase of seismic tremor occurred 2 June at 1500, decreasing around 2300 that evening (Alaska Standard Time = UTC - 9 hours; during May-June, Daylight Saving Time = UTC - 8 hours). The Aviation Color Code and Alert Levels on 31 May were Orange and Watch respectively.

On 2 June 2014, AVO reported a plume discharged almost continuously from the vent rising to an altitude of 6.7 km and extending over 75 km E, as seen in figure 10. The AVO daily report for this eruption stated "Hazardous conditions exist on the north flank and north side drainages heading on the volcano due to continued pyroclastic and lahar activity. Ash in the vicinity of the volcano remains a hazard to local air traffic" (figure 10).

Figure (see Caption) Figure 10. Visible image of a Pavlof plume acquired by the MODIS instrument on the Terra satellite on 2 June 2014 (2145 UTC 2 June, which corresponds to local Daylight Saving Time and date of 1345 on 2 June). The plume extended ~75 km E of Pavlof. Courtesy of NASA and AVO/USGS.

The AVO photo archive for 2 June contained over 40 photos with captions. Some were taken from Cold Bay and others from at sea and aircraft, documenting eruptive activity that day. Chris Waythomas (AVO) noted incandescence associated with lava fountaining and low-level ash and steam plume on images caught by the FAA camera. Several photos by Rachael Kremer were captioned by AVO scientists. The caption of one image (ID #591161 written by Game McGimsey, AVO/USGS) not only described incandescence from lava fountaining at the summit vent, it also stated the presence of "spatter-fed lava flowing down the N flank." Further, "ash and steam clouds rising from lower on the north flank were likely generated by pyroclastic flows intermixing with glacier ice."

AVO daily reports issued on 2 and 3 June 2014 described a vigorous continuing eruption. Late on the 2nd, tremor increased again. During the night included observers noted intense lava fountaining and a spatter fed lava flow down the N flank. By the morning of the 3rd, and ash and steam plumes rose up to 7.3 km altitude. The AVO report issued at 1233 on the 3rd noted a wind shift and wind at the time of that report carrying the main plume SSW. Lower winds (below ~3 km altitude) carried a plume that may have contained trace ash to the WSW.

The AVO report issued at 1754 on the 3rd made these statements: "Although the eruption of Pavlof continues, seismic tremor has deceased over the past 12 hours and has remained relatively steady throughout the day at a much lower level than that of yesterday. Recent satellite data and web camera views of the eruption plume indicate that there are now two distinct parts of the plume. The part of the plume that reaches high above the volcano appears to be mainly steam and gas with minor ash present, extending south of the volcano. Additionally, pyroclastic flow activity on the north flank is producing diffuse ash emissions that result in areas of hazy air, with variable concentrations of ash below [~3 km]. Low-level winds are likely to disperse this ash to the west-southwest with no more than trace amounts accumulating. There are no reports of ash falling in nearby communities." The Aviation Color Code was reduced from Red to Orange and the Alert Level to Watch. Ash remained a hazard to local air traffic.

Similar conditions prevailed on 4 June, with plumes containing minor ash but rich in sulfur dioxide extending 30 to 100 km downwind over Cold Bay. Although incandescence was visible in early morning web cam images, seismicity had remained stable for the past 24 hours. Incandescence from lava fountaining was visible in webcam images on 4 June. According to a news article, flights in and out of Cold Bay and Unalaska were canceled on 4 June, affecting about 200 people.

At 0205 and 0245 on 5 June 2014, seismic data indicated two distinct explosions. AVO inferred these represented the collapse of spatter built up around the vent, with a possible explosive component. A similar third, less energetic, event occurred at 0844. The explosions generated lightning, which was detected by the World Wide Lightning Location Network (WWLLN, a collaboration of over 50 universities) (Morton, 2014). AVO inferred that hot debris moved down the N flank, resulting in localized low-level clouds of fine ash. There was no ash above the meteorological clouds whose tops reached 8.8 km in height.

As of 6 June 2014, elevated surface temperatures persisted but cited that on this morning they had observed greatly diminished ash and lava emissions. Steam or ash plumes were absent in satellite images since 4 June. A weekly summary issued on 6th noted plumes during the eruption that started on the evening of 30 May 2014 had reached about 9.1 km in altitude. Seismic data indicated lahars occurred intermittently.

Comparative quiet. During 7-23 June 2014, Pavlof was comparatively quiet. Although extreme temperatures associated with fountaining were not seen, a thermal image of Pavlof on 24 June 2014 suggested broad areas of warm temperatures from what AVO interpreted as a recent lava flow (figure 11). According to the scientist who prepared the image, David Schneider, "Composite satellite image of Pavlof Volcano showing the extent of the lava flows on the northeast flank. The base image was collected by the Worldview-2 satellite on May 9, 2014 (prior to the onset of eruptive activity) and is overlain (in color) with a Landsat-8 thermal infrared image collected early in the morning on June 24, 2014. The thermal infrared sensor measured the heat given off by the still-warm lava flow. The length of the longest branch of the lava flow is about 5 km (3 miles). Note that the lava flow appears to have traveled under the ice on the upper flank of the volcano."

Figure (see Caption) Figure 11. A thermal image from Landsat 8, with areas of increased infrared radiation, acquired in the early morning of 24 June 2014 showing the path of lava flows down the slopes. For scale, the longest arm of the flow was about 5 km. The lava flow traveled under the ice in an area of the upper flank. For more details, see text. Courtesy of AVO. Caption details and image preparation by D. Schneider (AVO/USGS).

An AVO Notification issued on the 25th indicated that AVO had observed no evidence of ash emission from the volcano since early June. Clear web camera and satellite images of the volcano over the past several days showed no evidence of continued lava fountaining. The Aviation Color Code was reduced to Yellow and the Volcano Alert Level was reduced to Advisory. AVO further added that small discrete seismic events continued. They suggested that the signals may have been related to several processes including, (1) degassing of unerupted magma within the volcano's conduit and (2) periodic collapse of ejecta and other debris down the steep flanks of the volcano. The latter, appears consistent with the lava flow seen on figure 11.

On 30 July 2014 the Color Code was lowered to Green and the Volcano Alert Level to Normal. Since mid-June, levels of unrest had gradually declined. Rockfalls and small avalanches of debris still occurred sporadically on the NNW flank of volcano. The next eruptive event did not occur until 12 November.

Eruption of 12-16 November 2014. As previously mentioned, an eruption occurred during 12-16 November 2014. On 12 November 2014, AVO reported a ground observer in Cold Bay sighted ash emissions from Pavlof rising to an altitude of 2.7 km, signifying a new eruption. Minor ash emissions were visible in the Cold Bay web camera beginning around 1650 Alaska Standard Time (AKST) on 12 November. AVO raised the Aviation Color Code and Volcano Alert Level at 1957 on 12 November. Tremor remained elevated on the 12th, 13th, and 14th, with lava fountaining and ash emissions. On 14 November satellite imagery revealed a narrow ash plume extending ~200 km at 4.8 km altitude.

On 15 November 2014, AVO reported the eruption of had intensified. Thus, the Aviation Color Code was raised to Red and the Volcano Alert Level to Warning. Behavior was characterized by explosive eruptions, lava fountaining from a vent just N of the summit, and flows of rock debris and ash descending the N flank of the volcano. Ash emissions were observed from the ground and in satellite images. The intensity of seismic tremor had increased significantly, and satellite data indicated the ash cloud top at 7.6 km altitude extending 200 km NW from the vent. Figure 12 shows a Landsat 8 image captured on the 15th. The top of an ash plume in the image had reached an altitude of ~9 km. Another satellite image taken the same day showed ash plume above cloud cover and extending ~300 km NW from the volcano.

Figure (see Caption) Figure 12. On 15 November 2015, Pavlof was lofting ash plumes to an altitude of 9 kilometers as shown in the natural-color image, acquired by the Operational Land Imager (OLI) on the Landsat 8 satellite. Pavlof's volcanic plume rises well above the cloud deck. NASA Earth Observatory image by Jesse Allen, using Landsat 8 data from the U.S. Geological Survey. Original image by David Schneider.

Although as mentioned above, on 15 November 2014, the ash plume reached more than 9 km, tremor had abruptly decreased at about 1900 that day. This was accompanied by a large decrease in ash emissions, and the next day no evidence of an ash plume at the volcano was reported.

On the 16th, the Aviation Color Code decreased to Orange and the Volcano Alert Level to Watch. During 17-18 November seismicity remained low; surface temperatures on the upper NW flank were elevated. The AVO weekly report issued on 21 November 2014 described the week's activity as still remaining low. Intermittent tremor was detected, and satellite images still showed lava flow on the volcano's NW flank. At that stage it reached ~7 km from the summit.

On 25 November 2014, AVO further lowered the Aviation Color Code/Volcano Alert Level to Yellow/Advisory, citing continued low seismicity and lack of any observations to suggest ongoing lava fountaining or ash emission.

According to the last AVO weekly report issued on 26 December 2014, the status of Pavlof remained unchanged. Seismicity at Pavlof continued slightly above background levels. Weather conditions continued to be cloudy during the week and no activity was observed in satellite or web camera views of the volcano.

References. Demas, A., (3 June) 2014, Volcano Warning Alert Issued for Alaska's Pavlof Volcano, U.S. Geological Survey [accessed August 2014] (URL: http://www.usgs.gov/blogs/features/usgs_top_story/volcano-warning-alert-issued-for-alaskas-pavlof-volcano/ ). [accessed August 2014]

Morton, M, (6 April) 2014, Volcanic Lightning Generated in a Bottle, Earth Magazine (URL: http://www.earthmagazine.org/article/volcanic-lightning-generated-bottle)

Schwaiger, H.F., Denlinger, R.P., and Mastin, L.G., April 2012, Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition. Journal of Geophysical Research, v. 117, Issue B4, 20 p.[accessed August 2014] (URL: http://onlinelibrary.wiley.com/doi/10.1029/2011JB008968/pdf).

Schwartz, D., (11 August) 2013, Ash3D is Federal Answer to Ash Cloud Response, Peninsula Clarion [accessed August 2014] (URL: http://peninsulaclarion.com/news/2013-08-10).

Waythomas, C. F., Haney, M. M., Fee, D., Schneider, D. J., and Wech, A., 2014, The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice-and snow-clad volcano. Bulletin of Volcanology, 76(10), pp. 1-12.

Wolff, J. A., & Sumner, J. M. (2000). Lava fountains and their products. Encyclopedia of volcanoes, H Sigurdsson, B Houghton, S McNutt, H Rymer, J Stix (Eds.); pp. 321-329.

Geologic Background. The most active volcano of the Aleutian arc, Pavlof is a 2519-m-high Holocene stratovolcano that was constructed along a line of vents extending NE from the Emmons Lake caldera. Pavlof and its twin volcano to the NE, 2142-m-high Pavlof Sister, form a dramatic pair of symmetrical, glacier-covered stratovolcanoes that tower above Pavlof and Volcano bays. A third cone, Little Pavlof, is a smaller volcano on the SW flank of Pavlof volcano, near the rim of Emmons Lake caldera. Unlike Pavlof Sister, Pavlof has been frequently active in historical time, typically producing Strombolian to Vulcanian explosive eruptions from the summit vents and occasional lava flows. The active vents lie near the summit on the north and east sides. The largest historical eruption took place in 1911, at the end of a 5-year-long eruptive episode, when a fissure opened on the N flank, ejecting large blocks and issuing lava flows.

Information Contacts: Alaska Volcano Observatory (AVO), a cooperative program of a) U.S. Geological Survey, 4200 University Drive, Anchorage, AK 99508-4667 USA (URL: http://www.avo.alaska.edu/), b) Geophysical Institute, University of Alaska, PO Box 757320,Fairbanks, AK 99775-7320, USA, and c) Alaska Division of Geological & Geophysical Surveys,794 University Ave., Suite 200, Fairbanks, AK 99709, USA (URL: http://www.dggs.alaska.gov/); Christopher Waythomas, Game McGimsey, and Cheryl Cameron, AVO; Rachel Kremer (affiliation unknown); Federal Aviation Administration (FAA), 800 Independence Ave, SW, Washington, DC 20591, USA (URL: http://www.faa.gov/); and National Aeronautics and Space Administration (NASA) (URL: http://modis.gsfc.nasa.gov/).


Tangkuban Parahu (Indonesia) — April 2015 Citation iconCite this Report

Tangkuban Parahu

Indonesia

6.77°S, 107.6°E; summit elev. 2084 m

All times are local (unless otherwise noted)


West Java volcano issues very small eruption in March 2013; months of tremor and few volcanic earthquakes

Tangkubanparahu (Tankuban Parahu) erupted multiple times during the interval of reporting from February 2013 through December 2014. The eruptions were from Ratu crater and of quite small size (highest reported plumes only rose to 100 m tall). The vent grew in size as a result of these eruptions, reaching in early March 2013 a diameter of 20 m. The small eruptions contained minor ash but did not emit a dome or lava flows and accordingly did not lead to thermal anomalies detected via the MODVOLC satellite-based infrared detection system (and this is the case going back to at least the year 2010).

In past reports during the past few decades, Tangkubanparahu has largely been quiet but with occasional tremor and volcanic earthquakes (eg., late August-October 2002, 12-19 April 2005, and August-September 2012; BGVN 27:09, 28:08, 30:12, and 37:11). The location of the volcano in Java is shown in figure 1 of BGVN 37:11.

According to the Center of Volcanology and Geological Hazard Mitigation (CVGHM, also known as Pusat Vulkanologi dan Mitigasi Bencana Geologi, PVMBG), tremor increased on 21 February 2013 and diffuse ash emissions rose from Ratu Crater. Based on the seismicity, visual observations, and temperature increases of the land around the crater, CVGHM raised the Alert Level to 2 (on a scale of 1-4) and visitors were reminded not to approach the crater within a radius of 1.5 km.

CVGHM reported that phreatic eruptions from Tangkubanparahu's Ratu Crater occurred on 28 February and during 4-6 March 2013, and generated ash plumes that rose up to 100 m above the crater.

A news report (kompas.com) quoted CVGHM as stating that the March explosion was much stronger than the one on 21 February 2013. The news report said that the 6 March eruption lasted for ~8 minutes. The Jakarta Post also said that the 6 March eruption lasted ~8 minutes and ejected ash about 30 m above Ratu Crater. The Jakarta Post reported that on 18 March, CVGHM lowered the Alert Level to 1 (normal) because of a significant decrease in the tremor frequency. The article also quoted CVGHM as stating that deformation, using a Global Positioning System (GPS) and Electronic Distance Measurement (EDM), found at one or more stations a decline in relative elevation from 6.84 cm to a few millimeters by 18 March. Deflation was again detected from 24 February through early March 2013, but was stable during 7-14 March 2013.

According to CVGHM, sulfur dioxide emissions increased to 5.3 metric tons per day (t/d) on 24 February 2013, decreased through 3 March 2013 to 2.1 t/d, and then increased again during 5-9 March 2013 to 4.9 t/d. CVGHM speculated that the increase was due to an enlargement of the eruptive vent, which had grown to a diameter of 20 m.

Gas emissions decreased abruptly on 10 March 2013 to 2.1 t/d and emission sounds stopped. On 4 March 2013, a new solfatara vent opened, but SO2 levels could not be measured on that day because of weather conditions.

On 5 October 2013, a phreatic eruption occurred, causing CVHGM to raise the Alert Level to 2. Figure 2 is an image of Ratu Crater.

Figure (see Caption) Figure 2. Photo of Tangkubanparahu's Ratu crater taken (or posted?) in June 2014. Ratu crater is the currently active crater and one of two large craters on the volcano; it is about 1 km in diameter and has a depth of about 400 m. CVGHM reporting notes that, overall, the volcano hosts 9 craters. Image courtesy of Marietha S as posted on Tripadvisor.com.

CVGHM reported that during November-December 2014 white plumes rose up to 50 m above Ratu Crater. Deformation occurred and seismicity increased. On 31 December the Alert level rose to 2 (on a scale of 1-4), cautioning people to remain at least 1.5 km from the crater.

Seismicity. The CVGHM report discussing late 2014 features a plot of seismic data during December 2012 through December 2014, which the authors termed significant, the chief observation prompting a rise in alert level (to II).

Tremor was most prominent beginning mid-2013 to early March 2014. Both low-frequency and hybrid earthquakes were nearly absent except during a short sequence in late 2014 (each with over 100 earthquakes; see table below). Type-B earthquakes were common at levels from a few to ten events per 20-day interval, and like the low-frequency and hybrid earthquakes, peaked in latest December 2014 (~50 type-B events). Type-A earthquakes showed little or no tendency to cluster and remained below 5 events per 20 day interval and on many days they were absent.

Table 3 indicates the types and frequencies of seismic activity at Tangkubanparahu during selected, mostly active periods during 2013. Shallow volcanic earthquakes predominated during many of these periods. The number of tremor was high during the first week of March 2013, but significantly declined thereafter. The 25 September 2013-5 October 2013 period contained somewhat elevated seismicity, yet apparently lacked significant eruptive activity. Note the emergence of 513 low-frequency earthquakes during 1-31 December 2014 (lower right). That data is in the same year-end report (issued in early 2014 and written in Indonesian) and is also noteworthy in terms of the plot of distance (EDM) data to various reflectors around the crater during the entire year of 2013.

Table 3. A compilation of earthquake counts and tremor durations recorded at Tangkubanparahu for selected periods during 2012-2014. Definitions: -- signifies no data (presumably no episodes); VA, volcanic type-A earthquake; VB, type B (shallow volcanic earthquake); TJ, deep tectonic earthquake; BQ, an earthquake indicative of emissions; and TL, local tectonic earthquake. Courtesy of CVGHM.

Date (day or days) VA VB TJ BQ TL Tremor (amplitude, duration) Other data & kinds of earthquakes (EQs)
22 Jun 2012-28 Feb 2013 5 20 2 4 2 13 (2-45 mm, 3-92 min) Phreatic eruption on 21 Feb
1-6 Mar 2013 14 32 2 41 -- 19 (2-30 mm, 3-92 min) 4 eruptions during period (6-35 mm, 7-13 min)
7-13 Mar 2013 2 25 4 6 -- 2 No tremor 8-18 Mar
14-18 Mar 2013 1 14 5 -- -- 0 --
25-30 Sep 2013 6 26 8 -- 1 1 --
1-5 Oct 2013 -- 13 7 1 -- 2 --
21 Oct 2013 -- 4 1 -- -- Continuous (amp. 1-3 mm, 12 hr) --
22 Oct 2013 -- 13 1 -- -- 1 1 Low freq earthquake
23 Oct 2013 1 12 7 1 -- 3 1 Low freq earthquake
24 Oct 2013 2 9 2 5 -- -- --
25 Oct 2013 -- 6 4 1 -- 2 (0.5-1 mm, less than 2 min) --
26 Oct 2013 1 7 4 -- -- 1 (0.5-1 mm, less than 2 min) --
27 Oct 2013 (partial) -- 1 1 -- -- -- --
1-31 Oct 2014 9 126 45 50 12 10 cases 6 low-frequency EQs,
1-30 Nov 6 146 35 185 6 -- 8 low-frequency EQs; 14 tornillo EQs
1-31 Dec 2014 10 352 41 22 6 -- 1 tornillo EQ; 513 low-frequency EQs

Geologic Background. Gunung Tangkuban Parahu is a broad shield-like stratovolcano overlooking Indonesia's former capital city of Bandung. The volcano was constructed within the 6 x 8 km Pleistocene Sunda caldera, which formed about 190,000 years ago. The volcano's low profile is the subject of legends referring to the mountain of the "upturned boat." The Sunda caldera rim forms a prominent ridge on the western side; elsewhere the rim is largely buried by deposits of the current volcano. The dominantly small phreatic eruptions recorded since the 19th century have originated from several nested craters within an elliptical 1 x 1.5 km summit depression.

Information Contacts: Center of Volcanology and Geological Hazard Mitigation (CVGHM) (URL: http:proxy.vsi.esdm.go.id/index.php); kompas.com (URL: kompas.com); and The Jakarta Post (URL: http://www.thejakartapost.com/).


Tofua (Tonga) — April 2015 Citation iconCite this Report

Tofua

Tonga

19.75°S, 175.07°W; summit elev. 515 m

All times are local (unless otherwise noted)


Five thermal alerts detected, 28 September-30 June 2015

Tofua is a remote volcano in Tonga that is not monitored. The primary sources of information about the volcano's activity are from infrequent field visits, ash advisories from the Wellington Volcanic Ash Advisory Centre, and MODIS thermal sensors aboard the Aqua and Terra satellites.

No ash advisories from the Wellington Volcanic Ash Advisory Centre were issued during the reporting period, 28 September 2013-30 June 2015. Since the last report through 27 September 2013 (BGVN 38:07), five thermal alerts were recorded through 30 June 2015 (table 3). Two of those alerts, on 14 and 23 September 2014, were located outside and NW of the caldera rim and therefore were probably not associated with volcanic activity. No thermal alerts were issued between 18 October 2014 and 30 June 2015.

Table 3. Thermal alerts between 28 September 2013 and 30 June 2015. Thermal alerts are derived from data collected by the MODIS thermal sensors aboard the Aqua and Terra satellites and processed by the Hawaii Institute of Geophysics and Planetology using the MODVOLC algorithm. Courtesy of Hawaii Institute of Geophysics and Planetology.

Date No. Pixels Satellite
10 Oct 2013 2 Aqua
27 Jul 2014 1 Aqua
14 Sep 2014 1 Aqua
23 Sep 2014 1 Terra
18 Oct 2014 2 Terra

Several articles on Tofua's volcanic geology and geochemistry published in the past few years have come to our attention (Caulfield, 2011, 2012, 2015). Caulfield and others (2011, 2012) include helpful aerial and cross-section sketches of the volcano's various geologic features.

References: Caulfield, J. T., Cronin, S.J., Turner, S.P., & Cooper, L.B., 2011, Mafic Plinian volcanism and ignimbrite emplacement at Tofua volcano, Tonga, Bull. Volcanology, v. 73, pp.1259–1277.

Caulfield, J. T., Turner, S. P., Smith, I. E. M., Cooper, L. B., & Jenner, G. A., 2012, Magma evolution in the primitive, intra-oceanic Tonga arc: petrogenesis of basaltic andesites at Tofua volcano. Journal of Petrology, v. 53(6), pp. 1197-1230.

Caulfield, J. T., Blichert-Toft, J., Albarède, F., & Turner, S. P., 2015, Corrigendum to 'Magma Evolution in the Primitive, Intra-oceanic Tonga Arc: Petrogenesis of Basaltic Andesites at Tofua Volcano'and 'Magma Evolution in the Primitive, Intra-oceanic Tonga Arc: Rapid Petrogenesis of Dacites at Fonualei Volcano, Journal of Petrology, v. 56(3), pp. 641-644.

Geologic Background. The low, forested Tofua Island in the central part of the Tonga Islands group is the emergent summit of a large stratovolcano that was seen in eruption by Captain Cook in 1774. The summit contains a 5-km-wide caldera whose walls drop steeply about 500 m. Three post-caldera cones were constructed at the northern end of a cold fresh-water caldera lake, whose surface lies only 30 m above sea level. The easternmost cone has three craters and produced young basaltic-andesite lava flows, some of which traveled into the caldera lake. The largest and northernmost of the cones, Lofia, has a steep-sided crater that is 70 m wide and 120 m deep and has been the source of historical eruptions, first reported in the 18th century. The fumarolically active crater of Lofia has a flat floor formed by a ponded lava flow.

Information Contacts: Hawai'i Institute of Geophysics and Planetology (HIGP), MODVOLC Thermal Alerts System, School of Ocean and Earth Science and Technology (SOEST), Univ. of Hawai'i, 2525 Correa Road, Honolulu, HI 96822, USA (URL: http://modis.higp.hawaii.edu/).


Turrialba (Costa Rica) — April 2015 Citation iconCite this Report

Turrialba

Costa Rica

10.025°N, 83.767°W; summit elev. 3340 m

All times are local (unless otherwise noted)


29 October 2014 magmatic eruption, the first such event in 150 years

This report primarily summarizes activity during January 2013 through mid-December 2014 (although a plot of SO2 flux during 1 October 2008-30 November 2013 is also presented). That activity included frequent gas emissions, occasional increases in seismicity, intermittent gas explosions that generated ash plumes and ashfall, and strong gas explosions on 21 May 2013 and 29-31 October 2014. Material here are primarily extracted from a 2013 annual report and the suite of 2014 monthly reports, all prepared by the Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA).

Recent Bulletin reports (BGVN 37:06 and 38:02) indicated that the number of volcanic earthquakes and degassing events at Turrialba's W crater during 2012 were lower than those in 2010 and 2011. The three main fumaroles present in the W crater were as follows: Boca 2010 on the W wall, Boca 2011 on the N wall, and Boca 2012 on the E wall.

Gas data, 2008-early 2013. Ultraviolet spectral analysis can yield estimates of volcanogenic SO2. The methods to assess and express volcanogenic SO2 vary, with some methods looking at the atmospheric column (total column mass) and others the flux of the gas close to the volcano (mass per unit time, for example, metric tons per day).

The Ozone Monitoring Instrument (OMI) travels in space onboard NASA's Aura satellite and yields estimate of the column SO2 mass. For Turrialba during the 2008-2013 period OMI determined SO2 mass burdens generally below 1,500 metric tons and in a few cases to higher values including two cases in the range 2,500-4,000 metric tons (figure 36).

Figure (see Caption) Figure 36. OMI satellite retrievals for SO2 masses in the atmospheric column during 1 October 2008-1 November 2013. Headers are in Spanish (unchanged from original source): Y-axis is SO2 mass in thousands of metric tons, X-axis is date (dd/mm/yyyy). Note the use of commas on the X-axis scale in the place of decimal points (0,5 = 0.5). Graphic is directly from the 2013 annual OVSICORI-UNA report (p. 6).

During 1 April 2013 to 27 November 2013, the ground-based differential optical absorption spectroscopy (DOAS) stations near Turrialbal recorded fluxes generally between 500-1,000 metric tons/day.

Based on the DOAS observations, OVSICORI-UNA plotted the CO2 / SO2 molar ratio. After an explosion on 21 May 2013, the observatory found this ratio generally increased progressively in available data during the nearly six months that followed (figure 37). In a similar manner, the H2S / SO2 molar ratio also showed a tendancy towards progressive increase in available data (figure 38).

Figure (see Caption) Figure 37. CO2/SO2 molar ratios at the Boca 2010 vent from DOAS measurements at Turrialba in the interval from 1 April 2013 to 27 November 2013. DOAS stands for Differential Optical Absorption Spectroscopy, measurements made by stations at the volcano. Spanish labels (left to right): ash emission, increase in seismicity, decrease in seismicity. Courtesy of OVSICORI-UNA.
Figure (see Caption) Figure 38. H2S/SO2 ratios between 1 April 2013 and late November 2013 at Turrialba's Boca 2010, as measured by DOAS stations. Spanish-language labels correspond to triangles on the X-axis stating, from left to right: "ash emission," "increase in seismicity," and "decrease in seismicity." Note error bar (incertidumbre) at upper left. Courtesy of OVSICORI-UNA.

2013 events and monitoring. According to OVSICORI-UNA, the year 2013 began with low seismic activity (shallow hybrid earthquakes) and weak gas emissions similar to those in 2012. In March and April 2013, volcano-tectonic earthquakes originating more than 5 km below the summit began to occur, along with the first tornillo earthquakes of the year. (Tornillo-type earthquakes are long period with wave forms that, at or near the start, contain higher amplitude signals that gradually decrease with time. Their shape on seismograms resembles a woodscrew.) The number of volcanic earthquakes increased from 10/day on 18 April to more than 500/day on 13 July. This high level persisted until the end of August 2013.

On 20 May 2013, increased gas emissions produced a sky-blue plume visible from nearby areas. An eruption followed the next day.

At 0452 on 21 May, the number of hybrid earthquakes became numerous. Continuous harmonic tremor increased at 0720. At 0830 and after 1100, explosions from both Boca 2010 and Boca 2012 vents generated ash plumes that rose more than 500 m (figure 39). Ashfall was reported in nearby communities to the N, W, and WSW. The 21 May ash emission event was discussed in the context of molar ratios of gas species in figures 37 and 38>.

Figure (see Caption) Figure 39. Gas explosions on 21 May 2013 at Boca 2010 and Boca 2012 on Turriabla's W crater. Photo taken by the webcam OVSICORI-UNA-A. Courtesy of OVSICORI-UNA.

At noon on 21 May 2013, ash emissions ceased and seismicity decreased. Seismic activity declined sharply after the 21 May explosions, as did the CO2 /SO2 ratio, as measured in situ by a portable Multigas station. As previously noted (figures 37 and 38), for plotted measurements, the CO2/SO2 and H2S/SO2 ratios tended to progressively rise during the months that followed.

OVSICORI-UNA reported that a pilot flying past Turrialba about 40 km away observed a blackish plume on 29 May 2013. Officials from the Parque Nacional Volcán Turrialba observed a gas plume that was slightly darker than usual between 0730 and 0745; however, seismic records showed no abnormal activity at those times or seismic data signifying the discharge of a plume during the previous 48 hours. In addition, web camera images lacked evidence of ash emissions since 23 May. Gas plumes with temperatures more than 750°C were emitted from the two vents. The plume from Boca 2010 was whiter than the plume emitted from Boca 2012.

On 4 June 2013, light ashfall was reported in Pacayas (about 13 km W) and San Pablo in Oreamuno de Cartago (25 km SW). An observer in the previously closed National Park engulfing Turrialba noted that gas emissions that day were slightly stronger and more grayish than usual.

According to OVSICORI-UNA, seismic activity increased significantly again on 13 July 2013 with low-frequency signals (figure 40). On that day, the number of seismic events increased to more than 500/day. Seismicity remained at this level until late August when it decreased. During this period the gas temperature from Boca 2012 decreased from ~800°C to ~600°C. During 18-19 July, low-frequency tremor was detected. No morphological changes at the surface were observed.

Figure (see Caption) Figure 40. As recorded at Turrialba between January-November 2013, the number of volcanic earthquakes (y-axis on plot at left) and the number of very long period (VLP) earthquakes (y-axis on plot at right). Courtesy of OVSICORI-UNA.

Volcanic earthquakes with very long periods ceased in November 2013. Tornillos also became less frequent.

2014. The 29 October magmatic eruption discussed below culminated years of high gas emissions at Turrialba. The eruption was sudden and impulsive, termed an explosion by OVSICORI-UNA, but was led by ongoing ash-bearing emission and a clear multihour escalation in tremor. No human injuries were reported. Costa Rica has bolstered its hazard infrastructure in recent years. According to GFDRR (2012) the legislation called the "Emergencies and Risk Prevention Law (No. 8488) requires Government agencies and municipalities to allocate resources for disaster risk reduction activities in their programs and budgets. Presidential Decree (No.36721-MP-PLAN) enhanced the risk management competencies of the CNE [the National Risk Prevention and Emergencies Management Commission] and provides a model to assess vulnerability (compulsory in governmental planning processes)."

During January-September 2014, the number of volcanic earthquakes often remained relatively low (under 100, figure 41, left plot). Occasionally the number approached 200. The low seismicity was broadly similar to that in the last half of 2013; the majority of earthquakes were of low magnitude, including those of tornillo, volcanic-tectonic, and hybrid affinities. During January-September 2014, volcano-tectonic (VT) seismicity was generally stable (at 3 or fewer events per day)(figure 41, right plot).

Figure (see Caption) Figure 41. The number of daily seismic events at Turrialba during 1 January 2014-30 September 2014. Courtesy of OVSICORI-UNA.

On 28 July 2014, a swarm of small, low-amplitude, short-duration, and high-frequency events lasted two hours. OVSICORI-UNA attributed the swarm to movement of fluids through cracks.

Conde and others (2014a) published an article about volcanic SO2 and CO2 fluxes at Turrialba during early 2013. They discussed SO2 and CO2 measurement methodologies used at Turrialba and Telica. OVSICORI-UNA reports during January-March 2014 noted the development of significantly more accurate, continuous ground-based SO2 monitoring. In addition, OVSICORI-UNA acquired and used an additional instrument, a Flyspec (a mini-spectrometer to measure SO2 levels). According to the OVSICORI-UNA September 2014 monthly report, SO2 fluxes in 2014 through September ranged from 400 to 1,500 metric tons/day, well below the maximum ~3,500 t/d they recorded during several days in June-August 2009 (Conde and others, 2014b).

In addition, reported CO2/SO2 ratios were ~8 in May, 2-4 in June, and ~2.5 in July 2014. H2S/SO2 molar ratios were ~1.2 in May and 0.2-0.7 in June 2014. Several authors in the two cited articles by Conde and others are affiliated with the NOVAC project (Network for Observation of Volcanic and Atmospheric Change). According to its website, the main objective of NOVAC is to establish a network for the measurements of volcanic gas and aerosol emissions--in particular SO2 and BrO--and to use the data from this network for risk assessment and volcanological research, both locally and on a regional and global scale. OVSICORI-UNA is part of the NOVAC consortium.

The temperatures at the W crater vents during January-July 2014 were about 600°C or lower, similar to the values of the previous six months as measured 15-20 m from the vents. In August and September, temperatures rose slightly to ~650°C; the composition of the gases were stable and interpreted as primarily magmatic.

Deformation in the August and September 2014 OVSICORI-UNA reports was determined by using interferometric synthetic aperture radar (InSAR), Global Position System (GPS), and electronic distance meter (EDM) surveys. According to the August 2014 report, the InSAR and EDM measurements showed, in the 2013-2014 time interval, a relative contraction of several centimeters around the E and W craters. The September 2014 OVSICORI-UNA reported that a GPS survey on a 4-point transect from the base of the volcano to the summit yielded preliminary results indicating that one of the stations (VTQU, on the S flank) had sunk 2-3 cm/year since 2011. The September 2014 report did not report deformation at other stations.

According to OVSICORI-UNA, seismic activity, which had been low earlier in the year, began to increase in late September 2014. In mid-October instruments recorded a three-day swarm of volcano-tectonic earthquakes. The largest event, M 2.8, occurred at 2035 on 16 October at a depth of 5 km beneath the active crater. SO2 flux remained low to moderate ranging between 400 and 1,500 metric tons per day during through October 2014. Magmatic influenced degassing intensified during 28-29 October; the SO2 flux was ~2,000 t/d, higher than the 1,300 t/d average measured in September 2014 and the highest to date during 2014. (Recalling the previously mentioned interval 1 April-27 November 2013, the recorded fluxes also stood lower, generally in the range 500-1,000 tons/day).

The 30 October report by OVSICORI-UNA, which contains informative graphics omitted here, including photos of the plume, tephra deposited on a car, seismic instrument records and spectral information, a helicorder record for a 24-hour interval bracketing the explosion). OVSICORI-UNA described the eruption on the 29th as a moderate eruption of ash between 2310 and 2335 (25 munutes).

According to that report, tremor began at 0600 on the 29th and continued unbroken into at least early the next day. The tremor and the associated RSAM escalation was sufficiently ominous as to lead OVSICORI to notify locals of the situation (including the CNE, the National Park, as well as a nearby lodge. The same OVSICORI-UNA report added that at unstated time during this episode the lodge's chief Tony Lachner noted the plume was darker than usual, contained a yellowish tinge, and was judged to contain ash. At 1700, OVSICORI-UNA again informed local authorities on the situation. The tremor had increased in amplitude and continuity (duration) during the afternoon. Tremor became strongest around 2310-2320 on the 29th coincident with the strong explosion then. The same report noted that OVSICORI-UNA had alerted aviation authorities of the explosion around midnight.

The explosion, heard by local residents, also left a clear record on instruments in the region including those at Poas and Irazu. The explosion ended what started as an initially small eruption from the West Crater that lasted about 25 minutes. The explosion was heard by nearby villagers. An ash cloud rose to an altitude of 5.8 km and drifted WSW. Ash fell on numerous nearby communities, including parts of the capital of San José (whose outskirts are ~30 km W) and Heredia (centered less than 40 km WNW of the volcano). In more detail, settlements noted by OVSICORI-UNA included San Gerardo de Irazú, San Ramón de Tres Ríos, Coronado, Moravia, Curridabat, Desamparados, Aserrí, Escazú, Santa Ana, Belén, Guácima de Alajuela, Río Segundo de Alajuela, San Pedro Montes de Oca, Guadalupe, areas of Heredia, and the capital of San José (population ~350,000, with central downtown located~ 70 km SW of Turrialbla).

The explosion on the 29th destroyed the wall between the West and Central craters, depositing material around the Central Crater and partially burying it. According to a news report (Agence France-Presse), Turrialba National Park remained closed, and eleven people from Santa Cruz de Turrialba were evacuated to shelters. Some schools were also temporarily closed, affecting over 300 area students. OVSICORI-UNA literature (including the 30 October report discussed above) noted that magma had not previously reached the surface at Turrialba since an eruption in 1866 (~150 years ago).

The magmatic eruption continued during 30-31 October (figure 42) with growing magmatic components seen in samples. Analyses of tephra showed that the proportion of juvenile material increased during 30 and 31 October, respectively, rising from the range of 3-5% by volume to the range of 7-10% by volume. A 30 October OVSICORI-UNA report noted that the ash dispersion modeling assumed a plume height of 1.5 km, consistent with a photo they showed (time unstated), which showed much of the plume remaining comparatively low in the area of view near the volcano. According to the Washington Volcanic Ash Advisory Center (VAAC), the 30-31 October eruption produced a continuous emission of gas and light ash with an occasional burst of heavier ash, generally moving W and SW.

Figure (see Caption) Figure 42. A photo of emissions at Turrialba's West Crater on 31 October 2014. The photo was taken from the tourist vista point at Turrialba Volcano National Park. The image shows two distinct plumes adjacent each other, a dark ash-bearing plume and a white plume rich in condensed steam. The plumes rose ~1 km above the vent. Courtesy of Raúl Mora (National Seismological Network, RSN, and University of Costa Rica).

In their 7 November 2014 report, OVSICORI-UNA discussed how named staff collected and ran tests on leachate acidity for material deposited in the explosions during 29-31 October. Leachate reached pH 3.3 (highly acidic). In contrast, ash erupted during 4-5 January 2010 yielded leachate with pH 6.7-7.1 (near neutral). The 2014 report cautioned that such values were of considerable concern to human health, to environmental impacts (native vegetation, aquatic species, etc.), to cultivated plants, and to the well being of livestock and farm animals. The authors attributed the low pH values to the magmatic nature of the eruption and to absorption of those gases on the ash particle surfaces.

An explosion at 0520 on 1 November 2014 generated an ash plume that drifted toward the E and N parts of the Central Valley. A 3 November report stated that during the previous 24 hours seismicity had decreased significantly and no explosions had been detected; seismicity remained elevated. An phone and online (Facebook) public survey allowed residents to record if they had observed ashfall in their localities during the eruptive interval. Responses depicted a W-directed dispersal pattern that covered much of the urban area around San Jose.

OVSICORI-UNA reported a seismic signal indicating a strong emission lasting 50 minutes that started at 2320 on 6 November. The same 7 November report noted that in broad terms seismicity had decreased overall during the previous few days.

An ash-bearing explosion from Turrialba started at 1926 on 13 November and lasted about 10 minutes. Another explosion occurred at 1342 on 14 November and lasted about 15 minutes, although the strongest part was 7-minutes long. The OVSICORI-UNA report issued at 1635 on the 14th emphasized the associated explosive signal of these two emissions in terms of seismicity, for example, noting the dominant frequencies for the respective events were centered at 6.8 and 4.0 Hz. The report also said that of National Park officials reported ashfall at the top of Irazú. Volcanologists observed the 14 November explosion and collected samples at Hacienda La Central, 3 km SE of West Crater.

According to news reports (The Tico Times and crhoy.com), OVSICORI-UNA reported a strong gas emission on 13 November, accompanied by a massive outpouring of ash. A pilot reported ash plume S of the volcano at an altitude of 3.7-4.3 km.

According to OVSICORI-UNA, a strong Strombolian explosion occurred at 2128 on 8 December 2014, considered by them as one of the large explosions in the series that started with the magmatic eruption on 29 October 2014. The explosion lasted about ten minutes and had no precursory activity. The main pulse of ash emissions took place in under 100 seconds. Ashfall, 1 cm thick, and ballistics up to ~5 kg were deposited as far as 300 m W. Ashfall of 0.01 to 2 cm thickness was reported in the Central Valley and in towns to the W and SW, with 23 reports from citizens consistent with ash at distances of 45-80 km from the source. The report also noted constant inflation at Turriabla, ~10-15 mm annually, since the year 2010.

Citizen input to acquire ash thickness data. The Turriabla reporting took advantage of an OVSICORI questionare (Encuesta Alcance de Cenizas, V. Turrialba) to engage citizen observations on ash deposition. The online questionnaire (find link in "Information Contacts" section below) features a scalable map that features a positionable icon to show the location of ash-thickness observation. This position then automatically computes the resulting coordinates (latitude and longitude). The questionare includes several other questions relating to thickness, date and time of observation, rainfall, and weather conditions (which can perturb the original thickness). Entering contact information is optional.

References. Conde V., Robidoux, P., Avard, G., Galle, B. Aiuppa, A.,? Muñoz, A., and Giudice, G., 2014a, Measurements of volcanic SO2 and CO2 fluxes by combined DOAS, Multi.GAS and FTIR observations: a case study from Turrialba and Telica volcanoes, Int J Earth Sci (Geol Rundsch), 103, pp. 2335-2347, Springer-Verlag, Berlin Heidelberg. (Also Errata November 2014, 103 (8), p 2349.)

Conde, V., Bredemeyer, S., Duarte, E., Pacheco, J., Miranda, S., Galle, B., and Hansteen, T., 2014b, SO2 degassing from Turrialba Volcano linked to seismic signatures during the period 2008–2012, International Journal of Earth Sciences (Geol Rundsch) 103, pp. 1983–1998, Springer-Verlag, Berlin Heidelberg.

GFDRR, 2012, Costa Rica Country Update – GFDRR, October 2012; Global Facility for Disaster Reduction and Recovery (GFDRR). (URL: http://www.gfdrr.org/sites/gfdrr.org/files/COSTA_RICA.pdf) (Accessed 12 July 2015).

Geologic Background. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Information Contacts: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) (URL: http://www.ovsicori.una.ac.cr/); Washington Volcanic Ash Advisory Center (VAAC), Satellite Analysis Branch (SAB), NOAA/NESDIS E/SP23, NOAA Science Center Room 401, 5200 Auth Rd, Camp Springs, MD 20746, USA (URL: http://www.ospo.noaa.gov/Products/atmosphere/vaac/); Network for Observation of Volcanic and Atmospheric Change (NOVAC) (URL: http://www.novac-project.eu/); The Tico Times (URL: http://www.ticotimes.net/); Agence France-Presse (URL: http://www.afp.com/); The Costa Rica Star (URL: http://news.co.cr/); and crhoy.com (URL: http://www.crhoy.com/).

Atmospheric Effects

The enormous aerosol cloud from the March-April 1982 eruption of Mexico's El Chichón persisted for years in the stratosphere, and led to the Atmospheric Effects section becoming a regular feature of the Bulletin. Descriptions of the initial dispersal of major eruption clouds remain with the individual eruption reports, but observations of long-term stratospheric aerosol loading will be found in this section.

Atmospheric Effects (1980-1989)  Atmospheric Effects (1995-2001)

Special Announcements

Special announcements of various kinds and obituaries.

Special Announcements

Additional Reports

Reports are sometimes published that are not related to a Holocene volcano. These might include observations of a Pleistocene volcano, earthquake swarms, or floating pumice. Reports are also sometimes published in which the source of the activity is unknown or the report is determined to be false. All of these types of additional reports are listed below by subregion and subject.

Kermadec Islands


Floating Pumice (Kermadec Islands)

1986 Submarine Explosion


Tonga Islands


Floating Pumice (Tonga)


Fiji Islands


Floating Pumice (Fiji)


Andaman Islands


False Report of Andaman Islands Eruptions


Sangihe Islands


1968 Northern Celebes Earthquake


Southeast Asia


Pumice Raft (South China Sea)

Land Subsidence near Ham Rong


Ryukyu Islands and Kyushu


Pumice Rafts (Ryukyu Islands)


Izu, Volcano, and Mariana Islands


Acoustic Signals in 1996 from Unknown Source

Acoustic Signals in 1999-2000 from Unknown Source


Kuril Islands


Possible 1988 Eruption Plume


Aleutian Islands


Possible 1986 Eruption Plume


Mexico


False Report of New Volcano


Nicaragua


Apoyo


Colombia


La Lorenza Mud Volcano


Pacific Ocean (Chilean Islands)


False Report of Submarine Volcanism


Central Chile and Argentina


Estero de Parraguirre


West Indies


Mid-Cayman Spreading Center


Atlantic Ocean (northern)


Northern Reykjanes Ridge


Azores


Azores-Gibraltar Fracture Zone


Antarctica and South Sandwich Islands


Jun Jaegyu

East Scotia Ridge


Additional Reports (database)

08/1997 (BGVN 22:08) False Report of Mount Pinokis Eruption

False report of volcanism intended to exclude would-be gold miners

12/1997 (BGVN 22:12) False Report of Somalia Eruption

Press reports of Somalia's first historical eruption were likely in error

11/1999 (BGVN 24:11) False Report of Sea of Marmara Eruption

UFO adherent claims new volcano in Sea of Marmara

05/2003 (BGVN 28:05) Har-Togoo

Fumaroles and minor seismicity since October 2002

12/2005 (BGVN 30:12) Elgon

False report of activity; confusion caused by burning dung in a lava tube



False Report of Mount Pinokis Eruption (Philippines) — August 1997

False Report of Mount Pinokis Eruption

Philippines

7.975°N, 123.23°E; summit elev. 1510 m

All times are local (unless otherwise noted)


False report of volcanism intended to exclude would-be gold miners

In discussing the week ending on 12 September, "Earthweek" (Newman, 1997) incorrectly claimed that a volcano named "Mount Pinukis" had erupted. Widely read in the US, the dramatic Earthweek report described terrified farmers and a black mushroom cloud that resembled a nuclear explosion. The mountain's location was given as "200 km E of Zamboanga City," a spot well into the sea. The purported eruption had received mention in a Manila Bulletin newspaper report nine days earlier, on 4 September. Their comparatively understated report said that a local police director had disclosed that residents had seen a dormant volcano showing signs of activity.

In response to these news reports Emmanuel Ramos of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) sent a reply on 17 September. PHIVOLCS staff had initially heard that there were some 12 alleged families who fled the mountain and sought shelter in the lowlands. A PHIVOLCS investigation team later found that the reported "families" were actually individuals seeking respite from some politically motivated harassment. The story seems to have stemmed from a local gold rush and an influential politician who wanted to use volcanism as a ploy to exclude residents. PHIVOLCS concluded that no volcanic activity had occurred. They also added that this finding disappointed local politicians but was much welcomed by the residents.

PHIVOLCS spelled the mountain's name as "Pinokis" and from their report it seems that it might be an inactive volcano. There is no known Holocene volcano with a similar name (Simkin and Siebert, 1994). No similar names (Pinokis, Pinukis, Pinakis, etc.) were found listed in the National Imagery and Mapping Agency GEOnet Names Server (http://geonames.nga.mil/gns/html/index.html), a searchable database of 3.3 million non-US geographic-feature names.

The Manila Bulletin report suggested that Pinokis resides on the Zamboanga Peninsula. The Peninsula lies on Mindanao Island's extreme W side where it bounds the Moro Gulf, an arm of the Celebes Sea. The mountainous Peninsula trends NNE-SSW and contains peaks with summit elevations near 1,300 m. Zamboanga City sits at the extreme end of the Peninsula and operates both a major seaport and an international airport.

[Later investigation found that Mt. Pinokis is located in the Lison Valley on the Zamboanga Peninsula, about 170 km NE of Zamboanga City and 30 km NW of Pagadian City. It is adjacent to the two peaks of the Susong Dalaga (Maiden's Breast) and near Mt. Sugarloaf.]

References. Newman, S., 1997, Earthweek, a diary of the planet (week ending 12 September): syndicated newspaper column (URL: http://www.earthweek.com/).

Manila Bulletin, 4 Sept. 1997, Dante's Peak (URL: http://www.mb.com.ph/).

Simkin, T., and Siebert, L., 1994, Volcanoes of the world, 2nd edition: Geoscience Press in association with the Smithsonian Institution Global Volcanism Program, Tucson AZ, 368 p.

Information Contacts: Emmanuel G. Ramos, Deputy Director, Philippine Institute of Volcanology and Seismology, Department of Science and Technology, PHIVOLCS Building, C. P. Garcia Ave., University of the Philippines, Diliman campus, Quezon City, Philippines.


False Report of Somalia Eruption (Somalia) — December 1997

False Report of Somalia Eruption

Somalia

3.25°N, 41.667°E; summit elev. 500 m

All times are local (unless otherwise noted)


Press reports of Somalia's first historical eruption were likely in error

Xinhua News Agency filed a news report on 27 February under the headline "Volcano erupts in Somalia" but the veracity of the story now appears doubtful. The report disclosed the volcano's location as on the W side of the Gedo region, an area along the Ethiopian border just NE of Kenya. The report had relied on the commissioner of the town of Bohol Garas (a settlement described as 40 km NE of the main Al-Itihad headquarters of Luq town) and some or all of the information was relayed by journalists through VHF radio. The report claimed the disaster "wounded six herdsmen" and "claimed the lives of 290 goats grazing near the mountain when the incident took place." Further descriptions included such statements as "the volcano which erupted two days ago [25 February] has melted down the rocks and sand and spread . . . ."

Giday WoldeGabriel returned from three weeks of geological fieldwork in SW Ethiopia, near the Kenyan border, on 25 August. During his time there he inquired of many people, including geologists, if they had heard of a Somalian eruption in the Gedo area; no one had heard of the event. WoldeGabriel stated that he felt the news report could have described an old mine or bomb exploding. Heavy fighting took place in the Gedo region during the Ethio-Somalian war of 1977. Somalia lacks an embassy in Washington DC; when asked during late August, Ayalaw Yiman, an Ethiopian embassy staff member in Washington DC also lacked any knowledge of a Somalian eruption.

A Somalian eruption would be significant since the closest known Holocene volcanoes occur in the central Ethiopian segment of the East African rift system S of Addis Ababa, ~500 km NW of the Gedo area. These Ethiopian rift volcanoes include volcanic fields, shield volcanoes, cinder cones, and stratovolcanoes.

Information Contacts: Xinhua News Agency, 5 Sharp Street West, Wanchai, Hong Kong; Giday WoldeGabriel, EES-1/MS D462, Geology-Geochemistry Group, Los Alamos National Laboratory, Los Alamos, NM 87545; Ayalaw Yiman, Ethiopian Embassy, 2134 Kalorama Rd. NW, Washington DC 20008.


False Report of Sea of Marmara Eruption (Turkey) — November 1999

False Report of Sea of Marmara Eruption

Turkey

40.683°N, 29.1°E; summit elev. 0 m

All times are local (unless otherwise noted)


UFO adherent claims new volcano in Sea of Marmara

Following the Ms 7.8 earthquake in Turkey on 17 August (BGVN 24:08) an Email message originating in Turkey was circulated, claiming that volcanic activity was observed coincident with the earthquake and suggesting a new (magmatic) volcano in the Sea of Marmara. For reasons outlined below, and in the absence of further evidence, editors of the Bulletin consider this a false report.

The report stated that fishermen near the village of Cinarcik, at the E end of the Sea of Marmara "saw the sea turned red with fireballs" shortly after the onset of the earthquake. They later found dead fish that appeared "fried." Their nets were "burned" while under water and contained samples of rocks alleged to look "magmatic."

No samples of the fish were preserved. A tectonic scientist in Istanbul speculated that hot water released by the earthquake from the many hot springs along the coast in that area may have killed some fish (although they would be boiled rather than fried).

The phenomenon called earthquake lights could explain the "fireballs" reportedly seen by the fishermen. Such effects have been reasonably established associated with large earthquakes, although their origin remains poorly understood. In addition to deformation-triggered piezoelectric effects, earthquake lights have sometimes been explained as due to the release of methane gas in areas of mass wasting (even under water). Omlin and others (1999), for example, found gas hydrate and methane releases associated with mud volcanoes in coastal submarine environments.

The astronomer and author Thomas Gold (Gold, 1998) has a website (Gold, 2000) where he presents a series of alleged quotes from witnesses of earthquakes. We include three such quotes here (along with Gold's dates, attributions, and other comments):

(A) Lima, 30 March 1828. "Water in the bay 'hissed as if hot iron was immersed in it,' bubbles and dead fish rose to the surface, and the anchor chain of HMS Volage was partially fused while lying in the mud on the bottom." (Attributed to Bagnold, 1829; the anchor chain is reported to be on display in the London Navy Museum.)

(B) Romania, 10 November 1940. ". . . a thick layer like a translucid gas above the surface of the soil . . . irregular gas fires . . . flames in rhythm with the movements of the soil . . . flashes like lightning from the floor to the summit of Mt Tampa . . . flames issuing from rocks, which crumbled, with flashes also issuing from non-wooded mountainsides." (Phrases used in eyewitness accounts collected by Demetrescu and Petrescu, 1941).

(C) Sungpan-Pingwu (China), 16, 22, and 23 August 1976. "From March of 1976, various large anomalies were observed over a broad region. . . . At the Wanchia commune of Chungching County, outbursts of natural gas from rock fissures ignited and were difficult to extinguish even by dumping dirt over the fissures. . . . Chu Chieh Cho, of the Provincial Seismological Bureau, related personally seeing a fireball 75 km from the epicenter on the night of 21 July while in the company of three professional seismologists."

Yalciner and others (1999) made a study of coastal areas along the Sea of Marmara after the Izmet earthquake. They found evidence for one or more tsunamis with maximum runups of 2.0-2.5 m. Preliminary modeling of the earthquake's response failed to reproduce the observed runups; the areas of maximum runup instead appeared to correspond most closely with several local mass-failure events. This observation together with the magnitude of the earthquake, and bottom soundings from marine geophysical teams, suggested mass wasting may have been fairly common on the floor of the Sea of Marmara.

Despite a wide range of poorly understood, dramatic processes associated with earthquakes (Izmet 1999 apparently included), there remains little evidence for volcanism around the time of the earthquake. The nearest Holocene volcano lies ~200 km SW of the report location. Neither Turkish geologists nor scientists from other countries in Turkey to study the 17 August earthquake reported any volcanism. The report said the fisherman found "magmatic" rocks; it is unlikely they would be familiar with this term.

The motivation and credibility of the report's originator, Erol Erkmen, are unknown. Certainly, the difficulty in translating from Turkish to English may have caused some problems in understanding. Erkmen is associated with a website devoted to reporting UFO activity in Turkey. Photographs of a "magmatic rock" sample were sent to the Bulletin, but they only showed dark rocks photographed devoid of a scale on a featureless background. The rocks shown did not appear to be vesicular or glassy. What was most significant to Bulletin editors was the report author's progressive reluctance to provide samples or encourage follow-up investigation with local scientists. Without the collaboration of trained scientists on the scene this report cannot be validated.

References. Omlin, A, Damm, E., Mienert, J., and Lukas, D., 1999, In-situ detection of methane releases adjacent to gas hydrate fields on the Norwegian margin: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Yalciner, A.C., Borrero, J., Kukano, U., Watts, P., Synolakis, C. E., and Imamura, F., 1999, Field survey of 1999 Izmit tsunami and modeling effort of new tsunami generation mechanism: (Abstract) Fall AGU meeting 1999, Eos, American Geophysical Union.

Gold, T., 1998, The deep hot biosphere: Springer Verlag, 256 p., ISBN: 0387985468.

Gold, T., 2000, Eye-witness accounts of several major earthquakes (URL: http://www.people.cornell.edu/ pages/tg21/eyewit.html).

Information Contacts: Erol Erkmen, Tuvpo Project Alp.


Har-Togoo (Mongolia) — May 2003

Har-Togoo

Mongolia

48.831°N, 101.626°E; summit elev. 1675 m

All times are local (unless otherwise noted)


Fumaroles and minor seismicity since October 2002

In December 2002 information appeared in Mongolian and Russian newspapers and on national TV that a volcano in Central Mongolia, the Har-Togoo volcano, was producing white vapors and constant acoustic noise. Because of the potential hazard posed to two nearby settlements, mainly with regard to potential blocking of rivers, the Director of the Research Center of Astronomy and Geophysics of the Mongolian Academy of Sciences, Dr. Bekhtur, organized a scientific expedition to the volcano on 19-20 March 2003. The scientific team also included M. Ulziibat, seismologist from the same Research Center, M. Ganzorig, the Director of the Institute of Informatics, and A. Ivanov from the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences.

Geological setting. The Miocene Har-Togoo shield volcano is situated on top of a vast volcanic plateau (figure 1). The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Pliocene and Quaternary volcanic rocks are also abundant in the vicinity of the Holocene volcanoes (Devyatkin and Smelov, 1979; Logatchev and others, 1982). Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Figure (see Caption) Figure 1. Photograph of the Har-Togoo volcano viewed from west, March 2003. Courtesy of Alexei Ivanov.

Observations during March 2003. The name of the volcano in the Mongolian language means "black-pot" and through questioning of the local inhabitants, it was learned that there is a local myth that a dragon lived in the volcano. The local inhabitants also mentioned that marmots, previously abundant in the area, began to migrate westwards five years ago; they are now practically absent from the area.

Acoustic noise and venting of colorless warm gas from a small hole near the summit were noticed in October 2002 by local residents. In December 2002, while snow lay on the ground, the hole was clearly visible to local visitors, and a second hole could be seen a few meters away; it is unclear whether or not white vapors were noticed on this occasion. During the inspection in March 2003 a third hole was seen. The second hole is located within a 3 x 3 m outcrop of cinder and pumice (figure 2) whereas the first and the third holes are located within massive basalts. When close to the holes, constant noise resembled a rapid river heard from afar. The second hole was covered with plastic sheeting fixed at the margins, but the plastic was blown off within 2-3 seconds. Gas from the second hole was sampled in a mechanically pumped glass sampler. Analysis by gas chromatography, performed a week later at the Institute of the Earth's Crust, showed that nitrogen and atmospheric air were the major constituents.

Figure (see Caption) Figure 2. Photograph of the second hole sampled at Har-Togoo, with hammer for scale, March 2003. Courtesy of Alexei Ivanov.

The temperature of the gas at the first, second, and third holes was +1.1, +1.4, and +2.7°C, respectively, while air temperature was -4.6 to -4.7°C (measured on 19 March 2003). Repeated measurements of the temperatures on the next day gave values of +1.1, +0.8, and -6.0°C at the first, second, and third holes, respectively. Air temperature was -9.4°C. To avoid bias due to direct heating from sunlight the measurements were performed under shadow. All measurements were done with Chechtemp2 digital thermometer with precision of ± 0.1°C and accuracy ± 0.3°C.

Inside the mouth of the first hole was 4-10-cm-thick ice with suspended gas bubbles (figure 5). The ice and snow were sampled in plastic bottles, melted, and tested for pH and Eh with digital meters. The pH-meter was calibrated by Horiba Ltd (Kyoto, Japan) standard solutions 4 and 7. Water from melted ice appeared to be slightly acidic (pH 6.52) in comparison to water of melted snow (pH 7.04). Both pH values were within neutral solution values. No prominent difference in Eh (108 and 117 for ice and snow, respectively) was revealed.

Two digital short-period three-component stations were installed on top of Har-Togoo, one 50 m from the degassing holes and one in a remote area on basement rocks, for monitoring during 19-20 March 2003. Every hour 1-3 microseismic events with magnitude <2 were recorded. All seismic events were virtually identical and resembled A-type volcano-tectonic earthquakes (figure 6). Arrival difference between S and P waves were around 0.06-0.3 seconds for the Har-Togoo station and 0.1-1.5 seconds for the remote station. Assuming that the Har-Togoo station was located in the epicentral zone, the events were located at ~1-3 km depth. Seismic episodes similar to volcanic tremors were also recorded (figure 3).

Figure (see Caption) Figure 3. Examples of an A-type volcano-tectonic earthquake and volcanic tremor episodes recorded at the Har-Togoo station on 19 March 2003. Courtesy of Alexei Ivanov.

Conclusions. The abnormal thermal and seismic activities could be the result of either hydrothermal or volcanic processes. This activity could have started in the fall of 2002 when they were directly observed for the first time, or possibly up to five years earlier when marmots started migrating from the area. Further studies are planned to investigate the cause of the fumarolic and seismic activities.

At the end of a second visit in early July, gas venting had stopped, but seismicity was continuing. In August there will be a workshop on Russian-Mongolian cooperation between Institutions of the Russian and Mongolian Academies of Sciences (held in Ulan-Bator, Mongolia), where the work being done on this volcano will be presented.

References. Devyatkin, E.V. and Smelov, S.B., 1979, Position of basalts in sequence of Cenozoic sediments of Mongolia: Izvestiya USSR Academy of Sciences, geological series, no. 1, p. 16-29. (In Russian).

Logatchev, N.A., Devyatkin, E.V., Malaeva, E.M., and others, 1982, Cenozoic deposits of Taryat basin and Chulutu river valley (Central Hangai): Izvestiya USSR Academy of Sciences, geological series, no. 8, p. 76-86. (In Russian).

Geologic Background. The Miocene Har-Togoo shield volcano, also known as Togoo Tologoy, is situated on top of a vast volcanic plateau. The 5,000-year-old Khorog (Horog) cone in the Taryatu-Chulutu volcanic field is located 135 km SW and the Quaternary Urun-Dush cone in the Khanuy Gol (Hanuy Gol) volcanic field is 95 km ENE. Analysis of seismic activity recorded by a network of seismic stations across Mongolia shows that earthquakes of magnitude 2-3.5 are scattered around the Har-Togoo volcano at a distance of 10-15 km.

Information Contacts: Alexei V. Ivanov, Institute of the Earth Crust SB, Russian Academy of Sciences, Irkutsk, Russia; Bekhtur andM. Ulziibat, Research Center of Astronomy and Geophysics, Mongolian Academy of Sciences, Ulan-Bator, Mongolia; M. Ganzorig, Institute of Informatics MAS, Ulan-Bator, Mongolia.


Elgon (Uganda) — December 2005

Elgon

Uganda

1.136°N, 34.559°E; summit elev. 3885 m

All times are local (unless otherwise noted)


False report of activity; confusion caused by burning dung in a lava tube

An eruption at Mount Elgon was mistakenly inferred when fumes escaped from this otherwise quiet volcano. The fumes were eventually traced to dung burning in a lava-tube cave. The cave is home to, or visited by, wildlife ranging from bats to elephants. Mt. Elgon (Ol Doinyo Ilgoon) is a stratovolcano on the SW margin of a 13 x 16 km caldera that straddles the Uganda-Kenya border 140 km NE of the N shore of Lake Victoria. No eruptions are known in the historical record or in the Holocene.

On 7 September 2004 the web site of the Kenyan newspaper The Daily Nation reported that villagers sighted and smelled noxious fumes from a cave on the flank of Mt. Elgon during August 2005. The villagers' concerns were taken quite seriously by both nations, to the extent that evacuation of nearby villages was considered.

The Daily Nation article added that shortly after the villagers' reports, Moses Masibo, Kenya's Western Province geology officer visited the cave, confirmed the villagers observations, and added that the temperature in the cave was 170°C. He recommended that nearby villagers move to safer locations. Masibo and Silas Simiyu of KenGens geothermal department collected ashes from the cave for testing.

Gerald Ernst reported on 19 September 2004 that he spoke with two local geologists involved with the Elgon crisis from the Geology Department of the University of Nairobi (Jiromo campus): Professor Nyambok and Zacharia Kuria (the former is a senior scientist who was unable to go in the field; the latter is a junior scientist who visited the site). According to Ernst their interpretation is that somebody set fire to bat guano in one of the caves. The fire was intense and probably explains the vigorous fuming, high temperatures, and suffocated animals. The event was also accompanied by emissions of gases with an ammonia odor. Ernst noted that this was not surprising considering the high nitrogen content of guano—ammonia is highly toxic and can also explain the animal deaths. The intense fumes initially caused substantial panic in the area.

It was Ernst's understanding that the authorities ordered evacuations while awaiting a report from local scientists, but that people returned before the report reached the authorities. The fire presumably prompted the response of local authorities who then urged the University geologists to analyze the situation. By the time geologists arrived, the fuming had ceased, or nearly so. The residue left by the fire and other observations led them to conclude that nothing remotely related to a volcanic eruption had occurred.

However, the incident emphasized the problem due to lack of a seismic station to monitor tectonic activity related to a local triple junction associated with the rift valley or volcanic seismicity. In response, one seismic station was moved from S Kenya to the area of Mt. Elgon so that local seismicity can be monitored in the future.

Information Contacts: Gerald Ernst, Univ. of Ghent, Krijgslaan 281/S8, B-9000, Belgium; Chris Newhall, USGS, Univ. of Washington, Dept. of Earth & Space Sciences, Box 351310, Seattle, WA 98195-1310, USA; The Daily Nation (URL: http://www.nationmedia.com/dailynation/); Uganda Tourist Board (URL: http://www.visituganda.com/).